51
|
Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sci 2022; 298:120522. [PMID: 35367244 DOI: 10.1016/j.lfs.2022.120522] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/02/2023]
Abstract
Lipid droplets (LD) are not just lipid stores. They are now recognized as highly dynamic organelles, having a life cycle that includes biogenesis, growth, steady-state, transport, and catabolism. Importantly, LD exhibit different features in terms of size, number, lipid composition, proteins, and interaction with other organelles, and all these features exert an impact on cellular homeostasis. The imbalance of LD function causes non-alcoholic fatty liver disease (NAFLD). Studies show that exercise attenuates NAFLD by decreasing LD content; however, reports show metabolic benefits without changes in LD amount (intrahepatic triglyceride levels) in NAFLD. Due to the multiple effects of exercise in LD features, we think that these metabolic benefits occur through changes in LD features in NAFLD, rather than only the reduction in content. Exercise increases energy mobilization and utilization from storages such as LD, and is one of the non-pharmacological treatments against NAFLD. Therefore, exercise modification of LD could be a target for NAFLD treatment. Here, we review the most up-to-date literature on this topic, and focus on recent findings showing that LD features could play an important role in the severity of NAFLD.
Collapse
Affiliation(s)
- Francisco Pino-de la Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
52
|
Integrating adipocyte insulin signaling and metabolism in the multi-omics era. Trends Biochem Sci 2022; 47:531-546. [PMID: 35304047 DOI: 10.1016/j.tibs.2022.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Insulin stimulates glucose uptake into adipocytes via mTORC2/AKT signaling and GLUT4 translocation and directs glucose carbons into glycolysis, glycerol for TAG synthesis, and de novo lipogenesis. Adipocyte insulin resistance is an early indicator of type 2 diabetes in obesity, a worldwide health crisis. Thus, understanding the interplay between insulin signaling and central carbon metabolism pathways that maintains adipocyte function, blood glucose levels, and metabolic homeostasis is critical. While classically viewed through the lens of individual enzyme-substrate interactions, advances in mass spectrometry are beginning to illuminate adipocyte signaling and metabolic networks on an unprecedented scale, yet this is just the tip of the iceberg. Here, we review how 'omics approaches help to elucidate adipocyte insulin action in cellular time and space.
Collapse
|
53
|
Dionne U, Gingras AC. Proximity-Dependent Biotinylation Approaches to Explore the Dynamic Compartmentalized Proteome. Front Mol Biosci 2022; 9:852911. [PMID: 35309513 PMCID: PMC8930824 DOI: 10.3389/fmolb.2022.852911] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, proximity-dependent biotinylation approaches, including BioID, APEX, and their derivatives, have been widely used to define the compositions of organelles and other structures in cultured cells and model organisms. The associations between specific proteins and given compartments are regulated by several post-translational modifications (PTMs); however, these effects have not been systematically investigated using proximity proteomics. Here, we discuss the progress made in this field and how proximity-dependent biotinylation strategies could elucidate the contributions of PTMs, such as phosphorylation, to the compartmentalization of proteins.
Collapse
Affiliation(s)
- Ugo Dionne
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Anne-Claude Gingras,
| |
Collapse
|
54
|
Stocks B, Gonzalez-Franquesa A, Borg ML, Björnholm M, Niu L, Zierath JR, Deshmukh AS. Integrated Liver and Plasma Proteomics in Obese Mice Reveals Complex Metabolic Regulation. Mol Cell Proteomics 2022; 21:100207. [PMID: 35093608 PMCID: PMC8928073 DOI: 10.1016/j.mcpro.2022.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/23/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity leads to the development of nonalcoholic fatty liver disease (NAFLD) and associated alterations to the plasma proteome. To elucidate the underlying changes associated with obesity, we performed liquid chromatography-tandem mass spectrometry in the liver and plasma of obese leptin-deficient ob/ob mice and integrated these data with publicly available transcriptomic and proteomic datasets of obesity and metabolic diseases in preclinical and clinical cohorts. We quantified 7173 and 555 proteins in the liver and plasma proteomes, respectively. The abundance of proteins related to fatty acid metabolism were increased, alongside peroxisomal proliferation in ob/ob liver. Putatively secreted proteins and the secretory machinery were also dysregulated in the liver, which was mirrored by a substantial alteration of the plasma proteome. Greater than 50% of the plasma proteins were differentially regulated, including NAFLD biomarkers, lipoproteins, the 20S proteasome, and the complement and coagulation cascades of the immune system. Integration of the liver and plasma proteomes identified proteins that were concomitantly regulated in the liver and plasma in obesity, suggesting that the systemic abundance of these plasma proteins is regulated by secretion from the liver. Many of these proteins are systemically regulated during type 2 diabetes and/or NAFLD in humans, indicating the clinical importance of liver-plasma cross talk and the relevance of our investigations in ob/ob mice. Together, these analyses yield a comprehensive insight into obesity and provide an extensive resource for obesity research in a prevailing model organism.
