51
|
Nakos K, Radler MR, Spiliotis ET. Septin 2/6/7 complexes tune microtubule plus-end growth and EB1 binding in a concentration- and filament-dependent manner. Mol Biol Cell 2019; 30:2913-2928. [PMID: 31577529 PMCID: PMC6822581 DOI: 10.1091/mbc.e19-07-0362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins (SEPTs) are filamentous guanosine-5′-triphosphate (GTP)-binding proteins, which affect microtubule (MT)-dependent functions including membrane trafficking and cell division, but their precise role in MT dynamics is poorly understood. Here, in vitro reconstitution of MT dynamics with SEPT2/6/7, the minimal subunits of septin heteromers, shows that SEPT2/6/7 has a biphasic concentration-dependent effect on MT growth. Lower concentrations of SEPT2/6/7 enhance MT plus-end growth and elongation, while higher and intermediate concentrations inhibit and pause plus-end growth, respectively. We show that SEPT2/6/7 has a modest preference for GTP- over guanosine diphosphate (GDP)-bound MT lattice and competes with end-binding protein 1 (EB1) for binding to guanosine 5′-O-[γ-thio]triphosphate (GTPγS)-stabilized MTs, which mimic the EB1-preferred GDP-Pi state of polymerized tubulin. Strikingly, SEPT2/6/7 triggers EB1 dissociation from plus-end tips in cis by binding to the MT lattice and in trans when MT plus ends collide with SEPT2/6/7 filaments. At these intersections, SEPT2/6/7 filaments were more potent barriers than actin filaments in pausing MT growth and dissociating EB1 in vitro and in live cells. These data demonstrate that SEPT2/6/7 complexes and filaments can directly impact MT plus-end growth and the tracking of plus end–binding proteins and thereby may facilitate the capture of MT plus ends at intracellular sites of septin enrichment.
Collapse
Affiliation(s)
| | - Megan R Radler
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
52
|
Ivashko-Pachima Y, Gozes I. A Novel Microtubule-Tau Association Enhancer and Neuroprotective Drug Candidate: Ac-SKIP. Front Cell Neurosci 2019; 13:435. [PMID: 31632241 PMCID: PMC6779860 DOI: 10.3389/fncel.2019.00435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) has been initially discovered through its eight amino acid sequence NAPVSIPQ, which shares SIP motif with SALLRSIPA - a peptide derived from activity-dependent neurotrophic factor (ADNF). Mechanistically, both NAPVSIPQ and SALLRSIPA contain a SIP motif that is identified as a variation of SxIP domain, providing direct interaction with microtubule end-binding proteins (EBs). The peptide SKIP was shown before to provide neuroprotection in vitro and protect against Adnp-related axonal transport deficits in vivo. Here we show, for the first time that SKIP enhanced microtubule dynamics, and prevented Tau-microtubule dissociation and microtubule disassembly induced by the Alzheimer's related zinc intoxication. Furthermore, we introduced, CH3CO-SKIP-NH2 (Ac-SKIP), providing efficacious neuroprotection. Since microtubule - Tau organization and dynamics is central in axonal microtubule cytoskeleton and transport, tightly related to aging processes and Alzheimer's disease, our current study provides a compelling molecular explanation to the in vivo activity of SKIP, placing SKIP motif as a central focus for MT-based neuroprotection in tauopathies with axonal transport implications.
Collapse
Affiliation(s)
- Yanina Ivashko-Pachima
- Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience, Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Illana Gozes
- Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience, Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
53
|
van de Willige D, Hummel JJ, Alkemade C, Kahn OI, Au FK, Qi RZ, Dogterom M, Koenderink GH, Hoogenraad CC, Akhmanova A. Cytolinker Gas2L1 regulates axon morphology through microtubule-modulated actin stabilization. EMBO Rep 2019; 20:e47732. [PMID: 31486213 PMCID: PMC6831992 DOI: 10.15252/embr.201947732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022] Open
Abstract
Crosstalk between the actin and microtubule cytoskeletons underlies cellular morphogenesis. Interactions between actin filaments and microtubules are particularly important for establishing the complex polarized morphology of neurons. Here, we characterized the neuronal function of growth arrest‐specific 2‐like 1 (Gas2L1), a protein that can directly bind to actin, microtubules and microtubule plus‐end‐tracking end binding proteins. We found that Gas2L1 promotes axon branching, but restricts axon elongation in cultured rat hippocampal neurons. Using pull‐down experiments and in vitro reconstitution assays, in which purified Gas2L1 was combined with actin and dynamic microtubules, we demonstrated that Gas2L1 is autoinhibited. This autoinhibition is relieved by simultaneous binding to actin filaments and microtubules. In neurons, Gas2L1 primarily localizes to the actin cytoskeleton and functions as an actin stabilizer. The microtubule‐binding tail region of Gas2L1 directs its actin‐stabilizing activity towards the axon. We propose that Gas2L1 acts as an actin regulator, the function of which is spatially modulated by microtubules.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Department of Biology, Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jessica Ja Hummel
- Department of Biology, Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Celine Alkemade
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.,Living Matter Department, AMOLF, Amsterdam, The Netherlands
| | - Olga I Kahn
- Department of Biology, Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Franco Kc Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Casper C Hoogenraad
- Department of Biology, Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Akhmanova
- Department of Biology, Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
54
|
Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1. PLoS One 2019; 14:e0219823. [PMID: 31323070 PMCID: PMC6641166 DOI: 10.1371/journal.pone.0219823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Tubulin-binding TOG domains are found arrayed in a number of proteins that regulate microtubule dynamics. While much is known about the structure and function of TOG domains from the XMAP215 microtubule polymerase family, less in known about the TOG domain array found in animal CLASP family members. The animal CLASP TOG array promotes microtubule pause, potentiates rescue, and limits catastrophe. How structurally distinct the TOG domains of animal CLASP are from one another, from XMAP215 family TOG domains, and whether a specific order of structurally distinct TOG domains in the TOG array is conserved across animal CLASP family members is poorly understood. We present the x-ray crystal structures of Homo sapiens (H.s.) CLASP1 TOG1 and TOG2. The structures of H.s. CLASP1 TOG1 and TOG2 are distinct from each other and from the previously determined structure of Mus musculus (M.m.) CLASP2 TOG3. Comparative analyses of CLASP family TOG domain structures determined to date across species and paralogs supports a conserved CLASP TOG array paradigm in which structurally distinct TOG domains are arrayed in a specific order. H.s. CLASP1 TOG1 bears structural similarity to the free-tubulin binding TOG domains of the XMAP215 family but lacks many of the key tubulin-binding determinants found in XMAP215 family TOG domains. This aligns with studies that report that animal CLASP family TOG1 domains cannot bind free tubulin or microtubules. In contrast, animal CLASP family TOG2 and TOG3 domains have reported microtubule-binding activity but are structurally distinct from the free-tubulin binding TOG domains of the XMAP215 family. H.s. CLASP1 TOG2 has a convex architecture, predicted to engage a hyper-curved tubulin state that may underlie its ability to limit microtubule catastrophe and promote rescue. M.m. CLASP2 TOG3 has unique structural elements in the C-terminal half of its α-solenoid domain that our modeling studies implicate in binding to laterally-associated tubulin subunits in the microtubule lattice in a mode similar to, yet distinct from those predicted for the XMAP215 family TOG4 domain. The potential ability of the animal CLASP family TOG3 domain to engage lateral tubulin subunits may underlie the microtubule rescue activity ascribed to the domain. These findings highlight the structural diversity of TOG domains within the CLASP family TOG array and provide a molecular foundation for understanding CLASP-dependent effects on microtubule dynamics.
