51
|
Subashini C, Dhanesh SB, Chen CM, Riya PA, Meera V, Divya TS, Kuruvilla R, Buttler K, James J. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep 2017; 7:42523. [PMID: 28205531 PMCID: PMC5311982 DOI: 10.1038/srep42523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
The role of Wnt5a has been extensively explored in various aspects of development but its role in cerebellar development remains elusive. Here, for the first time we unravel the expression pattern and functional significance of Wnt5a in cerebellar development using Wnt5a−/− and Nestin-Cre mediated conditional knockout mouse models. We demonstrate that loss of Wnt5a results in cerebellar hypoplasia and depletion of GABAergic and glutamatergic neurons. Besides, Purkinje cells of the mutants displayed stunted, poorly branched dendritic arbors. Furthermore, we show that the overall reduction is due to decreased radial glial and granule neuron progenitor cell proliferation. At molecular level we provide evidence for non-canonical mode of action of Wnt5a and its regulation over genes associated with progenitor proliferation. Altogether our findings imply that Wnt5a signaling is a crucial regulator of cerebellar development and would aid in better understanding of cerebellar disease pathogenesis caused due to deregulation of Wnt signaling.
Collapse
Affiliation(s)
- Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Chih-Ming Chen
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Vadakkath Meera
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Thulasi Sheela Divya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Kerstin Buttler
- Department of Anatomy and Cell Biology, University Medicine Göttingen, 37075-Göttingen, Germany
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| |
Collapse
|
52
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
53
|
Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct 2016; 222:2251-2270. [PMID: 27878595 DOI: 10.1007/s00429-016-1340-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.
Collapse
|
54
|
Joyner AL. From Cloning Neural Development Genes to Functional Studies in Mice, 30 Years of Advancements. Curr Top Dev Biol 2016; 116:501-15. [PMID: 26970637 DOI: 10.1016/bs.ctdb.2015.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The invention of new mouse molecular genetics techniques, initiated in the 1980s, has repeatedly expanded our ability to tackle exciting developmental biology problems. The brain is the most complex organ, and as such the more sophisticated the molecular genetics technique, the more impact they have on uncovering new insights into how our brain functions. I provide a general time line for the introduction of new techniques over the past 30 years and give examples of new discoveries in the neural development field that emanated from them. I include a look to what the future holds and argue that we are at the dawn of a very exciting age for young scientists interested in studying how the nervous system is constructed and functions with such precision.
Collapse
Affiliation(s)
- Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, USA.
| |
Collapse
|
55
|
Yan M, Wang X, Deng J, Wang L, Cui Z, Deng J, Shi Z. DNA methylation and cerebellar development, the regulation of Notch and Shh pathway. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/11250003.2015.1126651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
56
|
De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 2016; 73:291-303. [PMID: 26499980 PMCID: PMC11108499 DOI: 10.1007/s00018-015-2065-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023]
Abstract
The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Annarita De Luca
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
57
|
Borodinsky LN, Belgacem YH. Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification. J Chem Neuroanat 2015; 73:3-8. [PMID: 26686293 DOI: 10.1016/j.jchemneu.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
Abstract
Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States.
| | - Yesser H Belgacem
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States
| |
Collapse
|
58
|
De Luca A, Parmigiani E, Tosatto G, Martire S, Hoshino M, Buffo A, Leto K, Rossi F. Exogenous Sonic hedgehog modulates the pool of GABAergic interneurons during cerebellar development. THE CEREBELLUM 2015; 14:72-85. [PMID: 25245619 DOI: 10.1007/s12311-014-0596-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
All cerebellar GABAergic interneurons were derived from a common pool of precursor cells residing in the embryonic ventricular zone (VZ) and migrating in the prospective white matter (PWM) after birth, where both intrinsic and extrinsic factors contribute to regulate their amplification. Among the environmental factors, we focused on Sonic hedgehog (Shh), a morphogen well known to regulate neural progenitor cell proliferation. We asked if and how exogenous Shh treatment affects the lineage of cerebellar GABAergic interneurons. To address these issues, exogenous Shh was administered to embryonic and postnatal organotypic slices. We found that Shh is able to expand the pool of interneuron progenitors residing in the embryonic epithelium and in the postnatal PWM. In particular, Shh signalling pathway was highly mitogenic at early developmental stages of interneuron production, whereas its effect decreased after the first postnatal week. Gene expression analysis of sorted cells and in situ hybridization further showed that immature interneurons express both the Shh receptor patched and the Shh target gene Gli1. Thus, within the interneuron lineage, Shh might exert regulatory functions also in postmitotic cells. On the whole, our data enlighten the role of Shh during cerebellar maturation and further broaden our knowledge on the amplification mechanisms of the interneuron progenitor pool.
