51
|
Linneman J, Paulus D, Lim-Fong G, Lopanik NB. Latitudinal variation of a defensive symbiosis in the Bugula neritina (Bryozoa) sibling species complex. PLoS One 2014; 9:e108783. [PMID: 25275632 PMCID: PMC4183541 DOI: 10.1371/journal.pone.0108783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022] Open
Abstract
Mutualistic relationships are beneficial for both partners and are often studied within a single environment. However, when the range of the partners is large, geographical differences in selective pressure may shift the relationship outcome from positive to negative. The marine bryozoan Bugula neritina is a colonial invertebrate common in temperate waters worldwide. It is the source of bioactive polyketide metabolites, the bryostatins. Evidence suggests that an uncultured vertically transmitted symbiont, "Candidatus Endobugula sertula", hosted by B. neritina produces the bryostatins, which protect the vulnerable larvae from predation. Studies of B. neritina along the North American Atlantic coast revealed a complex of two morphologically similar sibling species separated by an apparent biogeographic barrier: the Type S sibling species was found below Cape Hatteras, North Carolina, while Type N was found above. Interestingly, the Type N colonies lack "Ca. Endobugula sertula" and, subsequently, defensive bryostatins; their documented northern distribution was consistent with traditional biogeographical paradigms of latitudinal variation in predation pressure. Upon further sampling of B. neritina populations, we found that both host types occur in wider distribution, with Type N colonies living south of Cape Hatteras, and Type S to the north. Distribution of the symbiont, however, was not restricted to Type S hosts. Genetic and microscopic evidence demonstrates the presence of the symbiont in some Type N colonies, and larvae from these colonies are endowed with defensive bryostatins and contain "Ca. Endobugula sertula". Molecular analysis of the symbiont from Type N colonies suggests an evolutionarily recent acquisition, which is remarkable for a symbiont thought to be transmitted only vertically. Furthermore, most Type S colonies found at higher latitudes lack the symbiont, suggesting that this host-symbiont relationship is more flexible than previously thought. Our data suggest that the symbiont, but not the host, is restricted by biogeographical boundaries.
Collapse
Affiliation(s)
- Jonathan Linneman
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Darcy Paulus
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Grace Lim-Fong
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Nicole B. Lopanik
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
52
|
Wender PA, Nakagawa Y, Near KE, Staveness D. Computer-guided design, synthesis, and protein kinase C affinity of a new salicylate-based class of bryostatin analogs. Org Lett 2014; 16:5136-9. [PMID: 25238583 PMCID: PMC4334246 DOI: 10.1021/ol502491f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Bryostatin 1 is in
clinical trials for the treatment of cancer
and Alzheimer’s disease and is a candidate for a first-in-class
approach to HIV/AIDS eradication. It is neither readily available
nor optimally suited for clinical use. Using a function oriented synthesis
strategy, a new class of bryostatin-inspired analogs was designed
with a simplified salicylate-derived subunit, enabling step-economical
synthesis (23 total steps) of agents exhibiting bryostatin-like affinity
to protein kinase C (PKC).
Collapse
Affiliation(s)
- Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
53
|
Bracken-Grissom H, Collins AG, Collins T, Crandall K, Distel D, Dunn C, Giribet G, Haddock S, Knowlton N, Martindale M, Medina M, Messing C, O'Brien SJ, Paulay G, Putnam N, Ravasi T, Rouse GW, Ryan JF, Schulze A, Wörheide G, Adamska M, Bailly X, Breinholt J, Browne WE, Diaz MC, Evans N, Flot JF, Fogarty N, Johnston M, Kamel B, Kawahara AY, Laberge T, Lavrov D, Michonneau F, Moroz LL, Oakley T, Osborne K, Pomponi SA, Rhodes A, Santos SR, Satoh N, Thacker RW, Van de Peer Y, Voolstra CR, Welch DM, Winston J, Zhou X. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. J Hered 2014; 105:1-18. [PMID: 24336862 DOI: 10.1093/jhered/est084] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.
