51
|
Kalantarzadeh E, Radahmadi M, Reisi P. The impact of different dark chocolate dietary patterns on synaptic potency and plasticity in the hippocampal CA1 area of the rats under chronic isolation stress. Nutr Neurosci 2022:1-10. [PMID: 35715981 DOI: 10.1080/1028415x.2022.2088946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Although, stress causes brain dysfunction, consumption of dark chocolate (DC) has positive effects on brain functions. The current study investigated the impact of different DC dietary patterns on synaptic potency and plasticity in the hippocampal CA1 area, as well as food intake and body weight in rats under chronic isolation stress. METHODS Thirty-five rats were allocated into five groups of control, stress, and stress accompanied by three DC dietary patterns (stress-compulsory, -optional, and -restricted DC). The stressed rats on a compulsory diet only received DC and the ones on an optional diet received unlimited chow and/or DC. Also, the stressed rats on a restricted diet each received chow freely and only 4 g DC daily. Subsequently, the slope and amplitude of field excitatory postsynaptic potentials (fEPSPs) were assessed based on the Input-Output (I/O) curves and after the longterm potentiation (LTP). Moreover, food intake and body weight were measured for all groups. RESULTS The fEPSP slope and amplitude in the I/O curves and after LTP decreased significantly in the stress group compared to the control group. Although the slope and amplitude both enhanced non-significantly in the optional DC diet, these parameters changed significantly in both compulsory and restricted DC dietary patterns compared to the stress group. Also, food intake and body weight decreased significantly in all DC groups. CONCLUSION The compulsory and restricted DC dietary patterns reversed the harmful effects of chronic isolation stress on the hippocampal synaptic potency, plasticity, learning, and memory. All DC diets, especially compulsory and restricted ones, reduced food intake and body weight.
Collapse
Affiliation(s)
- Elham Kalantarzadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
52
|
Ma L, Patel M. Mechanism of carbachol-induced 40 Hz gamma oscillations and the effects of NMDA activation on oscillatory dynamics in a model of the CA3 subfield of the hippocampus. J Theor Biol 2022; 548:111200. [PMID: 35716721 DOI: 10.1016/j.jtbi.2022.111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Gamma oscillations are a prominent feature of various neural systems, including the CA3 subfield of the hippocampus. In CA3, in vitro carbachol application induces ∼40 Hz gamma oscillations in the network of glutamatergic excitatory pyramidal neurons (PNs) and local GABAergic inhibitory neurons (INs). Activation of NMDA receptors within CA3 leads to an increase in the frequency of carbachol-induced oscillations to ∼60 Hz, a broadening of the distribution of individual oscillation cycle frequencies, and a decrease in the time lag between PN and IN spike bursts. In this work, we develop a biophysical integrate-and-fire model of the CA3 subfield, we show that the dynamics of our model are in concordance with physiological observations, and we provide computational support for the hypothesis that the 'E-I' mechanism is responsible for the emergence of ∼40 Hz gamma oscillations in the absence of NMDA activation. We then incorporate NMDA receptors into our CA3 model, and we show that our model exhibits the increase in gamma oscillation frequency, broadening of the cycle frequency distribution, and decrease in the time lag between PN and IN spike bursts observed experimentally. Remarkably, we find an inverse relationship in our model between the net NMDA current delivered to PNs and INs in an oscillation cycle and cycle frequency. Furthermore, we find a disparate effect of NMDA receptors on PNs versus INs - we show that NMDA receptors on INs tend to increase oscillation frequency, while NMDA receptors on PNs tend to slightly decrease or not affect oscillation frequency. We find that these observations can be explained if NMDA activity above a threshold level causes a shift in the mechanism underlying gamma oscillations; in the absence of NMDA receptors, the 'E-I' mechanism is primarily responsible for the generation of gamma oscillations (at 40 Hz), while when NMDA receptors are active, the mechanism of gamma oscillations shifts to the 'I-I' mechanism, and we argue that within the 'I-I' regime (which displays a higher baseline oscillation frequency of ∼60 Hz), slight changes in the level of NMDA activity are inversely related to cycle frequency.
Collapse
Affiliation(s)
- Linda Ma
- Department of Mathematics, William & Mary, United States.
| | - Mainak Patel
- Department of Mathematics, William & Mary, United States.
| |
Collapse
|
53
|
Li W, Wen Q, Xie YH, Hu AL, Wu Q, Wang YX. Improvement of poststroke cognitive impairment by intermittent theta bursts: A double-blind randomized controlled trial. Brain Behav 2022; 12:e2569. [PMID: 35484991 PMCID: PMC9226849 DOI: 10.1002/brb3.2569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is known to improve cognitive impairment caused by Alzheimer's disease and Parkinson's disease, but studies are lacking with respect to the efficacy of iTBS on poststroke cognitive impairment (PSCI). OBJECTIVE This study was conducted to investigate the effect of left dorsolateral prefrontal cortex (DLPFC) iTBS on improving cognitive function in stroke patients. METHODS Fifty-eight patients with PSCI are randomly divided into iTBS (n = 28) and sham stimulation groups (n = 30). Both groups receive routine cognitive-related rehabilitation. The iTBS group is treated with iTBS intervention of the left DLPFC, and the sham stimulation group is treated with the same parameters at the same site for 2 weeks. Outcome measures are assessed at baseline (T0) and immediately after the last intervention (T1) by mini-mental state examination (MMSE), Oxford cognitive screen, and event-related potential P300. RESULTS There are no differences in baseline clinical characteristics between the two groups. After intervention, the MMSE scores and P300 amplitude increase significantly for both groups, and the P300 incubation period reduces significantly. The change value of the iTBS group is significantly higher than that of sham stimulation group (p < .05). Compared with the sham stimulation group, the iTBS group has more significant changes in semantic comprehension and executive function (p < .05). CONCLUSION iTBS can effectively and safely improve overall cognitive impairment in stroke patients, including semantic understanding and executive function, and it also has a positive impact on memory function. Future randomized controlled studies with large samples and long-term follow-up should be conducted to further validate the results of the present study.
Collapse
Affiliation(s)
- Wen Li
- Rehabilitation Medicine Department, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Qian Wen
- Rehabilitation Medicine Department, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | | | - An-Li Hu
- Hubei University Of Economics, WuHan, China
| | - Qing Wu
- Rehabilitation Medicine Department, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Yin-Xu Wang
- Rehabilitation Medicine Department, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
54
|
Cardoso-Cruz H, Laranjeira I, Monteiro C, Galhardo V. Altered prefrontal-striatal theta-band oscillatory dynamics underlie working memory deficits in neuropathic pain rats. Eur J Pain 2022; 26:1546-1568. [PMID: 35603472 DOI: 10.1002/ejp.1982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prelimbic medial prefrontal cortex (PL-mPFC) and nucleus accumbens core region (NAcc) play an important role in supporting several executive cognitive mechanisms, such as spatial working-memory (WM). Recently, this circuit has been also associated with both sensory and affective components of pain. However, it is still unclear whether this circuit is endogenously engaged in neuropathic pain-related cognitive dysfunctions. METHODS To answer this question, we induced the expression of halorhodopsin in local PL-mPFC neurons projecting to NAcc, and then selectively inhibited the terminals of these neurons in the NAcc while recording neural activity during the performance of a delayed non-match to sample (DNMS) spatial WM task. Within-subject behavioral performance and PL-mPFC to NAcc circuit neural activity was assessed after the onset of a persistent rodent neuropathic pain model - spared nerve injury (SNI). RESULTS Our results revealed that the induction of the neuropathy reduced WM performance, and altered the interplay between PL-mPFC and NAcc neurons namely in increasing the functional connectivity from NAcc to PL-mPFC, particularly in the theta-band spontaneous oscillations; in addition, these behavioral and functional perturbations were partially reversed by selective optogenetic inhibition of PL-mPFC neuron terminals into the NAcc during the DNMS task delay-period, without significant antinociceptive effects. CONCLUSIONS Altogether, these results strongly suggest that the PL-mPFC excitatory output into the NAcc plays an important role in the deregulation of WM under pain conditions. SIGNIFICANCE Selective optogenetic inhibition of prefrontal-striatal microcircuit reverses pain-related working memory deficits, but has no significant impact on pain responses. Neuropathic pain underlies an increase of functional connectivity between the nucleus accumbens core area and the prelimbic medial prefrontal cortex mediated by theta-band activity.
Collapse
Affiliation(s)
- Helder Cardoso-Cruz
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| | - Inês Laranjeira
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal.,Mestrado em Neurobiologia da Faculdade de Medicina da Universidade do Porto. 4200-319, Porto, Portugal
| | - Clara Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| |
Collapse
|
55
|
Malkov A, Shevkova L, Latyshkova A, Kitchigina V. Theta and gamma hippocampal-neocortical oscillations during the episodic-like memory test: Impairment in epileptogenic rats. Exp Neurol 2022; 354:114110. [PMID: 35551900 DOI: 10.1016/j.expneurol.2022.114110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
Abstract
Cortical oscillations in different frequency bands have been shown to be intimately involved in exploration of environment and cognition. Here, the local field potentials in the hippocampus, the medial prefrontal cortex (mPFC), and the medial entorhinal cortex (mEC) were recorded simultaneously in rats during the execution of the episodic-like memory task. The power of theta (~4-10 Hz), slow gamma (~25-50 Hz), and fast gamma oscillations (~55-100 Hz) was analyzed in all structures examined. Particular attention was paid to the theta coherence between three mentioned structures. The modulation of the power of gamma rhythms by the phase of theta cycle during the execution of the episodic-like memory test by rats was also closely studied. Healthy rats and rats one month after kainate-induced status epilepticus (SE) were examined. Paroxysmal activity in the hippocampus (high amplitude interictal spikes), excessive excitability of animals, and the death of hippocampal and dentate granular cells in rats with kainate-evoked SE were observed, which indicated the development of seizure focus in the hippocampus (epileptogenesis). One month after SE, the rats exhibited a specific impairment of episodic memory for the what-where-when triad: unlike healthy rats, epileptogenic SE animals did not identify the objects during the test. This impairment was associated with the changes in the characteristics of theta and gamma rhythms and specific violation of theta coherence and theta/gamma coupling in these structures in comparison with the healthy animals. We believe that these disturbances in the cortical areas play a role in episodic memory dysfunction in kainate-treated animals. These findings can shed light on the mechanisms of cognitive deficit during epileptogenesis.
