51
|
Duan Z, Tominaga M. Actin-myosin XI: an intracellular control network in plants. Biochem Biophys Res Commun 2018; 506:403-408. [PMID: 29307817 DOI: 10.1016/j.bbrc.2017.12.169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 11/29/2022]
Abstract
Actin is one of the three major cytoskeletal components in eukaryotic cells. Myosin XI is an actin-based motor protein in plant cells. Organelles are attached to myosin XI and translocated along the actin filaments. This dynamic actin-myosin XI system plays a major role in subcellular organelle transport and cytoplasmic streaming. Previous studies have revealed that myosin-driven transport and the actin cytoskeleton play essential roles in plant cell growth. Recent data have indicated that the actin-myosin XI cytoskeleton is essential for not only cell growth but also reproductive processes and responses to the environment. In this review, we have summarized previous reports regarding the role of the actin-myosin XI cytoskeleton in cytoplasmic streaming and plant development and recent advances in the understanding of the functions of actin-myosin XI cytoskeleton in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhongrui Duan
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
52
|
Eggert K, von Wirén N. Response of the plant hormone network to boron deficiency. THE NEW PHYTOLOGIST 2017; 216:868-881. [PMID: 28833172 DOI: 10.1111/nph.14731] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/30/2017] [Indexed: 05/04/2023]
Abstract
Plant hormones (PH) adjust plant growth to environmental conditions such as nutrient availability. Although responses of individual PHs to growth-determining nutrient supplies have been reported, little is known about simultaneous dynamics in the metabolism of different PH species. Brassica napus seedlings were grown under increasing supply of B, and LC-MS/MS was used to characterize bioactive forms of different PH species together with several of their precursors, storage and inactivated forms. Increasing shoot B concentrations in response to B supply were accompanied by decreasing concentrations of abscisic acid (ABA) and indole-3-acetic acid (IAA), which appeared to be synthesized under B deficiency mainly via indole-3-acetonitrile (IAN). By contrast, shoot B concentrations correlated closely with cytokinins, and the B-dependent growth response appeared to be triggered primarily by de-novo synthesis of cytokinins and by re-routing less active towards highly active forms of cytokinin. Also gibberellin biosynthesis strongly increased with B supply, in particular gibberellin species from the non-13-hydroxylation pathway. The brassinosteroid castasterone appeared to support shoot growth primarily at suboptimal B nutrition. These results indicate that a variable B nutritional status causes coordinated changes in PH metabolism as prerequisite for an adjusted growth response.
Collapse
Affiliation(s)
- Kai Eggert
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| |
Collapse
|
53
|
Saini K, AbdElgawad H, Markakis MN, Schoenaers S, Asard H, Prinsen E, Beemster GTS, Vissenberg K. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1308. [PMID: 28824662 PMCID: PMC5539238 DOI: 10.3389/fpls.2017.01308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 05/02/2023]
Abstract
Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.
Collapse
Affiliation(s)
- Kumud Saini
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef UniversityBeni Suef, Egypt
| | - Marios N. Markakis
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Plant and Biochemistry and Biotechnology Lab, Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete: University of Applied SciencesHeraklion, Greece
| |
Collapse
|
54
|
Singh M, Gupta A, Laxmi A. Striking the Right Chord: Signaling Enigma during Root Gravitropism. FRONTIERS IN PLANT SCIENCE 2017; 8:1304. [PMID: 28798760 PMCID: PMC5529344 DOI: 10.3389/fpls.2017.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/29/2023]
Abstract
Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react. Plant responses that involve a definite and specific movement are called "tropic" responses. Perhaps the best known and studied tropisms are phototropism, i.e., response to light, and geotropism, i.e., response to gravity. A robust root system is vital for plant growth as it can provide physical anchorage to soil as well as absorb water, nutrients and essential minerals from soil efficiently. Gravitropic responses of both primary as well as lateral root thus become critical for plant growth and development. The molecular mechanisms of root gravitropism has been delved intensively, however, the mechanism behind how the potential energy of gravity stimulus converts into a biochemical signal in vascular plants is still unknown, due to which gravity sensing in plants still remains one of the most fascinating questions in molecular biology. Communications within plants occur through phytohormones and other chemical substances produced in plants which have a developmental or physiological effect on growth. Here, we review current knowledge of various intrinsic signaling mechanisms that modulate root gravitropism in order to point out the questions and emerging developments in plant directional growth responses. We are also discussing the roles of sugar signals and their interaction with phytohormone machinery, specifically in context of root directional responses.