Collapse
|
55
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
56
|
Baskar R, Bahkrat A, Otani T, Wada H, Davidov G, Pandey H, Gheber L, Zarivach R, Hayashi S, Abdu U. The plus-tip tracking and microtubule stabilizing activities of Javelin-like regulate microtubule organization and cell polarity. FEBS J 2019; 286:3811-3830. [PMID: 31152621 DOI: 10.1111/febs.14944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/03/2019] [Accepted: 05/30/2019] [Indexed: 11/29/2022]
Abstract
Cell polarity is essential for building cell asymmetry in all eukaryotic cells. Drosophila oocyte and bristle development require the newly characterized Spn-F protein complex, which includes Spn-F, IKKε, and Javelin-like (Jvl), to establish polarity. Jvl is a novel microtubule (MT)-associated protein; however, the mechanism by which it regulates MT organization is still unknown. We found that overexpression of Jvl stabilizes MTs and that jvl is needed for stable MT arrangement at the bristle tip and organization of the dynamic MT throughout the bristle shaft. At low levels of expression in cultured cells, Jvl behaved as a microtubule plus-end tracking protein. We demonstrated that Jvl physically interacts with the highly conserved MT end-binding protein 1 (EB1) using yeast two-hybrid and GST pull-down assays. This interaction is, however, dispensable for Jvl function in oocyte and bristle development. In addition, using a MT-binding assay, we saw that Jvl-C terminus directly binds to MTs. We also revealed that oocyte developmental arrest caused by Jvl overexpression in the germline can be rescued by mutations in its partners, spn-F and ikkε, suggesting that complex formation with Spn-F and IKKε is required for Jvl function in vivo. In summary, our results show that the microtubule plus-end tracking and stabilizing activities of Jvl are central for controlling cell polarity of oocytes and bristles.
Collapse
Affiliation(s)
- Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Bahkrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tetsuhisa Otani
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics, Kobe, Japan
| | - Housei Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics, Kobe, Japan
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Himanshu Pandey
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Larisa Gheber
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics, Kobe, Japan
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
57
|
Blanco C, Morales D, Mogollones I, Vergara‐Jaque A, Vargas C, Álvarez A, Riquelme D, Leiva‐Salcedo E, González W, Morales D, Maureira D, Aldunate I, Cáceres M, Varela D, Cerda O. EB1‐ and EB2‐dependent anterograde trafficking of TRPM4 regulates focal adhesion turnover and cell invasion. FASEB J 2019; 33:9434-9452. [DOI: 10.1096/fj.201900136r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Constanza Blanco
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Danna Morales
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ignacio Mogollones
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ariela Vergara‐Jaque
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Multidisciplinary Scientific Nucleus Universidad de Talca Talca Chile
- Center for Bioinformatics and Molecular Simulation Universidad de Talca Talca Chile
| | - Carla Vargas
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Alhejandra Álvarez
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Denise Riquelme
- Department of Biology Faculty of Chemistry and Biology Universidad de Santiago de Chile Santiago Chile
| | - Elías Leiva‐Salcedo
- Department of Biology Faculty of Chemistry and Biology Universidad de Santiago de Chile Santiago Chile
| | - Wendy González
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- Center for Bioinformatics and Molecular Simulation Universidad de Talca Talca Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ismael Aldunate
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- The Wound Repair Treatment, and Health (WoRTH) Initiative Santiago Chile
| | - Diego Varela
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- The Wound Repair Treatment, and Health (WoRTH) Initiative Santiago Chile
| |
Collapse
|
58
|
Jiang S, Mani N, Wilson-Kubalek EM, Ku PI, Milligan RA, Subramanian R. Interplay between the Kinesin and Tubulin Mechanochemical Cycles Underlies Microtubule Tip Tracking by the Non-motile Ciliary Kinesin Kif7. Dev Cell 2019; 49:711-730.e8. [PMID: 31031197 DOI: 10.1016/j.devcel.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/08/2019] [Accepted: 03/29/2019] [Indexed: 01/08/2023]
Abstract
The correct localization of Hedgehog effectors to the tip of primary cilia is critical for proper signal transduction. The conserved non-motile kinesin Kif7 defines a "cilium-tip compartment" by localizing to the distal ends of axonemal microtubules. How Kif7 recognizes microtubule ends remains unknown. We find that Kif7 preferentially binds GTP-tubulin at microtubule ends over GDP-tubulin in the mature microtubule lattice, and ATP hydrolysis by Kif7 enhances this discrimination. Cryo-electron microscopy (cryo-EM) structures suggest that a rotated microtubule footprint and conformational changes in the ATP-binding pocket underlie Kif7's atypical microtubule-binding properties. Finally, Kif7 not only recognizes but also stabilizes a GTP-form of tubulin to promote its own microtubule-end localization. Thus, unlike the characteristic microtubule-regulated ATPase activity of kinesins, Kif7 modulates the tubulin mechanochemical cycle. We propose that the ubiquitous kinesin fold has been repurposed in Kif7 to facilitate organization of a spatially restricted platform for localization of Hedgehog effectors at the cilium tip.
Collapse
Affiliation(s)
- Shuo Jiang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nandini Mani
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth M Wilson-Kubalek
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ronald A Milligan
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
59
|
Joshi D, Inamdar MS. Rudhira/BCAS3 couples microtubules and intermediate filaments to promote cell migration for angiogenic remodeling. Mol Biol Cell 2019; 30:1437-1450. [PMID: 30995157 PMCID: PMC6724693 DOI: 10.1091/mbc.e18-08-0484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Blood vessel formation requires endothelial cell (EC) migration that depends on dynamic remodeling of the cytoskeleton. Rudhira/Breast Carcinoma Amplified Sequence 3 (BCAS3) is a cytoskeletal protein essential for EC migration and sprouting angiogenesis during mouse development and is implicated in metastatic disease. Here, we report that Rudhira mediates cytoskeleton organization and dynamics during EC migration. Rudhira binds to both microtubules (MTs) and vimentin intermediate filaments (IFs) and stabilizes MTs. Rudhira depletion impairs cytoskeletal cross-talk, MT stability, and hence focal adhesion disassembly. The BCAS3 domain of Rudhira is necessary and sufficient for MT-IF cross-linking and cell migration. Pharmacologically restoring MT stability rescues gross cytoskeleton organization and angiogenic sprouting in Rudhira-depleted cells. Our study identifies the novel and essential role of Rudhira in cytoskeletal cross-talk and assigns function to the conserved BCAS3 domain. Targeting Rudhira could allow tissue-restricted cytoskeleton modulation to control cell migration and angiogenesis in development and disease.
Collapse
Affiliation(s)
- Divyesh Joshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Maneesha S Inamdar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.,Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| |
Collapse
|
60
|
Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures. Cells 2019; 8:cells8020160. [PMID: 30769894 PMCID: PMC6406257 DOI: 10.3390/cells8020160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes' remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. It has been proposed that caps play a role in axoneme length control and stabilization, but their roles are still poorly understood. Here, we review the current knowledge on cilia structure diversity with a focus on the cilia distal domain and caps and discuss how they affect cilia structure and function.
Collapse
|
61
|
Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. Am J Hum Genet 2019; 104:229-245. [PMID: 30665704 DOI: 10.1016/j.ajhg.2018.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.
Collapse
|
62
|
Swider ZT, Ng RK, Varadarajan R, Fagerstrom CJ, Rusan NM. Fascetto interacting protein ensures proper cytokinesis and ploidy. Mol Biol Cell 2019; 30:992-1007. [PMID: 30726162 PMCID: PMC6589905 DOI: 10.1091/mbc.e18-09-0573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs. One critical protein that has garnered great attention is the protein regulator of cytokinesis 1, or Fascetto (Feo) in Drosophila, which forms a homodimer to cross-link interzonal MTs, ensuring proper central spindle formation and cytokinesis. Here, we report on a new direct protein interactor and regulator of Feo we named Feo interacting protein (FIP). Loss of FIP results in a reduction in Feo localization, rapid disassembly of interzonal MTs, and several defects related to cytokinesis failure, including polyploidization of neural stem cells. Simultaneous reduction in Feo and FIP results in very large, tumorlike DNA-filled masses in the brain that contain hundreds of centrosomes. In aggregate, our data show that FIP acts directly on Feo to ensure fully accurate cell division.