Collapse
Affiliation(s)
- A De Luca
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Sotelo C. Molecular layer interneurons of the cerebellum: developmental and morphological aspects. CEREBELLUM (LONDON, ENGLAND) 2015; 14:534-56. [PMID: 25599913 DOI: 10.1007/s12311-015-0648-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the past 25 years, our knowledge on the development of basket and stellate cells (molecular layer interneurons [MLIs]) has completely changed, not only regarding their origin from the ventricular zone, corresponding to the primitive cerebellar neuroepithelium, instead of the external granular layer, but above all by providing an almost complete account of the genetic regulations (transcription factors and other genes) involved in their differentiation and synaptogenesis. Moreover, it has been shown that MLIs' precursors (dividing neuroblasts) and not young postmitotic neurons, as in other germinal neuroepithelia, leave the germinative zone and migrate all along a complex and lengthy path throughout the presumptive cerebellar white matter, which provides suitable niches exerting epigenetic influences on their ultimate neuronal identities. Recent studies carried out on the anatomical-functional properties of adult MLIs emphasize the importance of these interneurons in regulating PC inhibition, and point out the crucial role played by electrical synaptic transmission between MLIs as well as ephaptic interactions between them and Purkinje cells at the pinceaux level, in the regulation of this inhibition.
Collapse
Affiliation(s)
- Constantino Sotelo
- INSERM, UMRS_U968, Institut de la Vision, 17 Rue Moreau, Paris, 75012, France.
- Institut de la Vision, Sorbonne Université, UPMC Univ Paris 06, Paris, 75012, France.
- CNRS, UMR_7210, Paris, 75012, France.
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández (UMH), Avenida Ramón y Cajal s/n, 03550, San Juan de Alicante, Spain.
| |
Collapse
|
60
|
Fleming J, Chiang C. The Purkinje neuron: A central orchestrator of cerebellar neurogenesis. NEUROGENESIS 2015; 2:e1025940. [PMID: 27604220 PMCID: PMC4973588 DOI: 10.1080/23262133.2015.1025940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/29/2015] [Accepted: 03/02/2015] [Indexed: 11/02/2022]
Abstract
Within the cyto-architecture of the brain is an often complex, but balanced, neuronal circuitry, the successful construction of which relies on the coordinated generation of functionally opposed neurons. Indeed, deregulated production of excitatory/inhibitory interneurons can greatly disrupt the integrity of excitatory/inhibitory neuronal transmission, which is a hallmark of neurodevelopmental disorders such as autism. Recent work has demonstrated that the Purkinje neuron, the central integrator of signaling within the cerebellar system, acts during development to ensure that neurogenesis occurring in spatially opposed domains reaches completion by transmitting the Sonic hedgehog ligand bi-directionally. In addition to a classic role in driving granule cell precursor proliferation, we now know that Purkinje neuron-derived Sonic hedgehog is simultaneously disseminated to the neonatal white matter. Within this neurogenic niche a lineage of Shh-responding stem and progenitor cells expand pools of GABAergic interneuron and astrocyte precursors. These recent findings advance our understanding of how Purkinje neurons function dynamically to oversee completion of a balanced cerebellar circuit.