Collapse
Affiliation(s)
- Manjul Singh
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Aditi Gupta
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
55
|
Roy R, Bassham DC. TNO1, a TGN-localized SNARE-interacting protein, modulates root skewing in Arabidopsis thaliana. BMC PLANT BIOLOGY 2017; 17:73. [PMID: 28399805 PMCID: PMC5387210 DOI: 10.1186/s12870-017-1024-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/05/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The movement of plant roots within the soil is key to their ability to interact with the environment and maximize anchorage and nutrient acquisition. Directional growth of roots occurs by a combination of sensing external cues, hormonal signaling and cytoskeletal changes in the root cells. Roots growing on slanted, impenetrable growth medium display a characteristic waving and skewing, and mutants with deviations in these phenotypes assist in identifying genes required for root movement. Our study identifies a role for a trans-Golgi network-localized protein in root skewing. RESULTS We found that Arabidopsis thaliana TNO1 (TGN-localized SYP41-interacting protein), a putative tethering factor localized at the trans-Golgi network, affects root skewing. tno1 knockout mutants display enhanced root skewing and epidermal cell file rotation. Skewing of tno1 roots increases upon microtubule stabilization, but is insensitive to microtubule destabilization. Microtubule destabilization leads to severe defects in cell morphology in tno1 seedlings. Microtubule array orientation is unaffected in the mutant roots, suggesting that the increase in cell file rotation is independent of the orientation of microtubule arrays. CONCLUSIONS We conclude that TNO1 modulates root skewing in a mechanism that is dependent on microtubules but is not linked to disruption of the orientation of microtubule arrays. In addition, TNO1 is required for maintenance of cell morphology in mature regions of roots and the base of hypocotyls. The TGN-localized SNARE machinery might therefore be important for appropriate epidermal cell file rotation and cell expansion during root growth.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Genetics, Development and Cell Biology, 1035B Roy J Carver Co-Lab, 1111 WOI Rd, Iowa State University, Ames, IA 50011 USA
- Interdepartmental Genetics Program, Iowa State University, Ames, IA USA
- Current Address: Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, MN 55108 USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, 1035B Roy J Carver Co-Lab, 1111 WOI Rd, Iowa State University, Ames, IA 50011 USA
- Interdepartmental Genetics Program, Iowa State University, Ames, IA USA
- Plant Sciences Institute, Iowa State University, Ames, IA USA
| |
Collapse
|
56
|
Higaki T. Quantitative evaluation of cytoskeletal organizations by microscopic image analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.5685/plmorphol.29.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
57
|
Tian H, Lv B, Ding T, Bai M, Ding Z. Auxin-BR Interaction Regulates Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2017; 8:2256. [PMID: 29403511 PMCID: PMC5778104 DOI: 10.3389/fpls.2017.02256] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones.
Collapse
Affiliation(s)
- Huiyu Tian
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| | | | | | - Mingyi Bai
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| | - Zhaojun Ding
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| |
Collapse
|
58
|
Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC. Leaf epinasty and auxin: A biochemical and molecular overview. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:187-193. [PMID: 27968987 DOI: 10.1016/j.plantsci.2016.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 05/16/2023]
Abstract
Leaf epinasty involves the downward bending of leaves as a result of disturbances in their growth, with a greater expansion in adaxial cells as compared to abaxial surface cells. The co-ordinated anisotropy of growth in epidermal, palisade mesophyll and vascular tissues contributes to epinasty. This phenotype, which is regulated by auxin (indole-3-acetic acid, IAA), controls plant cell division and elongation by regulating the expression of a vast number of genes. Other plant hormones, such as ethylene, abscisic acid and brassinosteroids, also regulate epinasty and hyponasty. Reactive oxygen species (ROS) accumulation induced by auxins and 2,4-dichlorophenoxyacetic acid (2,4-D) triggers epinasty. The role of ROS and nitric oxide (NO) in the regulation of epinasty has recently been established. Thus, treatment with synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) induces disturbances in the actin cytoskeleton through ROS and NO-dependent post-translational modifications in actin by carbonylation and S-nitrosylation, which cause a reduction in the actin filament. Reorientation of microtubules has become a major feature of the response to auxin. The cytoskeleton is therefore a key player in epinastic development.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - María Rodríguez-Serrano
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
59
|
Scheuring D, Löfke C, Krüger F, Kittelmann M, Eisa A, Hughes L, Smith RS, Hawes C, Schumacher K, Kleine-Vehn J. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci U S A 2016; 113:452-7. [PMID: 26715743 PMCID: PMC4720293 DOI: 10.1073/pnas.1517445113] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin-myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.
Collapse
Affiliation(s)
- David Scheuring
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Christian Löfke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Falco Krüger
- Center for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Ahmed Eisa
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Louise Hughes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Karin Schumacher
- Center for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
60
|
Wei Z, Li J. Brassinosteroids Regulate Root Growth, Development, and Symbiosis. MOLECULAR PLANT 2016; 9:86-100. [PMID: 26700030 DOI: 10.1016/j.molp.2015.12.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/29/2015] [Accepted: 12/07/2015] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.
Collapse
Affiliation(s)
- Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
61
|
Ueda H, Tamura K, Hara-Nishimura I. Functions of plant-specific myosin XI: from intracellular motility to plant postures. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:30-8. [PMID: 26432645 DOI: 10.1016/j.pbi.2015.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 05/02/2023]
Abstract
The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture.
