51
|
Liu Y, Qiu C, Li X, McClements DJ, Wang C, Zhang Z, Jiao A, Long J, Zhu K, Wang J, Jin Z. Application of starch-based nanoparticles and cyclodextrin for prebiotics delivery and controlled glucose release in the human gut: a review. Crit Rev Food Sci Nutr 2022; 63:6126-6137. [PMID: 35040740 DOI: 10.1080/10408398.2022.2028127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Starches are a major constituent of staple foods and are the main source of energy in the human diet (55-70%). In the gastrointestinal tract, starches are hydrolyzed into glucose by α-amylase and α-glucosidase, which leads to a postprandial glucose elevation. High levels of blood glucose levels over sustained periods may promote type 2 diabetes mellitus (T2DM) and obesity. Increasing consumption of starchy foods with a lower glycemic index may therefore contribute to improved health. In this paper, the preparation and properties of several starch-based nanoparticles (SNPs) and cyclodextrins (CDs) derivatives are reviewed. In particular, we focus on the various mechanisms responsible for the ability of these edible nanomaterials to modulate glucose release and the gut microbiome in the gastrointestinal tract. The probiotic functions are achieved through encapsulation and protection of prebiotics or bioactive components in foods or the human gut. This review therefore provides valuable information that could be used to design functional foods for improving human health and wellbeing.
Collapse
Affiliation(s)
- Yuwan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Chenxi Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Kunfu Zhu
- Shandong Zhushi Pharmaceutical Group Co., LTD, Heze, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
52
|
Nain V, Kaur M, Sandhu KS, Thory R, Sinhmar A. Development of Starch Nanoparticle from Mango Kernel in Comparison with Cereal, Tuber, and Legume Starch Nanoparticles: Characterization and Cytotoxicity. STARCH-STARKE 2022. [DOI: 10.1002/star.202100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vikash Nain
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa 125055 India
| | - Maninder Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa 125055 India
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda 151001 India
| | - Rahul Thory
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and Management Sciences Bajhol, PO Sultanpur, Distt. Solan HP 173229 India
| |
Collapse
|
53
|
Preparation and characterization of nanoparticles from cereal and pulse starches by ultrasonic-assisted dissolution and rapid nanoprecipitation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
54
|
Dong H, Zhang Q, Gao J, Chen L, Vasanthan T. Preparation and characterization of nanoparticles from field pea starch by batch versus continuous nanoprecipitation techniques. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
55
|
Patra R, Ghosal K, Saha R, Sarkar P, Chattopadhyay S, Sarkar K. Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with Respect to Their Synthesis Procedures, Degradation Properties, Toxicity, Stability and Applications. ENCYCLOPEDIA OF MATERIALS: PLASTICS AND POLYMERS 2022:567-592. [DOI: 10.1016/b978-0-12-820352-1.00252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
56
|
Torres FG, De-la-Torre GE. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int J Biol Macromol 2022; 194:289-305. [PMID: 34863968 DOI: 10.1016/j.ijbiomac.2021.11.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, starch nanoparticles (SNPs) are drawing attention to the scientific community due to their versatility and wide range of applications. Although several works have extensively addressed the SNP production routes, not much is discussed about the SNPs modification techniques, as well as the use of modified SNPs in typical and unconventional applications. Here, we focused on the SNP modification strategies and characteristics and performance of the resulting products, as well as their practical applications, while pointing out the main limitations and recommendations. We aim to guide researchers by identifying the next steps in this emerging line of research. SNPs esterification and oxidation are preferred chemical modifications, which result in changes in the functional groups. Moreover, additional polymers are incorporated into the SNP surface through copolymer grafting. Physical modification of starch has demonstrated similar changes in the functional groups without the need for toxic chemicals. Modified SNPs rendered differentiated properties, such as size, shape, crystallinity, hydrophobicity, and Zeta-potential. For multiple applications, tailoring the aforementioned properties is key to the performance of nanoparticle-based systems. However, the number of studies focusing on emerging applications is fairly limited, while their applications as drug delivery systems lack in vivo studies. The main challenges and prospects were discussed.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru.
| | | |
Collapse
|
57
|
Polyethyleneimine grafted starch nanocrystals as a novel biosorbent for efficient removal of methyl blue dye. Carbohydr Polym 2021; 273:118579. [PMID: 34560983 DOI: 10.1016/j.carbpol.2021.118579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
In this paper, a novel biosorbent of SNCs-PEI was successfully prepared by grafting polyethylenimine (PEI) onto the starch nanocrystals (SNCs) using glutaraldehyde as a crosslinking agent. The optimal preparation conditions of SNCs-PEI were determined by the orthogonal experiments of the three-factor and three-level, and the SNCs-PEI was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The zeta potential of SNCs-PEI was +26.3 mV (pH 7), which had a good adsorption performance for the anionic dye methyl blue (MB). The adsorption kinetics and isotherm of MB by SNCs-PEI were studied. At the temperature of 25, 30 and 35 °C, its maximum adsorption capacity was 337.84, 377.36 and 383.14 mg g-1, respectively. The adsorption of MB by the SNCs-PEI was a spontaneous and endothermic process according to the thermodynamic analysis.