Collapse
Affiliation(s)
- Zachary T Swider
- Graduate Program in Cell and Molecular Biology, University of Wisconsin, Madison, WI 53606
| | - Rachel K Ng
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ramya Varadarajan
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
63
|
Bowie E, Norris R, Anderson KV, Goetz SC. Spinocerebellar ataxia type 11-associated alleles of Ttbk2 dominantly interfere with ciliogenesis and cilium stability. PLoS Genet 2018; 14:e1007844. [PMID: 30532139 PMCID: PMC6307817 DOI: 10.1371/journal.pgen.1007844] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 11 (SCA11) is a rare, dominantly inherited human ataxia characterized by atrophy of Purkinje neurons in the cerebellum. SCA11 is caused by mutations in the gene encoding the Serine/Threonine kinase Tau tubulin kinase 2 (TTBK2) that result in premature truncations of the protein. We previously showed that TTBK2 is a key regulator of the assembly of primary cilia in vivo. However, the mechanisms by which the SCA11-associated mutations disrupt TTBK2 function, and whether they interfere with ciliogenesis were unknown. In this work, we present evidence that SCA11-associated mutations are dominant negative alleles and that the resulting truncated protein (TTBK2SCA11) interferes with the function of full length TTBK2 in mediating ciliogenesis. A Ttbk2 allelic series revealed that upon partial reduction of full length TTBK2 function, TTBK2SCA11 can interfere with the activity of the residual wild-type protein to decrease cilia number and interrupt cilia-dependent Sonic hedgehog (SHH) signaling. Our studies have also revealed new functions for TTBK2 after cilia initiation in the control of cilia length, trafficking of a subset of SHH pathway components, including Smoothened (SMO), and cilia stability. These studies provide a molecular foundation to understand the cellular and molecular pathogenesis of human SCA11, and help account for the link between ciliary dysfunction and neurodegenerative diseases. Defects in primary cilia structure and function are linked to a number of recessive genetic disorders, now collectively referred to as ciliopathies. Most of the characteristics of these disorders arise from disruptions to embryonic development, with the requirements for primary cilia in adult tissues being less well-defined. We previously showed that a kinase associated with an adult-onset neurodegenerative condition is required for cilium assembly and ciliary signaling during development. Here, we show that the human disease-associated mutations act as mild dominant negatives, interfering with the function of the full-length protein in cilia formation and ciliary signaling.
Collapse
Affiliation(s)
- Emily Bowie
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Ryan Norris
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
64
|
TAPping into the treasures of tubulin using novel protein production methods. Essays Biochem 2018; 62:781-792. [PMID: 30429282 PMCID: PMC6281476 DOI: 10.1042/ebc20180033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023]
Abstract
Microtubules are cytoskeletal elements with important cellular functions, whose dynamic behaviour and properties are in part regulated by microtubule-associated proteins (MAPs). The building block of microtubules is tubulin, a heterodimer of α- and β-tubulin subunits. Longitudinal interactions between tubulin dimers facilitate a head-to-tail arrangement of dimers into protofilaments, while lateral interactions allow the formation of a hollow microtubule tube that mostly contains 13 protofilaments. Highly homologous α- and β-tubulin isotypes exist, which are encoded by multi-gene families. In vitro studies on microtubules and MAPs have largely relied on brain-derived tubulin preparations. However, these consist of an unknown mix of tubulin isotypes with undefined post-translational modifications. This has blocked studies on the functions of tubulin isotypes and the effects of tubulin mutations found in human neurological disorders. Fortunately, various methodologies to produce recombinant mammalian tubulins have become available in the last years, allowing researchers to overcome this barrier. In addition, affinity-based purification of tagged tubulins and identification of tubulin-associated proteins (TAPs) by mass spectrometry has revealed the 'tubulome' of mammalian cells. Future experiments with recombinant tubulins should allow a detailed description of how tubulin isotype influences basic microtubule behaviour, and how MAPs and TAPs impinge on tubulin isotypes and microtubule-based processes in different cell types.
Collapse
|
65
|
Louka P, Vasudevan KK, Guha M, Joachimiak E, Wloga D, Tomasi RFX, Baroud CN, Dupuis-Williams P, Galati DF, Pearson CG, Rice LM, Moresco JJ, Yates JR, Jiang YY, Lechtreck K, Dentler W, Gaertig J. Proteins that control the geometry of microtubules at the ends of cilia. J Cell Biol 2018; 217:4298-4313. [PMID: 30217954 PMCID: PMC6279374 DOI: 10.1083/jcb.201804141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022] Open
Abstract
Cilia, essential motile and sensory organelles, have several compartments: the basal body, transition zone, and the middle and distal axoneme segments. The distal segment accommodates key functions, including cilium assembly and sensory activities. While the middle segment contains doublet microtubules (incomplete B-tubules fused to complete A-tubules), the distal segment contains only A-tubule extensions, and its existence requires coordination of microtubule length at the nanometer scale. We show that three conserved proteins, two of which are mutated in the ciliopathy Joubert syndrome, determine the geometry of the distal segment, by controlling the positions of specific microtubule ends. FAP256/CEP104 promotes A-tubule elongation. CHE-12/Crescerin and ARMC9 act as positive and negative regulators of B-tubule length, respectively. We show that defects in the distal segment dimensions are associated with motile and sensory deficiencies of cilia. Our observations suggest that abnormalities in distal segment organization cause a subset of Joubert syndrome cases.
Collapse
Affiliation(s)
- Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, GA
| | | | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Raphaël F-X Tomasi
- Department of Mechanics, LadHyX, Ecole Polytechnique-Centre National de la Recherche Scientifique, Palaiseau, France
| | - Charles N Baroud
- Department of Mechanics, LadHyX, Ecole Polytechnique-Centre National de la Recherche Scientifique, Palaiseau, France
| | - Pascale Dupuis-Williams
- UMR-S1174 Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Bat 443, Orsay, France
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris, France
| | - Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
66
|
Chen Y, Wang P, Slep KC. Mapping multivalency in the CLIP-170-EB1 microtubule plus-end complex. J Biol Chem 2018; 294:918-931. [PMID: 30455356 DOI: 10.1074/jbc.ra118.006125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/09/2018] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule plus-end factor that links vesicles to microtubules and recruits the dynein-dynactin complex to microtubule plus ends. CLIP-170 plus-end localization is end binding 1 (EB1)-dependent. CLIP-170 contains two N-terminal cytoskeleton-associated protein glycine-rich (CAP-Gly) domains flanked by serine-rich regions. The CAP-Gly domains are known EB1-binding domains, and the serine-rich regions have also been implicated in CLIP-170's microtubule plus-end localization mechanism. However, the determinants in these serine-rich regions have not been identified. Here we elucidated multiple EB1-binding modules in the CLIP-170 N-terminal region. Using isothermal titration calorimetry and size-exclusion chromatography, we mapped and biophysically characterized these EB1-binding modules, including the two CAP-Gly domains, a bridging SXIP motif, and a unique array of divergent SXIP-like motifs located N-terminally to the first CAP-Gly domain. We found that, unlike the EB1-binding mode of the CAP-Gly domain in the dynactin-associated protein p150Glued, which dually engages the EB1 C-terminal EEY motif as well as the EB homology domain and sterically occludes SXIP motif binding, the CLIP-170 CAP-Gly domains engage only the EEY motif, enabling the flanking SXIP and SXIP-like motifs to bind the EB homology domain. These multivalent EB1-binding modules provided avidity to the CLIP-170-EB1 interaction, likely clarifying why CLIP-170 preferentially binds EB1 rather than the α-tubulin C-terminal EEY motif. Our finding that CLIP-170 has multiple non-CAP-Gly EB1-binding modules may explain why autoinhibition of CLIP-170 GAP-Gly domains does not fully abrogate its microtubule plus-end localization. This work expands our understanding of EB1-binding motifs and their multivalent networks.
Collapse
Affiliation(s)
- Yaodong Chen
- From the Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,the Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, and
| | - Ping Wang
- the Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kevin C Slep
- the Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, and
| |
Collapse
|
67
|
Roth D, Fitton BP, Chmel NP, Wasiluk N, Straube A. Spatial positioning of EB family proteins at microtubule tips involves distinct nucleotide-dependent binding properties. J Cell Sci 2018; 132:jcs.219550. [PMID: 30262468 PMCID: PMC6398475 DOI: 10.1242/jcs.219550] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/20/2018] [Indexed: 12/25/2022] Open
Abstract
EB proteins track the ends of growing microtubules and regulate microtubule dynamics both directly and by acting as the hub of the tip-tracking network. Mammalian cells express cell type-specific combinations of three EB proteins with different cellular roles. Here, we reconstitute EB1, EB2 and EB3 tip tracking in vitro. We find that all three EBs show rapid exchange at the microtubule tip and that their signal correlates to the microtubule assembly rate. However, the three signals differ in their maxima and position from the microtubule tip. Using microtubules built with nucleotide analogues and site-directed mutagenesis, we show that EB2 prefers binding to microtubule lattices containing a 1:1 mixture of different nucleotides and its distinct binding specificity is conferred by amino acid substitutions at the right-hand-side interface of the EB microtubule-binding domain with tubulin. Our data are consistent with the model that all three EB paralogues sense the nucleotide state of both β-tubulins flanking their binding site. Their different profile of preferred binding sites contributes to occupying spatially distinct domains at the temporally evolving microtubule tip structure. Summary:In vitro reconstitution of tip tracking with EB1, EB2 and EB3 shows that these three proteins sense the nucleotide state of both β-tubulins flanking their binding site.