Collapse
Affiliation(s)
- Haruko Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
62
|
Chen HW, Shao KH, Wang SJ. Light-modulated seminal wavy roots in rice mediated by nitric oxide-dependent signaling. PROTOPLASMA 2015; 252:1291-1304. [PMID: 25619895 DOI: 10.1007/s00709-015-0762-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Rice (Oryza sativa L.) seminal roots from germinated seeds help establish seedlings, but the seminal root growth and morphology are sensitive to environmental factors. Our previous research showed that several indica-type rice varieties such as Taichung native 1 (TCN1) showed light-induced wavy roots. Also, auxin and oxylipins are two signaling factors regulating the wavy root photomorphology. To investigate the signaling pathway, here, we found that nitric oxide (NO) was a second messenger triggering the signal transduction of light stimuli to induce the wavy morphology of seminal roots in rice. Moreover, interactions between oxylipins and phytohormones such as ethylene and auxin participating in the NO-dependent regulatory pathway of light-induced wavy roots were examined. The order of action of signaling components in the pathway was NO, oxylipins, ethylene, and auxin.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | | | | |
Collapse
|
63
|
Zhu J, Geisler M. Keeping it all together: auxin-actin crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4983-98. [PMID: 26085676 DOI: 10.1093/jxb/erv308] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.
Collapse
Affiliation(s)
- Jinsheng Zhu
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| | - Markus Geisler
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
64
|
Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2839-56. [PMID: 25788732 DOI: 10.1093/jxb/erv089] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades.
Collapse
Affiliation(s)
- Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China
| |
Collapse
|
65
|
Straltsova D, Chykun P, Subramaniam S, Sosan A, Kolbanov D, Sokolik A, Demidchik V. Cation channels are involved in brassinosteroid signalling in higher plants. Steroids 2015; 97:98-106. [PMID: 25449770 DOI: 10.1016/j.steroids.2014.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 11/27/2022]
Abstract
Brassinosteroids (BRs) are an important class of plant hormones with a multitude of functions. They have been intensively investigated for their biosynthesis, distribution and physiological functions. The aim of this study was to examine possible effects of BRs on the plant plasma membrane cation conductances and Ca(2+) signalling. The wheat root protoplasts (tested by patch-clamping) and excised arabidopsis roots (analysed by Ca(2+)-aequorin chemiluminometry), were used. In the whole-cell plasma membrane patches, 24-epibrassinolide, 28-homobrassionolide or 24-epicastasterone (1 μM) were applied exogenously. 24-Epicastasterone increased the activity of the K(+) efflux conductance in 50% of tested protoplasts while 24-epibrassonolide and 28-homobrassionolide did not modify the plasma membrane currents. Addition of 24-epicastasterone at the cytosolic side (to the pipette solution) resulted in dramatic stimulation of a time-dependent K(+) efflux current (in 30% of protoplasts) and an activation of Ca(2+) influx currents (in 30% of protoplasts). Gadolinium ions, which are blockers of cation channels, inhibited the 24-epicastasterone-induced cation channel activities. In Arabidopsis thaliana plants constitutively expressing aequorin, exogenous 24-epibrassonolide, 28-homobrassionolide and 24-epicastasterone induced a transient elevation of the cytosolic free Ca(2+), which was inhibited by Gd(3+) and mediated by Ca(2+) influx from the bathing solution. In Ca(2+)-aequorin tests, 10 μM of exogenous BRs was the minimal concentration at which statistically significant changes of the cytosolic Ca(2+) were observed. In conclusion, the obtained results suggest that the plasma membrane of root cells contains the brassinosteroid-activated cation-permeable channels, which can probably be involved in rapid regulation of the K(+) homeostasis and Ca(2+) signalling.
Collapse
Affiliation(s)
- Darya Straltsova
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| | - Palina Chykun
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| | - Sunitha Subramaniam
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
| | - Arifa Sosan
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
| | - Dmitriy Kolbanov
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| | - Anatoliy Sokolik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| |
Collapse
|
66
|
Okamoto K, Ueda H, Shimada T, Tamura K, Kato T, Tasaka M, Morita MT, Hara-Nishimura I. Regulation of organ straightening and plant posture by an actin-myosin XI cytoskeleton. NATURE PLANTS 2015; 1:15031. [PMID: 27247032 DOI: 10.1038/nplants.2015.31] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/17/2015] [Indexed: 05/08/2023]
Abstract
Plants are able to bend nearly every organ in response to environmental stimuli such as gravity and light(1,2). After this first phase, the responses to stimuli are restrained by an independent mechanism, or even reversed, so that the organ will stop bending and attain its desired posture. This phenomenon of organ straightening has been called autotropism(3) and autostraightening(4) and modelled as proprioception(5). However, the machinery that drives organ straightening and where it occurs are mostly unknown. Here, we show that the straightening of inflorescence stems is regulated by an actin-myosin XI cytoskeleton in specialized immature fibre cells that are parallel to the stem and encircle it in a thin band. Arabidopsis mutants defective in myosin XI (specifically XIf and XIk) or ACTIN8 exhibit hyperbending of stems in response to gravity, an effect independent of the physical properties of the shoots. The actin-myosin XI cytoskeleton enables organs to attain their new position more rapidly than would an oscillating series of diminishing overshoots in environmental stimuli. We propose that the long actin filaments in elongating fibre cells act as a bending tensile sensor to perceive the organ's posture and trigger the straightening system.