Collapse
Affiliation(s)
- Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Melissa L Borg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
55
|
Analysis of protein phosphorylation using Phos-tag gels. J Proteomics 2022; 259:104558. [DOI: 10.1016/j.jprot.2022.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
|
56
|
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol 2022; 3:201-219. [PMID: 35360891 PMCID: PMC8826509 DOI: 10.1039/d1cb00190f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Specific post-translational modification (PTM) states of a protein affect its property and function; understanding their dynamics in cells would provide deep insight into diverse signaling pathways and biological processes. However, it is not trivial to visualize post-translational modifications in a protein- and site-specific manner, especially in a living-cell context. Herein, we review recent advances in the development of molecular imaging tools to detect diverse classes of post-translational proteoforms in individual cells, and their applications in studying precise roles of PTMs in regulating the function of cellular proteins.
Collapse
Affiliation(s)
- Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Benya Lakkanasirorat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
57
|
Mejhert N, Gabriel KR, Frendo-Cumbo S, Krahmer N, Song J, Kuruvilla L, Chitraju C, Boland S, Jang DK, von Grotthuss M, Costanzo MC, Rydén M, Olzmann JA, Flannick J, Burtt NP, Farese RV, Walther TC. The Lipid Droplet Knowledge Portal: A resource for systematic analyses of lipid droplet biology. Dev Cell 2022; 57:387-397.e4. [PMID: 35134345 PMCID: PMC9129885 DOI: 10.1016/j.devcel.2022.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
Abstract
Lipid droplets (LDs) are organelles of cellular lipid storage with fundamental roles in energy metabolism and cell membrane homeostasis. There has been an explosion of research into the biology of LDs, in part due to their relevance in diseases of lipid storage, such as atherosclerosis, obesity, type 2 diabetes, and hepatic steatosis. Consequently, there is an increasing need for a resource that combines datasets from systematic analyses of LD biology. Here, we integrate high-confidence, systematically generated human, mouse, and fly data from studies on LDs in the framework of an online platform named the "Lipid Droplet Knowledge Portal" (https://lipiddroplet.org/). This scalable and interactive portal includes comprehensive datasets, across a variety of cell types, for LD biology, including transcriptional profiles of induced lipid storage, organellar proteomics, genome-wide screen phenotypes, and ties to human genetics. This resource is a powerful platform that can be utilized to identify determinants of lipid storage.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine (H7), Karolinska Institutet, Huddinge, 141 86 Stockholm, Sweden
| | - Katlyn R Gabriel
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, Huddinge, 141 86 Stockholm, Sweden
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jiunn Song
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leena Kuruvilla
- Primary Pharmacology Group, Discovery Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Chandramohan Chitraju
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Boland
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dong-Keun Jang
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marcin von Grotthuss
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Maria C Costanzo
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Huddinge, 141 86 Stockholm, Sweden
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center on the Causes and Prevention of Cardiovascular Disease (CAP-CVD), Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center on the Causes and Prevention of Cardiovascular Disease (CAP-CVD), Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
58
|
Liu Y. A peptidoform based proteomic strategy for studying functions of post-translational modifications. Proteomics 2022; 22:e2100316. [PMID: 34878717 PMCID: PMC8959388 DOI: 10.1002/pmic.202100316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
Protein post-translational modifications (PTMs) generate an enormous, but as yet undetermined, expansion of the produced proteoforms. In this Viewpoint, we firstly reviewed the concepts of proteoform and peptidoform. We show that many of the current PTM biological investigation and annotation studies largely follow a PTM site-specific rather than proteoform-specific approach. We further illustrate a potentially useful matching strategy in which a particular "modified peptidoform" is matched to the corresponding "unmodified peptidoform" as a reference for the quantitative analysis between samples and conditions. We suggest this strategy has the potential to provide more directly relevant information to learn the PTM site-specific biological functions. Accordingly, we advocate for the wider use of the nomenclature "peptidoform" in future bottom-up proteomic studies.