Collapse
Affiliation(s)
- Jonathan Fleming
- Department of Cell and Developmental Biology; Vanderbilt University ; Nashville TN USA
| | - Chin Chiang
- Department of Cell and Developmental Biology; Vanderbilt University ; Nashville TN USA
| |
Collapse
|
61
|
Optimization of cerebellar purkinje neuron cultures and development of a plasmid-based method for purkinje neuron-specific, miRNA-mediated protein knockdown. Methods Cell Biol 2015; 131:177-97. [PMID: 26794514 DOI: 10.1016/bs.mcb.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a simple and efficient method to knock down proteins specifically in Purkinje neurons (PN) present in mixed mouse primary cerebellar cultures. This method utilizes the introduction via nucleofection of a plasmid encoding a specific miRNA downstream of the L7/Pcp2 promoter, which drives PN-specific expression. As proof-of-principle, we used this plasmid to knock down the motor protein myosin Va, which is required for the targeting of smooth endoplasmic reticulum (ER) into PN spines. Consistent with effective knockdown, transfected PNs robustly phenocopied PNs from dilute-lethal (myosin Va-null) mice with regard to the ER targeting defect. Importantly, our plasmid-based approach is less challenging technically and more specific to PNs than several alternative methods (e.g., biolistic- and lentiviral-based introduction of siRNAs). We also present a number of improvements for generating mixed cerebellar cultures that shorten the procedure and improve the total yield of PNs, and of transfected PNs, considerably. Finally, we present a method to rescue cerebellar cultures that develop large cell aggregates, a common problem that otherwise precludes the further use of the culture.
Collapse
|
62
|
The Role of Hedgehog Signaling in Tumor Induced Bone Disease. Cancers (Basel) 2015; 7:1658-83. [PMID: 26343726 PMCID: PMC4586789 DOI: 10.3390/cancers7030856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.
Collapse
|
63
|
Heterogeneity and Bipotency of Astroglial-Like Cerebellar Progenitors along the Interneuron and Glial Lineages. J Neurosci 2015; 35:7388-402. [PMID: 25972168 DOI: 10.1523/jneurosci.5255-14.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cerebellar GABAergic interneurons in mouse comprise multiple subsets of morphologically and neurochemically distinct phenotypes located at strategic nodes of cerebellar local circuits. These cells are produced by common progenitors deriving from the ventricular epithelium during embryogenesis and from the prospective white matter (PWM) during postnatal development. However, it is not clear whether these progenitors are also shared by other cerebellar lineages and whether germinative sites different from the PWM originate inhibitory interneurons. Indeed, the postnatal cerebellum hosts another germinal site along the Purkinje cell layer (PCL), in which Bergmann glia are generated up to first the postnatal weeks, which was proposed to be neurogenic. Both PCL and PWM comprise precursors displaying traits of juvenile astroglia and neural stem cell markers. First, we examine the proliferative and fate potential of these niches, showing that different proliferative dynamics regulate progenitor amplification at these sites. In addition, PCL and PWM differ in the generated progeny. GABAergic interneurons are produced exclusively by PWM astroglial-like progenitors, whereas PCL precursors produce only astrocytes. Finally, through in vitro, ex vivo, and in vivo clonal analyses we provide evidence that the postnatal PWM hosts a bipotent progenitor that gives rise to both interneurons and white matter astrocytes.
Collapse
|
64
|
Molofsky AV, Deneen B. Astrocyte development: A Guide for the Perplexed. Glia 2015; 63:1320-9. [PMID: 25963996 DOI: 10.1002/glia.22836] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023]
Abstract
Astrocytes are the predominant cell type in the brain and perform key functions vital to CNS physiology, including blood brain barrier formation and maintenance, synaptogenesis, neurotransmission, and metabolic regulation. To fully understand the contributions of astrocytes to brain function, it will be important to bridge the existing gap between development and physiology. In this review, we provide an overview of Astrocyte development, including recent insights into molecular mechanisms of astrocyte specification, regional patterning and proliferation. This developmental perspective is complemented with recent findings that describe the functional maturation of astrocytes and their prospective diversity. Future progress in understanding Astrocyte development will depend on the development of astrocyte- stage specific markers and tools for manipulating astrocytes without affecting neuron production. Ultimately, a mechanistic approach to Astrocyte development will be crucial to developing new treatments for the many neurodevelopmental, neurodegenerative, neuroimmune, and neoplastic diseases involving astrocyte dysfunction.