Collapse
|
54
|
Yadav J, Swamy T, Subba Reddy B, Ravinder V. Stereoselective synthesis of C19–C27 fragment of bryostatin 11. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.05.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Leal MC, Sheridan C, Osinga R, Dionísio G, Rocha RJM, Silva B, Rosa R, Calado R. Marine microorganism-invertebrate assemblages: perspectives to solve the "supply problem" in the initial steps of drug discovery. Mar Drugs 2014; 12:3929-52. [PMID: 24983638 PMCID: PMC4113807 DOI: 10.3390/md12073929] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/04/2014] [Accepted: 06/06/2014] [Indexed: 01/11/2023] Open
Abstract
The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the "blue gold" in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages) through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts.
Collapse
Affiliation(s)
- Miguel Costa Leal
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Christopher Sheridan
- Biology of Marine Organisms and Biomimetics Laboratory, Research Institute for Biosciences, University of Mons, Pentagone 2B, 6 Avenue du Champ de Mars, Mons 7000, Belgium.
| | - Ronald Osinga
- Department of Aquaculture and Fisheries, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Gisela Dionísio
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Rui Jorge Miranda Rocha
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Bruna Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| | - Rui Rosa
- Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, Cascais 2750-374, Portugal.
| | - Ricardo Calado
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
56
|
Wender PA, Donnelly AC, Loy BA, Near KE, Staveness D. Rethinking the Role of Natural Products: Function-Oriented Synthesis, Bryostatin, and Bryologs. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
57
|
Da Silva PPJ, Bendjeddou LZ, Meijer L. [Search for natural substances with therapeutic activity: George R. Pettit]. Med Sci (Paris) 2014; 30:319-28. [PMID: 24685224 DOI: 10.1051/medsci/20143003021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This series of brief reviews covers the "life and work" of famous and iconic researchers who discovered major therapeutics from natural products: their life history, the circumstances of their discoveries, the molecules and their molecular, cellular and physiological mechanisms of action, and their biomedical applications. Dedicated to George R. Pettit, the second article reviews the life of the famous researcher, his worldwide exploration of natural products, especially of marine origin, in search of promising anticancer leads, his discovery and structural elucidation of very potent drug candidates, their synthesis and the launch of some of them on the pharmaceutical market. An extraordinary scientific career which lead George R. Pettit from exploration of Nature to state-of-the-art analytical and synthetic chemistry and from clinical trials to therapeutic successes.
Collapse
Affiliation(s)
- Pierre P J Da Silva
- Association « Jardin de plantes anticancéreuses », place de l'Évêché, 29250 Saint-Pol-de-Léon, France
| | - Lyamin Z Bendjeddou
- Association « Jardin de plantes anticancéreuses », place de l'Évêché, 29250 Saint-Pol-de-Léon, France - ManRos Therapeutics, centre de Perharidy, 29680 Roscoff, France - Laboratoire de chimie et biochimie pharmacologiques et toxicologiques (LCBPT), unité de pharmacologie génétique et chimique, Inserm U1022, université Paris Descartes, 45, rue des Saints Pères, 75006 Paris, France
| | - Laurent Meijer
- Association « Jardin de plantes anticancéreuses », place de l'Évêché, 29250 Saint-Pol-de-Léon, France - ManRos Therapeutics, centre de Perharidy, 29680 Roscoff, France
| |
Collapse
|
58
|
Kollár P, Rajchard J, Balounová Z, Pazourek J. Marine natural products: bryostatins in preclinical and clinical studies. PHARMACEUTICAL BIOLOGY 2014; 52:237-242. [PMID: 24033119 DOI: 10.3109/13880209.2013.804100] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Bryostatins represent an important group of pharmaceutically promising substances. These compounds are produced by commensal microorganisms naturally occurring in marine invertebrates, mainly in bryozoans. The most frequently investigated substance is bryostatin-1, which is a highly oxygenated macrolide with a polyacetate backbone. OBJECTIVE The aim of this work was to summarize documented preclinical and clinical effects of bryostatin-class compounds. METHODS A literature search was made of Medline and Web of Science databases in 2012. RESULTS AND CONCLUSION Our review showed that bryostatins are potent agonists of protein kinase C. In addition to this, their significant antineoplastic activity against several tumor types has also been established and described. Bryostatin's anticancer activity has been proved against various cancer types. Moreover, significant results have been achieved by using bryostatin-1 in combination with other therapies, including combination with vaccine testing. Concerning other important properties that bryostatins possess, their ability to sensitize some resistant cells to chemotherapy agents, or immunoactivity and further stimulating growth of new neural connections, and enhancing effect on long-term memory are worth mentioning. In particular, some new bryostatin analogs could represent potential therapeutic agent for the treatment of cancer and other diseases in future.