Collapse
Affiliation(s)
- Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA,Department of Pharmacology, Yale University, School of Medicine, New Haven, CT 06520, USA,Corresponding author:
| |
Collapse
|
59
|
Caliskan ÖS, Massacci G, Krahmer N, Sacco F. Phosphoproteomics and Organelle Proteomics in Pancreatic Islets. Methods Mol Biol 2022; 2456:123-140. [PMID: 35612739 DOI: 10.1007/978-1-0716-2124-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the recent years, mass spectrometry (MS)-based proteomics has undergone dramatic advances in sample preparation, instrumentation, and computational methods. Here, we describe in detail, how a workflow quantifies global protein phosphorylation in pancreatic islets and characterizes intracellular organelle composition on protein level by MS-based proteomics.
Collapse
Affiliation(s)
- Özüm Sehnaz Caliskan
- Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Giorgia Massacci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Natalie Krahmer
- Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
60
|
Olarte MJ, Swanson JMJ, Walther TC, Farese RV. The CYTOLD and ERTOLD pathways for lipid droplet-protein targeting. Trends Biochem Sci 2022; 47:39-51. [PMID: 34583871 PMCID: PMC8688270 DOI: 10.1016/j.tibs.2021.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023]
Abstract
Lipid droplets (LDs) are the main organelles for lipid storage, and their surfaces contain unique proteins with diverse functions, including those that facilitate the deposition and mobilization of LD lipids. Among organelles, LDs have an unusual structure with an organic, hydrophobic oil phase covered by a phospholipid monolayer. The unique properties of LD monolayer surfaces require proteins to localize to LDs by distinct mechanisms. Here we review the two pathways known to mediate direct LD protein localization: the CYTOLD pathway mediates protein targeting from the cytosol toLDs, and the ERTOLD pathway functions in protein targeting from the endoplasmic reticulum toLDs. We describe the emerging principles for each targeting pathway in animal cells and highlight open questions in the field.
Collapse
Affiliation(s)
- Maria-Jesus Olarte
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02124, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02124, USA.
| |
Collapse
|
61
|
Elzek MAW, Christopher JA, Breckels LM, Lilley KS. Localization of Organelle Proteins by Isotope Tagging: Current status and potential applications in drug discovery research. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:57-67. [PMID: 34906326 DOI: 10.1016/j.ddtec.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Spatial proteomics has provided important insights into the relationship between protein function and subcellular location. Localization of Organelle Proteins by Isotope Tagging (LOPIT) and its variants are proteome-wide techniques, not matched in scale by microscopy-based or proximity tagging-based techniques, allowing holistic mapping of protein subcellular location and re-localization events downstream of cellular perturbations. LOPIT can be a powerful and versatile tool in drug discovery for unlocking important information on disease pathophysiology, drug mechanism of action, and off-target toxicity screenings. Here, we discuss technical concepts of LOPIT with its potential applications in drug discovery and development research.
Collapse
Affiliation(s)
- Mohamed A W Elzek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Josie A Christopher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom.
| |
Collapse
|
62
|
Cabrera-Reyes F, Parra-Ruiz C, Yuseff MI, Zanlungo S. Alterations in Lysosome Homeostasis in Lipid-Related Disorders: Impact on Metabolic Tissues and Immune Cells. Front Cell Dev Biol 2021; 9:790568. [PMID: 34957117 PMCID: PMC8703004 DOI: 10.3389/fcell.2021.790568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.
Collapse
Affiliation(s)
- Fernanda Cabrera-Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
63
|
Martinez-Val A, Bekker-Jensen DB, Steigerwald S, Koenig C, Østergaard O, Mehta A, Tran T, Sikorski K, Torres-Vega E, Kwasniewicz E, Brynjólfsdóttir SH, Frankel LB, Kjøbsted R, Krogh N, Lundby A, Bekker-Jensen S, Lund-Johansen F, Olsen JV. Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. Nat Commun 2021; 12:7113. [PMID: 34876567 PMCID: PMC8651693 DOI: 10.1038/s41467-021-27398-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dynamic change in subcellular localization of signaling proteins is a general concept that eukaryotic cells evolved for eliciting a coordinated response to stimuli. Mass spectrometry-based proteomics in combination with subcellular fractionation can provide comprehensive maps of spatio-temporal regulation of protein networks in cells, but involves laborious workflows that does not cover the phospho-proteome level. Here we present a high-throughput workflow based on sequential cell fractionation to profile the global proteome and phospho-proteome dynamics across six distinct subcellular fractions. We benchmark the workflow by studying spatio-temporal EGFR phospho-signaling dynamics in vitro in HeLa cells and in vivo in mouse tissues. Finally, we investigate the spatio-temporal stress signaling, revealing cellular relocation of ribosomal proteins in response to hypertonicity and muscle contraction. Proteomics data generated in this study can be explored through https://SpatialProteoDynamics.github.io .