Collapse
Affiliation(s)
- Anton Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia.
| | | | - Alexandra Latyshkova
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia
| | - Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia
| |
Collapse
|
56
|
Malik R, Li Y, Schamiloglu S, Sohal VS. Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. Cell 2022; 185:1602-1617.e17. [PMID: 35487191 PMCID: PMC10027400 DOI: 10.1016/j.cell.2022.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Prefrontal cortex (PFC) is postulated to exert "top-down control" on information processing throughout the brain to promote specific behaviors. However, pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down control of hippocampal information processing remains sparse. Here we describe monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide-expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal-hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal encoding of object locations and augment object-induced increases in spatial information. Correspondingly, activating or inhibiting these projections promotes or suppresses object exploration, respectively. Together, these results elucidate a top-down prefrontal pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.
Collapse
Affiliation(s)
- Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Yi Li
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Selin Schamiloglu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
57
|
Salimi M, Tabasi F, Nazari M, Ghazvineh S, Raoufy MR. The olfactory bulb coordinates the ventral hippocampus-medial prefrontal cortex circuit during spatial working memory performance. J Physiol Sci 2022; 72:9. [PMID: 35468718 PMCID: PMC10717655 DOI: 10.1186/s12576-022-00833-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/10/2022] [Indexed: 11/10/2022]
Abstract
Neural oscillations synchronize the activity of brain regions during cognitive functions, such as spatial working memory. Olfactory bulb (OB) oscillations are ubiquitous rhythms that can modulate neocortical and limbic regions. However, the functional connectivity between the OB and areas contributing to spatial working memory, such as the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), is less understood. Hence, we investigated functional interaction between OB and the vHPC-mPFC circuit during the spatial working memory performance in rats. To this end, we analyzed the simultaneously recorded local field potentials from OB, vHPC, and mPFC when rats explored the Y-maze and compared the brain activities of correct trials vs. wrong trials. We found that coupling between the vHPC and mPFC was augmented during correct trials. The enhanced coherence of OB activity with the vHPC-mPFC circuit at delta (< 4 Hz) and gamma (50-80 Hz) ranges were observed during correct trials. The cross-frequency analysis revealed that the OB delta phase increased the mPFC gamma power within corrected trials, indicating a modulatory role of OB oscillations on mPFC activity during correct trials. Moreover, the correlation between OB oscillations and the vHPC-mPFC circuit was increased at the delta range during correct trials, exhibiting enhanced synchronized activity of these regions during the cognitive task. We demonstrated a functional engagement of OB connectivity with the vHPC-mPFC circuit during spatial working memory task performance.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhad Tabasi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
- Center for Proteins in Memory-PROMEMO, Danish National Research Foundation, Aarhus, Denmark
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
58
|
John SR, Dagash W, Mohapatra AN, Netser S, Wagner S. Distinct dynamics of theta and gamma rhythmicity during social interaction suggest differential mode of action in the medial amygdala of SD rats and C57BL/6J mice. Neuroscience 2022; 493:69-80. [DOI: 10.1016/j.neuroscience.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
|
59
|
Spedding M, Sebban C, Jay TM, Rocher C, Tesolin-Decros B, Chazot P, Schenker E, Szénási G, Lévay GI, Megyeri K, Barkóczy J, Hársing LG, Thomson I, Cunningham MO, Whittington MA, Etherington LA, Lambert JJ, Antoni FA, Gacsályi I. Phenotypical Screening on Neuronal Plasticity in Hippocampal-Prefrontal Cortex Connectivity Reveals an Antipsychotic with a Novel Profile. Cells 2022; 11:1181. [PMID: 35406745 PMCID: PMC8997950 DOI: 10.3390/cells11071181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which was resistant to atropine and prazosin. EGIS 11150 enhanced H-PFC coherence, and increased the 8−9 Hz theta band of the EEG power spectrum (from 0.002 mg/kg i.p, at >30× lower doses than clozapine, and >100× for olanzapine, risperidone, or haloperidol). EGIS 11150 fully blocked the effects of phencyclidine (PCP) or ketamine on EEG. Inhibition of long-term potentiation (LTP) in H-PFC was blocked by platform stress, but was fully restored by EGIS 11150 (0.01 mg/kg i.p.), whereas clozapine (0.3 mg/kg ip) only partially restored LTP. EGIS 11150 has a unique electrophysiological profile, so phenotypical screening on H-PFC connectivity can reveal novel antipsychotics.
Collapse
Affiliation(s)
- Michael Spedding
- Institut de Recherches Internationales Servier, 92284 Suresnes, France;
- Spedding Research Solutions SAS, 78110 Le Vésinet, France
| | - Claude Sebban
- Hôpital Charles Foix, 94205 Ivry-sur-Seine, France; (C.S.); (B.T.-D.)
| | - Thérèse M. Jay
- INSERM UMR_S894, Hôpital Sainte-Anne, Université de Paris V Descartes, 75014 Paris, France; (T.M.J.); (C.R.)
| | - Cyril Rocher
- INSERM UMR_S894, Hôpital Sainte-Anne, Université de Paris V Descartes, 75014 Paris, France; (T.M.J.); (C.R.)
| | | | - Paul Chazot
- Department of Biosciences, University of Durham, Durham DH1 3LE, UK;
| | - Esther Schenker
- Institut de Recherches Internationales Servier, 92284 Suresnes, France;
| | - Gabor Szénási
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - György I. Lévay
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Gedeon Richter Plc., 1103 Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
| | - Katalin Megyeri
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Hungarian Defence Forces Medical Centre, 1134 Budapest, Hungary
| | - Jozsef Barkóczy
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
| | - Laszlo G. Hársing
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary
| | - Ian Thomson
- Institute of Neurosciences, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (I.T.); (M.O.C.)
| | - Mark O. Cunningham
- Institute of Neurosciences, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (I.T.); (M.O.C.)
- Discipline of Physiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Miles A. Whittington
- Deceased, formerly of Hull York Medical School, University of York, Heslington HU6 7RX, UK;
| | - Lori-An Etherington
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK; (L.-A.E.); (J.J.L.)
| | - Jeremy J. Lambert
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK; (L.-A.E.); (J.J.L.)
| | - Ferenc A. Antoni
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Istvan Gacsályi
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- ATRC Aurigon Toxicological Research Center Ltd., 2120 Dunakeszi, Hungary
| |
Collapse
|
60
|
Zhang W, Guo L, Liu D. Concurrent interactions between prefrontal cortex and hippocampus during a spatial working memory task. Brain Struct Funct 2022; 227:1735-1755. [DOI: 10.1007/s00429-022-02469-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
|
61
|
Jung F, Witte V, Yanovsky Y, Klumpp M, Brankack J, Tort ABL, Dr Draguhn A. Differential modulation of parietal cortex activity by respiration and θ-oscillations. J Neurophysiol 2022; 127:801-817. [PMID: 35171722 DOI: 10.1152/jn.00376.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The simultaneous, local integration of information from widespread brain regions is an essential feature of cortical computation and particularly relevant for multimodal association areas such as the posterior parietal cortex. Slow, rhythmic fluctuations in the local field potentials (LFP) are assumed to constitute a global signal aiding interregional communication through the long-range synchronization of neuronal activity. Recent work demonstrated the brain-wide presence of a novel class of slow neuronal oscillations which are entrained by nasal respiration. However, whether there are differences in the influence of the respiration-entrained rhythm (RR) and the endogenous theta (θ) rhythm over local networks is unknown. In this work, we aimed at characterizing the impact of both classes of oscillations on neuronal activity in the posterior parietal cortex of mice. We focused our investigations on a θ-dominated state (REM sleep) and an RR-dominated state (wake immobility). Using linear silicon probes implanted along the dorsoventral cortical axis, we found that the LFP-depth distributions of both rhythms show differences in amplitude and coherence but no phase shift. Using tetrode recordings, we demonstrate that a substantial fraction of parietal neurons is modulated by either RR or θ or even by both rhythms simultaneously. Interestingly, the phase and cortical depth-dependence of spike-field coupling differ for these oscillations. We further show through intracellular recordings in urethane-anesthetized mice that synaptic inhibition is likely to play a role in generating respiration-entrainment at the membrane potential level. We conclude that θ and respiration differentially affect neuronal activity in the parietal cortex.
Collapse
Affiliation(s)
- Felix Jung
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Victoria Witte
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Yevgenij Yanovsky
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Matthias Klumpp
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jurij Brankack
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Andreas Dr Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
62
|
Ventral midline thalamus activation is correlated with memory performance in a delayed spatial matching-to-sample task: A c-Fos imaging approach in the rat. Behav Brain Res 2022; 418:113670. [PMID: 34798168 DOI: 10.1016/j.bbr.2021.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are bi-directionally connected with the hippocampus and the medial prefrontal cortex. They participate in a variety of cognitive functions, including information holding for seconds to minutes in working memory tasks. What about longer delays? To address this question, we used a spatial working memory task in which rats had to reach a platform submerged in water. The platform location was changed every 2-trial session and rats had to use allothetic cues to find it. Control rats received training in a typical response-memory task. We interposed a 6 h interval between instruction (locate platform) and evaluation (return to platform) trials in both tasks. After the last session, rats were killed for c-Fos imaging. A home-cage group was used as additional control of baseline levels of c-Fos expression. C-Fos expression was increased to comparable levels in the Re (not Rh) of both spatial memory and response-memory rats as compared to their home cage counterparts. However, in spatial memory rats, not in their response-memory controls, task performance was correlated with c-Fos expression in the Re: the higher this expression, the better the performance. Furthermore, we noticed an activation of hippocampal region CA1 and of the anteroventral nucleus of the rostral thalamus. This activation was specific to spatial memory. The data point to a possible performance-determinant participation of the Re nucleus in the delayed engagement of spatial information encoded in a temporary memory.