Collapse
Affiliation(s)
- Anna Victoria Molofsky
- Department of Psychiatry, University of California-San Francisco, San Francisco, California
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
65
|
The expression and distributions of ANP32A in the developing brain. BIOMED RESEARCH INTERNATIONAL 2015; 2015:207347. [PMID: 25866766 PMCID: PMC4383345 DOI: 10.1155/2015/207347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/25/2022]
Abstract
Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A (ANP32A), has multiple functions involved in neuritogenesis, transcriptional regulation, and apoptosis. However, whether ANP32A has an effect on the mammalian developing brain is still in question. In this study, it was shown that brain was the organ that expressed the most abundant ANP32A by human multiple tissue expression (MTE) array. The distribution of ANP32A in the different adult brain areas was diverse dramatically, with high expression in cerebellum, temporal lobe, and cerebral cortex and with low expression in pons, medulla oblongata, and spinal cord. The expression of ANP32A was higher in the adult brain than in the fetal brain of not only humans but also mice in a time-dependent manner. ANP32A signals were dispersed accordantly in embryonic mouse brain. However, ANP32A was abundant in the granular layer of the cerebellum and the cerebral cortex when the mice were growing up, as well as in the Purkinje cells of the cerebellum. The variation of expression levels and distribution of ANP32A in the developing brain would imply that ANP32A may play an important role in mammalian brain development, especially in the differentiation and function of neurons in the cerebellum and the cerebral cortex.
Collapse
|
66
|
Hamling KR, Tobias ZJ, Weissman TA. Mapping the development of cerebellar Purkinje cells in zebrafish. Dev Neurobiol 2015; 75:1174-88. [DOI: 10.1002/dneu.22275] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Kyla R. Hamling
- Department of Biology; Lewis & Clark College; Portland Oregon 97219
| | | | | |
Collapse
|
67
|
Butts T, Green MJ, Wingate RJT. Development of the cerebellum: simple steps to make a 'little brain'. Development 2014; 141:4031-41. [PMID: 25336734 DOI: 10.1242/dev.106559] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is a pre-eminent model for the study of neurogenesis and circuit assembly. Increasing interest in the cerebellum as a participant in higher cognitive processes and as a locus for a range of disorders and diseases make this simple yet elusive structure an important model in a number of fields. In recent years, our understanding of some of the more familiar aspects of cerebellar growth, such as its territorial allocation and the origin of its various cell types, has undergone major recalibration. Furthermore, owing to its stereotyped circuitry across a range of species, insights from a variety of species have contributed to an increasingly rich picture of how this system develops. Here, we review these recent advances and explore three distinct aspects of cerebellar development - allocation of the cerebellar anlage, the significance of transit amplification and the generation of neuronal diversity - each defined by distinct regulatory mechanisms and each with special significance for health and disease.
Collapse
Affiliation(s)
- Thomas Butts
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Mary J Green
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| |
Collapse
|
68
|
Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014; 141:3445-57. [PMID: 25183867 DOI: 10.1242/dev.083691] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
69
|
Sonic hedgehog signaling in the postnatal brain. Semin Cell Dev Biol 2014; 33:105-11. [PMID: 24862855 DOI: 10.1016/j.semcdb.2014.05.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 12/27/2022]
Abstract
Sonic hedgehog (Shh) is a pleiotropic factor in the developing central nervous system (CNS), driving proliferation, specification, and axonal targeting in multiple sites within the forebrain, hindbrain, and spinal cord. Studies in embryonic CNS have shown how gradients of this morphogen are translated by neuroepithelial precursors to determine the types of neurons and glial cells they produce [1,2]. Shh also has a well-characterized role as a mitogen for specific progenitor cell types in neural development [3,4]. As we begin to appreciate that Shh continues to act in the adult brain, a central question is what functional role this ligand plays when major morphogenetic and proliferative processes are no longer in operation. A second fundamental question is whether similar signaling mechanisms operate in embryonic and adult CNS. In the two major germinal zones of the adult brain, Shh signaling modulates the self-renewal and specification of astrocyte-like primary progenitors, frequently referred to as neural stem cells (NSCs). It also may regulate the response of the mature brain to injury, as Shh signaling has been variously proposed to enhance or inhibit the development of a reactive astrocyte phenotype. The identity of cells producing the Shh ligand, and the conditions that trigger its release, are also areas of growing interest; both germinal zones in the adult brain contain Shh-responsive cells but do not autonomously produce this ligand. Here, we review recent findings revealing the function of this fascinating pathway in the postnatal and adult brain, and highlight ongoing areas of investigation into its actions long past the time when it shapes the developing brain.
Collapse
|
70
|
Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci 2014; 34:4786-800. [PMID: 24695699 DOI: 10.1523/jneurosci.2722-13.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.
Collapse
|