Collapse
|
58
|
Zhou L, He X, Ji N, Dai L, Li Y, Yang J, Xiong L, Sun Q. Preparation and characterization of waxy maize starch nanoparticles via hydrochloric acid vapor hydrolysis combined with ultrasonication treatment. ULTRASONICS SONOCHEMISTRY 2021; 80:105836. [PMID: 34798523 PMCID: PMC8605087 DOI: 10.1016/j.ultsonch.2021.105836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 05/09/2023]
Abstract
The objective of this work was to develop a simple and efficient method to prepare waxy maize starch nanoparticles (SNPs) by hydrochloric acid (HCl) vapor hydrolysis combined with ultrasonication treatment. The size, morphology, thermal property, and crystal structure of the SNPs were systematically studied. HCl treatment introduces a smaller particle diameter of starch particles from 13.73 ± 0.93 μm to 1.52 ± 0.01-8.32 ± 0.63 μm. Further ultrasonication treatment formed SNPs that displayed desirable uniformity and near-perfect spherical and ellipsoidal shapes with a diameter of 150.65 ± 1.91-292.85 ± 0.07 nm. The highest yield of SNPs was 80.5%. Compared with the native starch, the gelatinization enthalpy changes of SNPs significantly decreased from 14.65 ± 1.58 J/g to 7.40 ± 1.27 J/g. Interestingly, the SNPs showed a wider melting temperature range of 22.77 ± 2.35 °C than native starch (10.94 ± 0.87 °C). The relative crystallinity of SNPs decreased to 29.65%, while long-time ultrasonication resulted in amorphization. HCl vapor hydrolysis combined with ultrasonication treatment can be an affordable and accessible method for the efficient large-scale production of SNPs. The SNPs developed by this method will have potential applications in the food, materials, and medicine industries.
Collapse
Affiliation(s)
- Liyang Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Xiaoyang He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
59
|
Chen YY, Liu K, Zha XQ, Li QM, Pan LH, Luo JP. Encapsulation of luteolin using oxidized lotus root starch nanoparticles prepared by anti-solvent precipitation. Carbohydr Polym 2021; 273:118552. [PMID: 34560964 DOI: 10.1016/j.carbpol.2021.118552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
In this study, luteolin-oxidized lotus root starch (OLRS) nanoparticles (NPs) were developed to improve the stability and antioxidant activity of luteolin. Results showed that a stable luteolin-OLRS NPs was formed using luteolin and OLRS (oxidation degree, 15%) in the weight ratio of 3:1, as well as anti-solvent and solvent in the volume ratio of 10:1. Under this condition, the particle size, polydispersity index and zeta-potential of luteolin-OLRS NPs was 305 nm, 0.173 and -20.8 mV, respectively. The analysis of transmission electron microscopy, X-ray diffractometer and Fourier transform infrared spectroscopy demonstrated that the luteolin was successfully encapsulated in OLRS NPs, giving an encapsulation efficiency of 87.2%. The release characteristic and antioxidant activity of encapsulated luteolin were further investigated. Results exhibited that the OLRS NPs enabled luteolin to be stable in simulated gastric fluid and sustained release in simulated intestinal fluid, leading to the enhancement of antioxidant activity of luteolin.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
60
|
Optimization of processing parameters to produce nanoparticles prepared by rapid nanoprecipitation of pea starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Azad M, Guner G, Afolabi A, Davé R, Bilgili E. Impact of solvents during wet stirred media milling of cross-linked biopolymer suspensions. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
62
|
Dukare AS, Arputharaj A, Bharimalla A, Saxena S, Vigneshwaran N. Nanostarch production by enzymatic hydrolysis of cereal and tuber starches. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
63
|
Surface-charged starch nanocrystals from glutinous rice: Preparation, crystalline properties and cytotoxicity. Int J Biol Macromol 2021; 192:557-563. [PMID: 34653438 DOI: 10.1016/j.ijbiomac.2021.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
The high-amylopectin glutinous rice is used in this study for the preparation of starch nanocrystals (SNCs) with the acid hydrolysis and enzymatic treatment. The fabricated SNC is carried out the surface modifications by phosphorylation and cationization to produce the nanocrystals with the charged surface. Four kinds of SNCs are obtained with the different surface charges involving the varied negative charges, positive charge and no charge. The chemical structures, morphologies and crystalline properties of four SNCs were investigated, together with the effect of surface charges to their cytotoxicity for two cell lines RAW267.4 and CAL27 by the cell proliferation and cell migration assay. The sulfuric acid-hydrolyzed SNC and phosphorylated SNC have more ordered regions and therefore display the higher crystallinities than the enzymatic treated SNC. Four obtained SNCs all exhibited weak cytotoxicity, indicating their good biocompatibility in the potential biomedical application.
Collapse
|
64
|
Rigg A, Champagne P, Cunningham MF. Polysaccharide-Based Nanoparticles as Pickering Emulsifiers in Emulsion Formulations and Heterogenous Polymerization Systems. Macromol Rapid Commun 2021; 43:e2100493. [PMID: 34841604 DOI: 10.1002/marc.202100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Bio-based Pickering emulsifiers are a nontoxic alternative to surfactants in emulsion formulations and heterogenous polymerizations. Recent demand for biocompatible and sustainable formulations has accelerated academic interest in polysaccharide-based nanoparticles as Pickering emulsifiers. Despite the environmental advantages, the inherent hydrophilicity of polysaccharides and their nanoparticles limits efficiency and application range. Modification of the polysaccharide surface is often required in the development of ultrastable, functional, and water-in-oil (W/O) systems. Complex surface modification calls into question the sustainability of polysaccharide-based nanoparticles and is identified as a significant barrier to commercialization. This review summarizes the use of nanocelluloses, -starches, and -chitins as Pickering emulsifiers, highlights trends and best practices in surface modification, and provides recommendations to expedite commercialization.