Collapse
Affiliation(s)
- Ana Martinez-Val
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte B Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Evosep Systems, Odense, Denmark
| | - Sophia Steigerwald
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany
| | - Claire Koenig
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adi Mehta
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Postboks 4950, Nydalen, 0424, Oslo, Norway
| | - Trung Tran
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Postboks 4950, Nydalen, 0424, Oslo, Norway
| | - Krzysztof Sikorski
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Postboks 4950, Nydalen, 0424, Oslo, Norway
| | - Estefanía Torres-Vega
- Cardiac Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ewa Kwasniewicz
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lisa B Frankel
- Danish Cancer Society, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Cardiac Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Postboks 4950, Nydalen, 0424, Oslo, Norway.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
64
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
65
|
Wang Z, Wang D, Jiang K, Guo Y, Li Z, Jiang R, Han R, Li G, Tian Y, Li H, Kang X, Liu X. A Comprehensive Proteome and Acetyl-Proteome Atlas Reveals Molecular Mechanisms Adapting to the Physiological Changes From Pre-laying to Peak-Laying Stage in Liver of Hens ( Gallus gallus). Front Vet Sci 2021; 8:700669. [PMID: 34746273 PMCID: PMC8566343 DOI: 10.3389/fvets.2021.700669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023] Open
Abstract
Along with sexual maturity, the liver undergoes numerous metabolic processes to adapt the physiological changes associated with egg-laying in hens. However, mechanisms regulating the processes were unclear. In this study, comparative hepatic proteome and acetyl-proteome between pre- and peak-laying hens were performed. The results showed that the upregulated proteins were mainly related to lipid and protein biosynthesis, while the downregulated proteins were mainly involved in pyruvate metabolism and were capable of inhibiting gluconeogenesis and lactate synthesis in peak-laying hens compared with that in pre-laying hens. With unchanged expression level, the significant acetylated proteins were largely functioned on activation of polyunsaturated fatty acid oxidation in peroxisome, while the significant deacetylated proteins were principally used to elevate medium and short fatty acid oxidation in mitochondria and oxidative phosphorylation. Most of the proteins which involved in gluconeogenesis, lipid transport, and detoxification were influenced by both protein expression and acetylation. Taken overall, a novel mechanism wherein an alternate source of acetyl coenzyme A was produced by activation of FA oxidation and pyruvate metabolism to meet the increased energy demand and lipid synthesis in liver of laying hens was uncovered. This study provides new insights into molecular mechanism of adaptation to physiological changes in liver of laying hens.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Keren Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| |
Collapse
|
66
|
Iannetta AA, Minton NE, Uitenbroek AA, Little JL, Stanton CR, Kristich CJ, Hicks LM. IreK-Mediated, Cell Wall-Protective Phosphorylation in Enterococcus faecalis. J Proteome Res 2021; 20:5131-5144. [PMID: 34672600 PMCID: PMC10037947 DOI: 10.1021/acs.jproteome.1c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Enterococcus faecalis is a Gram-positive bacterium that is a major cause of hospital-acquired infections due, in part, to its intrinsic resistance to cell wall-active antimicrobials. One critical determinant of this resistance is the transmembrane kinase IreK, which belongs to the penicillin-binding protein and serine/threonine kinase-associated kinase family of bacterial signaling proteins involved with the regulation of cell wall homeostasis. The activity of IreK is enhanced in response to cell wall stress, but direct substrates of IreK phosphorylation, leading to antimicrobial resistance, are largely unknown. To better understand stress-modulated phosphorylation events contributing to antimicrobial resistance, wild type E. faecalis cells treated with cell wall-active antimicrobials, chlorhexidine or ceftriaxone, were examined via phosphoproteomics. Among the most prominent changes was increased phosphorylation of divisome components after both treatments, suggesting that E. faecalis modulates cell division in response to cell wall stress. Phosphorylation mediated by IreK was then determined via a similar analysis with a E. faecalis ΔireK mutant strain, revealing potential IreK substrates involved with the regulation of peptidoglycan biosynthesis and within the E. faecalis CroS/R two-component system, another signal transduction pathway that promotes antimicrobial resistance. These results reveal critical insights into the biological functions of IreK.