Collapse
Affiliation(s)
- Peter Kollár
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | | | | | | |
Collapse
|
59
|
Butler MS, Robertson AAB, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 2014; 31:1612-61. [DOI: 10.1039/c4np00064a] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 25 Natural Product (NP)-derived drugs launched since 2008 and the 100 NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) in clinical trials or in registration at the end of 2013 are reviewed.
Collapse
Affiliation(s)
- Mark S. Butler
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Avril A. B. Robertson
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
60
|
Spina CA, Anderson J, Archin NM, Bosque A, Chan J, Famiglietti M, Greene WC, Kashuba A, Lewin SR, Margolis DM, Mau M, Ruelas D, Saleh S, Shirakawa K, Siliciano RF, Singhania A, Soto PC, Terry VH, Verdin E, Woelk C, Wooden S, Xing S, Planelles V. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 2013; 9:e1003834. [PMID: 24385908 PMCID: PMC3873446 DOI: 10.1371/journal.ppat.1003834] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/30/2013] [Indexed: 01/01/2023] Open
Abstract
The possibility of HIV-1 eradication has been limited by the existence of latently infected cellular reservoirs. Studies to examine control of HIV latency and potential reactivation have been hindered by the small numbers of latently infected cells found in vivo. Major conceptual leaps have been facilitated by the use of latently infected T cell lines and primary cells. However, notable differences exist among cell model systems. Furthermore, screening efforts in specific cell models have identified drug candidates for "anti-latency" therapy, which often fail to reactivate HIV uniformly across different models. Therefore, the activity of a given drug candidate, demonstrated in a particular cellular model, cannot reliably predict its activity in other cell model systems or in infected patient cells, tested ex vivo. This situation represents a critical knowledge gap that adversely affects our ability to identify promising treatment compounds and hinders the advancement of drug testing into relevant animal models and clinical trials. To begin to understand the biological characteristics that are inherent to each HIV-1 latency model, we compared the response properties of five primary T cell models, four J-Lat cell models and those obtained with a viral outgrowth assay using patient-derived infected cells. A panel of thirteen stimuli that are known to reactivate HIV by defined mechanisms of action was selected and tested in parallel in all models. Our results indicate that no single in vitro cell model alone is able to capture accurately the ex vivo response characteristics of latently infected T cells from patients. Most cell models demonstrated that sensitivity to HIV reactivation was skewed toward or against specific drug classes. Protein kinase C agonists and PHA reactivated latent HIV uniformly across models, although drugs in most other classes did not.