Collapse
Affiliation(s)
- Daniel Roth
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Benjamin P Fitton
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK.,Molecular Organisation and Assembly in Cells (MOAC) Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Nikola P Chmel
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Natalia Wasiluk
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK
| | - Anne Straube
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK .,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
68
|
M-Phase Phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. Nat Commun 2018; 9:4511. [PMID: 30375385 PMCID: PMC6207757 DOI: 10.1038/s41467-018-06990-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/03/2018] [Indexed: 11/08/2022] Open
Abstract
The primary cilium is elongated from the mother centriole and has diverse signaling roles during development and disease. The CP110-CEP97 complex functions as a negative regulator of ciliogenesis, although the mechanisms regulating its mother centriole localization are poorly understood. Here we show that M-Phase Phosphoprotein 9 (MPP9) is recruited by Kinesin Family Member 24 (KIF24) to the distal end of mother centriole where it forms a ring-like structure and recruits CP110-CEP97 by directly binding CEP97. Loss of MPP9 causes abnormal primary cilia formation in growing cells and mouse kidneys. After phosphorylation by Tau Tubulin Kinase 2 (TTBK2) at the beginning of ciliogenesis, MPP9 is targeted for degradation via the ubiquitin-proteasome system, which facilitates the removal of CP110 and CEP97 from the distal end of the mother centriole. Thus, MPP9 acts as a regulator of ciliogenesis by regulating the localization of CP110-CEP97 at the mother centriole.
Collapse
|
69
|
Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast Cancer Res Treat 2018; 173:573-583. [PMID: 30368744 DOI: 10.1007/s10549-018-5026-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/21/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE The identification of molecular biomarkers for classification of breast cancer is needed to better stratify the patients and guide therapeutic decisions. The aim of this study was to investigate the value of MAPRE1 gene encoding microtubule-end binding proteins EB1 as a biomarker in breast cancer and evaluate whether combinatorial expression of MAPRE1 and MTUS1 gene encoding EB1-negative regulator ATIP3 may improve breast cancer diagnosis and prognosis. METHODS Probeset intensities for MAPRE1 and MTUS1 genes were retrieved from Exonhit splice array analyses of 45 benign and 120 malignant breast tumors for diagnostic purposes. Transcriptomic analyses (U133 Affymetrix array) of one exploratory cohort of 150 invasive breast cancer patients and two independent series of 130 and 155 samples were compared with clinical data of the patients for prognostic studies. A tissue microarray from an independent cohort of 212 invasive breast tumors was immunostained with anti-EB1 and anti-ATIP3 antibodies. RESULTS We show that MAPRE1 gene is a diagnostic and prognostic biomarker in breast cancer. High MAPRE1 levels correlate with tumor malignancy, high histological grade and poor clinical outcome. Combination of high-MAPRE1 and low-MTUS1 levels in tumors is significantly associated with tumor aggressiveness and reduced patient survival. IHC studies of combined EB1/ATIP3 protein expression confirmed these results. CONCLUSIONS These studies emphasize the importance of studying combinatorial expression of EB1 and ATIP3 genes and proteins rather than each biomarker alone. A population of highly aggressive breast tumors expressing high-EB1/low-ATIP3 may be considered for the development of new molecular therapies.
Collapse
|
70
|
|
71
|
Yang JS, Garriga-Canut M, Link N, Carolis C, Broadbent K, Beltran-Sastre V, Serrano L, Maurer SP. rec-YnH enables simultaneous many-by-many detection of direct protein-protein and protein-RNA interactions. Nat Commun 2018; 9:3747. [PMID: 30217970 PMCID: PMC6138660 DOI: 10.1038/s41467-018-06128-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023] Open
Abstract
Knowing which proteins and RNAs directly interact is essential for understanding cellular mechanisms. Unfortunately, discovering such interactions is costly and often unreliable. To overcome these limitations, we developed rec-YnH, a new yeast two and three-hybrid-based screening pipeline capable of detecting interactions within protein libraries or between protein libraries and RNA fragment pools. rec-YnH combines batch cloning and transformation with intracellular homologous recombination to generate bait-prey fusion libraries. By developing interaction selection in liquid-gels and using an ORF sequence-based readout of interactions via next-generation sequencing, we eliminate laborious plating and barcoding steps required by existing methods. We use rec-Y2H to simultaneously map interactions of protein domains and reveal novel putative interactors of PAR proteins. We further employ rec-Y2H to predict the architecture of published coprecipitated complexes. Finally, we use rec-Y3H to map interactions between multiple RNA-binding proteins and RNAs-the first time interactions between protein and RNA pools are simultaneously detected.
Collapse
Affiliation(s)
- Jae-Seong Yang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Garriga-Canut
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Nele Link
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Katrina Broadbent
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Violeta Beltran-Sastre
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Sebastian P Maurer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain.
| |
Collapse
|
72
|
Kahn OI, Schätzle P, van de Willige D, Tas RP, Lindhout FW, Portegies S, Kapitein LC, Hoogenraad CC. APC2 controls dendrite development by promoting microtubule dynamics. Nat Commun 2018; 9:2773. [PMID: 30018294 PMCID: PMC6050278 DOI: 10.1038/s41467-018-05124-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Mixed polarity microtubule organization is the signature characteristic of vertebrate dendrites. Oppositely oriented microtubules form the basis for selective cargo trafficking in neurons, however the mechanisms that establish and maintain this organization are unclear. Here, we show that APC2, the brain-specific homolog of tumor-suppressor protein adenomatous polyposis coli (APC), promotes dynamics of minus-end-out microtubules in dendrites. We found that APC2 localizes as distinct clusters along microtubule bundles in dendrites and that this localization is driven by LC8-binding and two separate microtubule-interacting domains. Depletion of APC2 reduces the plus end dynamics of minus-end-out oriented microtubules, increases microtubule sliding, and causes defects in dendritic morphology. We propose a model in which APC2 regulates dendrite development by promoting dynamics of minus-end-out microtubules.
Collapse
Affiliation(s)
- Olga I Kahn
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dieudonnée van de Willige
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Roderick P Tas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Feline W Lindhout
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Sybren Portegies
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
73
|
Lopes CAM, Mesquita M, Cunha AI, Cardoso J, Carapeta S, Laranjeira C, Pinto AE, Pereira-Leal JB, Dias-Pereira A, Bettencourt-Dias M, Chaves P. Centrosome amplification arises before neoplasia and increases upon p53 loss in tumorigenesis. J Cell Biol 2018; 217:2353-2363. [PMID: 29739803 PMCID: PMC6028540 DOI: 10.1083/jcb.201711191] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Centrosome abnormalities are a typical hallmark of human cancers. However, the origin and dynamics of such abnormalities in human cancer are not known. In this study, we examined centrosomes in Barrett's esophagus tumorigenesis, a well-characterized multistep pathway of progression, from the premalignant condition to the metastatic disease. This human cancer model allows the study of sequential steps of progression within the same patient and has representative cell lines from all stages of disease. Remarkably, centrosome amplification was detected as early as the premalignant condition and was significantly expanded in dysplasia. It was then present throughout malignant transformation both in adenocarcinoma and metastasis. The early expansion of centrosome amplification correlated with and was dependent on loss of function of the tumor suppressor p53 both through loss of wild-type expression and hotspot mutations. Our work shows that centrosome amplification in human tumorigenesis can occur before transformation, being repressed by p53. These findings suggest centrosome amplification in humans can contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Carla A M Lopes
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta Mesquita
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Isabel Cunha
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | | | | | - Cátia Laranjeira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - António E Pinto
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | | | - António Dias-Pereira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | | | - Paula Chaves
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
74
|
Ye AA, Verma V, Maresca TJ. NOD is a plus end-directed motor that binds EB1 via a new microtubule tip localization sequence. J Cell Biol 2018; 217:3007-3017. [PMID: 29899040 PMCID: PMC6122986 DOI: 10.1083/jcb.201708109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/14/2018] [Accepted: 05/25/2018] [Indexed: 02/08/2023] Open
Abstract
The mechanism by which the Drosophila chromokinesin NOD promotes chromosome congression is unknown. Ye et al. demonstrate that NOD generates force by two mechanisms: plus end–directed motility and microtubule plus-tip tracking via interaction with EB1 through a newly identified motif. Chromosome congression, the process of positioning chromosomes in the midspindle, promotes the stable transmission of the genome to daughter cells during cell division. Congression is typically facilitated by DNA-associated, microtubule (MT) plus end–directed motors called chromokinesins. The Drosophila melanogaster chromokinesin NOD contributes to congression, but the means by which it does so are unknown in large part because NOD has been classified as a nonmotile, orphan kinesin. It has been postulated that NOD promotes congression, not by conventional plus end–directed motility, but by harnessing polymerization forces by end-tracking on growing MT plus ends via a mechanism that is also uncertain. Here, for the first time, it is demonstrated that NOD possesses MT plus end–directed motility. Furthermore, NOD directly binds EB1 through unconventional EB1-interaction motifs that are similar to a newly characterized MT tip localization sequence. We propose NOD produces congression forces by MT plus end–directed motility and tip-tracking on polymerizing MT plus ends via association with EB1.