Collapse
Affiliation(s)
- Keishi Okamoto
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takehide Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Miyo Terao Morita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
67
|
Kumar M, Pandya-Kumar N, Dam A, Haor H, Mayzlish-Gati E, Belausov E, Wininger S, Abu-Abied M, McErlean CSP, Bromhead LJ, Prandi C, Kapulnik Y, Koltai H. Arabidopsis response to low-phosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1499-510. [PMID: 25609825 PMCID: PMC4339606 DOI: 10.1093/jxb/eru513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Strigolactones (SLs) are plant hormones that regulate the plant response to phosphate (Pi) growth conditions. At least part of SL-signalling execution in roots involves MAX2-dependent effects on PIN2 polar localization in the plasma membrane (PM) and actin bundling and dynamics. We examined PIN2 expression, PIN2 PM localization, endosome trafficking, and actin bundling under low-Pi conditions: a MAX2-dependent reduction in PIN2 trafficking and polarization in the PM, reduced endosome trafficking, and increased actin-filament bundling were detected in root cells. The intracellular protein trafficking that is related to PIN proteins but unassociated with AUX1 PM localization was selectively inhibited. Exogenous supplementation of the synthetic SL GR24 to a SL-deficient mutant (max4) led to depletion of PIN2 from the PM under low-Pi conditions. Accordingly, roots of mutants in MAX2, MAX4, PIN2, TIR3, and ACTIN2 showed a reduced low-Pi response compared with the wild type, which could be restored by auxin (for all mutants) or GR24 (for all mutants except max2-1). Changes in PIN2 polarity, actin bundling, and vesicle trafficking may be involved in the response to low Pi in roots, dependent on SL/MAX2 signalling.
Collapse
Affiliation(s)
- Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | - Nirali Pandya-Kumar
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | - Anandamoy Dam
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | - Hila Haor
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | - Einav Mayzlish-Gati
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | - Smadar Wininger
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | - Mohamad Abu-Abied
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | | | - Liam J Bromhead
- School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Cristina Prandi
- Dipartimento di Chimica, Turin University, 10125 Torino, Italy
| | - Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
68
|
Jia H, Hu Y, Fan T, Li J. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Sci Rep 2015; 5:8251. [PMID: 25652660 PMCID: PMC4317700 DOI: 10.1038/srep08251] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/12/2015] [Indexed: 01/22/2023] Open
Abstract
Hydrogen sulfide (H2S) signaling has been considered a key regulator of plant developmental processes and defenses. In this study, we demonstrate that high levels of H2S inhibit auxin transport and lead to alterations in root system development. H2S inhibits auxin transport by altering the polar subcellular distribution of PIN proteins. The vesicle trafficking and distribution of the PIN proteins are an actin-dependent process. H2S changes the expression of several actin-binding proteins (ABPs) and decreases the occupancy percentage of F-actin bundles in the Arabidopsis roots. We observed the effects of H2S on F-actin in T-DNA insertion mutants of cpa, cpb and prf3, indicating that the effects of H2S on F-actin are partially removed in the mutant plants. Thus, these data imply that the ABPs act as downstream effectors of the H2S signal and thereby regulate the assembly and depolymerization of F-actin in root cells. Taken together, our data suggest that the existence of a tightly regulated intertwined signaling network between auxin, H2S and actin that controls root system development. In the proposed process, H2S plays an important role in modulating auxin transport by an actin-dependent method, which results in alterations in root development in Arabidopsis.
Collapse
Affiliation(s)
- Honglei Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin 150000, China
| | - Tingting Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
69
|
Wang P, Hussey PJ. Interactions between plant endomembrane systems and the actin cytoskeleton. FRONTIERS IN PLANT SCIENCE 2015; 6:422. [PMID: 26106403 PMCID: PMC4460326 DOI: 10.3389/fpls.2015.00422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/25/2015] [Indexed: 05/04/2023]
Abstract
Membrane trafficking, organelle movement, and morphogenesis in plant cells are mainly controlled by the actin cytoskeleton. Not all proteins that regulate the cytoskeleton and membrane dynamics in animal systems have functional homologs in plants, especially for those proteins that form the bridge between the cytoskeleton and membrane; the membrane-actin adaptors. Their nature and function is only just beginning to be elucidated and this field has been greatly enhanced by the recent identification of the NETWORKED (NET) proteins, which act as membrane-actin adaptors. In this review, we will summarize the role of the actin cytoskeleton and its regulatory proteins in their interaction with endomembrane compartments and where they potentially act as platforms for cell signaling and the coordination of other subcellular events.