Collapse
Affiliation(s)
- Celsa A. Spina
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Jenny Anderson
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Australia
| | - Nancie M. Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alberto Bosque
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jonathan Chan
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Marylinda Famiglietti
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Angela Kashuba
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Sharon R. Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Australia
- Monash University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - David M. Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Matthew Mau
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Debbie Ruelas
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Suha Saleh
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Australia
| | - Kotaro Shirakawa
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - Akul Singhania
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
| | - Paula C. Soto
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Valeri H. Terry
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher Woelk
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Stacey Wooden
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sifei Xing
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
61
|
Bacterial endosymbiosis in a chordate host: long-term co-evolution and conservation of secondary metabolism. PLoS One 2013; 8:e80822. [PMID: 24324632 PMCID: PMC3851785 DOI: 10.1371/journal.pone.0080822] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Intracellular symbiosis is known to be widespread in insects, but there are few described examples in other types of host. These symbionts carry out useful activities such as synthesizing nutrients and conferring resistance against adverse events such as parasitism. Such symbionts persist through host speciation events, being passed down through vertical transmission. Due to various evolutionary forces, symbionts go through a process of genome reduction, eventually resulting in tiny genomes where only those genes essential to immediate survival and those beneficial to the host remain. In the marine environment, invertebrates such as tunicates are known to harbor complex microbiomes implicated in the production of natural products that are toxic and probably serve a defensive function. Here, we show that the intracellular symbiont Candidatus Endolissoclinum faulkneri is a long-standing symbiont of the tunicate Lissoclinum patella, that has persisted through cryptic speciation of the host. In contrast to the known examples of insect symbionts, which tend to be either relatively recent or ancient relationships, the genome of Ca. E. faulkneri has a very low coding density but very few recognizable pseudogenes. The almost complete degradation of intergenic regions and stable gene inventory of extant strains of Ca. E. faulkneri show that further degradation and deletion is happening very slowly. This is a novel stage of genome reduction and provides insight into how tiny genomes are formed. The ptz pathway, which produces the defensive patellazoles, is shown to date to before the divergence of Ca. E. faulkneri strains, reinforcing its importance in this symbiotic relationship. Lastly, as in insects we show that stable symbionts can be lost, as we describe an L. patella animal where Ca. E. faulkneri is displaced by a likely intracellular pathogen. Our results suggest that intracellular symbionts may be an important source of ecologically significant natural products in animals.
Collapse
|
62
|
Fehlauer-Ale KH, Mackie JA, Lim-Fong GE, Ale E, Pie MR, Waeschenbach A. Cryptic species in the cosmopolitanBugula neritinacomplex (Bryozoa, Cheilostomata). ZOOL SCR 2013. [DOI: 10.1111/zsc.12042] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Karin H. Fehlauer-Ale
- Laboratório de Sistemática e Evolução de Bryozoa; Centro de Biologia Marinha; Universidade de São Paulo; Rodovia Manoel Hypólito do Rego, km131,5 Praia do Cabelo Gordo CEP 11600-000 São Sebastião São Paulo Brazil
| | - Joshua A. Mackie
- Biological Sciences; San Jose State University; One Washington Square San Jose California 95192 USA
| | - Grace E. Lim-Fong
- Department of Biology; Randolph-Macon College; 304 Caroline Street Ashland Virginia 23005 USA
| | - Ezequiel Ale
- Departamento de Genética e Biologia Evolutiva; Instituto de Biociências da Universidade de São Paulo; Rua do Matão, 277 CEP 05508-090 São Paulo Brazil
| | - Marcio R. Pie
- Laboratório de Dinâmica Evolutiva e Sistemas Complexos; Departamento de Zoologia; Universidade Federal do Paraná; Caixa Postal 19020 CEP 81531-980 Curitiba Paraná Brazil
| | - Andrea Waeschenbach
- Department of Life Sciences; The Natural History Museum; Cromwell Road London SW7 5BD UK
| |
Collapse
|
63
|
Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 2013; 40:1181-210. [PMID: 23999966 DOI: 10.1007/s10295-013-1331-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Microbes from two of the three domains of life, the Prokarya, and Eukarya, continue to serve as rich sources of structurally complex chemical scaffolds that have proven to be essential for the development of anticancer therapeutics. This review describes only a handful of exemplary natural products and their derivatives as well as those that have served as elegant blueprints for the development of novel synthetic structures that are either currently in use or in clinical or preclinical trials together with some of their earlier analogs in some cases whose failure to proceed aided in the derivation of later compounds. In every case, a microbe has been either identified as the producer of secondary metabolites or speculated to be involved in the production via symbiotic associations. Finally, rapidly evolving next-generation sequencing technologies have led to the increasing availability of microbial genomes. Relevant examples of genome mining and genetic manipulation are discussed, demonstrating that we have only barely scratched the surface with regards to harnessing the potential of microbes as sources of new pharmaceutical leads/agents or biological probes.