Collapse
Affiliation(s)
- Amanda Rigg
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Quebec City, Quebec, G1K 9A9, Canada
| | - Michael F Cunningham
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Chemistry, 90 Bader Lane, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
65
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
66
|
Abstract
Edible coatings, including green polymers are used frequently in the food industry to improve and preserve the quality of foods. Green polymers are defined as biodegradable polymers from biomass resources or synthetic routes and microbial origin that are formed by mono- or multilayer structures. They are used to improve the technological properties without compromising the food quality, even with the purpose of inhibiting lipid oxidation or reducing metmyoglobin formation in fresh meat, thereby contributing to the final sensory attributes of the food and meat products. Green polymers can also serve as nutrient-delivery carriers in meat and meat products. This review focuses on various types of bio-based biodegradable polymers and their preparation techniques and applications in meat preservation as a part of active and smart packaging. It also outlines the impact of biodegradable polymer films or coatings reinforced with fillers, either natural or synthesized, via the green route in enhancing the physicochemical, mechanical, antimicrobial, and antioxidant properties for extending shelf-life. The interaction of the package with meat contact surfaces and the advanced polymer composite sensors for meat toxicity detection are further considered and discussed. In addition, this review addresses the research gaps and challenges of the current packaging systems, including coatings where green polymers are used. Coatings from renewable resources are seen as an emerging technology that is worthy of further investigation toward sustainable packaging of food and meat products.
Collapse
|
67
|
Maniglia BC, La Fuente CIA, Siqueira LDV, Tadini CC. Carbohydrate Nanomaterials Addition to Starch‐Based Packaging: A Review about Fundamentals and Application. STARCH-STARKE 2021. [DOI: 10.1002/star.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bianca Chieregato Maniglia
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP) ‐ Universidade de São Paulo Ribeirão Preto SP 14040–900 Brazil
| | - Carla Ivonne Arias La Fuente
- Department of Agri‐food Industry Food and Nutrition (LAN), School of Agriculture Luiz de Queiroz (ESALQ) Universidade de São Paulo Piracicaba SP 13418–900 Brazil
| | - Larissa do Val Siqueira
- Department of Chemical Engineering, Escola Politécnica Universidade de São Paulo Main Campus São Paulo SP 05508‐010 Brazil
- Food Research Center (FoRC/NAPAN) Universidade de São Paulo SP Brazil
| | - Carmen Cecilia Tadini
- Department of Chemical Engineering, Escola Politécnica Universidade de São Paulo Main Campus São Paulo SP 05508‐010 Brazil
- Food Research Center (FoRC/NAPAN) Universidade de São Paulo SP Brazil
| |
Collapse
|
68
|
Dong H, Zhang Q, Gao J, Chen L, Vasanthan T. Comparison of morphology and rheology of starch nanoparticles prepared from pulse and cereal starches by rapid antisolvent nanoprecipitation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
69
|
Espinosa-Solís V, García-Tejeda YV, Portilla-Rivera OM, Barrera-Figueroa V. Tailoring Olive Oil Microcapsules via Microfluidization of Pickering o/w Emulsions. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02673-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
70
|
Qian X, Peng G, Ge L, Wu D. Water-in-water Pickering emulsions stabilized by the starch nanocrystals with various surface modifications. J Colloid Interface Sci 2021; 607:1613-1624. [PMID: 34592548 DOI: 10.1016/j.jcis.2021.09.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Using the platelet-like starch nanocrystals (SNCs) to stabilize emulsions is attractive because as-prepared emulsions have promising applications in cosmetics and food fields. Limited studies mainly focus on the oil-in-water system, and another important system, the water-in-water emulsions stabilized by SNCs, has not yet been unveiled. EXPERIMENTS Two surface modification strategies, crosslinking and acetylation, were applied to tune surface property and aggregation of SNCs, and a common all-aqueous system (dextran/poly(ethylene glycol)) was used here as template. The viscoelasticity and morphology of emulsions were studied in terms of the SNC loadings and polymer ratios. FINDINGS Crosslinking results in aggregation of SNCs, and the particle size increases (from 110 nm to 370 nm) with increased levels of substitution. This favors improving emulsifying ability of particles. Acetylation decreases the particle size (∼90 nm) and weakens the affinity of SNCs to the two aqueous phases, improving the emulsifying efficiency of SNCs. More intriguingly, the two emulsion systems show different phase inversion behaviors. The depletion-stabilization mechanism for the cross-linked SNCs and the diffusion-controlled mechanism for the acetylated SNCs are proposed using the emulsion viscoelasticity as probe. This study makes a comprehensive insight into the regulation of water-in-water emulsion morphology and types with the platelet-like SNCs.
Collapse
Affiliation(s)
- Xiaoli Qian
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Guangni Peng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Lingling Ge
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Provincial Key Laboratories of Environmental Engineering & Materials, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
71
|
Zhang Z, Qiu C, Li X, McClements DJ, Jiao A, Wang J, Jin Z. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
72
|
Saracoglu P, Ozmen MM. Starch Based Nanogels: From Synthesis to Miscellaneous Applications. STARCH-STARKE 2021. [DOI: 10.1002/star.202100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pelin Saracoglu
- Department of Bioengineering Yildiz Technical University Istanbul 34220 Turkey
| | - Mehmet Murat Ozmen
- Department of Bioengineering Yildiz Technical University Istanbul 34220 Turkey
| |
Collapse
|
73
|
Tagliapietra BL, de Melo BG, Sanches EA, Plata‐Oviedo M, Campelo PH, Clerici MTPS. From Micro to Nanoscale: A Critical Review on the Concept, Production, Characterization, and Application of Starch Nanostructure. STARCH-STARKE 2021. [DOI: 10.1002/star.202100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruna Lago Tagliapietra
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| | - Bruna Guedes de Melo
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| | - Edgar A. Sanches
- Laboratory of Nanostructured Polymers (NANOPOL) Federal University of Amazonas 69080–900 Manaus Amazonas Brazil
| | - Manuel Plata‐Oviedo
- Graduate Program of Food Technology Federal University of Technology – Paraná (UTFPR) 1233, 87301–899 Campo Mourão Paraná Brazil
| | - Pedro H. Campelo
- School of Agrarian Science Federal University of Amazonas 69080–900 Manaus Amazonas Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| |
Collapse
|
74
|
Lu H, Tian Y. Nanostarch: Preparation, Modification, and Application in Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6929-6942. [PMID: 34142546 DOI: 10.1021/acs.jafc.1c01244] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostarch, as a food-grade Pickering emulsion stabilizer, has attracted wide attention owing to its biodegradability, nontoxicity, small size, and large specific surface area. In this review, the preparation, modification, and application of Pickering emulsions incorporating nanostarch are described. At present, methods for nanostarch preparation mainly include acid hydrolysis, acid hydrolysis combined with other treatments, nanoprecipitation, ultrasonication, ball milling, and cross-linking. Nanostarch is a promising Pickering emulsion stabilizer, and its emulsifying ability of nanostarch is significantly improved by hydrophobic modification. The hydrophobicity, charge, size, and content of nanostarch affect the emulsion stability. Future developments in this area of research include the efficient and environmentally friendly preparation of nanostarch as well as the control of its hydrophobicity via modification. Future studies should focus on the digestibility and storage stability of Pickering emulsions stabilized by nanostarch under different conditions.