Collapse
Affiliation(s)
- Anthony A. Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicole E. Minton
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexis A. Uitenbroek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jaime L. Little
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Caroline R. Stanton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
67
|
Tong X, Stein R. Lipid Droplets Protect Human β-Cells From Lipotoxicity-Induced Stress and Cell Identity Changes. Diabetes 2021; 70:2595-2607. [PMID: 34433630 PMCID: PMC8564404 DOI: 10.2337/db21-0261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Free fatty acids (FFAs) are often stored in lipid droplet (LD) depots for eventual metabolic and/or synthetic use in many cell types, such a muscle, liver, and fat. In pancreatic islets, overt LD accumulation was detected in humans but not mice. LD buildup in islets was principally observed after roughly 11 years of age, increasing throughout adulthood under physiologic conditions, and also enriched in type 2 diabetes. To obtain insight into the role of LDs in human islet β-cell function, the levels of a key LD scaffold protein, perilipin 2 (PLIN2), were manipulated by lentiviral-mediated knockdown (KD) or overexpression (OE) in EndoCβH2-Cre cells, a human cell line with adult islet β-like properties. Glucose-stimulated insulin secretion was blunted in PLIN2KD cells and improved in PLIN2OE cells. An unbiased transcriptomic analysis revealed that limiting LD formation induced effectors of endoplasmic reticulum (ER) stress that compromised the expression of critical β-cell function and identity genes. These changes were essentially reversed by PLIN2OE or using the ER stress inhibitor, tauroursodeoxycholic acid. These results strongly suggest that LDs are essential for adult human islet β-cell activity by preserving FFA homeostasis.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
68
|
Lyu Z, Genereux JC. Methodologies for Measuring Protein Trafficking across Cellular Membranes. Chempluschem 2021; 86:1397-1415. [PMID: 34636167 DOI: 10.1002/cplu.202100304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Nearly all proteins are synthesized in the cytosol. The majority of this proteome must be trafficked elsewhere, such as to membranes, to subcellular compartments, or outside of the cell. Proper trafficking of nascent protein is necessary for protein folding, maturation, quality control and cellular and organismal health. To better understand cellular biology, molecular and chemical technologies to properly characterize protein trafficking (and mistrafficking) have been developed and applied. Herein, we take a biochemical perspective to review technologies that enable spatial and temporal measurement of protein distribution, focusing on both the most widely adopted methodologies and exciting emerging approaches.
Collapse
Affiliation(s)
- Ziqi Lyu
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521, Riverside, CA, USA
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521, Riverside, CA, USA
| |
Collapse
|
69
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
70
|
Wang S, Zhang C, Li M, Zhao C, Zheng Y. A System-Wide Spatiotemporal Characterization of ErbB Receptor Complexes by Subcellular Fractionation Integrated Quantitative Mass Spectrometry. Anal Chem 2021; 93:7933-7941. [PMID: 34033713 DOI: 10.1021/acs.analchem.1c00651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Precise spatiotemporal regulation of protein complex assembly is essential for cells to achieve a meaningful rely of information flow via intracellular signaling networks in response to extracellular cues, whose disruption would lead to disease. Although various attempts have been made for spatial and/or temporal analysis of protein complexes, it is still a challenge to track cell-wide dynamics of a particular protein complex under physiological conditions. Here we describe a workflow that combines endogenous expression of tagged proteins, organelle marker distribution-directed subcellular fractionation, scaffold protein-mediated receptor complex purification, and targeted proteomics for spatiotemporal quantification of protein complexes in whole cell scale. We applied our method to investigate the assembly kinetics of EGF-dependent ErbB receptor complexes. After fractionation using the density gradient centrifugation and organelle assignment based on organelle markers, endogenous ErbB complex in different subcellular fractionation was efficiently enriched. By using targeted mass spectrometry, ErbB complex components that expressed medium to low level was precisely quantified with in-depth coverage, simultaneously in time and subcellular spaces. Our results revealed a sophisticated scheme of complex behaviors characterized by multiple subcomplexes with distinct molecular composition formed across subcellular fractions enriched with cytosol, plasma membrane, endosome, or mitochondria, implying organelle-specific ErbB functions. Remarkably, our results demonstrated for the first time that activated ErbB receptors might increase their signaling range through promoting a cytosolic, receptor-free subcomplex, consisting of Shc1, Grb2, Arhgef5, Garem1, and Lrrk1. These findings emphasize the potential of our strategy as a powerful tool to study spatiotemporal dynamics of protein complexes.