Collapse
|
63
|
Symanski CA, Bladon JH, Kullberg ET, Miller P, Jadhav SP. Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making. eLife 2022; 11:79545. [PMID: 36480255 PMCID: PMC9799972 DOI: 10.7554/elife.79545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Memory-guided decision making involves long-range coordination across sensory and cognitive brain networks, with key roles for the hippocampus and prefrontal cortex (PFC). In order to investigate the mechanisms of such coordination, we monitored activity in hippocampus (CA1), PFC, and olfactory bulb (OB) in rats performing an odor-place associative memory guided decision task on a T-maze. During odor sampling, the beta (20-30 Hz) and respiratory (7-8 Hz) rhythms (RR) were prominent across the three regions, with beta and RR coherence between all pairs of regions enhanced during the odor-cued decision making period. Beta phase modulation of phase-locked CA1 and PFC neurons during this period was linked to accurate decisions, with a key role of CA1 interneurons in temporal coordination. Single neurons and ensembles in both CA1 and PFC encoded and predicted animals' upcoming choices, with different cell ensembles engaged during decision-making and decision execution on the maze. Our findings indicate that rhythmic coordination within the hippocampal-prefrontal-olfactory bulb network supports utilization of odor cues for memory-guided decision making.
Collapse
Affiliation(s)
| | - John H Bladon
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Department of Psychology, Brandeis UniversityWalthamUnited States
| | - Emi T Kullberg
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Department of Psychology, Brandeis UniversityWalthamUnited States
| | - Paul Miller
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | | |
Collapse
|
64
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. In vitro Oscillation Patterns Throughout the Hippocampal Formation in a Rodent Model of Epilepsy. Neuroscience 2021; 479:1-21. [PMID: 34710537 DOI: 10.1016/j.neuroscience.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Specific oscillatory patterns are considered biomarkers of pathological neuronal network in brain diseases, such as epilepsy. However, the dynamics of underlying oscillations during the epileptogenesis throughout the hippocampal formation in the temporal lobe epilepsy is not clear. Here, we characterized in vitro oscillatory patterns within the hippocampal formation of epileptic rats, under 4-aminopyridine (4-AP)-induced hyperexcitability and during the spontaneous network activity, at two periods of epileptogenesis. First, at the beginning of epileptic chronic phase, 30 days post-pilocarpine-induced Status Epilepticus (SE). Second, at the established epilepsy, 60 days post-SE. The 4-AP-bathed slices from epileptic rats had increased susceptibility to ictogenesis in CA1 at 30 days post-SE, and in entorhinal cortex and dentate gyrus at 60 days post-SE. Higher power and phase coherence were detected mainly for gamma and/or high frequency oscillations (HFOs), in a region- and stage-specific manner. Interestingly, under spontaneous network activity, even without 4-AP-induced hyperexcitability, slices from epileptic animals already exhibited higher power of gamma and HFOs in different areas of hippocampal formation at both periods of epileptogenesis, and higher phase coherence in fast ripples at 60 days post-SE. These findings reinforce the critical role of gamma and HFOs in each one of the hippocampal formation areas during ongoing neuropathological processes, tuning the neuronal network to epilepsy.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
| |
Collapse
|
65
|
Chen X, Li L, Sui L. Alterations in amperometric cholinergic signals accompanied by synaptic plasticity and γ oscillations in the hippocampus-medial prefrontal cortex pathway. Neuroreport 2021; 32:1428-1435. [PMID: 34776505 DOI: 10.1097/wnr.0000000000001746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Neural projections from the ventral hippocampal CA1 (vCA1) to the medial prefrontal cortex (mPFC) and from the posterior dorsal hippocampal CA1 (pdCA1) to the mPFC are important for information processing. Previous studies have revealed that two forms of long-term synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), and γ oscillations, which are all believed to be neural bases for learning and memory in the vCA1-mPFC and the pdCA1-mPFC pathways, exhibited distinct profiles. However, the underlying mechanism is unclear. METHODS In the present study, amperometric cholinergic signals were monitored during in-vivo electrophysiological recordings of evoked extracellular postsynaptic potentials and spontaneous local field potentials. RESULTS The results demonstrated that in the vCA1-mPFC pathway, increased cholinergic currents and γ power of the amperometric cholinergic signals were accompanied by the induction of LTD and increased γ power of local field potentials, whereas, in the pdCA1-mPFC pathway, decreased cholinergic currents and increased γ power of the amperometric cholinergic signals were accompanied by the induction of LTP and increased γ power of local field potentials. CONCLUSION These findings indicated that some correlations may exist between amperometric cholinergic signals and synaptic plasticity in the hippocampus-mPFC pathway. The pattern of alterations in cholinergic signals may help to illustrate the specific properties of synaptic plasticity and γ oscillations in the vCA1-mPFC and the pdCA1-mPFC pathways.
Collapse
Affiliation(s)
- XiaoYu Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | | | |
Collapse
|
66
|
Loureiro-Campos E, Mateus-Pinheiro A, Patrício P, Soares-Cunha C, Silva J, Sardinha VM, Mendes-Pinheiro B, Silveira-Rosa T, Domingues AV, Rodrigues AJ, Oliveira J, Sousa N, Alves ND, Pinto L. Constitutive deficiency of the neurogenic hippocampal modulator AP2γ promotes anxiety-like behavior and cumulative memory deficits in mice from juvenile to adult periods. eLife 2021; 10:70685. [PMID: 34859784 PMCID: PMC8709574 DOI: 10.7554/elife.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.
Collapse
Affiliation(s)
- Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - João Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal.,IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
67
|
Mateus-Pinheiro A, Patrício P, Alves ND, Martins-Macedo J, Caetano I, Silveira-Rosa T, Araújo B, Mateus-Pinheiro M, Silva-Correia J, Sardinha VM, Loureiro-Campos E, Rodrigues AJ, Oliveira JF, Bessa JM, Sousa N, Pinto L. Hippocampal cytogenesis abrogation impairs inter-regional communication between the hippocampus and prefrontal cortex and promotes the time-dependent manifestation of emotional and cognitive deficits. Mol Psychiatry 2021; 26:7154-7166. [PMID: 34521994 DOI: 10.1038/s41380-021-01287-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Impaired ability to generate new cells in the adult brain has been linked to deficits in multiple emotional and cognitive behavioral domains. However, the mechanisms by which abrogation of adult neural stem cells (NSCs) impacts on brain function remains controversial. We used a transgenic rat line, the GFAP-Tk, to selectively eliminate NSCs and assess repercussions on different behavioral domains. To assess the functional importance of newborn cells in specific developmental stages, two parallel experimental timeframes were adopted: a short- and a long-term timeline, 1 and 4 weeks after the abrogation protocol, respectively. We conducted in vivo electrophysiology to assess the effects of cytogenesis abrogation on the functional properties of the hippocampus and prefrontal cortex, and on their intercommunication. Adult brain cytogenesis abrogation promoted a time-specific installation of behavioral deficits. While the lack of newborn immature hippocampal neuronal and glial cells elicited a behavioral phenotype restricted to hyperanxiety and cognitive rigidity, specific abrogation of mature new neuronal and glial cells promoted the long-term manifestation of a more complex behavioral profile encompassing alterations in anxiety and hedonic behaviors, along with deficits in multiple cognitive modalities. More so, abrogation of 4 to 7-week-old cells resulted in impaired electrophysiological synchrony of neural theta oscillations between the dorsal hippocampus and the medial prefrontal cortex, which are likely to contribute to the described long-term cognitive alterations. Hence, this work provides insight on how newborn neurons and astrocytes display different functional roles throughout different maturation stages, and establishes common ground to reconcile contrasting results that have marked this field.
Collapse
Affiliation(s)
- António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.,Department of Internal Medicine, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.,Department of Psychiatry, Columbia University, New York, NY, 10032, USA.,New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Miguel Mateus-Pinheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Joana Silva-Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.,DIGARC, Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
68
|
Tavares LCS, Tort ABL. Hippocampal-prefrontal interactions during spatial decision-making. Hippocampus 2021; 32:38-54. [PMID: 34843143 DOI: 10.1002/hipo.23394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
The hippocampus has been linked to memory encoding and spatial navigation, while the prefrontal cortex is associated with cognitive functions such as decision-making. These regions are hypothesized to communicate in tasks that demand both spatial navigation and decision-making processes. However, the electrophysiological signatures underlying this communication remain to be better elucidated. To investigate the dynamics of the hippocampal-prefrontal interactions, we have analyzed their local field potentials and spiking activity recorded from rats performing a spatial alternation task on a figure eight-shaped maze. We found that the phase coherence of theta peaked around the choice point area of the maze. Moreover, Granger causality revealed a hippocampus → prefrontal cortex directionality of information flow at theta frequency, peaking at starting areas of the maze, and on the reverse direction at delta frequency, peaking near the turn onset. Additionally, the patterns of phase-amplitude cross-frequency coupling within and between the regions also showed spatial selectivity, and hippocampal theta and prefrontal delta modulated not only gamma amplitude but also inter-regional gamma synchrony. Finally, we found that the theta rhythm dynamically modulated neurons in both regions, with the highest modulation at the choice area; interestingly, prefrontal cortex neurons were more strongly modulated by the hippocampal theta rhythm than by their local field rhythm. In all, our results reveal maximum electrophysiological interactions between the hippocampus and the prefrontal cortex near the decision-making period of the spatial alternation task, corroborating the hypothesis that a dynamic interplay between these regions takes place during spatial decisions.