Collapse
Affiliation(s)
- Hao Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
75
|
Caldonazo A, Almeida SL, Bonetti AF, Lazo REL, Mengarda M, Murakami FS. Pharmaceutical applications of starch nanoparticles: A scoping review. Int J Biol Macromol 2021; 181:697-704. [PMID: 33766602 DOI: 10.1016/j.ijbiomac.2021.03.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
Starch nanoparticles (SNPs) have been applied to different areas of material sciences, especially in pharmaceuticals due to their characteristics such as small particle size, high surface ratio-volume, and biological compatibility. However, in pharmaceutical sciences, there are no records of a scoping review that had extensively mapped all available information about SNPs. A scoping review was performed here by searching electronic databases (Pubmed and Science Direct) to identify studies published previous to June 2020. From 699 total records, 37 matched the criteria for inclusion. The findings showed that SNPs have been used, not only for the development of different active pharmaceutical ingredient delivery systems, but also as an enzyme inhibitor, adsorption, and DNA precipitation agent. In conclusion, by combining different starch sources and methods SNPs show a remarkable diversity in pharmaceutical applications. Future studies should explore SNPs safety and provide information about variables that may affect important properties for this kind of application.
Collapse
Affiliation(s)
- Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil.
| | - Susana Leao Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Aline F Bonetti
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Fabio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
76
|
Chavan P, Sinhmar A, Nehra M, Thory R, Pathera AK, Sundarraj AA, Nain V. Impact on various properties of native starch after synthesis of starch nanoparticles: A review. Food Chem 2021; 364:130416. [PMID: 34192635 DOI: 10.1016/j.foodchem.2021.130416] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
In recent years, interdisciplinary research is more focused on particle size, which helps in exploring the relation between micro and macroscopic properties of various materials. Starch nanoparticles are generally synthesized by using acid/enzymatic hydrolysis, gamma irradiation, simple nanoprecipitation, ultra-sonication, and homogenization treatments. The properties like amylose content, pasting, rheological, morphological, size distribution, etc. are affected after the formation of nanoparticles from starch. This study emphasizes how various properties are changed in starch nanoparticles. Starch nanoparticles are mainly used in the formulation of nano-emulsion, nano starch-based composite film, and drug delivery. The impact on various native starch properties after the preparation of starch nanoparticles are less reported. So, all the aspects related to various starch properties and their nanoparticles are extensively reviewed in this study so that the listed findings can be utilized in future processes to increase the various foods and non-food utilization of starch nanoparticles.
Collapse
Affiliation(s)
- Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Manju Nehra
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Rahul Thory
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India.
| | - Ashok Kumar Pathera
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Antony Allwyn Sundarraj
- Sri Shakti Institute of Engineering and Technology, Sri Shakti Nagar, Coimbatore 641062, TN, India
| | - Vikash Nain
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| |
Collapse
|
77
|
Baena-Jurado N, Sanchez LT, Pinzon MI, Villa CC. Data from the synthesis and characterization of banana starch nanoparticles from different botanical varieties. Data Brief 2021; 37:107167. [PMID: 34113704 PMCID: PMC8170071 DOI: 10.1016/j.dib.2021.107167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
In this work, we present data related to the structural features and thermal characteristics of starches from four varieties banana, likewise, we present the synthesis and characterization of starch nanoparticles from those starches. Data shows the structure of the starch granule and the nanoparticles are formed through XRD spectroscopy.
Collapse
Affiliation(s)
- Natalia Baena-Jurado
- Programa de Química, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío. Carrera 15 Calle 12N, Armenia, Quindío, Colombia
| | - Leidy T Sanchez
- Programa de Ingeniería de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindío. Carrera 15 Calle 12N, Armenia, Quindío, Colombia
| | - Magda I Pinzon
- Programa de Ingeniería de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindío. Carrera 15 Calle 12N, Armenia, Quindío, Colombia
| | - Cristian C Villa
- Programa de Química, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío. Carrera 15 Calle 12N, Armenia, Quindío, Colombia
| |
Collapse
|
78
|
Pandey S. Polysaccharide‐Based Membrane for Packaging Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
79
|
Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. NANOSCALE ADVANCES 2021; 3:2699-2709. [PMID: 36134186 PMCID: PMC9419840 DOI: 10.1039/d0na00952k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 05/02/2023]
Abstract
Probiotics are microorganisms that have beneficial health effects when administered in adequate dosages. The oral administration of probiotic bacteria is widely considered beneficial for both intestinal as well as systemic health but its clinical efficacy is conflicted in the literature. This may at least in part be due to the loss of viability during gastrointestinal passage resulting in poor intestinal delivery. Microencapsulation technology has been proposed as a successful strategy to address this problem by maintaining the viability of probiotics, thereby improving their efficacy following oral administration. More recently, nanomaterials have demonstrated significant promise as encapsulation materials to improve probiotic encapsulation. The integration of nanotechnology with microencapsulation techniques can improve the controlled delivery of viable probiotic bacteria to the gut. The current review aims at summarizing the types of nanomaterials used for the microencapsulation of probiotics and showing how they can achieve the delivery and controlled release of probiotics at the site of action.