Collapse
Affiliation(s)
- Shujuan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Cunjie Zhang
- SickKids Research Institute, cell biology 686 Bay St, Toronto, Ontario CAN M5G 0A4, Canada
| | - Mansheng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
71
|
Gonzalez-Franquesa A, Stocks B, Chubanava S, Hattel HB, Moreno-Justicia R, Peijs L, Treebak JT, Zierath JR, Deshmukh AS. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Rep 2021; 35:109180. [PMID: 34038727 DOI: 10.1016/j.celrep.2021.109180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial respiratory complex subunits assemble in supercomplexes. Studies of supercomplexes have typically relied upon antibody-based quantification, often limited to a single subunit per respiratory complex. To provide a deeper insight into mitochondrial and supercomplex plasticity, we combine native electrophoresis and mass spectrometry to determine the supercomplexome of skeletal muscle from sedentary and exercise-trained mice. We quantify 422 mitochondrial proteins within 10 supercomplex bands in which we show the debated presence of complexes II and V. Exercise-induced mitochondrial biogenesis results in non-stoichiometric changes in subunits and incorporation into supercomplexes. We uncover the dynamics of supercomplex-related assembly proteins and mtDNA-encoded subunits after exercise. Furthermore, exercise affects the complexing of Lactb, an obesity-associated mitochondrial protein, and ubiquinone biosynthesis proteins. Knockdown of ubiquinone biosynthesis proteins leads to alterations in mitochondrial respiration. Our approach can be applied to broad biological systems. In this instance, comprehensively analyzing respiratory supercomplexes illuminates previously undetectable complexity in mitochondrial plasticity.
Collapse
Affiliation(s)
- Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Helle B Hattel
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
72
|
Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, Rattray DG, Mahdessian D, Gingras AC, Warscheid B, Lehtiö J, Cristea IM, Foster LJ, Emili A, Lilley KS. Subcellular proteomics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:32. [PMID: 34549195 PMCID: PMC8451152 DOI: 10.1038/s43586-021-00029-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
Collapse
Affiliation(s)
- Josie A. Christopher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Charlotte Stadler
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yanbo Pan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David G. Rattray
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana Mahdessian
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signaling Research Centers, University of Freiburg, Freiburg, Germany
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| |
Collapse
|
73
|
Rosenberger FA, Atanassov I, Moore D, Calvo-Garrido J, Moedas MF, Wedell A, Freyer C, Wredenberg A. Stable Isotope Labeling of Amino Acids in Flies (SILAF) Reveals Differential Phosphorylation of Mitochondrial Proteins Upon Loss of OXPHOS Subunits. Mol Cell Proteomics 2021; 20:100065. [PMID: 33640490 PMCID: PMC8050774 DOI: 10.1016/j.mcpro.2021.100065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/01/2023] Open
Abstract
Drosophila melanogaster has been a workhorse of genetics and cell biology for more than a century. However, proteomic-based methods have been limited due to the complexity and dynamic range of the fly proteome and the lack of efficient labeling methods. Here, we advanced a chemically defined food source into direct stable-isotope labeling of amino acids in flies (SILAF). It allows for the rapid and cost-efficient generation of a large number of larvae or flies, with full incorporation of lysine-[13C6] after six labeling days. SILAF followed by fractionation and enrichment gave proteomic insights at a depth of 7196 proteins and 8451 phosphorylation sites, which substantiated metabolic regulation on enzymatic level. We applied SILAF to quantify the mitochondrial phosphoproteome of an early-stage leucine-rich PPR motif-containing protein (LRPPRC)-knockdown fly model of mitochondrial disease that almost exclusively affects protein levels of the oxidative phosphorylation (OXPHOS) system. While the mitochondrial compartment was hypo-phosphorylated, two conserved phosphosites on OXPHOS subunits NDUFB10 and NDUFA4 were significantly upregulated upon impaired OXPHOS function. The ease and versatility of the method actuate the fruit fly as an appealing model in proteomic and posttranslational modification studies, and it enlarges potential metabolic applications based on heavy amino acid diets.