Collapse
Affiliation(s)
- Lucas C S Tavares
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
69
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
70
|
Kerkenberg N, Wachsmuth L, Zhang M, Schettler C, Ponimaskin E, Faber C, Baune BT, Zhang W, Hohoff C. Brain microstructural changes in mice persist in adulthood and are modulated by the palmitoyl acyltransferase ZDHHC7. Eur J Neurosci 2021; 54:5951-5967. [PMID: 34355442 DOI: 10.1111/ejn.15415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
For a long time, mice have been classified as adults with completely mature brains at 8 weeks of age, but recent research suggests that developmental brain changes occur for up to 6 months. In particular, adolescence coincides with dramatic changes of neuronal structure and function in the brain that influence the connectivity between areas like hippocampus and medial prefrontal cortex (mPFC). Neuronal development and plasticity are regulated in part by the palmitoyl acyltransferase ZDHHC7, which modulates structural connectivity between hippocampus and mPFC. The aim of the current study was to investigate whether developmental changes take place in hippocampus and mPFC microstructure even after 8 weeks of age and whether deficiency of ZDHHC7 impacts such age-dependent alterations. Altogether, 46 mice at 11, 14 or 17 weeks of age with a genetic Zdhhc7 knockout (KO) or wild type (WT) were analysed with neuroimaging and diffusion tensor-based fibre tractography. The hippocampus and mPFC regions were compared regarding fibre metrics, supplemented by volumetric and immunohistological analyses of the hippocampus. In WT animals, we identified age-dependent changes in hippocampal fibre lengths that followed a U-shaped pattern, whereas in mPFC, changes were linear. In Zdhhc7-deficient animals, the fibre statistics were reduced in both regions, whereas the hippocampus volume and the intensities of myelin and neurofilament were higher in 11-week-old KO mice compared to WTs. Our results confirmed ongoing changes of microstructure in mice up to 17 weeks old and demonstrate that deleting the Zdhhc7 gene impairs fibre development, suggesting that palmitoylation is important in this process.
Collapse
Affiliation(s)
- Nicole Kerkenberg
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Mingyue Zhang
- Department of Mental Health, University of Münster, Münster, Germany
| | | | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Cornelius Faber
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Clinic of Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Mental Health, University of Münster, Münster, Germany
| |
Collapse
|
71
|
Xiong B, Chen C, Tian Y, Zhang S, Liu C, Evans TM, Fernández G, Wu J, Qin S. Brain preparedness: The proactive role of the cortisol awakening response in hippocampal-prefrontal functional interactions. Prog Neurobiol 2021; 205:102127. [PMID: 34343631 DOI: 10.1016/j.pneurobio.2021.102127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Upon awakening from nighttime sleep, the stress hormone cortisol in humans exhibits a robust rise within thirty to forty-five minutes. This cortisol awakening response (CAR), a crucial point of reference within the healthy cortisol circadian rhythm, has been linked to various psychological, psychiatric and health-related conditions. The CAR is thought to prepare the brain for anticipated challenges of the upcoming day to maintain one's homeostasis and promote adaptive responses. Using brain imaging with a prospective design and pharmacological manipulation, we investigate the neurobiological mechanisms underlying this preparation function of the CAR across two studies. In Study 1, a robust CAR is predictive of less hippocampal and prefrontal activity, though enhanced functional coupling between those regions during a demanding task hours later in the afternoon. Reduced prefrontal activity is in turn linked to better working memory performance, implicating that the CAR proactively promotes brain preparedness based on improved neurocognitive efficiency. In Study 2, pharmacologically suppressed CAR using Dexamethasone mirrors this proactive effect, which further causes a selective reduction of prefrontal top-down functional modulation over hippocampal activity. These findings establish a causal link between the CAR and its proactive role in optimizing functional brain networks involved in neuroendocrine control, executive function and memory.
Collapse
Affiliation(s)
- Bingsen Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Changming Chen
- School of Education, Chongqing Normal University, Chongqing, 401331, China
| | - Yanqiu Tian
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Shouwen Zhang
- West Essence Clinic, Beijing Institute of Functional Neurosurgery & Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tanya M Evans
- School of Education and Human Development, University of Virginia, Charlottesville, VA, 22904, USA
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour & Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EN, the Netherlands
| | - Jianhui Wu
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; Chinese Institute for Brain Research, Beijing, 100069, China.
| |
Collapse
|
72
|
Hammer M, Schwale C, Brankačk J, Draguhn A, Tort ABL. Theta-gamma coupling during REM sleep depends on breathing rate. Sleep 2021; 44:6326772. [PMID: 34297128 DOI: 10.1093/sleep/zsab189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/23/2021] [Indexed: 11/12/2022] Open
Abstract
Temporal coupling between theta and gamma oscillations is a hallmark activity pattern of several cortical networks and becomes especially prominent during REM sleep. In a parallel approach, nasal breathing has been recently shown to generate phase-entrained network oscillations which also modulate gamma. Both slow rhythms (theta and respiration-entrained oscillations) have been suggested to aid large-scale integration but they differ in frequency, display low coherence, and modulate different gamma sub-bands. Respiration and theta are therefore believed to be largely independent. In the present work, however, we report an unexpected but robust relation between theta-gamma coupling and respiration in mice. Interestingly, this relation takes place not through the phase of individual respiration cycles, but through respiration rate: the strength of theta-gamma coupling exhibits an inverted V-shaped dependence on breathing rate, leading to maximal coupling at breathing frequencies of 4-6 Hz. Noteworthy, when subdividing sleep epochs into phasic and tonic REM patterns, we find that breathing differentially relates to theta-gamma coupling in each state, providing new evidence for their physiological distinctiveness. Altogether, our results reveal that breathing correlates with brain activity not only through phase-entrainment but also through rate-dependent relations with theta-gamma coupling. Thus, the link between respiration and other patterns of cortical network activity is more complex than previously assumed.
Collapse
Affiliation(s)
- Maximilian Hammer
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Chrysovalandis Schwale
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany.,Department of General Internal Medicine and Psychosomatics, Heidelberg University, 69120 Heidelberg, Germany
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| |
Collapse
|
73
|
Theta Oscillations Gate the Transmission of Reliable Sequences in the Medial Entorhinal Cortex. eNeuro 2021; 8:ENEURO.0059-20.2021. [PMID: 33820802 PMCID: PMC8208650 DOI: 10.1523/eneuro.0059-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Stability and precision of sequential activity in the entorhinal cortex (EC) is crucial for encoding spatially guided behavior and memory. These sequences are driven by constantly evolving sensory inputs and persist despite a noisy background. In a realistic computational model of a medial EC (MEC) microcircuit, we show that intrinsic neuronal properties and network mechanisms interact with theta oscillations to generate reliable outputs. In our model, sensory inputs activate interneurons near their most excitable phase during each theta cycle. As the inputs change, different interneurons are recruited and postsynaptic stellate cells are released from inhibition. This causes a sequence of rebound spikes. The rebound time scale of stellate cells, because of an h–current, matches that of theta oscillations. This fortuitous similarity of time scales ensures that stellate spikes get relegated to the least excitable phase of theta and the network encodes the external drive but ignores recurrent excitation. In contrast, in the absence of theta, rebound spikes compete with external inputs and disrupt the sequence that follows. Further, the same mechanism where theta modulates the gain of incoming inputs, can be used to select between competing inputs to create transient functionally connected networks. Our results concur with experimental data that show, subduing theta oscillations disrupts the spatial periodicity of grid cell receptive fields. In the bat MEC where grid cell receptive fields persist even in the absence of continuous theta oscillations, we argue that other low frequency fluctuations play the role of theta.
Collapse
|
74
|
Jelinčić V, Van Diest I, Torta DM, von Leupoldt A. The breathing brain: The potential of neural oscillations for the understanding of respiratory perception in health and disease. Psychophysiology 2021; 59:e13844. [PMID: 34009644 DOI: 10.1111/psyp.13844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Dyspnea or breathlessness is a symptom occurring in multiple acute and chronic illnesses, however, the understanding of the neural mechanisms underlying its subjective experience is limited. In this topical review, we propose neural oscillatory dynamics and cross-frequency coupling as viable candidates for a neural mechanism underlying respiratory perception, and a technique warranting more attention in respiration research. With the evidence for the potential of neural oscillations in the study of normal and disordered breathing coming from disparate research fields with a limited history of interdisciplinary collaboration, the main objective of the review was to converge the existing research and suggest future directions. The existing findings show that distinct limbic and cortical activations, as measured by hemodynamic responses, underlie dyspnea, however, the time-scale of these activations is not well understood. The recent findings of oscillatory neural activity coupled with the respiratory rhythm could provide the solution to this problem, however, more research with a focus on dyspnea is needed. We also touch on the findings of distinct spectral patterns underlying the changes in breathing due to experimental manipulations, meditation and disease. Subsequently, we suggest general research directions and specific research designs to supplement the current knowledge using neural oscillation techniques. We argue for the benefits of interdisciplinary collaboration and the converging of neuroimaging and behavioral methods to best explain the emergence of the subjective and aversive individual experience of dyspnea.