Collapse
Affiliation(s)
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia Kelowna BC Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia Kelowna BC Canada
| | - Deanna L Gibson
- Department of Biology, Faculty of Science, University of British Columbia Kelowna Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia Vancouver Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia Kelowna BC Canada
| |
Collapse
|
80
|
Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, starch nanoparticles (SNPs) have attracted growing attention due to their unique properties as a sustainable alternative to common nanomaterials since they are natural, renewable and biodegradable. SNPs can be obtained by the breakdown of starch granules through different techniques which include both physical and chemical methods. The final properties of the SNPs are strongly influenced by the synthesis method used as well as the operational conditions, where a controlled and monodispersed size is crucial for certain bioapplications. SNPs are considered to be a good vehicle to improve the controlled release of many bioactive compounds in different research fields due to their high biocompatibility, potential functionalization, and high surface/volume ratio. Their applications are frequently found in medicine, cosmetics, biotechnology, or the food industry, among others. Both the encapsulation properties as well as the releasing processes of the bioactive compounds are highly influenced by the size of the SNPs. In this review, a general description of the different types of SNPs (whole and hollow) synthesis methods is provided as well as on different techniques for encapsulating bioactive compounds, including direct and indirect methods, with application in several fields. Starches from different botanical sources and different bioactive compounds are compared with respect to the efficacy in vitro and in vivo. Applications and future research trends on SNPs synthesis have been included and discussed.
Collapse
|
81
|
Zhang K, Zhao D, Guo D, Tong X, Zhang Y, Wang L. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. Int J Biol Macromol 2021; 183:481-489. [PMID: 33933544 DOI: 10.1016/j.ijbiomac.2021.04.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
In this study, the effect of microwave-ultrasound or/and toughening treatment on the physicochemical, structural properties, and in vitro digestibility of A- and B-type granules isolated from wheat starch were investigated. From the SEM, microwave-ultrasound and toughening treatment (MU-T) led to the appearance of irregular and disrupted structure significantly and an increment in the resistant starch content of A- and B-type granule. Furthermore, the MU-T starch possessed the lowest swelling power, light transmittance, and gelatinization temperature range (Tc -To) and the highest ΔH. After MU-T, the relative crystallinity (RC) of X-ray pattern, Fourier transform infrared ratio of 1047/1022 cm-1, and the content of double helix and single helix of 13C CP/MAS NMR had increased significantly. In particular, there was a difference in the content of RS and SDS between A-starch granules and B-starch granules as well as their changes after modification (from 69.305% to 82.93 for A-starch and form 74.97% to 88.17 for B-starch, respectively), which was a similar trend with RC and helix content. This study indicated that, for both A-type granule and B-type granule starches, microwave-ultrasound and toughening treated samples had unique properties compared to singly modified starches.
Collapse
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Di Zhao
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China.
| | - Dongxu Guo
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiaofeng Tong
- Henan Agricultural University, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Yun Zhang
- Henan University of Technology, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Li Wang
- School of Food Science, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
82
|
Miskeen S, An YS, Kim JY. Application of starch nanoparticles as host materials for encapsulation of curcumin: Effect of citric acid modification. Int J Biol Macromol 2021; 183:1-11. [PMID: 33901554 DOI: 10.1016/j.ijbiomac.2021.04.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
To encapsulate curcumin, absolute ethanolic curcumin solution with various content (300-1200 μg) was added to aqueous dispersion of citric acid-modified starch nanoparticles (M.SNPs) with various contents (0.5-2.5%), and then ethanol of the mixture was evaporated by nitrogen gas purge for 40 min (ethanol content decreased to 1%). SNPs (100 mg) could encapsulate 75.7 μg of curcumin in matrices of the composite, while 100 mg of M.SNPs could encapsulate 144.9 μg of curcumin. The XRD results revealed that curcumin was amorphously encapsulated in the composite, and hydrogen bond formation between M.SNPs and curcumin was one of the major driving forces for encapsulation as suggested by FT-IR. The composites had a spherical shape and mean particle size of the composites was increased from 136.3 to 255.3 nm with higher curcumin content in the matrices of composites. UV, pH, and thermal stability of curcumin significantly enhanced by the encapsulation, which was further increased when using M.SNPs and/or higher content of host materials. For the release of curcumin in simulated intestinal fluid digestion, release mechanism explained by Korsmeyer-Peppas model. For M.SNPs, k value was decreased from 13.097 to 2.938 as addition level of host material increased from 0.5 to 2.5%.
Collapse
Affiliation(s)
- Sumaira Miskeen
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Sik An
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong-Yea Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
83
|
Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications. Molecules 2021; 26:molecules26072068. [PMID: 33916823 PMCID: PMC8038324 DOI: 10.3390/molecules26072068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
Nanoparticles possess a huge potential to be employed in numerous biomedical purposes; their applications may include drug delivery systems, gene therapy, and tissue engineering. However, the in vivo use in biomedical applications requires that nanoparticles exhibit sterility. Thus, diverse sterilization techniques have been developed to remove or destroy microbial contamination. The main sterilization methods include sterile filtration, autoclaving, ionizing radiation, and nonionizing radiation. Nonetheless, the sterilization processes can alter the stability, zeta potential, average particle size, and polydispersity index of diverse types of nanoparticles, depending on their composition. Thus, these methods may produce unwanted effects on the nanoparticles' characteristics, affecting their safety and efficacy. Moreover, each sterilization method possesses advantages and drawbacks; thus, the suitable method's choice depends on diverse factors such as the formulation's characteristics, batch volume, available methods, and desired application. In this article, we describe the current sterilization methods of nanoparticles. Moreover, we discuss the advantages and drawbacks of these methods, pointing out the changes in nanoparticles' biological and physicochemical characteristics after sterilization. Our main objective was to offer a comprehensive overview of terminal sterilization processes of nanoparticles for biomedical applications.