Collapse
Affiliation(s)
| | - Patrick J. Hussey
- *Correspondence: Patrick J. Hussey, School of Biological and Biomedical Science, Durham University, South Road, Durham DH1 3LE, UK,
| |
Collapse
|
70
|
Saini S, Sharma I, Pati PK. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. FRONTIERS IN PLANT SCIENCE 2015; 6:950. [PMID: 26583025 PMCID: PMC4631823 DOI: 10.3389/fpls.2015.00950] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/18/2015] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a class of steroidal plant hormones that play diverse roles in plant growth and developmental processes. Recently, the easy availability of biological resources, and development of new molecular tools and approaches have provided the required impetus for deeper understanding of the processes involved in BRs biosynthesis, transport, signaling and degradation pathways. From recent studies it is also evident that BRs interact with other phytohormones such as auxin, cytokinin, ethylene, gibberellin, jasmonic acid, abscisic acid, salicylic acid and polyamine in regulating wide range of physiological and developmental processes in plants. The inputs from these studies are now being linked to the versatile roles of BRs. The present review highlights the conceptual development with regard to BR homeostasis, signaling and its crosstalk with other phytohormones. This information will assist in developing predictive models to modulate various useful traits in plants and address current challenges in agriculture.
Collapse
|
71
|
Schröder F, Lisso J, Obata T, Erban A, Maximova E, Giavalisco P, Kopka J, Fernie AR, Willmitzer L, Müssig C. Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC PLANT BIOLOGY 2014; 14:309. [PMID: 25403461 PMCID: PMC4240805 DOI: 10.1186/s12870-014-0309-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/27/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND The identification of brassinosteroid (BR) deficient and BR insensitive mutants provided conclusive evidence that BR is a potent growth-promoting phytohormone. Arabidopsis mutants are characterized by a compact rosette structure, decreased plant height and reduced root system, delayed development, and reduced fertility. Cell expansion, cell division, and multiple developmental processes depend on BR. The molecular and physiological basis of BR action is diverse. The BR signalling pathway controls the activity of transcription factors, and numerous BR responsive genes have been identified. The analysis of dwarf mutants, however, may to some extent reveal phenotypic changes that are an effect of the altered morphology and physiology. This restriction holds particularly true for the analysis of established organs such as rosette leaves. RESULTS In this study, the mode of BR action was analysed in established leaves by means of two approaches. First, an inhibitor of BR biosynthesis (brassinazole) was applied to 21-day-old wild-type plants. Secondly, BR complementation of BR deficient plants, namely CPD (constitutive photomorphogenic dwarf)-antisense and cbb1 (cabbage1) mutant plants was stopped after 21 days. BR action in established leaves is associated with stimulated cell expansion, an increase in leaf index, starch accumulation, enhanced CO2 release by the tricarboxylic acid cycle, and increased biomass production. Cell number and protein content were barely affected. CONCLUSION Previous analysis of BR promoted growth focused on genomic effects. However, the link between growth and changes in gene expression patterns barely provided clues to the physiological and metabolic basis of growth. Our study analysed comprehensive metabolic data sets of leaves with altered BR levels. The data suggest that BR promoted growth may depend on the increased provision and use of carbohydrates and energy. BR may stimulate both anabolic and catabolic pathways.
Collapse
Affiliation(s)
- Florian Schröder
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Janina Lisso
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Erban
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Eugenia Maximova
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Carsten Müssig
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
72
|
Rodríguez-Serrano M, Pazmiño DM, Sparkes I, Rochetti A, Hawes C, Romero-Puertas MC, Sandalio LM. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4783-93. [PMID: 24913628 PMCID: PMC4144765 DOI: 10.1093/jxb/eru237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23 mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·(-), whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty.
Collapse
Affiliation(s)
- M Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | - D M Pazmiño
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | - I Sparkes
- School of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - A Rochetti
- School of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - C Hawes
- School of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - M C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | - L M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| |
Collapse
|
73
|
Singh M, Gupta A, Laxmi A. Glucose control of root growth direction in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2981-93. [PMID: 24719453 PMCID: PMC4071822 DOI: 10.1093/jxb/eru146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Directional growth of roots is a complex process that is modulated by various environmental signals. This work shows that presence of glucose (Glc) in the medium also extensively modulated seedling root growth direction. Glc modulation of root growth direction was dramatically enhanced by simultaneous brassinosteroid (BR) application. Glc enhanced BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) endocytosis from plasma membrane to early endosomes. Glc-induced root deviation was highly enhanced in a PP2A-defective mutant, roots curl in naphthyl phthalamic acid 1-1 (rcn1-1) suggesting that there is a role of phosphatase in Glc-induced root-growth deviation. RCN1, therefore, acted as a link between Glc and the BR-signalling pathway. Polar auxin transport worked further downstream to BR in controlling Glc-induced root deviation response. Glc also affected other root directional responses such as root waving and coiling leading to altered root architecture. High light intensity mimicked the Glc-induced changes in root architecture that were highly reduced in Glc-signalling mutants. Thus, under natural environmental conditions, changing light flux in the environment may lead to enhanced Glc production/response and is a way to manipulate root architecture for optimized development via integrating several extrinsic and intrinsic signalling cues.