Collapse
Affiliation(s)
- Anna A Ye
- Biology Department, University of Massachusetts, Amherst, Amherst, MA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA
| | - Vikash Verma
- Biology Department, University of Massachusetts, Amherst, Amherst, MA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, Amherst, MA .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA
| |
Collapse
|
75
|
Procter DJ, Banerjee A, Nukui M, Kruse K, Gaponenko V, Murphy EA, Komarova Y, Walsh D. The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread. Dev Cell 2018; 45:83-100.e7. [PMID: 29634939 DOI: 10.1016/j.devcel.2018.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/08/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.
Collapse
Affiliation(s)
- Dean J Procter
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Masatoshi Nukui
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Forge Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Eain A Murphy
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Forge Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Yulia Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
76
|
Gozes I, Ivashko-Pachima Y, Sayas CL. ADNP, a Microtubule Interacting Protein, Provides Neuroprotection Through End Binding Proteins and Tau: An Amplifier Effect. Front Mol Neurosci 2018; 11:151. [PMID: 29765303 PMCID: PMC5938608 DOI: 10.3389/fnmol.2018.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Yanina Ivashko-Pachima
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Carmen L Sayas
- Centre for Biomedical Research of the Canary Islands, Institute for Biomedical Technologies, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
77
|
Jiang K, Faltova L, Hua S, Capitani G, Prota AE, Landgraf C, Volkmer R, Kammerer RA, Steinmetz MO, Akhmanova A. Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex. Structure 2018; 26:375-382.e4. [DOI: 10.1016/j.str.2017.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022]
|
78
|
Roque H, Saurya S, Pratt MB, Johnson E, Raff JW. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation. PLoS Genet 2018; 14:e1007198. [PMID: 29425198 PMCID: PMC5823460 DOI: 10.1371/journal.pgen.1007198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 02/22/2018] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP) function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1) They are short and have subtle structural abnormalities; (2) They disengage prematurely, and so overduplicate; (3) They organise fewer cytoplasmic MTs during interphase; (4) When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane—although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ) proteins. We show that PLP helps assemble “pericentriolar clouds” of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells. Centrioles are complex, microtubule (MT) based structures that organise two important cell organelles, the centrosome and the cilium. The centrosome is a major MT organising centre in many cell types, while the cilium functions as a cellular “antenna” responsible for regulating several cellular signalling pathways. Pericentrin is conserved centriole-binding protein that plays an important part in centrosome and cilium function, and mutations in the Pericentrin gene are linked to several human diseases. Here we use the fruit-fly Drosophila melanogaster to investigate how Pericentrin-Like-Protein (the fly homolog of Pericentrin) contributes to centriole, centrosome and cilium function. We find that Plp mutant fly centrioles have subtle structural defects, organize less microtubules, and do not properly migrate to the cell membrane to form cilia. We also observe that PLP helps assemble “pericentriolar clouds”—dense structures that emanate from the centriole, and appear to interact with microtubules, as well as connect existing centrioles to newly formed ones. In mutant flies these structures are significantly reduced in size. We propose that the defects in these PLP structures can explain most, if not all, the complex defects observed in Plp mutants.
Collapse
Affiliation(s)
- Helio Roque
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Saroj Saurya
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Metta B. Pratt
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Errin Johnson
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
79
|
Adikes RC, Hallett RA, Saway BF, Kuhlman B, Slep KC. Control of microtubule dynamics using an optogenetic microtubule plus end-F-actin cross-linker. J Cell Biol 2018; 217:779-793. [PMID: 29259096 PMCID: PMC5800807 DOI: 10.1083/jcb.201705190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
We developed a novel optogenetic tool, SxIP-improved light-inducible dimer (iLID), to facilitate the reversible recruitment of factors to microtubule (MT) plus ends in an end-binding protein-dependent manner using blue light. We show that SxIP-iLID can track MT plus ends and recruit tgRFP-SspB upon blue light activation. We used this system to investigate the effects of cross-linking MT plus ends and F-actin in Drosophila melanogaster S2 cells to gain insight into spectraplakin function and mechanism. We show that SxIP-iLID can be used to temporally recruit an F-actin binding domain to MT plus ends and cross-link the MT and F-actin networks. Cross-linking decreases MT growth velocities and generates a peripheral MT exclusion zone. SxIP-iLID facilitates the general recruitment of specific factors to MT plus ends with temporal control enabling researchers to systematically regulate MT plus end dynamics and probe MT plus end function in many biological processes.
Collapse
Affiliation(s)
- Rebecca C Adikes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ryan A Hallett
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brian F Saway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin C Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
80
|
Carapito C, Duek P, Macron C, Seffals M, Rondel K, Delalande F, Lindskog C, Fréour T, Vandenbrouck Y, Lane L, Pineau C. Validating Missing Proteins in Human Sperm Cells by Targeted Mass-Spectrometry- and Antibody-based Methods. J Proteome Res 2017; 16:4340-4351. [DOI: 10.1021/acs.jproteome.7b00374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christine Carapito
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, Strasbourg F-67087, France
| | - Paula Duek
- CALIPHO
Group, SIB-Swiss Institute of Bioinformatics, CMU, rue Michel-Servet
1, CH-1211 Geneva
4, Switzerland
| | - Charlotte Macron
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, Strasbourg F-67087, France
| | - Marine Seffals
- H2P2
Core facility, UMS BioSit, University of Rennes 1, Rennes F-35040, France
| | - Karine Rondel
- Protim,
Inserm U1085, Irset, Campus de Beaulieu, Rennes F-35042, France
| | - François Delalande
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, Strasbourg F-67087, France
| | - Cecilia Lindskog
- Department
of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Fréour
- Service de
Médecine de la Reproduction, CHU de Nantes, 38 boulevard
Jean Monnet, Nantes F-44093, France
- Inserm UMR1064, Nantes F-44093, France
| | - Yves Vandenbrouck
- CEA, DRF, BIG,
Laboratoire de Biologie à Grande Echelle, 17, rue des Martyrs, Grenoble F-38054, France
- Inserm U1038, Grenoble F-38054, France
- Grenoble-Alpes University, Grenoble F-38054, France
| | - Lydie Lane
- CALIPHO
Group, SIB-Swiss Institute of Bioinformatics, CMU, rue Michel-Servet
1, CH-1211 Geneva
4, Switzerland
- Department
of Human Protein Sciences, Faculty of Medicine, University of Geneva, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Charles Pineau
- Protim,
Inserm U1085, Irset, Campus de Beaulieu, Rennes F-35042, France
| |
Collapse
|
81
|
Xie S, Yang Y, Lin X, Zhou J, Li D, Liu M. Characterization of a novel EB1 acetylation site important for the regulation of microtubule dynamics and cargo recruitment. J Cell Physiol 2017; 233:2581-2589. [DOI: 10.1002/jcp.26133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology; Institute of Biomedical Sciences; College of Life Sciences; Shandong Normal University; Jinan Shandong China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin China
| | - Xiaochen Lin
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology; Institute of Biomedical Sciences; College of Life Sciences; Shandong Normal University; Jinan Shandong China
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology; Institute of Biomedical Sciences; College of Life Sciences; Shandong Normal University; Jinan Shandong China
| |
Collapse
|
82
|
The Microtubule-Stabilizing Protein CLASP1 Associates with the Theileria annulata Schizont Surface via Its Kinetochore-Binding Domain. mSphere 2017; 2:mSphere00215-17. [PMID: 28861517 PMCID: PMC5566832 DOI: 10.1128/msphere.00215-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