Collapse
Affiliation(s)
- Valentina Jelinčić
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Ilse Van Diest
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Diana M Torta
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Andreas von Leupoldt
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| |
Collapse
|
75
|
Girin B, Juventin M, Garcia S, Lefèvre L, Amat C, Fourcaud-Trocmé N, Buonviso N. The deep and slow breathing characterizing rest favors brain respiratory-drive. Sci Rep 2021; 11:7044. [PMID: 33782487 PMCID: PMC8007577 DOI: 10.1038/s41598-021-86525-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
A respiration-locked activity in the olfactory brain, mainly originating in the mechano-sensitivity of olfactory sensory neurons to air pressure, propagates from the olfactory bulb to the rest of the brain. Interestingly, changes in nasal airflow rate result in reorganization of olfactory bulb response. By leveraging spontaneous variations of respiratory dynamics during natural conditions, we investigated whether respiratory drive also varies with nasal airflow movements. We analyzed local field potential activity relative to respiratory signal in various brain regions during waking and sleep states. We found that respiration regime was state-specific, and that quiet waking was the only vigilance state during which all the recorded structures can be respiration-driven whatever the respiratory frequency. Using CO2-enriched air to alter respiratory regime associated to each state and a respiratory cycle based analysis, we evidenced that the large and strong brain drive observed during quiet waking was related to an optimal trade-off between depth and duration of inspiration in the respiratory pattern, characterizing this specific state. These results show for the first time that changes in respiration regime affect cortical dynamics and that the respiratory regime associated with rest is optimal for respiration to drive the brain.
Collapse
Affiliation(s)
- Baptiste Girin
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Samuel Garcia
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Corine Amat
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Nicolas Fourcaud-Trocmé
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France.
| |
Collapse
|
76
|
Jones ZB, Zhang J, Wu Y, Zhou Y. Inhibition of 14-3-3 Proteins Alters Neural Oscillations in Mice. Front Neural Circuits 2021; 15:647856. [PMID: 33776658 PMCID: PMC7994333 DOI: 10.3389/fncir.2021.647856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/22/2021] [Indexed: 12/01/2022] Open
Abstract
Accumulating evidence suggests that schizophrenia is a disorder of the brain’s communication, a result of functional and structural dysconnectivities. Patients with schizophrenia exhibit irregular neuronal circuit and network activity, but the causes and consequences of such activity remain largely unknown. Inhibition of 14-3-3 proteins in the mouse brain leads to the expression of multiple schizophrenia endophenotypes. Here we investigated how 14-3-3 inhibition alters neuronal network activity in the mouse hippocampus (HPC) and prefrontal cortex (PFC), key brain regions implicated in schizophrenia pathophysiology. We implanted monopolar recording electrodes in these two regions to record local field potentials both at rest and during a cognitive task. Through our assessment of band power, coherence, and phase-amplitude coupling, we found that neural oscillations in the theta and gamma frequency ranges were altered as a result of 14-3-3 dysfunction. Utilizing transgenic and viral mouse models to assess the effects of chronic and acute 14-3-3 inhibition on oscillatory activities, respectively, we observed several fundamental similarities and differences between the two models. We localized viral mediated 14-3-3 protein inhibition to either the HPC or PFC, allowing us to assess the individual contributions of each region to the observed changes in neural oscillations. These findings identify a novel role of 14-3-3 proteins in neural oscillations that may have implications for our understanding of schizophrenia neurobiology.
Collapse
Affiliation(s)
- Zachary B Jones
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Jiajing Zhang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
77
|
Powell D, Haddad SA, Gorur-Shandilya S, Marder E. Coupling between fast and slow oscillator circuits in Cancer borealis is temperature-compensated. eLife 2021; 10:60454. [PMID: 33538245 PMCID: PMC7889077 DOI: 10.7554/elife.60454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Coupled oscillatory circuits are ubiquitous in nervous systems. Given that most biological processes are temperature-sensitive, it is remarkable that the neuronal circuits of poikilothermic animals can maintain coupling across a wide range of temperatures. Within the stomatogastric ganglion (STG) of the crab, Cancer borealis, the fast pyloric rhythm (~1 Hz) and the slow gastric mill rhythm (~0.1 Hz) are precisely coordinated at ~11°C such that there is an integer number of pyloric cycles per gastric mill cycle (integer coupling). Upon increasing temperature from 7°C to 23°C, both oscillators showed similar temperature-dependent increases in cycle frequency, and integer coupling between the circuits was conserved. Thus, although both rhythms show temperature-dependent changes in rhythm frequency, the processes that couple these circuits maintain their coordination over a wide range of temperatures. Such robustness to temperature changes could be part of a toolbox of processes that enables neural circuits to maintain function despite global perturbations.
Collapse
Affiliation(s)
- Daniel Powell
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Sara A Haddad
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | | | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| |
Collapse
|
78
|
Rahman F, Nanu R, Schneider NA, Katz D, Lisman J, Pi HJ. Optogenetic perturbation of projections from thalamic nucleus reuniens to hippocampus disrupts spatial working memory retrieval more than encoding. Neurobiol Learn Mem 2021; 179:107396. [PMID: 33524571 DOI: 10.1016/j.nlm.2021.107396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Working memory deficits are key cognitive symptoms of schizophrenia. Elevated delta oscillations, which are uniquely associated with the presence of the illness, may be the proximal cause of these deficits. Spatial working memory (SWM) is impaired by elevated delta oscillations projecting from thalamic nucleus reuniens (RE) to the hippocampus (HPC); these findings imply a role of the RE-HPC circuit in working memory deficits in schizophrenia, but questions remain as to whether the affected process is the encoding of working memory, recall, or both. Here, we answered this question by optogenetically inducing delta oscillations in the HPC terminals of RE axons in mice during either the encoding or retrieval phase (or both) of an SWM task. METHODS We transduced cells in RE to express channelrhodopsin-2 through bilateral injection of adeno-associated virus, and bilaterally implanted optical fibers dorsal to the hippocampus (HPC). While mice performed a spatial memory task on a Y-maze, the RE-HPC projections were optogenetically stimulated at delta frequency during distinct phases of the task. RESULTS Full-trial stimulation successfully impaired SWM performance, replicating the results of the previous study in a mouse model. Task-phase-specific stimulation significantly impaired performance during retrieval but not encoding. CONCLUSIONS Our results indicate that perturbations in the RE-HPC circuit specifically impair the retrieval phase of working memory. This finding supports the hypothesis that abnormal delta frequency bursting in the thalamus could have a causal role in producing the WM deficits seen in schizophrenia.
Collapse
Affiliation(s)
- Faiyaz Rahman
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Roshan Nanu
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Nathan A Schneider
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Donald Katz
- Volen Center for Complex Systems, Neuroscience Program, Department of Psychology, Brandeis University, Waltham, MA 02453, USA; Volen Center for Complex Systems, Neuroscience Program, Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - John Lisman
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Hyun-Jae Pi
- Volen Center for Complex Systems, Neuroscience Program, Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
79
|
Linley SB, Athanason AC, Rojas AK, Vertes RP. Role of the reuniens and rhomboid thalamic nuclei in anxiety‐like avoidance behavior in the rat. Hippocampus 2021; 31:756-769. [DOI: 10.1002/hipo.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/08/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Stephanie B. Linley
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| | | | - Amanda K.P. Rojas
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
| | - Robert P. Vertes
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| |
Collapse
|
80
|
Albeely AM, Williams OOF, Perreault ML. GSK-3β Disrupts Neuronal Oscillatory Function to Inhibit Learning and Memory in Male Rats. Cell Mol Neurobiol 2021; 42:1341-1353. [PMID: 33392916 DOI: 10.1007/s10571-020-01020-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Alterations in glycogen synthase kinase-3β (GSK-3β) activity have been implicated in disorders of cognitive impairment, including Alzheimer's disease and schizophrenia. Cognitive dysfunction is also characterized by the dysregulation of neuronal oscillatory activity, macroscopic electrical rhythms in brain that are critical to systems communication. A direct functional relationship between GSK-3β and neuronal oscillations has not been elucidated. Therefore, in the present study, using an adeno-associated viral vector containing a persistently active mutant form of GSK-3β, GSK-3β(S9A), the impact of elevated kinase activity in prefrontal cortex (PFC) or ventral hippocampus (vHIP) of rats on neuronal oscillatory activity was evaluated. GSK-3β(S9A)-induced changes in learning and memory were also assessed and the phosphorylation status of tau protein, a substrate of GSK-3β, examined. It was demonstrated that increasing GSK-3β(S9A) activity in either the PFC or vHIP had similar effects on neuronal oscillatory activity, enhancing theta and/or gamma spectral power in one or both regions. Increasing PFC GSK-3β(S9A) activity additionally suppressed high gamma PFC-vHIP coherence. These changes were accompanied by deficits in recognition memory, spatial learning, and/or reversal learning. Elevated pathogenic tau phosphorylation was also evident in regions where GSK-3β(S9A) activity was upregulated. The neurophysiological and learning and memory deficits induced by GSK-3β(S9A) suggest that aberrant GSK-3β signalling may not only play an early role in cognitive decline in Alzheimer's disease but may also have a more central involvement in disorders of cognitive dysfunction through the regulation of neurophysiological network function.
Collapse
Affiliation(s)
- Abdalla M Albeely
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada.,Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada
| | - Olivia O F Williams
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada. .,Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada.
| |
Collapse
|
81
|
Harris SS, Schwerd-Kleine T, Lee BI, Busche MA. The Reciprocal Interaction Between Sleep and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:169-188. [PMID: 34773232 DOI: 10.1007/978-3-030-81147-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer's disease, the most prevalent neurodegenerative disease in the elderly.
Collapse
Affiliation(s)
| | | | - Byung Il Lee
- UK Dementia Research Institute at UCL, London, UK
| | | |
Collapse
|
82
|
Brain circuits at risk in psychiatric diseases and pharmacological pathways. Therapie 2020; 76:75-86. [PMID: 33358639 DOI: 10.1016/j.therap.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022]
Abstract
The multiple brain circuits involved in psychiatric diseases may appear daunting, but we prefer to concentrate on a select few, with a particular sensitivity to stress and neurodevelopmental issues, with a clear pharmacotherapy. This review is structured around 1. the key circuits, their role in health and disease, and the neurotransmitters maintaining them, 2. The influence of upbringing, stress, chronobiology, inflammation and infection, 3. The genetic and epigenetic influence on these circuits, particularly regarding copy number variants and neuronal plasticity, 4. The use and abuse of pharmacological agents with the particular risks of stress and chronobiology at critical periods. A major emphasis is placed on the links between hippocampus, prefrontal cortex and amygdala/periaqueductal grey which control specific aspects of cognition, mood, pain and even violence. Some of the research findings were from the innovative medicine initiative (IMI) NEWMEDS, a 22M€ academic/industrial consortium on the brain circuits critical for psychiatric disease.