Collapse
|
84
|
Espinosa-Sandoval L, Ochoa-Martínez C, Ayala-Aponte A, Pastrana L, Gonçalves C, Cerqueira MA. Polysaccharide-Based Multilayer Nano-Emulsions Loaded with Oregano Oil: Production, Characterization, and In Vitro Digestion Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:878. [PMID: 33808246 PMCID: PMC8067034 DOI: 10.3390/nano11040878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
The food industry has increased its interest in using "consumer-friendly" and natural ingredients to produce food products. In the case of emulsifiers, one of the possibilities is to use biopolymers with emulsification capacity, such as octenyl succinic anhydride modified starch, which can be used in combination with other polysaccharides, such as chitosan and carboxymethylcellulose, in order to improve the capacity to protect bioactive compounds. In this work, multilayer nano-emulsion systems loaded with oregano essential oil were produced by high energy methods and characterized. The process optimization was carried out based on the evaluation of particle size, polydispersity index, and zeta potential. Optimal conditions were achieved for one-layer nano-emulsions resulting in particle size and zeta potential of 180 nm and -42 mV, two layers (after chitosan addition) at 226 nm and 35 mV, and three layers (after carboxymethylcellulose addition) of 265 nm and -1 mV, respectively. The encapsulation efficiency of oregano essential oil within nano-emulsions was 97.1%. Stability was evaluated up to 21 days at 4 and 20 °C. The three layers nano-emulsion demonstrated to be an efficient delivery system of oregano essential oil, making 40% of the initial oregano essential oil available versus 13% obtained for oregano essential oil in oil, after exposure to simulated digestive conditions.
Collapse
Affiliation(s)
- Luz Espinosa-Sandoval
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Claudia Ochoa-Martínez
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Alfredo Ayala-Aponte
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| |
Collapse
|
85
|
Influence of esterification and ultrasound treatment on formation and properties of starch nanoparticles and their impact as a filler on chitosan based films characteristics. Int J Biol Macromol 2021; 179:154-160. [PMID: 33675824 DOI: 10.1016/j.ijbiomac.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
Abstract
Starch nanoparticles were prepared by citrate esterification and ultrasound treatment. With the increase of ultrasonic treatment time, the mean size and PDI of the particles decreased gradually, when the ultrasonic treatment time was 5 min, the prepared starch nanoparticles had a mean size and PDI of 352.8 nm and 0.292, respectively. X-ray diffraction (XRD) showed that the starch nanoparticles prepared by ultrasonic treatment for 5 min had an A-type crystalline structure and a crystallinity of 41.42%. The chitosan composite films were reinforced by esterified starch with different ultrasound treatment times, the results indicated that the addition of starch nanoparticles resulted in a significant increase in the mechanical properties of films. This study indicates that esterification and ultrasound treatment can be used to prepare starch nanoparticles with a higher crystallinity and higher efficiency, which will further promote the application of nanocomposite films in packaging applications.
Collapse
|
86
|
Das A, Sit N. Modification of Taro Starch and Starch Nanoparticles by Various Physical Methods and their Characterization. STARCH-STARKE 2021. [DOI: 10.1002/star.202000227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aparna Das
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| |
Collapse
|
87
|
Bilal M, Gul I, Basharat A, Qamar SA. Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 2021; 176:540-557. [PMID: 33607134 DOI: 10.1016/j.ijbiomac.2021.02.107] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Polysaccharides are omnipresent biomolecules that hold great potential as promising biomaterials for a myriad of applications in various biotechnological and industrial sectors. The presence of diverse functional groups renders them tailorable functionalities for preparing a multitude of novel bio-nanostructures. Further, they are biocompatible and biodegradable, hence, considered as environmentally friendly biopolymers. Application of nanotechnology in food science has shown many advantages in improving food quality and enhancing its shelf life. Recently, considerable efforts have been made to develop polysaccharide-based nanostructures for possible food applications. Therefore, it is of immense importance to explore literature on polysaccharide-based nanostructures delineating their food application potentialities. Herein, we reviewed the developments in polysaccharide-based bio-nanostructures and highlighted their potential applications in food preservation and bioactive "smart" food packaging. We categorized these bio-nanostructures into polysaccharide-based nanoparticles, nanocapsules, nanocomposites, dendrimeric nanostructures, and metallo-polysaccharide hybrids. This review demonstrates that the polysaccharides are emerging biopolymers, gaining much attention as robust biomaterials with excellent tuneable properties.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
88
|
Oyeyinka SA, Akintayo OA, Adebo OA, Kayitesi E, Njobeh PB. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. Int J Biol Macromol 2021; 176:87-95. [PMID: 33577814 DOI: 10.1016/j.ijbiomac.2021.02.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Native starches are unsuitable for most industrial applications. Therefore, they are modified to improve their application in the industry. Starch may be modified using enzymatic, genetic, chemical, and physical methods. Due to the demand for safe foods by consumers, researchers are focusing on the use of cheap, safe and environmentally friendly methods such as the use of physical means for starch modification. Microwave heating of starch is a promising physical method for starch modification due to its advantages such as homogeneous operation throughout the whole sample volume, shorter processing time, greater penetration depth and better product quality. More recently, the use of synergistic methods for starch modification is being encouraged because they confer better functionality on starch than single methods. This review summarizes the present knowledge on the structure and physicochemical properties of starches from different botanical origins modified using microwave heating alone and in combination with other starch modification methods.