T. annulata, the only eukaryote known to be capable of transforming another eukaryote, is a widespread parasite of veterinary importance that puts 250 million cattle at risk worldwide and limits livestock development for some of the poorest people in the world. Crucial to the pathology of Theileria is its ability to interact with host microtubules and the mitotic spindle of the infected cell. This study builds on our previous work in investigating the host and parasite molecules involved in mediating this interaction. Because it is not possible to genetically manipulate Theileria schizonts, identifying protein interaction partners is critical to understanding the function of parasite proteins. By identifying two Theileria surface proteins that are involved in the interaction between CLASP1 and the parasite, we provide important insights into the molecular basis of Theileria persistence within a dividing cell. Theileria is an apicomplexan parasite whose presence within the cytoplasm of a leukocyte induces cellular transformation and causes uncontrolled proliferation and clonal expansion of the infected cell. The intracellular schizont utilizes the host cell’s own mitotic machinery to ensure its distribution to both daughter cells by associating closely with microtubules (MTs) and incorporating itself within the central spindle. We show that CLASP1, an MT-stabilizing protein that plays important roles in regulating kinetochore-MT attachment and central spindle positioning, is sequestered at the Theileria annulata schizont surface. We used live-cell imaging and immunofluorescence in combination with MT depolymerization assays to demonstrate that CLASP1 binds to the schizont surface in an MT-independent manner throughout the cell cycle and that the recruitment of the related CLASP2 protein to the schizont is MT dependent. By transfecting Theileria-infected cells with a panel of truncation mutants, we found that the kinetochore-binding domain of CLASP1 is necessary and sufficient for parasite localization, revealing that CLASP1 interaction with the parasite occurs independently of EB1. We overexpressed the MT-binding domain of CLASP1 in parasitized cells. This exhibited a dominant negative effect on host MT stability and led to altered parasite size and morphology, emphasizing the importance of proper MT dynamics for Theileria partitioning during host cell division. Using coimmunoprecipitation, we demonstrate that CLASP1 interacts, directly or indirectly, with the schizont membrane protein p104, and we describe for the first time TA03615, a Theileria protein which localizes to the parasite surface, where it has the potential to participate in parasite-host interactions. IMPORTANCET. annulata, the only eukaryote known to be capable of transforming another eukaryote, is a widespread parasite of veterinary importance that puts 250 million cattle at risk worldwide and limits livestock development for some of the poorest people in the world. Crucial to the pathology of Theileria is its ability to interact with host microtubules and the mitotic spindle of the infected cell. This study builds on our previous work in investigating the host and parasite molecules involved in mediating this interaction. Because it is not possible to genetically manipulate Theileria schizonts, identifying protein interaction partners is critical to understanding the function of parasite proteins. By identifying two Theileria surface proteins that are involved in the interaction between CLASP1 and the parasite, we provide important insights into the molecular basis of Theileria persistence within a dividing cell.
Collapse
|
83
|
Yang C, Wu J, de Heus C, Grigoriev I, Liv N, Yao Y, Smal I, Meijering E, Klumperman J, Qi RZ, Akhmanova A. EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J Cell Biol 2017; 216:3179-3198. [PMID: 28814570 PMCID: PMC5626540 DOI: 10.1083/jcb.201701024] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
End-binding proteins regulate the dynamics and function of microtubule plus ends by recruiting a plethora of diverse factors. Yang et al. show that EB1 and EB3 also affect microtubule minus ends by participating in their attachment to Golgi membranes. This function is important for cell polarity and migration. End-binding proteins (EBs) are the core components of microtubule plus end tracking protein complexes, but it is currently unknown whether they are essential for mammalian microtubule organization. Here, by using CRISPR/Cas9-mediated knockout technology, we generated stable cell lines lacking EB2 and EB3 and the C-terminal partner-binding half of EB1. These cell lines show only mild defects in cell division and microtubule polymerization. However, the length of CAMSAP2-decorated stretches at noncentrosomal microtubule minus ends in these cells is reduced, microtubules are detached from Golgi membranes, and the Golgi complex is more compact. Coorganization of microtubules and Golgi membranes depends on the EB1/EB3–myomegalin complex, which acts as membrane–microtubule tether and counteracts tight clustering of individual Golgi stacks. Disruption of EB1 and EB3 also perturbs cell migration, polarity, and the distribution of focal adhesions. EB1 and EB3 thus affect multiple interphase processes and have a major impact on microtubule minus end organization.
Collapse
Affiliation(s)
- Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Cecilia de Heus
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nalan Liv
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yao Yao
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ihor Smal
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Meijering
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Klumperman
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Robert Z Qi
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
84
|
Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett 2017; 591:2379-2393. [PMID: 28726242 DOI: 10.1002/1873-3468.12758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/02/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022]
Abstract
Microtubules (MTs) play essential roles in many steps of autophagy, an important degradation pathway in the maintenance of cellular homoeostasis. In many cells, MT networks are comprised of centrosomal MTs and noncentrosomal MTs. However, it is unknown whether noncentrosomal MTs and its binding proteins are involved in autophagy. Here, we show in HeLa cells that calmodulin-regulated spectrin-associated protein 2 (CAMSAP2), a noncentrosomal MT minus-end stabilizing protein, regulates retrograde transport of autophagosomes through MT dynamics. CAMSAP2 cooperates with EB1 to regulate end-binding protein 1 (EB1) behaviour at MT plus ends, MT growth directions and autophagosome transport. An association between CAMSAP2 and EB1 in the cytosol may modulate EB1 binding to MT plus ends. Collectively, our data indicate that noncentrosomal MTs regulate autophagy through a cross-talk between CAMSAP2 and EB1.
Collapse
Affiliation(s)
- Jieli Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
85
|
Zhang J, Yue J, Wu X. Spectraplakin family proteins - cytoskeletal crosslinkers with versatile roles. J Cell Sci 2017; 130:2447-2457. [PMID: 28679697 PMCID: PMC5558266 DOI: 10.1242/jcs.196154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The different cytoskeletal networks in a cell are responsible for many fundamental cellular processes. Current studies have shown that spectraplakins, cytoskeletal crosslinkers that combine features of both the spectrin and plakin families of crosslinkers, have a critical role in integrating these different cytoskeletal networks. Spectraplakin genes give rise to a variety of isoforms that have distinct functions. Importantly, all spectraplakin isoforms are uniquely able to associate with all three elements of the cytoskeleton, namely, F-actin, microtubules and intermediate filaments. In this Review, we will highlight recent studies that have unraveled their function in a wide range of different processes, from regulating cell adhesion in skin keratinocytes to neuronal cell migration. Taken together, this work has revealed a diverse and indispensable role for orchestrating the function of different cytoskeletal elements in vivo.
Collapse
Affiliation(s)
- Jamie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
86
|
Mustyatsa VV, Boyakhchyan AV, Ataullakhanov FI, Gudimchuk NB. EB-family proteins: Functions and microtubule interaction mechanisms. BIOCHEMISTRY (MOSCOW) 2017; 82:791-802. [DOI: 10.1134/s0006297917070045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
87
|
Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C. Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci 2017; 74:2381-2393. [PMID: 28204846 PMCID: PMC11107513 DOI: 10.1007/s00018-017-2476-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
The regulation of microtubule dynamics is critical to ensure essential cell functions, such as proper segregation of chromosomes during mitosis or cell polarity and migration. End-binding protein 1 (EB1) is a plus-end-tracking protein (+TIP) that accumulates at growing microtubule ends and plays a pivotal role in the regulation of microtubule dynamics. EB1 autonomously binds an extended tubulin-GTP/GDP-Pi structure at growing microtubule ends and acts as a molecular scaffold that recruits a large number of regulatory +TIPs through interaction with CAP-Gly or SxIP motifs. While extensive studies have focused on the structure of EB1-interacting site at microtubule ends and its role as a molecular platform, the mechanisms involved in the negative regulation of EB1 have only started to emerge and remain poorly understood. In this review, we summarize recent studies showing that EB1 association with MT ends is regulated by post-translational modifications and affected by microtubule-targeting agents. We also present recent findings that structural MAPs, that have no tip-tracking activity, physically interact with EB1 to prevent its accumulation at microtubule plus ends. These observations point out a novel concept of "endogenous EB1 antagonists" and emphasize the importance of finely regulating EB1 function at growing microtubule ends.