Collapse
Affiliation(s)
- Manjul Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aditi Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
74
|
Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc Natl Acad Sci U S A 2014; 111:10377-82. [PMID: 24982173 DOI: 10.1073/pnas.1401680111] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The plant hormone auxin plays a central role in plant growth and development. Auxin transport and signaling depend on actin organization. Despite its functional importance, the mechanistic link between actin filaments (F-actin) and auxin intracellular signaling remains unclear. Here, we report that the actin-organizing protein Rice Morphology Determinant (RMD), a type II formin from rice (Oryza sativa), provides a key link. Mutants lacking RMD display abnormal cell growth and altered configuration of F-actin array direction. The rmd mutants also exhibit an inhibition of auxin-mediated cell elongation, decreased polar auxin transport, altered auxin distribution gradients in root tips, and suppression of plasma membrane localization of auxin transporters O. sativa PIN-FORMED 1b (OsPIN1b) and OsPIN2 in root cells. We demonstrate that RMD is required for endocytosis, exocytosis, and auxin-mediated OsPIN2 recycling to the plasma membrane. Moreover, RMD expression is directly regulated by heterodimerized O. sativa auxin response factor 23 (OsARF23) and OsARF24, providing evidence that auxin modulates the orientation of F-actin arrays through RMD. In support of this regulatory loop, osarf23 and lines with reduced expression of both OsARF23 and OsARF24 display reduced RMD expression, disrupted F-actin organization and cell growth, less sensitivity to auxin response, and altered auxin distribution and OsPIN localization. Our findings establish RMD as a crucial component of the auxin-actin self-organizing regulatory loop from the nucleus to cytoplasm that controls rice cell growth and morphogenesis.
Collapse
|
75
|
Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D, Zemach H, Belausov E, Wininger S, Abu-Abied M, Kapulnik Y, Koltai H. Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. THE NEW PHYTOLOGIST 2014; 202:1184-1196. [PMID: 24571327 DOI: 10.1111/nph.12744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/16/2014] [Indexed: 05/08/2023]
Abstract
Strigolactones (SLs) are plant hormones that regulate shoot and root development in a MAX2-dependent manner. The mechanism underlying SLs' effects on roots is unclear. We used root hair elongation to measure root response to SLs. We examined the effects of GR24 (a synthetic, biologically active SL analog) on localization of the auxin efflux transporter PIN2, endosomal trafficking, and F-actin architecture and dynamics in the plasma membrane (PM) of epidermal cells of the primary root elongation zone in wildtype (WT) Arabidopsis and the SL-insensitive mutant max2. We also recorded the response to GR24 of trafficking (tir3), actin (der1) and PIN2 (eir1) mutants. GR24 increased polar localization of PIN2 in the PM of epidermal cells and accumulation of PIN2-containing brefeldin A (BFA) bodies, increased ARA7-labeled endosomal trafficking, reduced F-actin bundling and enhanced actin dynamics, all in a MAX2-dependent manner. Most of the der1 and tir3 mutant lines also displayed reduced sensitivity to GR24 with respect to root hair elongation. We suggest that SLs increase PIN2 polar localization, PIN2 endocytosis, endosomal trafficking, actin debundling and actin dynamics in a MAX2-dependent fashion. This enhancement might underlie the WT root's response to SLs, and suggests noncell autonomous activity of SLs in roots.
Collapse
Affiliation(s)
- Nirali Pandya-Kumar
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Rony Shema
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
- The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Einav Mayzlish-Gati
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Danny Levy
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Smadar Wininger
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Mohamad Abu-Abied
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
76
|
Roy R, Bassham DC. Root growth movements: waving and skewing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:42-7. [PMID: 24656334 DOI: 10.1016/j.plantsci.2014.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/11/2014] [Accepted: 01/22/2014] [Indexed: 05/20/2023]
Abstract
Roots anchor a plant in the soil, acquire nutrition and respond to environmental cues. Roots perform these functions using intricate movements and a variety of pathways have been implicated in mediating their growth patterns. These include endogenous genetic factors, perception of multiple environmental stimuli, signaling pathways interacting with hormonal dynamics and cellular processes of rapid cell elongation. In this review we attempt to consolidate our understanding of two specific types of root movements, waving and skewing, that arise on the surface of growth media, and how they are regulated by various genes and factors. These include crucial factors that are part of a complex nexus of processes including polar auxin transport and cytoskeletal dynamics. This knowledge can be extrapolated in the future for engineering plants with root architecture better suited for different soil and growth conditions such as abiotic stresses or even extended spaceflight. Technological innovations and interdisciplinary approaches promise to allow the tracking of root movements on a much finer scale, thus helping to expedite the discovery of more nodes in the regulation of root waving and skewing and movement in general.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Plant Sciences Institute, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
77
|
Nakashima J, Liao F, Sparks JA, Tang Y, Blancaflor EB. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:142-50. [PMID: 23952736 DOI: 10.1111/plb.12062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/24/2013] [Indexed: 05/11/2023]
Abstract
Before plants can be effectively utilised as a component of enclosed life-support systems for space exploration, it is important to understand the molecular mechanisms by which they develop in microgravity. Using the Biological Research in Canisters (BRIC) hardware on board the second to the last flight of the Space Shuttle Discovery (STS-131 mission), we studied how microgravity impacts root growth in Arabidopsis thaliana. Ground-based studies showed that the actin cytoskeleton negatively regulates root gravity responses on Earth, leading us to hypothesise that actin might also be an important modulator of root growth behaviour in space. We investigated how microgravity impacted root growth of wild type (ecotype Columbia) and a mutant (act2-3) disrupted in a root-expressed vegetative actin isoform (ACTIN2). Roots of etiolated wild-type and act2-3 seedlings grown in space skewed vigorously toward the left, which was unexpected given the reduced directional cue provided by gravity. The left-handed directional root growth in space was more pronounced in act2-3 mutants than wild type. To quantify differences in root orientation of these two genotypes in space, we developed an algorithm where single root images were converted into binary images using computational edge detection methods. Binary images were processed with Fast Fourier Transformation (FFT), and histogram and entropy were used to determine spectral distribution, such that high entropy values corresponded to roots that deviated more strongly from linear orientation whereas low entropy values represented straight roots. We found that act2-3 roots had a statistically stronger skewing/coiling response than wild-type roots, but such differences were not apparent on Earth. Ultrastructural studies revealed that newly developed cell walls of space-grown act2-3 roots were more severely disrupted compared to space-grown wild type, and ground control wild-type and act2-3 roots. Collectively, our results provide evidence that, like root gravity responses on Earth, endogenous directional growth patterns of roots in microgravity are suppressed by the actin cytoskeleton. Modulation of root growth in space by actin could be facilitated in part through its impact on cell wall architecture.