Collapse
|
83
|
Schoepfer KJ, Xu Y, Wilber AA, Wu W, Kabbaj M. Sex differences and effects of the estrous stage on hippocampal-prefrontal theta communications. Physiol Rep 2020; 8:e14646. [PMID: 33230976 PMCID: PMC7683809 DOI: 10.14814/phy2.14646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 11/28/2022] Open
Abstract
Effective communication between the mammalian hippocampus and neocortex is essential to certain cognitive-behavioral tasks critical to survival in a changing environment. Notably, functional synchrony between local field potentials (LFPs) of the ventral hippocampus (vHPC) and the medial prefrontal cortex (mPFC) within the theta band (4-12 Hz) underlies innate avoidance behavior during approach-avoidance conflict tasks in male rodents. However, the physiology of vHPC-mPFC communications in females remains unestablished. Furthermore, little is known about how mPFC subdivisions functionally interact in the theta band with hippocampal subdivisions in both sexes in the absence of task demand. Given the established roles of biological sex and gonadal hormone status on innate avoidance behaviors and neuronal excitability, here, we characterize the effects of biological sex and female estrous stage on hippocampal-prefrontal (HPC-mPFC) theta signaling in freely moving female and male rats. LFPs from vHPC, dorsal hippocampus (dHPC), mPFC-prelimbic (PrL), and mPFC-infralimbic (IL) were simultaneously recorded during spontaneous exploration of a familiar arena. Data suggest that theta phase and power in vHPC preferentially synchronize with PrL; conversely, dHPC and IL preferentially synchronize. Males displayed greater vHPC-PrL theta synchrony than females, despite similar regional frequency band power and inter-regional coherence. Additionally, several significant estrous-linked changes in HPC-mPFC theta dynamics were observed. These findings support the hypothesis that HPC-mPFC theta signaling is sensitive to both biological sex and female estrous stage. These findings establish novel research avenues concerning sex as a biological variable and effects of gonadal hormone status on HPC-mPFC network activity as it pertains to threat evaluation biomarkers.
Collapse
Affiliation(s)
- Kristin J. Schoepfer
- Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFLUSA
| | - Yiqi Xu
- Department of StatisticsFlorida State UniversityTallahasseeFLUSA
| | - Aaron A. Wilber
- Department of PsychologyFlorida State UniversityTallahasseeFLUSA
| | - Wei Wu
- Department of StatisticsFlorida State UniversityTallahasseeFLUSA
| | - Mohamed Kabbaj
- Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFLUSA
| |
Collapse
|
84
|
Wang H, Jin J, Cui D, Wang X, Li Y, Liu Z, Yin T. Cortico-Hippocampal Brain Connectivity-Guided Repetitive Transcranial Magnetic Stimulation Enhances Face-Cued Word-Based Associative Memory in the Short Term. Front Hum Neurosci 2020; 14:541791. [PMID: 33192388 PMCID: PMC7662091 DOI: 10.3389/fnhum.2020.541791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can be used to enhance the associative memory of healthy subjects and patients with Alzheimer's disease (AD). However, the question of where the stimulation should be applied is still unresolved. In a preliminary survey for an effective and feasible solution to this problem, we identified three representative rTMS targets using cortico-hippocampal connectivity, calculated using resting-state fMRI (rs-fMRI) data from 80 young, healthy subjects: (1) the cortical area with the strongest connectivity across the whole cerebral cortical area; (2) the whole lateral parietal cortical area; and (3) the whole medial prefrontal cortical area. We then compared the short-term effects on associative memory, which was tested using face-cued word recall by applying rTMS to three identified targets in a single population of eight healthy adults. Each treatment lasted for 2 days. Associative memory performance was measured at four time points: before and after stimulation on the first day (baseline and post 1) and before and after stimulation on the second day (post 2 and post 3). Compared with baseline levels, 20 min of high-frequency rTMS delivered to target 2 or target 3 produced a significant increase in the mean accuracy of associative memory performance at the post 3 time point alone (target 2, P = 0.0035; target 3, P = 0.0012). Compared with the sham conditions, significant increases in the mean associative memory performance were observed when high-frequency rTMS was delivered to target 2 (P = 0.02) and target 3 (P = 0.012), but not when delivered to target 1 (P = 0.1). Compared with baseline levels, 20 min of high-frequency rTMS delivered to target 3 produced a significant reduction in the mean reaction time of associative memory only at time points post 1 (P = 0.0464) and post 3 (P = 0.0477). Compared with the sham conditions, significant reductions in the mean reaction time of associative memory were observed when high-frequency rTMS was delivered to target 3 (P = 0.006), but not when delivered to target 1 (P = 0.471) or target 2 (P = 0.365). Our findings indicate that stimulation of the locations with the strongest cortico-hippocampal connectivity within the lateral parietal cortical or medial prefrontal cortical areas is effective in enhancing face-word recall-based associative memory in the short term.
Collapse
Affiliation(s)
- He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
85
|
Adams RA, Bush D, Zheng F, Meyer SS, Kaplan R, Orfanos S, Marques TR, Howes OD, Burgess N. Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia. Brain 2020; 143:1261-1277. [PMID: 32236540 PMCID: PMC7174039 DOI: 10.1093/brain/awaa035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Frontotemporal dysconnectivity is a key pathology in schizophrenia. The specific nature of this dysconnectivity is unknown, but animal models imply dysfunctional theta phase coupling between hippocampus and medial prefrontal cortex (mPFC). We tested this hypothesis by examining neural dynamics in 18 participants with a schizophrenia diagnosis, both medicated and unmedicated; and 26 age, sex and IQ matched control subjects. All participants completed two tasks known to elicit hippocampal-prefrontal theta coupling: a spatial memory task (during magnetoencephalography) and a memory integration task. In addition, an overlapping group of 33 schizophrenia and 29 control subjects underwent PET to measure the availability of GABAARs expressing the α5 subunit (concentrated on hippocampal somatostatin interneurons). We demonstrate-in the spatial memory task, during memory recall-that theta power increases in left medial temporal lobe (mTL) are impaired in schizophrenia, as is theta phase coupling between mPFC and mTL. Importantly, the latter cannot be explained by theta power changes, head movement, antipsychotics, cannabis use, or IQ, and is not found in other frequency bands. Moreover, mPFC-mTL theta coupling correlated strongly with performance in controls, but not in subjects with schizophrenia, who were mildly impaired at the spatial memory task and no better than chance on the memory integration task. Finally, mTL regions showing reduced phase coupling in schizophrenia magnetoencephalography participants overlapped substantially with areas of diminished α5-GABAAR availability in the wider schizophrenia PET sample. These results indicate that mPFC-mTL dysconnectivity in schizophrenia is due to a loss of theta phase coupling, and imply α5-GABAARs (and the cells that express them) have a role in this process.
Collapse
Affiliation(s)
- Rick A Adams
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T 7NF, UK.,Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5EH, UK.,Centre for Medical Image Computing, Department of Computer Science, University College London, Malet Place, London, WC1E 7JE, UK.,Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK
| | - Daniel Bush
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Fanfan Zheng
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100190 Beijing, China
| | - Sofie S Meyer
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Raphael Kaplan
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.,Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stelios Orfanos
- South West London and St George's Mental Health NHS Trust, Springfield University Hospital, 61 Glenburnie Rd, London SW17 7DJ, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Tiago Reis Marques
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 8AF, UK
| | - Oliver D Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 8AF, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
86
|
Bennett M. An Attempt at a Unified Theory of the Neocortical Microcircuit in Sensory Cortex. Front Neural Circuits 2020; 14:40. [PMID: 32848632 PMCID: PMC7416357 DOI: 10.3389/fncir.2020.00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
The neocortex performs a wide range of functions, including working memory, sensory perception, and motor planning. Despite this diversity in function, evidence suggests that the neocortex is made up of repeating subunits ("macrocolumns"), each of which is largely identical in circuitry. As such, the specific computations performed by these macrocolumns are of great interest to neuroscientists and AI researchers. Leading theories of this microcircuit include models of predictive coding, hierarchical temporal memory (HTM), and Adaptive Resonance Theory (ART). However, these models have not yet explained: (1) how microcircuits learn sequences input with delay (i.e., working memory); (2) how networks of columns coordinate processing on precise timescales; or (3) how top-down attention modulates sensory processing. I provide a theory of the neocortical microcircuit that extends prior models in all three ways. Additionally, this theory provides a novel working memory circuit that extends prior models to support simultaneous multi-item storage without disrupting ongoing sensory processing. I then use this theory to explain the functional origin of a diverse set of experimental findings, such as cortical oscillations.