Collapse
|
64
|
Affiliation(s)
- Nicole B. Lopanik
- Department of Biology; Georgia State University; Atlanta Georgia 30303 USA
| |
Collapse
|
65
|
Defensive Bacteriome Symbiont with a Drastically Reduced Genome. Curr Biol 2013; 23:1478-84. [DOI: 10.1016/j.cub.2013.06.027] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/31/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022]
|
66
|
Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro. Nat Chem 2012; 4:705-10. [PMID: 22914190 PMCID: PMC3428736 DOI: 10.1038/nchem.1395] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/28/2012] [Indexed: 11/24/2022]
Abstract
Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer’s disease, and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically-relevant derivatives, and side effects. Herein, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues utilizing a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically-accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.
Collapse
|
67
|
DeChristopher BA, Fan AC, Felsher DW, Wender PA. "Picolog," a synthetically-available bryostatin analog, inhibits growth of MYC-induced lymphoma in vivo. Oncotarget 2012; 3:58-66. [PMID: 22308267 PMCID: PMC3292892 DOI: 10.18632/oncotarget.438] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 02/02/2012] [Indexed: 12/22/2022] Open
Abstract
Bryostatin 1 is a naturally occurring complex macrolide with potent anti-neoplastic activity. However, its extremely low natural occurrence has impeded clinical advancement. We developed a strategy directed at the design of simplified and synthetically more accessible bryostatin analogs. Our lead analog, "picolog", can be step-economically produced. Picolog, compared to bryostatin, exhibited superior growth inhibition of MYC-induced lymphoma in vitro. A key mechanism of picolog's (and bryostatin's) activity is activation of PKC. A novel nano-immunoassay (NIA) revealed that picolog treatment increased phospho-MEK2 in the PKC pathway. Moreover, the inhibition of PKC abrogated picolog's activity. Finally, picolog was highly potent at 100 micrograms/kg and well tolerated at doses ranging from 100 micrograms/kg to 1 milligram/kg in vivo for the treatment of our aggressive model of MYC-induced lymphoma. We provide the first in vivo validation that the bryostatin analog, picolog, is a potential therapeutic agent for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Brian A. DeChristopher
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, CA 94305-5080
| | - Alice C. Fan
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Dean W. Felsher
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul A. Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, CA 94305-5080
| |
Collapse
|
68
|
Abstract
The largely unexplored marine world that presumably harbors the most biodiversity may be the vastest resource to discover novel 'validated' structures with novel modes of action that cover biologically relevant chemical space. Several challenges, including the supply problem and target identification, need to be met for successful drug development of these often complex molecules; however, approaches are available to overcome the hurdles. Advances in technologies such as sampling strategies, nanoscale NMR for structure determination, total chemical synthesis, fermentation and biotechnology are all crucial to the success of marine natural products as drug leads. We illustrate the high degree of innovation in the field of marine natural products, which in our view will lead to a new wave of drugs that flow into the market and pharmacies in the future.
Collapse
|
69
|
Abstract
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
70
|
Wender PA, Reuber J. Function Oriented Synthesis: Preparation and Initial Biological Evaluation of New A-Ring-Modified Bryologs. Tetrahedron 2011; 67:9998-10005. [PMID: 22247574 DOI: 10.1016/j.tet.2011.09.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The synthesis and biological evaluation of the first members of a new series of designed bryostatin A-ring analogues (bryologs) are described. An advanced intermediate is produced that allows for step economical access to diverse analogs. The first of these analogues, bearing side chains of completely different polarities from alkyl to hydroxyl and carboxyl functionalities, were evaluated. All exhibit potent protein kinase C binding (54.7 to 2.4 nM) with affinities increasing with decreasing side chain polarity. This series of bryostatin analogues demonstrates that A ring surrogates can indeed be used for tuning pharmacophore and ADME characteristics as needed to improve bryolog function.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
71
|
Abstract
The largely unexplored marine world that presumably harbors the most biodiversity may be the vastest resource to discover novel 'validated' structures with novel modes of action that cover biologically relevant chemical space. Several challenges, including the supply problem and target identification, need to be met for successful drug development of these often complex molecules; however, approaches are available to overcome the hurdles. Advances in technologies such as sampling strategies, nanoscale NMR for structure determination, total chemical synthesis, fermentation and biotechnology are all crucial to the success of marine natural products as drug leads. We illustrate the high degree of innovation in the field of marine natural products, which in our view will lead to a new wave of drugs that flow into the market and pharmacies in the future.