Collapse
Affiliation(s)
- Samson A Oyeyinka
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa; Department of Food Technology, College of Industrial Technology, Bicol University, Legazpi, Philippines.
| | - Olaide A Akintayo
- Department of Home Economics and Food Science, University of Ilorin, Ilorin, Nigeria
| | - Oluwafemi A Adebo
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Eugénie Kayitesi
- Department of Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa.
| |
Collapse
|
89
|
Primožič M, Knez Ž, Leitgeb M. (Bio)nanotechnology in Food Science-Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:292. [PMID: 33499415 PMCID: PMC7911006 DOI: 10.3390/nano11020292] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
Background: Bionanotechnology, as a tool for incorporation of biological molecules into nanoartifacts, is gaining more and more importance in the field of food packaging. It offers an advanced expectation of food packaging that can ensure longer shelf life of products and safer packaging with improved food quality and traceability. Scope and approach: This review recent focuses on advances in food nanopackaging, including bio-based, improved, active, and smart packaging. Special emphasis is placed on bio-based packaging, including biodegradable packaging and biocompatible packaging, which presents an alternative to most commonly used non-degradable polymer materials. Safety and environmental concerns of (bio)nanotechnology implementation in food packaging were also discussed including new EU directives. Conclusions: The use of nanoparticles and nanocomposites in food packaging increases the mechanical strength and properties of the water and oxygen barrier of packaging and may provide other benefits such as antimicrobial activity and light-blocking properties. Concerns about the migration of nanoparticles from packaging to food have been expressed, but migration tests and risk assessment are unclear. Presumed toxicity, lack of additional data from clinical trials and risk assessment studies limit the use of nanomaterials in the food packaging sector. Therefore, an assessment of benefits and risks must be defined.
Collapse
Affiliation(s)
- Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
90
|
Almeida FC, Souza CO, Philadelpho BO, Lemos PV, Cardoso LG, Santana JS, Silva JB, Correia PR, Camilloto GP, Ferreira E, Druzian JI. Combined effect of cassava starch nanoparticles and protein isolate in properties of starch‐based nanocomposite films. J Appl Polym Sci 2021. [DOI: 10.1002/app.50008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Carolina Oliveira Souza
- Postgraduate Program in Food Science Federal University of Bahia Salvador Brazil
- Faculty of Pharmacy Federal University of Bahia Salvador Brazil
| | | | - Paulo Vitor Lemos
- Postgraduate Program in Biotechnology ‐ Northeast Biotechnology Network (RENORBIO) Federal University of Bahia Salvador Brazil
| | | | | | - Jania Betania Silva
- Center for Exact and Technological Sciences Federal University of Recôncavo da Bahia Cruz das Almas Brazil
| | - Paulo Romano Correia
- Postgraduate Program in Biotechnology ‐ Northeast Biotechnology Network (RENORBIO) Federal University of Bahia Salvador Brazil
| | | | - Ederlan Ferreira
- Postgraduate Program in Food Science Federal University of Bahia Salvador Brazil
- Faculty of Pharmacy Federal University of Bahia Salvador Brazil
| | - Janice Izabel Druzian
- Postgraduate Program in Food Science Federal University of Bahia Salvador Brazil
- Faculty of Pharmacy Federal University of Bahia Salvador Brazil
| |
Collapse
|
91
|
Yan X, Wei H, Kou L, Ren L, Zhou J. Acid hydrolysis of amylose granules and effect of molecular weight on properties of ethanol precipitated amylose nanoparticles. Carbohydr Polym 2021; 252:117243. [PMID: 33183650 DOI: 10.1016/j.carbpol.2020.117243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022]
Abstract
Amylose granules hydrolyzed with 2 M hydrochloric acid for various periods of time were used to prepare amylose nanoparticles through ethanol precipitation. Value of dextrose equivalent, viscosity average molecular weight and molecular chain length distribution of the acid hydrolyzed amylose granules were determined. The precipitated amylose nanoparticles were characterized by using dynamic light scattering and X-ray diffraction. Results showed that, after 48 h acid hydrolysis, viscosity average molecular weight of amylose decreased from 3.35 × 105 to 0.336 × 105 and the amylose macromolecular chains with DP > 1000 were cut into short ones. The short chain sugar molecules derived from the acid hydrolysis were not involved in the ethanol precipitation or incorporated into the precipitated amylose nanoparticles. The length and quantity of the residual amylose macromolecular chains after the acid hydrolysis were the main factors to influence size and crystallinity of the precipitated amylose nanoparticles.
Collapse
Affiliation(s)
- Xiaoxia Yan
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China; College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Hongyuan Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Lvheng Kou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China.