Collapse
Affiliation(s)
- Max Bennett
- Independent Researcher, New York, NY, United States
| |
Collapse
|
87
|
Prefrontal - subthalamic pathway supports action selection in a spatial working memory task. Sci Rep 2020; 10:10497. [PMID: 32591609 PMCID: PMC7320162 DOI: 10.1038/s41598-020-67185-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 01/24/2023] Open
Abstract
Subthalamic nucleus (STN) is the main source of feed-forward excitation in the basal ganglia and a main target of therapeutic deep brain stimulation in movement disorders. Alleviation of motor symptoms during STN stimulation can be accompanied by deterioration of abilities to quickly choose between conflicting alternatives. Cortical afferents to the subthalamic region (ST), comprising STN and zona incerta (ZI), include projections from the medial prefrontal cortex (mPFC), yet little is known about prefrontal-subthalamic coordination and its relevance for decision-making. Here we combined electrophysiological recordings with optogenetic manipulations of projections from mPFC to ST in mice as they performed a spatial working memory task (T-maze) or explored an elevated plus maze (anxiety test). We found that gamma oscillations (30–70 Hz) are coordinated between mPFC and ST at theta (5–10 Hz) and, less efficiently, at sub-theta (2–5 Hz) frequencies. An optogenetic detuning of the theta/gamma cross-frequency coupling between the regions into sub-theta range impaired performance in the T-maze, yet did not affect anxiety-related behaviors in the elevated plus maze. Both detuning and inhibition of the mPFC-ST pathway led to repeated incorrect choices in the T-maze. These effects were not associated with changes of anxiety and motor activity measures. Our findings suggest that action selection in a cognitively demanding task crucially involves theta rhythmic coordination of gamma oscillatory signaling in the prefrontal-subthalamic pathway.
Collapse
|
88
|
Furtunato AMB, Lobão-Soares B, Tort ABL, Belchior H. Specific Increase of Hippocampal Delta Oscillations Across Consecutive Treadmill Runs. Front Behav Neurosci 2020; 14:101. [PMID: 32676013 PMCID: PMC7333663 DOI: 10.3389/fnbeh.2020.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Running speed affects theta (6-10 Hz) oscillations, the most prominent rhythm in the rat hippocampus. Many reports have found a strong positive correlation between locomotion speed and the amplitude and frequency of theta oscillations. However, less is known about how other rhythms such as delta (0.5-4 Hz) and gamma (25-100 Hz) are affected, and how consecutive runs impact oscillatory activity in hippocampal networks. Here, we investigated whether the successive execution of short-term runs modulates local field potentials (LFPs) in the rat hippocampus. To do this, we trained Long-Evans rats to perform voluntary 15-s runs at 30 cm/s on a treadmill placed on the central stem of an eight-shape maze, in which they subsequently performed a spatial alternation task. We bilaterally recorded CA1 LFPs while rats executed at least 35 runs on the treadmill-maze apparatus. Within running periods, we observed progressive increases in delta band power along with decreases in the power of the theta and gamma bands across runs. Concurrently, the inter-hemispheric phase coherence in the delta band significantly increased, while in the theta and gamma bands exhibited no changes. Delta power and inter-hemispheric coherence correlated better with the trial number than with the actual running speed. We observed no significant differences in running speed, head direction, nor in spatial occupancy across runs. Our results thus show that consecutive treadmill runs at the same speed positively modulates the power and coherence of delta oscillations in the rat hippocampus.
Collapse
Affiliation(s)
- Alan M. B. Furtunato
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruno Lobão-Soares
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Hindiael Belchior
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
- Faculty of Health Sciences of Trairí, Federal University of Rio Grande do Norte, Natal, Brazil
- Center for Memory & Brain, Boston University, Boston, MA, United States
| |
Collapse
|
89
|
Varela C, Wilson MA. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. eLife 2020; 9:48881. [PMID: 32525480 PMCID: PMC7319772 DOI: 10.7554/elife.48881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep oscillations in the neocortex and hippocampus are critical for the integration of new memories into stable generalized representations in neocortex. However, the role of the thalamus in this process is poorly understood. To determine the thalamic contribution to non-REM oscillations (sharp-wave ripples, SWRs; slow/delta; spindles), we recorded units and local field potentials (LFPs) simultaneously in the limbic thalamus, mPFC, and CA1 in rats. We report that the cycles of neocortical spindles provide a key temporal window that coordinates CA1 SWRs with sparse but consistent activation of thalamic units. Thalamic units were phase-locked to delta and spindles in mPFC, and fired at consistent lags with other thalamic units within spindles, while CA1 units that were active during spatial exploration were engaged in SWR-coupled spindles after behavior. The sparse thalamic firing could promote an incremental integration of recently acquired memory traces into neocortical schemas through the interleaved activation of thalamocortical cells.
Collapse
Affiliation(s)
- Carmen Varela
- Massachusetts Institute of Technology, Cambridge, United States.,Florida Atlantic University, Boca Raton, United States
| | | |
Collapse
|
90
|
van der Meij J, Ungurean G, Rattenborg NC, Beckers GJL. Evolution of sleep in relation to memory – a birds’ brain view. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
91
|
Lebedeva IS, Golubev SA, Klochkova IV, Kaleda VG. [Neurophysiological characteristics of juvenile schizophrenia patients examined at the very remote follow up stage]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:34-40. [PMID: 32323941 DOI: 10.17116/jnevro202012003134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine neurophysiological characteristics of patients with long-term follow up (>20 years) and to find correlations between neurophysiological parameters and clinical features of schizophrenia. MATERIAL AND METHODS The patients were divided into three groups: with predomination of personality changes (group 1, n=17), with negative disorders (group 2, n=23) and with positive and negative disorders (group 3, n=40). A psychopathological method and electroencephalography with evoked potentials testing were used. RESULTS AND CONCLUSION In group 3, the statistically significant higher frequencies of theta-rhythm and lower of alpha-rhythm were found. Also, theta frequency correlated with PANSS positive scores. The significant intergroup differences by auditory oddball P300 were lacked. The findings are discussed in view of the hypothesis of theta-rhythm as a marker of hippocampal-prefrontal connectivity.
Collapse
Affiliation(s)
| | - S A Golubev
- Mental Health Research Center, Moscow, Russia
| | | | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
92
|
Hasz BM, Redish AD. Dorsomedial prefrontal cortex and hippocampus represent strategic context even while simultaneously changing representation throughout a task session. Neurobiol Learn Mem 2020; 171:107215. [PMID: 32276121 DOI: 10.1016/j.nlm.2020.107215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/07/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Dorsomedial prefrontal cortex (dmPFC) and hippocampus (HPC) are thought to play complementary roles in a spatial working memory and decision-making network, where spatial information from HPC informs representations in dmPFC, and contextual information from dmPFC biases how HPC recalls that information. We recorded simultaneously from neural ensembles in rodent dmPFC and HPC as rats performed a rule-switching task, and found that ensembles in dmPFC and HPC simultaneously encoded task contingencies and other time-varying information. While ensembles in HPC transitioned to represent new contingencies at the same time as rats updated their strategies to be consistent with the new contingency, dmPFC ensembles transitioned earlier. Neural representations of other time-varying information also changed faster in dmPFC than in HPC. Our results suggest that HPC and dmPFC represent contingencies while simultaneously representing other information which changes over time, and that this contextual information is integrated into hippocampal representations more slowly than in dmPFC.
Collapse
Affiliation(s)
- Brendan M Hasz
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
93
|
van der Meij J, Rattenborg NC, Beckers GJL. Divergent neuronal activity patterns in the avian hippocampus and nidopallium. Eur J Neurosci 2020; 52:3124-3139. [PMID: 31944434 DOI: 10.1111/ejn.14675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
Sleep-related brain activity occurring during non-rapid eye-movement (NREM) sleep is proposed to play a role in processing information acquired during wakefulness. During mammalian NREM sleep, the transfer of information from the hippocampus to the neocortex is thought to be mediated by neocortical slow-waves and their interaction with thalamocortical spindles and hippocampal sharp-wave ripples (SWRs). In birds, brain regions composed of pallial neurons homologous to neocortical (pallial) neurons also generate slow-waves during NREM sleep, but little is known about sleep-related activity in the hippocampus and its possible relationship to activity in other pallial regions. We recorded local field potentials (LFP) and analogue multiunit activity (AMUA) using a 64-channel silicon multi-electrode probe simultaneously inserted into the hippocampus and medial part of the nidopallium (i.e., caudal medial nidopallium; NCM) or separately into the caudolateral nidopallium (NCL) of adult female zebra finches (Taeniopygia guttata) anesthetized with isoflurane, an anesthetic known to induce NREM sleep-like slow-waves. We show that slow-waves in NCM and NCL propagate as waves of neuronal activity. In contrast, the hippocampus does not show slow-waves, nor sharp-wave ripples, but instead displays localized gamma activity. In conclusion, neuronal activity in the avian hippocampus differs from that described in mammals during NREM sleep, suggesting that hippocampal memories are processed differently during sleep in birds and mammals.