Collapse
Affiliation(s)
- J Nakashima
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | | | | | | |
Collapse
|
78
|
Guo H, Li L, Aluru M, Aluru S, Yin Y. Mechanisms and networks for brassinosteroid regulated gene expression. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:545-53. [PMID: 23993372 DOI: 10.1016/j.pbi.2013.08.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) signal through plasma membrane-localized receptor BRI1 and other components including negatively acting BIN2 kinase to regulate BES1/BZR1 family transcription factors, which controls the expression of thousands of genes for various BR responses. Recent studies demonstrated that BR regulation of gene expression involves histone-modifying enzymes and changes of chromatin structure. Genomic experiments identified a few thousand BES1/BZR1 target genes, many of which are involved in plant growth and various signaling pathways. Moreover, BES1/BZR1 interact with many transcription factors to integrate BR and other signaling pathways. Finally, in addition to regulating BES1/BZR1, BIN2 can phosphorylate and regulate the activities of more transcription factors and signaling components, providing additional inputs of BR signaling to the BR transcriptional network and points of crosstalk with different pathways.
Collapse
Affiliation(s)
- Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
79
|
Zhu Y, Zuo M, Liang Y, Jiang M, Zhang J, Scheller HV, Tan M, Zhang A. MAP65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3787-802. [PMID: 23956414 PMCID: PMC3745737 DOI: 10.1093/jxb/ert215] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brassinosteroid (BR)-induced antioxidant defence has been shown to enhance stress tolerance. In this study, the role of the maize 65 kDa microtubule-associated protein (MAP65), ZmMAP65-1a, in BR-induced antioxidant defence was investigated. Treatment with BR increased the expression of ZmMAP65-1a in maize (Zea mays) leaves and mesophyll protoplasts. Transient expression and RNA interference silencing of ZmMAP65-1a in mesophyll protoplasts further revealed that ZmMAP65-1a is required for the BR-induced increase in expression and activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX). Both exogenous and BR-induced endogenous H2O2 increased the expression of ZmMAP65-1a. Conversely, transient expression of ZmMAP65-1a in maize mesophyll protoplasts enhanced BR-induced H2O2 accumulation, while transient silencing of ZmMAP65-1a blocked the BR-induced expression of NADPH oxidase genes and inhibited BR-induced H2O2 accumulation. Inhibiting the activity and gene expression of ZmMPK5 significantly prevented the BR-induced expression of ZmMAP65-1a. Likewise, transient expression of ZmMPK5 enhanced BR-induced activities of the antioxidant defence enzymes SOD and APX in a ZmMAP65- 1a-dependent manner. ZmMPK5 directly interacted with ZmMAP65-1a in vivo and phosphorylated ZmMAP65-1a in vitro. These results suggest that BR-induced antioxidant defence in maize operates through the interaction of ZmMPK5 with ZmMAP65-1a. Furthermore, ZmMAP65-1a functions in H2O2 self-propagation via regulation of the expression of NADPH oxidase genes in BR signalling.
Collapse
Affiliation(s)
- Yuan Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingxing Zuo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yali Liang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianhua Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Henrik Vibe Scheller
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- * To whom correspondence should be addressed.
| |
Collapse
|
80
|
Hao J, Yin Y, Fei SZ. Brassinosteroid signaling network: implications on yield and stress tolerance. PLANT CELL REPORTS 2013; 32:1017-30. [PMID: 23568410 DOI: 10.1007/s00299-013-1438-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/19/2013] [Accepted: 03/25/2013] [Indexed: 05/03/2023]
Abstract
The steroidal hormone brassinosteroids (BRs) play important roles in plant growth and development. Genetic, genomic and proteomic studies in Arabidopsis have identified major BR signaling components and elucidated the signal transduction pathway from the cell surface receptor kinase BRI1 to the BES1/BZR1 family of transcription factors. BRs interact with other plant hormones in coordinating gene expression and plant growth and development. In this review, we provide an update on the latest progress in characterizing the BR signaling network and discuss its interactions with other hormone pathways in determining yield component traits and in regulating stress responses.