| |
Collapse
|
92
|
Awg Suhai AAK, Chin S. Green Synthesis and Characterization of Amine‐Modified Starch Nanoparticles. STARCH-STARKE 2021. [DOI: 10.1002/star.202000020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Suk‐Fun Chin
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| |
Collapse
|
93
|
Wang Y, Zhang G. The preparation of modified nano-starch and its application in food industry. Food Res Int 2020; 140:110009. [PMID: 33648241 DOI: 10.1016/j.foodres.2020.110009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Starch, which is a carbohydrate polymer with a semicrystalline granular structure, has been the subject of academic research for decades due to its renewable and biodegradable property as well as various applications in food, pharmaceutical and other industries. Nano-starch (NS) is a novel type of starch material with unique physiochemical properties due to its small size. However, the nano-size nature of NS determines its tendency to agglomeration as a natural process to approach a thermodynamically steady state, and the single hydroxyl functional group is also not favorable to its applications in hydrophobic environments. Thus, modified-NS with improved dispersion property, hydrophobicity, and stability is emerging as a new research direction. However, information about modified-NS is sporadic in literature, and a systematic review from its preparation, application, the problem and challenge as well as related health concerns is carried out to further the understanding of modified-NS. It is expected that the theoretical basis and new insight into the development of modified-NS will be improved.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
94
|
Shear-Thinning Effect of the Spinning Disc Mixer on Starch Nanoparticle Precipitation. Processes (Basel) 2020. [DOI: 10.3390/pr8121622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spinning disc technology is capable of achieving intensified micromixing within thin liquid films created through large shear rates, typically of the order of 103 s−1, generated by means of fast disc surface rotation. In this study the effect of the high shear on solvent–antisolvent mixing and starch nanoparticle precipitation is reported. Rheological studies of starch solutions at 2% w/v and 4% w/v have demonstrated their shear-thinning behaviour at the large shear rates experienced on the spinning disc surface. The effect of such high shear rate on starch nanoparticle precipitation is investigated alongside solute concentration and several other operating parameters such as flow rate, disc rotational speed, and solvent/antisolvent ratio. A reduction in nanoparticle size has been observed with an increase in starch concentration, although agglomeration was found to be more prevalent amongst these smaller particles particularly at larger flow rates and disc rotational speeds. Micromixing time, estimated on the basis of an engulfment mechanism, has been correlated against shear rate. With fast micromixing of the order of 1 ms observed at higher shear rates, and which are practically unaffected by the starch concentrations used, micromixing is not thought to be influential in determining the particle characteristics highlighted in this work.
Collapse
|
95
|
Yu M, Ji N, Wang Y, Dai L, Xiong L, Sun Q. Starch‐based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Compr Rev Food Sci Food Saf 2020; 20:1075-1100. [DOI: 10.1111/1541-4337.12677] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mengting Yu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Na Ji
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Yanfei Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Lei Dai
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Liu Xiong
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Qingjie Sun
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| |
Collapse
|
96
|
Effect of wet-media milling on the physicochemical properties of tapioca starch and their relationship with the texture of myofibrillar protein gel. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
97
|
dos Santos SB, Pereira SA, Rodrigues FA, da Silva AC, de Almeida RR, Sousa AC, Fechine LM, Denardin JC, Araneda F, Sá LG, da Silva CR, Nobre Júnior HV, Ricardo NM. Antibacterial activity of fluoxetine-loaded starch nanocapsules. Int J Biol Macromol 2020; 164:2813-2817. [DOI: 10.1016/j.ijbiomac.2020.08.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 01/15/2023]
|
98
|
Chen Q, Zong Z, Gao X, Zhao Y, Wang J. Preparation and characterization of nanostarch-based green hard capsules reinforced by cellulose nanocrystals. Int J Biol Macromol 2020; 167:1241-1247. [PMID: 33189752 DOI: 10.1016/j.ijbiomac.2020.11.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 01/16/2023]
Abstract
The green hard capsules were prepared with corn nano-starch (CNS) and cellulose nanocrystal (CNC) in this study, the glycerol and carrageenan were used as plasticizer and gelling agent in the CNS/CNC gel solution, respectively. The capsule-films with different CNC content were prepared by casting method, and the dipping method was used in preparation of the corresponding capsules. The compatibility of CNS/CNC capsules was analyzed by Fourier Transform Infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD), and the morphology of the capsules was analyzed by Scanning Electron Microscopy (SEM). The results showed that the tensile strength of the CNS based capsule-film was significantly improved with the addition of CNC. When the content of CNC was 6.0%, the tensile strength increased by 238.10%. The transparency of the capsule with different CNC contents was slightly reduced, but was greater than 87.0%. The loss on drying of CNS/CNC capsule was between 12.87% and 15.03%, and it could be completely dissolved in the artificial gastric juice within 6.0 min, which was in accordance with the provisions of Chinese Pharmacopoeia (2015).
Collapse
Affiliation(s)
- QiJie Chen
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China.
| | - ZhangYang Zong
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - Xin Gao
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - YaLan Zhao
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - JianHui Wang
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| |
Collapse
|
99
|
Agi A, Junin R, Gbadamosi A, Manan M, Jaafar MZ, Abdullah MO, Arsad A, Azli NB, Abdurrahman M, Yakasai F. Comparing natural and synthetic polymeric nanofluids in a mid-permeability sandstone reservoir condition. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
100
|
Alzate P, Gerschenson L, Flores S. Ultrasound application for production of nano-structured particles from esterified starches to retain potassium sorbate. Carbohydr Polym 2020; 247:116759. [PMID: 32829872 DOI: 10.1016/j.carbpol.2020.116759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
Ultrasound technique was successfully used to obtain nanostructured particles from native and esterified starch, able to support the antimicrobial potassium sorbate (PS). The starch used (native, acetate or oleate) affected the nanoparticles morphology and size: globular or plate like shapes were observed for esterified and native starch respectively, while the hydrodynamic diameters were between 28 and 236 nm, with a trend towards smaller sizes for modified starches. The PS retention capacity ranged from 41.5 -90 mg/g, showing acetylated particles the highest value. The particles were amorphous and had a low average molecular weight of 1.9-6.7 × 105 Da. Water retention capacity and solubility (S) were higher for modified starch particles. PS addition had minor effect, increasing S and reducing the apparent amylose content, with respect to particles without sorbate. These results demonstrated that starch modification combined with ultrasound were appropriate strategies to obtain novel and appropriate matrices to retain PS.
Collapse
Affiliation(s)
- Paola Alzate
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Industrias, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Buenos Aires, Argentina
| | - Lía Gerschenson
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Industrias, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Buenos Aires, Argentina
| | - Silvia Flores
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Industrias, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Buenos Aires, Argentina.
| |
Collapse
|