Collapse
Affiliation(s)
- Florian A Rosenberger
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - David Moore
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Javier Calvo-Garrido
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marco F Moedas
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
74
|
Affiliation(s)
- Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| |
Collapse
|
75
|
Casey CA, Donohue TM, Kubik JL, Kumar V, Naldrett MJ, Woods NT, Frisbie CP, McNiven MA, Thomes PG. Lipid droplet membrane proteome remodeling parallels ethanol-induced hepatic steatosis and its resolution. J Lipid Res 2021; 62:100049. [PMID: 33617872 PMCID: PMC8010705 DOI: 10.1016/j.jlr.2021.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 10/25/2022] Open
Abstract
Lipid droplets (LDs) are composed of neutral lipids enclosed in a phospholipid monolayer, which harbors membrane-associated proteins that regulate LD functions. Despite the crucial role of LDs in lipid metabolism, remodeling of LD protein composition in disease contexts, such as steatosis, remains poorly understood. We hypothesized that chronic ethanol consumption, subsequent abstinence from ethanol, or fasting differentially affects the LD membrane proteome content and that these changes influence how LDs interact with other intracellular organelles. Here, male Wistar rats were pair-fed liquid control or ethanol diets for 6 weeks, and then, randomly chosen animals from both groups were either refed a control diet for 7 days or fasted for 48 h before euthanizing. From all groups, LD membrane proteins from purified liver LDs were analyzed immunochemically and by MS proteomics. Liver LD numbers and sizes were greater in ethanol-fed rats than in pair-fed control, 7-day refed, or fasted rats. Compared with control rats, ethanol feeding markedly altered the LD membrane proteome, enriching LD structural perilipins and proteins involved in lipid biosynthesis, while lowering LD lipase levels. Ethanol feeding also lowered LD-associated mitochondrial and lysosomal proteins. In 7-day refed (i.e., ethanol-abstained) or fasted-ethanol-fed rats, we detected distinct remodeling of the LD proteome, as judged by lower levels of lipid biosynthetic proteins, and enhanced LD interaction with mitochondria and lysosomes. Our study reveals evidence of significant remodeling of the LD membrane proteome that regulates ethanol-induced steatosis, its resolution after withdrawal and abstinence, and changes in LD interactions with other intracellular organelles.
Collapse
Affiliation(s)
- Carol A Casey
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Terrence M Donohue
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacy L Kubik
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vikas Kumar
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Naldrett
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, NE, USA
| | - Nicholas T Woods
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cole P Frisbie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Paul G Thomes
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
76
|
Herker E, Vieyres G, Beller M, Krahmer N, Bohnert M. Lipid Droplet Contact Sites in Health and Disease. Trends Cell Biol 2021; 31:345-358. [PMID: 33546922 DOI: 10.1016/j.tcb.2021.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023]
Abstract
After having been disregarded for a long time as inert fat drops, lipid droplets (LDs) are now recognized as ubiquitous cellular organelles with key functions in lipid biology and beyond. The identification of abundant LD contact sites, places at which LDs are physically attached to other organelles, has uncovered an unexpected level of communication between LDs and the rest of the cell. In recent years, many disease factors mutated in hereditary disorders have been recognized as LD contact site proteins. Furthermore, LD contact sites are dramatically rearranged in response to infections with intracellular pathogens, as well as under pathological metabolic conditions such as hepatic steatosis. Collectively, it is emerging that LD-organelle contacts are important players in development and progression of disease.
Collapse
Affiliation(s)
- Eva Herker
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany.
| | - Gabrielle Vieyres
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Leibniz ScienceCampus InterACt, Hamburg, Germany.
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Germany.
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany.
| |
Collapse
|
77
|
Vos DY, van de Sluis B. Function of the endolysosomal network in cholesterol homeostasis and metabolic-associated fatty liver disease (MAFLD). Mol Metab 2021; 50:101146. [PMID: 33348067 PMCID: PMC8324686 DOI: 10.1016/j.molmet.2020.101146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease, has become the leading cause of chronic liver disease worldwide. In addition to hepatic accumulation of triglycerides, dysregulated cholesterol metabolism is an important contributor to the pathogenesis of MAFLD. Maintenance of cholesterol homeostasis is highly dependent on cellular cholesterol uptake and, subsequently, cholesterol transport to other membrane compartments, such as the endoplasmic reticulum (ER). Scope of review The endolysosomal network is key for regulating cellular homeostasis and adaptation, and emerging evidence has shown that the endolysosomal network is crucial to maintain metabolic homeostasis. In this review, we will summarize our current understanding of the role of the endolysosomal network in cholesterol homeostasis and its implications in MAFLD pathogenesis. Major conclusions Although multiple endolysosomal proteins have been identified in the regulation of cholesterol uptake, intracellular transport, and degradation, their physiological role is incompletely understood. Further research should elucidate their role in controlling metabolic homeostasis and development of fatty liver disease. The intracellular cholesterol transport is tightly regulated by the endocytic and lysosomal network. Dysfunction of the endolysosomal network affects hepatic lipid homeostasis. The endosomal sorting of lipoprotein receptors is precisely regulated and is not a bulk process.