Collapse
|
81
|
Abstract
The brassinosteroid (BR) class of steroid hormones regulates plant development and physiology. The BR signal is transduced by a receptor kinase-mediated signal transduction pathway, which is distinct from animal steroid signalling systems. Recent studies have fully connected the BR signal transduction chain and have identified thousands of BR target genes, linking BR signalling to numerous cellular processes. Molecular links between BR and several other signalling pathways have also been identified. Here, we provide an overview of the highly integrated BR signalling network and explain how this steroid hormone functions as a master regulator of plant growth, development and metabolism.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | | |
Collapse
|
82
|
Krasylenko YA, Yemets AI, Blume YB. Plant microtubules reorganization under the indirect UV-B exposure and during UV-B-induced programmed cell death. PLANT SIGNALING & BEHAVIOR 2013; 8:e24031. [PMID: 23438586 PMCID: PMC3907430 DOI: 10.4161/psb.24031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/16/2013] [Indexed: 05/13/2023]
Abstract
The role of microtubules in cellular pathways of UV-B signaling in plants as well as in related structural cell response become into focus of few last publications. As microtubules in plant cell reorient/reorganize (become randomized, fragmented or depolymerized) in a response to direct UV-B exposure, these cytoskeletal components could be involved into UV-B signaling pathways as highly responsive players. In the current addendum, indirect UV-B-induced microtubules reorganization in cells of shielded Arabidopsis thaliana (GFP-MAP4) primary roots and the correspondence of microtubules depolymerization with the typical hallmarks of the programmed cell death in Nicotiana tabacum BY-2 (GFP-MBD) cells are discussed.
Collapse
Affiliation(s)
- Yuliya A. Krasylenko
- Department of Genomics and Molecular Biotechnology; Institute of Food Biotechnology and Genomics; National Academy of Sciences of Ukraine; Kyiv, Ukraine
| | - Alla I. Yemets
- Department of Genomics and Molecular Biotechnology; Institute of Food Biotechnology and Genomics; National Academy of Sciences of Ukraine; Kyiv, Ukraine
| | - Yaroslav B. Blume
- Department of Genomics and Molecular Biotechnology; Institute of Food Biotechnology and Genomics; National Academy of Sciences of Ukraine; Kyiv, Ukraine
| |
Collapse
|
83
|
|
84
|
Roux SJ. Root waving and skewing: unexpectedly in micro-g. BMC PLANT BIOLOGY 2012; 12:231. [PMID: 23217095 PMCID: PMC3533921 DOI: 10.1186/1471-2229-12-231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 05/11/2023]
Abstract
Gravity has major effects on both the form and overall length of root growth. Numerous papers have documented these effects (over 300 publications in the last 5 years), the most well-studied being gravitropism, which is a growth re-orientation directed by gravity toward the earth's center. Less studied effects of gravity are undulations due to the regular periodic change in the direction root tips grow, called waving, and the slanted angle of growth roots exhibit when they are growing along a nearly-vertical surface, called skewing. Although diverse studies have led to the conclusion that a gravity stimulus is needed for plant roots to show waving and skewing, the novel results just published by Paul et al. (2012) reveal that this conclusion is not correct. In studies carried out in microgravity on the International Space Station, the authors used a new imaging system to collect digital photographs of plants every six hours during 15 days of spaceflight. The imaging system allowed them to observe how roots grew when their orientation was directed not by gravity but by overhead LED lights, which roots grew away from because they are negatively phototropic. Surprisingly, the authors observed both skewing and waving in spaceflight plants, thus demonstrating that both growth phenomena were gravity independent. Touch responses and differential auxin transport would be common features of root waving and skewing at 1-g and micro-g, and the novel results of Paul et al. will focus the attention of cell and molecular biologists more on these features as they try to decipher the signaling pathways that regulate root skewing and waving.
Collapse
Affiliation(s)
- Stanley J Roux
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
85
|
Beeckman T, Friml J. Plant developmental biologists meet on stairways in Matera. Development 2012; 139:3677-82. [DOI: 10.1242/dev.080861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The third EMBO Conference on Plant Molecular Biology, which focused on ‘Plant development and environmental interactions’, was held in May 2012 in Matera, Italy. Here, we review some of the topics and themes that emerged from the various contributions; namely, steering technologies, transcriptional networks and hormonal regulation, small RNAs, cell and tissue polarity, environmental control and natural variation. We intend to provide the reader who might have missed this remarkable event with a glimpse of the recent progress made in this blossoming research field.
Collapse
Affiliation(s)
- Tom Beeckman
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Jiri Friml
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| |
Collapse
|