Collapse
Affiliation(s)
- Rana Montaser
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
72
|
Abstract
The total synthesis of bryostatin 9 was accomplished using a uniquely step-economical and convergent Prins-driven macrocyclization strategy. At 25 linear and 42 total steps, this is currently the most concise and convergent synthesis of a potent bryostatin.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
| | | |
Collapse
|
73
|
Wender PA, Loy BA, Schrier AJ. Translating Nature's Library: The Bryostatins and Function-Oriented Synthesis. Isr J Chem 2011; 51:453-472. [PMID: 22661768 PMCID: PMC3364006 DOI: 10.1002/ijch.201100020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We review in part our computational, design, synthesis, and biological studies on a remarkable class of compounds and their designed analogs that have led to preclinical candidates for the treatment of cancer, a first-in-class approach to Alzheimer's disease, and a promising strategy to eradicate HIV/AIDS. Because these leads target, in part, protein kinase C (PKC) isozymes, they have therapeutic potential even beyond this striking set of therapeutic indications. This program has given rise to new synthetic methodology and represents an increasingly important direction of synthesis focused on achieving function through synthesis-informed design (function-oriented synthesis).
Collapse
Affiliation(s)
- Paul A. Wender
- Department of Chemistry Department of Chemical and Systems Biology Stanford University Stanford, CA 94305, USA
| | - Brian A. Loy
- Department of Chemistry Department of Chemical and Systems Biology Stanford University Stanford, CA 94305, USA
| | - Adam J. Schrier
- Department of Chemistry Department of Chemical and Systems Biology Stanford University Stanford, CA 94305, USA
| |
Collapse
|
74
|
Design, synthesis, and evaluation of potent bryostatin analogs that modulate PKC translocation selectivity. Proc Natl Acad Sci U S A 2011; 108:6721-6. [PMID: 21415363 DOI: 10.1073/pnas.1015270108] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modern methods for the identification of therapeutic leads include chemical or virtual screening of compound libraries. Nature's library represents a vast and diverse source of leads, often exhibiting exquisite biological activities. However, the advancement of natural product leads into the clinic is often impeded by their scarcity, complexity, and nonoptimal properties or efficacy as well as the challenges associated with their synthesis or modification. Function-oriented synthesis represents a strategy to address these issues through the design of simpler and therefore synthetically more accessible analogs that incorporate the activity-determining features of the natural product leads. This study illustrates the application of this strategy to the design and synthesis of functional analogs of the bryostatin marine natural products. It is specifically directed at exploring the activity-determining role of bryostatin A-ring functionality on PKC affinity and selectivity. The resultant functional analogs, which were prepared by a flexible, modular synthetic strategy, exhibit excellent affinity to PKC and differential isoform selectivity. These and related studies provide the basic information needed for the design of simplified and thus synthetically more accessible functional analogs that target PKC isoforms, major targets of therapeutic interest.
Collapse
|
75
|
The expanding role of marine microbes in pharmaceutical development. Curr Opin Biotechnol 2010; 21:780-6. [PMID: 20956080 DOI: 10.1016/j.copbio.2010.09.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 09/06/2010] [Accepted: 09/17/2010] [Indexed: 01/19/2023]
Abstract
Marine microbes have received growing attention as sources of bioactive metabolites and offer a unique opportunity to both increase the number of marine natural products in clinical trials as well as expedite their development. This review focuses specifically on those molecules currently in the clinical pipeline that are established or highly likely to be produced by bacteria based on expanding circumstantial evidence. We also include an example of how compounds from harmful algal blooms may yield both tools for measuring environmental change as well as leads for pharmaceutical development. An example of the karlotoxin class of compounds isolated from the dinoflagellate Karlodinium veneficum reveals a significant environmental impact in the form of massive fish kills, but also provides opportunities to construct new molecules for the control of cancer and serum cholesterol assisted by tools associated with rational drug design.
Collapse
|