Collapse
Affiliation(s)
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Gabriël J L Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
94
|
Chang P, Bush D, Schorge S, Good M, Canonica T, Shing N, Noy S, Wiseman FK, Burgess N, Tybulewicz VLJ, Walker MC, Fisher EMC. Altered Hippocampal-Prefrontal Neural Dynamics in Mouse Models of Down Syndrome. Cell Rep 2020; 30:1152-1163.e4. [PMID: 31995755 PMCID: PMC6996020 DOI: 10.1016/j.celrep.2019.12.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 12/17/2019] [Indexed: 01/26/2023] Open
Abstract
Altered neural dynamics in the medial prefrontal cortex (mPFC) and hippocampus may contribute to cognitive impairments in the complex chromosomal disorder Down syndrome (DS). Here, we demonstrate non-overlapping behavioral differences associated with distinct abnormalities in hippocampal and mPFC electrophysiology during a canonical spatial working memory task in three partially trisomic mouse models of DS (Dp1Tyb, Dp10Yey, and Dp17Yey) that together cover all regions of homology with human chromosome 21 (Hsa21). Dp1Tyb mice show slower decision-making (unrelated to the gene dose of DYRK1A, which has been implicated in DS cognitive dysfunction) and altered theta dynamics (reduced frequency, increased hippocampal-mPFC coherence, and increased modulation of hippocampal high gamma); Dp10Yey mice show impaired alternation performance and reduced theta modulation of hippocampal low gamma; and Dp17Yey mice are not significantly different from the wild type. These results link specific hippocampal and mPFC circuit dysfunctions to cognitive deficits in DS models and, importantly, map them to discrete regions of Hsa21.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Daniel Bush
- UCL Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London WC1N 3AZ, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mark Good
- School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Tara Canonica
- School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Nathanael Shing
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Suzanna Noy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London WC1N 3AZ, UK
| | - Victor L J Tybulewicz
- Francis Crick Institute, London NW1 1AT, UK; Department of Medicine, Imperial College, London W12 0NN, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
95
|
Mamelak M. Nightmares and the Cannabinoids. Curr Neuropharmacol 2020; 18:754-768. [PMID: 31934840 PMCID: PMC7536831 DOI: 10.2174/1570159x18666200114142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 01/11/2020] [Indexed: 11/22/2022] Open
Abstract
The cannabinoids, Δ9 tetrahydrocannabinol and its analogue, nabilone, have been found to reliably attenuate the intensity and frequency of post-traumatic nightmares. This essay examines how a traumatic event is captured in the mind, after just a single exposure, and repeatedly replicated during the nights that follow. The adaptive neurophysiological, endocrine and inflammatory changes that are triggered by the trauma and that alter personality and behavior are surveyed. These adaptive changes, once established, can be difficult to reverse. But cannabinoids, uniquely, have been shown to interfere with all of these post-traumatic somatic adaptations. While cannabinoids can suppress nightmares and other symptoms of post-traumatic stress disorder, they are not a cure. There may be no cure. The cannabinoids may best be employed, alone, but more likely in conjunction with other agents, in the immediate aftermath of a trauma to mitigate or even abort the metabolic changes which are set in motion by the trauma and which may permanently alter the reactivity of the nervous system. Steps in this direction have already been taken.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, University of Toronto, Baycrest Hospital, Permanent Address: 19 Tumbleweed Road, Toronto, OntarioM2J 2N2, Canada
| |
Collapse
|
96
|
Jerath R, Beveridge C, Jensen M. On the Hierarchical Organization of Oscillatory Assemblies: Layered Superimposition and a Global Bioelectric Framework. Front Hum Neurosci 2019; 13:426. [PMID: 31866845 PMCID: PMC6904282 DOI: 10.3389/fnhum.2019.00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/18/2019] [Indexed: 01/23/2023] Open
Abstract
Bioelectric oscillations occur throughout the nervous system of nearly all animals, revealed to play an important role in various aspects of cognitive activity such as information processing and feature binding. Modern research into this dynamic and intrinsic bioelectric activity of neural cells continues to raise questions regarding their role in consciousness and cognition. In this theoretical article, we assert a novel interpretation of the hierarchical nature of "brain waves" by identifying that the superposition of multiple oscillations varying in frequency corresponds to the superimposing of the contents of consciousness and cognition. In order to describe this isomorphism, we present a layered model of the global functional oscillations of various frequencies which act as a part of a unified metastable continuum described by the Operational Architectonics theory and suggested to be responsible for the emergence of the phenomenal mind. We detail the purposes, functions, and origins of each layer while proposing our main theory that the superimposition of these oscillatory layers mirrors the superimposition of the components of the integrated phenomenal experience as well as of cognition. In contrast to the traditional view that localizations of high and low-frequency activity are spatially distinct, many authors have suggested a hierarchical nature to oscillations. Our theoretical interpretation is founded in four layers which correlate not only in frequency but in evolutionary development. As other authors have done, we explore how these layers correlate to the phenomenology of human experience. Special importance is placed on the most basal layer of slow oscillations in coordinating and grouping all of the other layers. By detailing the isomorphism between the phenomenal and physiologic aspects of how lower frequency layers provide a foundation for higher frequency layers to be organized upon, we provide a further means to elucidate physiological and cognitive mechanisms of mind and for the well-researched outcomes of certain voluntary breathing patterns and meditative practices which modulate the mind and have therapeutic effects for psychiatric and other disorders.
Collapse
Affiliation(s)
- Ravinder Jerath
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Connor Beveridge
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Michael Jensen
- Department of Medical Illustration, Augusta University, Augusta, GA, United States
| |
Collapse
|
97
|
Ahrens AM, Ahmed OJ. Neural circuits linking sleep and addiction: Animal models to understand why select individuals are more vulnerable to substance use disorders after sleep deprivation. Neurosci Biobehav Rev 2019; 108:435-444. [PMID: 31756346 DOI: 10.1016/j.neubiorev.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Individuals differ widely in their drug-craving behaviors. One reason for these differences involves sleep. Sleep disturbances lead to an increased risk of substance use disorders and relapse in only some individuals. While animal studies have examined the impact of sleep on reward circuitry, few have addressed the role of individual differences in the effects of altered sleep. There does, however, exist a rodent model of individual differences in reward-seeking behavior: the sign/goal-tracker model of Pavlovian conditioned approach. In this model, only some rats show the key behavioral traits associated with addiction, including impulsivity and poor attentional control, making this an ideal model system to examine individually distinct sleep-reward interactions. Here, we describe how the limbic neural circuits responsible for individual differences in incentive motivation overlap with those involved in sleep-wake regulation, and how this model can elucidate the common underlying mechanisms. Consideration of individual differences in preclinical models would improve our understanding of how sleep interacts with motivational systems, and why sleep deprivation contributes to addiction in only select individuals.
Collapse
Affiliation(s)
| | - Omar J Ahmed
- Dept. of Psychology, United States; Neuroscience Graduate Program, United States; Michigan Center for Integrative Research in Critical Care, United States; Kresge Hearing Research Institute, United States; Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
98
|
Christenson Wick Z, Tetzlaff MR, Krook-Magnuson E. Novel long-range inhibitory nNOS-expressing hippocampal cells. eLife 2019; 8:46816. [PMID: 31609204 PMCID: PMC6839902 DOI: 10.7554/elife.46816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
The hippocampus, a brain region that is important for spatial navigation and episodic memory, benefits from a rich diversity of neuronal cell-types. Through the use of an intersectional genetic viral vector approach in mice, we report novel hippocampal neurons which we refer to as LINCs, as they are long-range inhibitory neuronal nitric oxide synthase (nNOS)-expressing cells. LINCs project to several extrahippocampal regions including the tenia tecta, diagonal band, and retromammillary nucleus, but also broadly target local CA1 cells. LINCs are thus both interneurons and projection neurons. LINCs display regular spiking non-pyramidal firing patterns, are primarily located in the stratum oriens or pyramidale, have sparsely spiny dendrites, and do not typically express somatostatin, VIP, or the muscarinic acetylcholine receptor M2. We further demonstrate that LINCs can strongly influence hippocampal function and oscillations, including interregional coherence. The identification and characterization of these novel cells advances our basic understanding of both hippocampal circuitry and neuronal diversity.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, United States
| | - Madison R Tetzlaff
- Neuroscience Department, University of Minnesota, Minneapolis, United States
| | | |
Collapse
|
99
|
Zhang L, Lee J, Rozell C, Singer AC. Sub-second dynamics of theta-gamma coupling in hippocampal CA1. eLife 2019; 8:44320. [PMID: 31355744 PMCID: PMC6684317 DOI: 10.7554/elife.44320] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Oscillatory brain activity reflects different internal brain states including neurons’ excitatory state and synchrony among neurons. However, characterizing these states is complicated by the fact that different oscillations are often coupled, such as gamma oscillations nested in theta in the hippocampus, and changes in coupling are thought to reflect distinct states. Here, we describe a new method to separate single oscillatory cycles into distinct states based on frequency and phase coupling. Using this method, we identified four theta-gamma coupling states in rat hippocampal CA1. These states differed in abundance across behaviors, phase synchrony with other hippocampal subregions, and neural coding properties suggesting that these states are functionally distinct. We captured cycle-to-cycle changes in oscillatory coupling states and found frequent switching between theta-gamma states showing that the hippocampus rapidly shifts between different functional states. This method provides a new approach to investigate oscillatory brain dynamics broadly.
Collapse
Affiliation(s)
- Lu Zhang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, United States
| | - John Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Christopher Rozell
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, United States.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, United States
| |
Collapse
|
100
|
Bidirectional optogenetic modulation of prefrontal-hippocampal connectivity in pain-related working memory deficits. Sci Rep 2019; 9:10980. [PMID: 31358862 PMCID: PMC6662802 DOI: 10.1038/s41598-019-47555-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/02/2022] Open
Abstract
Dysfunction of the prefrontal-hippocampal circuit has been identified as a leading cause to pain-related working-memory (WM) deficits. However, the underlying mechanisms remain poorly determined. To address this issue, we implanted multichannel arrays of electrodes in the prelimbic cortex (PL-mPFC), and in the dorsal hippocampal CA1 field (dCA1) to record the neural activity during the performance of a delayed non-match to sample (DNMS) task. The prefrontal-hippocampal connectivity was selectively modulated by bidirectional optogenetic inhibition or stimulation of local PL-mPFC glutamatergic calcium/calmodulin-dependent protein kinase-II alpha (CaMKIIα) expressing neurons during the DNMS task delay-period. The within-subject behavioral performance was assessed using a persistent neuropathic pain model – spared nerve injury (SNI). Our results showed that the induction of the neuropathic pain condition affects the interplay between PL-mPFC and dCA1 regions in a frequency-dependent manner, and that occurs particularly across theta oscillations while rats performed the task. In SNI-treated rats, this disruption was reversed by the selective optogenetic inhibition of PL-mPFC CaMKIIα-expressing neurons during the last portion of the delay-period, but without any significant effect on pain responses. Finally, we found that prefrontal-hippocampal theta connectivity is strictly associated with higher performance levels. Together, our findings suggest that PL-mPFC CaMKIIα-expressing neurons could be modulated by painful conditions and their activity may be critical for prefrontal-hippocampal connectivity during WM processing.
Collapse
|