Collapse
Affiliation(s)
- Anne Nehlig
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Angie Molina
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
- CBD, University of Toulouse-3, Toulouse, France
| | - Sylvie Rodrigues-Ferreira
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Stéphane Honoré
- Aix Marseille University, Inserm U-911, CRO2, Marseille, France
- Service Pharmacie, CHU Hôpital de La Timone, APHM, Marseille, France
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France.
- University Paris Saclay, 94800, Villejuif, France.
| |
Collapse
|
88
|
Szikora S, Földi I, Tóth K, Migh E, Vig A, Bugyi B, Maléth J, Hegyi P, Kaltenecker P, Sanchez-Soriano N, Mihály J. The formin DAAM is required for coordination of the actin and microtubule cytoskeleton in axonal growth cones. J Cell Sci 2017; 130:2506-2519. [PMID: 28606990 DOI: 10.1242/jcs.203455] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 01/10/2023] Open
Abstract
Directed axonal growth depends on correct coordination of the actin and microtubule cytoskeleton in the growth cone. However, despite the relatively large number of proteins implicated in actin-microtubule crosstalk, the mechanisms whereby actin polymerization is coupled to microtubule stabilization and advancement in the peripheral growth cone remained largely unclear. Here, we identified the formin Dishevelled-associated activator of morphogenesis (DAAM) as a novel factor playing a role in concerted regulation of actin and microtubule remodeling in Drosophilamelanogaster primary neurons. In vitro, DAAM binds to F-actin as well as to microtubules and has the ability to crosslink the two filament systems. Accordingly, DAAM associates with the neuronal cytoskeleton, and a significant fraction of DAAM accumulates at places where the actin filaments overlap with that of microtubules. Loss of DAAM affects growth cone and microtubule morphology, and several aspects of microtubule dynamics; and biochemical and cellular assays revealed a microtubule stabilization activity and binding to the microtubule tip protein EB1. Together, these data suggest that, besides operating as an actin assembly factor, DAAM is involved in linking actin remodeling in filopodia to microtubule stabilization during axonal growth.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Ede Migh
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Andrea Vig
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary.,Szentágothai Research Center, Ifjúság str. 34, Pécs H-7624, Hungary
| | - József Maléth
- MTA-SZTE Translational Gastroenterology Research Group, First Department of Internal Medicine, Szeged H-6720, Hungary
| | - Péter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, First Department of Internal Medicine, Szeged H-6720, Hungary.,Institute for Translational Medicine, Department of Pathophysiology, University of Pécs, Pécs H-7624, Hungary
| | - Péter Kaltenecker
- Institute for Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Natalia Sanchez-Soriano
- Institute for Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
89
|
Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. Structure 2017; 25:924-932.e4. [DOI: 10.1016/j.str.2017.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 11/23/2022]
|
90
|
Kruse R, Krantz J, Barker N, Coletta RL, Rafikov R, Luo M, Højlund K, Mandarino LJ, Langlais PR. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein. Mol Cell Proteomics 2017; 16:1718-1735. [PMID: 28550165 DOI: 10.1074/mcp.ra117.000011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/26/2022] Open
Abstract
CLASP2 is a microtubule-associated protein that undergoes insulin-stimulated phosphorylation and co-localization with reorganized actin and GLUT4 at the plasma membrane. To gain insight to the role of CLASP2 in this system, we developed and successfully executed a streamlined interactome approach and built a CLASP2 protein network in 3T3-L1 adipocytes. Using two different commercially available antibodies for CLASP2 and an antibody for epitope-tagged, overexpressed CLASP2, we performed multiple affinity purification coupled with mass spectrometry (AP-MS) experiments in combination with label-free quantitative proteomics and analyzed the data with the bioinformatics tool Significance Analysis of Interactome (SAINT). We discovered that CLASP2 coimmunoprecipitates (co-IPs) the novel protein SOGA1, the microtubule-associated protein kinase MARK2, and the microtubule/actin-regulating protein G2L1. The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and revealed MARK2 can co-IP SOGA1, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and with tubulin, which identifies SOGA1 as a new microtubule-associated protein. These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology.
Collapse
Affiliation(s)
- Rikke Kruse
- From the ‡The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.,§Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - James Krantz
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Natalie Barker
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Richard L Coletta
- ‖School of Life Sciences, Arizona State University, Tempe, Arizona 85787
| | - Ruslan Rafikov
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Moulun Luo
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Kurt Højlund
- From the ‡The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.,§Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Lawrence J Mandarino
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Paul R Langlais
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721;
| |
Collapse
|
91
|
Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
92
|
Breznau EB, Murt M, Blasius TL, Verhey KJ, Miller AL. The MgcRacGAP SxIP motif tethers Centralspindlin to microtubule plus ends in Xenopus laevis. J Cell Sci 2017; 130:1809-1821. [PMID: 28389580 DOI: 10.1242/jcs.195891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
Centralspindlin, a complex of the kinesin-6-family member MKLP1 and MgcRacGAP (also known as Kif23 and Racgap1, respectively), is required for cytokinesis and cell-cell junctions. During anaphase, Centralspindlin accumulates at overlapping central spindle microtubules and directs contractile ring formation by recruiting the GEF Ect2 to the cell equator to activate RhoA. We found that MgcRacGAP localized to the plus ends of equatorial astral microtubules during cytokinesis in Xenopus laevis embryos. How MgcRacGAP is stabilized at microtubule plus ends is unknown. We identified an SxIP motif in X. laevis MgcRacGAP that is conserved with other proteins that bind to EB1 (also known as Mapre1), a microtubule plus-end tracking protein. Mutation of the SxIP motif in MgcRacGAP resulted in loss of MgcRacGAP tracking with EB3 (also known as Mapre3) on growing microtubule plus ends, abnormal astral microtubule organization, redistribution of MgcRacGAP from the contractile ring to the polar cell cortex, and mislocalization of RhoA and its downstream targets, which together contributed to severe cytokinesis defects. Furthermore, mutation of the MgcRacGAP SxIP motif perturbed adherens junctions. We propose that the MgcRacGAP SxIP motif is functionally important both for its role in regulating adherens junction structure during interphase and for regulating Rho GTPase activity during cytokinesis.
Collapse
Affiliation(s)
- Elaina B Breznau
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan Murt
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - T Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ann L Miller
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
93
|
Fong KW, Au FKC, Jia Y, Yang S, Zhou L, Qi RZ. Microtubule plus-end tracking of end-binding protein 1 (EB1) is regulated by CDK5 regulatory subunit-associated protein 2. J Biol Chem 2017; 292:7675-7687. [PMID: 28320860 DOI: 10.1074/jbc.m116.759746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/15/2017] [Indexed: 01/08/2023] Open
Abstract
Microtubules are polar cytoskeleton filaments that extend via growth at their plus ends. Microtubule plus-end-tracking proteins (+TIPs) accumulate at these growing plus ends to control microtubule dynamics and attachment. The +TIP end-binding protein 1 (EB1) and its homologs possess an autonomous plus-end-tracking mechanism and interact with other known +TIPs, which then recruit those +TIPs to the growing plus ends. A major +TIP class contains the SXIP (Ser-X-Ile-Pro, with X denoting any amino acid residue) motif, known to interact with EB1 and its homologs for plus-end tracking, but the role of SXIP in regulating EB1 activities is unclear. We show here that an interaction of EB1 with the SXIP-containing +TIP CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) regulates several EB1 activities, including microtubule plus-end tracking, dynamics at microtubule plus ends, microtubule and α/β-tubulin binding, and microtubule polymerization. The SXIP motif fused with a dimerization domain from CDK5RAP2 significantly enhanced EB1 plus-end-tracking and microtubule-polymerizing and bundling activities, but the SXIP motif alone failed to do so. An SXIP-binding-deficient EB1 mutant displayed significantly lower microtubule plus-end tracking than the wild-type protein in transfected cells. These results suggest that EB1 cooperates with CDK5RAP2 and perhaps other SXIP-containing +TIPs in tracking growing microtubule tips. We also generated plus-end-tracking chimeras of CDK5RAP2 and the adenomatous polyposis coli protein (APC) and found that overexpression of the dimerization domains interfered with microtubule plus-end tracking of their respective SXIP-containing chimeras. Our results suggest that disruption of SXIP dimerization enables detailed investigations of microtubule plus-end-associated functions of individual SXIP-containing +TIPs.
Collapse
Affiliation(s)
- Ka-Wing Fong
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Franco K C Au
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yue Jia
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shaozhong Yang
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liying Zhou
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Robert Z Qi
- From the Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
94
|
Au FKC, Jia Y, Jiang K, Grigoriev I, Hau BKT, Shen Y, Du S, Akhmanova A, Qi RZ. GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Dev Cell 2016; 40:81-94. [PMID: 28017616 DOI: 10.1016/j.devcel.2016.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
Abstract
Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature centrioles and participates in centriole dynamics and centrosome disjunction. GAS2L1 attaches microtubules and actin to centrosomes, and the loss of GAS2L1 inhibits centrosome disjunction in G2 and centrosome splitting induced by depletion of the centrosome linker rootletin. Conversely, GAS2L1 overexpression induces premature centrosome separation, and this activity requires GAS2L1 association with actin, microtubules, and the microtubule end-binding proteins. The centrosome-splitting effect of GAS2L1 is counterbalanced by rootletin, reflecting the opposing actions of GAS2L1 and the centrosome linker. Our work reveals a GAS2L1-mediated centriole-tethering mechanism of microtubules and actin, which provide the forces required for centrosome dynamics and separation.
Collapse
Affiliation(s)
- Franco K C Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yue Jia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kai Jiang
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Bill K T Hau
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengwang Du
- Department of Physics and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
95
|
Al-Jassar C, Andreeva A, Barnabas DD, McLaughlin SH, Johnson CM, Yu M, van Breugel M. The Ciliopathy-Associated Cep104 Protein Interacts with Tubulin and Nek1 Kinase. Structure 2016; 25:146-156. [PMID: 28017521 PMCID: PMC5222566 DOI: 10.1016/j.str.2016.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Cilia are thin cell projections with essential roles in cell motility, fluid movement, sensing, and signaling. They are templated from centrioles that dock against the plasma membrane and subsequently extend their peripheral microtubule array. The molecular mechanisms underpinning cilia assembly are incompletely understood. Cep104 is a key factor involved in cilia formation and length regulation that rides on the ends of elongating and shrinking cilia. It is mutated in Joubert syndrome, a genetically heterogeneous ciliopathy. Here we provide structural and biochemical data that Cep104 contains a tubulin-binding TOG (tumor overexpressed gene) domain and a novel C2HC zinc finger array. Furthermore, we identify the kinase Nek1, another ciliopathy-associated protein, as a potential binding partner of this array. Finally, we show that Nek1 competes for binding to Cep104 with the distal centriole-capping protein CP110. Our data suggest a model for Cep104 activity during ciliogenesis and provide a novel link between Cep104 and Nek1.
Collapse
Affiliation(s)
- Caezar Al-Jassar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Deepak D Barnabas
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephen H McLaughlin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Minmin Yu
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
96
|
Matsuo Y, Maurer SP, Yukawa M, Zakian S, Singleton MR, Surrey T, Toda T. An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation. J Cell Sci 2016; 129:4592-4606. [PMID: 27872152 PMCID: PMC5201023 DOI: 10.1242/jcs.197533] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission yeast Dis1, a member of the XMAP215/TOG family, and Mal3, an EB1 protein. Using an in vitro microscopy assay, we find that purified Dis1 autonomously tracks growing microtubule ends and is a bona fide microtubule polymerase. Mal3 recruits additional Dis1 to microtubule ends, explaining the synergistic enhancement of microtubule dynamicity by these proteins. A non-canonical binding motif in Dis1 mediates the interaction with Mal3. X-ray crystallography shows that this new motif interacts in an unconventional configuration with the conserved hydrophobic cavity formed within the Mal3 C-terminal region that typically interacts with the canonical SXIP motif. Selectively perturbing the Mal3-Dis1 interaction in living cells demonstrates that it is important for accurate chromosome segregation. Whereas, in some metazoans, the interaction between EB1 and the XMAP215/TOG family members requires an additional binding partner, fission yeast relies on a direct interaction, indicating evolutionary plasticity of this critical interaction module.
Collapse
Affiliation(s)
- Yuzy Matsuo
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cell Regulation Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Sebastian P Maurer
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cell and Developmental Biology, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Masashi Yukawa
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Silva Zakian
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Martin R Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Thomas Surrey
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Takashi Toda
- Cell Regulation Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
97
|
Velot L, Molina A, Rodrigues-Ferreira S, Nehlig A, Bouchet BP, Morel M, Leconte L, Serre L, Arnal I, Braguer D, Savina A, Honore S, Nahmias C. Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3. Oncotarget 2016; 6:43557-70. [PMID: 26498358 PMCID: PMC4791250 DOI: 10.18632/oncotarget.6196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/14/2015] [Indexed: 01/15/2023] Open
Abstract
The regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor.
Collapse
Affiliation(s)
- Lauriane Velot
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Angie Molina
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Sylvie Rodrigues-Ferreira
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Anne Nehlig
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France
| | - Benjamin Pierre Bouchet
- Cell Biology, Faculty of Science, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | | | - Ludovic Leconte
- Cell and Tissue Imaging Core Facilty, PICT-IBiSA, CNRS UMR144 Institut Curie, Centre de Recherche, Paris, France
| | - Laurence Serre
- Inserm U836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Isabelle Arnal
- Inserm U836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Diane Braguer
- Aix Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Ariel Savina
- Scientific Partnerships Roche SAS, Boulogne Billancourt, France
| | - Stéphane Honore
- Aix Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| |
Collapse
|
98
|
Manatschal C, Farcas AM, Degen MS, Bayer M, Kumar A, Landgraf C, Volkmer R, Barral Y, Steinmetz MO. Molecular basis of Kar9-Bim1 complex function during mating and spindle positioning. Mol Biol Cell 2016; 27:mbc.E16-07-0552. [PMID: 27682587 PMCID: PMC5170556 DOI: 10.1091/mbc.e16-07-0552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/17/2022] Open
Abstract
The Kar9 pathway promotes nuclear fusion during mating and spindle alignment during metaphase in budding yeast. How Kar9 supports the different outcome of these two divergent processes is an open question. Here, we show that three sites in the C-terminal disordered domain of Kar9 mediate tight Kar9 interaction with the C-terminal dimerization domain of Bim1 (EB1 orthologue). Site1 and Site2 contain SxIP motifs; however, Site3 defines a novel type of EB1-binding site. Whereas Site2 and Site3 mediate Kar9 recruitment to microtubule tips, nuclear movement and karyogamy, solely Site2 functions in spindle positioning during metaphase. Site1 in turn plays an inhibitory role during mating. Additionally, the Kar9-Bim1 complex is involved in microtubule-independent activities during mating. Together, our data reveal how multiple and partially redundant EB1-binding sites provide a microtubule-associated protein with the means to modulate its biochemical properties to promote different molecular processes during cell proliferation and differentiation.
Collapse
Affiliation(s)
- Cristina Manatschal
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Ana-Maria Farcas
- Institute of Biochemistry, Biology Department, ETH Zürich, Zürich, Switzerland
| | - Miriam Steiner Degen
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Mathias Bayer
- Institute of Biochemistry, Biology Department, ETH Zürich, Zürich, Switzerland
| | - Anil Kumar
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zürich, Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
99
|
Courtheoux T, Enchev RI, Lampert F, Gerez J, Beck J, Picotti P, Sumara I, Peter M. Cortical dynamics during cell motility are regulated by CRL3(KLHL21) E3 ubiquitin ligase. Nat Commun 2016; 7:12810. [PMID: 27641145 PMCID: PMC5031805 DOI: 10.1038/ncomms12810] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3KLHL21 E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3KLHL21 activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions. Although focal adhesions (FAs) and microtubules (MTs) are known to associate, the underlying regulation of this dynamic interaction is not understood. Here the authors discover that the CRL3KLHL21 E3 ubiquitin ligase localises to FAs and ubiquitinates the MT plus-tip binding protein EB1, thereby promoting MT and FA dynamics and cell migration.
Collapse
Affiliation(s)
- Thibault Courtheoux
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Radoslav I Enchev
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Fabienne Lampert
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Juan Gerez
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Jochen Beck
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, 67404 Illkirch, France
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
100
|
Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment. J Neurosci 2016; 36:4421-33. [PMID: 27098687 DOI: 10.1523/jneurosci.3219-15.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. SIGNIFICANCE STATEMENT Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity.
Collapse
|