Collapse
Affiliation(s)
- Dyonne Y Vos
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
78
|
Soluble adenylyl cyclase regulates the cytosolic NADH/NAD + redox state and the bioenergetic switch between glycolysis and oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148367. [PMID: 33412125 DOI: 10.1016/j.bbabio.2020.148367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.
Collapse
|
79
|
David Y, Castro IG, Schuldiner M. The Fast and the Furious: Golgi Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:1-15. [PMID: 35071979 PMCID: PMC7612241 DOI: 10.1177/25152564211034424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Contact sites are areas of close apposition between two membranes that coordinate nonvesicular communication between organelles. Such interactions serve a wide range of cellular functions from regulating metabolic pathways to executing stress responses and coordinating organelle inheritance. The past decade has seen a dramatic increase in information on certain contact sites, mostly those involving the endoplasmic reticulum. However, despite its central role in the secretory pathway, the Golgi apparatus and its contact sites remain largely unexplored. In this review, we discuss the current knowledge of Golgi contact sites and share our thoughts as to why Golgi contact sites are understudied. We also highlight what exciting future directions may exist in this emerging field.
Collapse
Affiliation(s)
- Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Inês G Castro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
80
|
Cui L, Liu P. Two Types of Contact Between Lipid Droplets and Mitochondria. Front Cell Dev Biol 2020; 8:618322. [PMID: 33385001 PMCID: PMC7769837 DOI: 10.3389/fcell.2020.618322] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Lipid droplets (LDs) and mitochondria are essential organelles involved in cellular lipid metabolism and energy homeostasis. Accumulated studies have revealed that the physical contact between these two organelles is important for their functions. Current understanding of the contact between cellular organelles is highly dynamic, fitting a "kiss-and-run" model. The same pattern of contact between LDs and mitochondria has been reported and several proteins are found to mediate this contact, such as perilipin1 (PLIN1) and PLIN5. Another format of the contact has also been found and termed anchoring. LD-anchored mitochondria (LDAM) are identified in oxidative tissues including brown adipose tissue (BAT), skeletal muscle, and heart muscle, and this anchoring between these two organelles is conserved from mouse to monkey. Moreover, this anchoring is generated during the brown/beige adipocyte differentiation. In this review, we will summarize previous studies on the interaction between LDs and mitochondria, categorize the types of the contacts into dynamic and stable/anchored, present their similarities and differences, discuss their potential distinct molecular mechanism, and finally propose a working hypothesis that may explain why and how cells use two patterns of contact between LDs and mitochondria.
Collapse
Affiliation(s)
- Liujuan Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
81
|
Zembroski AS, Buhman KK, Aryal UK. Proteome and phosphoproteome characterization of liver in the postprandial state from diet-induced obese and lean mice. J Proteomics 2020; 232:104072. [PMID: 33309929 DOI: 10.1016/j.jprot.2020.104072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
A metabolic consequence of obesity is hepatosteatosis, which can develop into more serious diseases in the non-alcoholic fatty liver disease (NAFLD) spectrum. The goal of this study was to identify the protein signature of liver in the postprandial state in obesity compared to leanness. The postprandial state is of interest due to the central role of the liver in regulating macronutrient and energy homeostasis during the fed-fast cycle and lack of previously reported controlled studies in the postprandial state. Therefore, we assessed the proteome and phosphoproteome of liver in the postprandial state from diet-induced obese (DIO) and lean mice using untargeted LC-MS/MS analysis. We identified significant alterations in the levels of proteins involved in fatty acid oxidation, activation, and transport, as well as proteins involved in energy metabolism including ketogenesis, tricarboxylic acid cycle, and electron transport chain in liver of DIO compared to lean mice. Additionally, phosphorylated proteins in liver of DIO and lean mice reflect possible regulatory mechanisms controlling fatty acid metabolism and gene expression that may contribute to hepatic metabolic alterations in obesity. Our data indicates PPARα-mediated transcriptional regulation of lipid metabolism and adaptation to hepatic lipid overload. The results of this study expand our knowledge of the molecular changes that occur in liver in the postprandial state in obesity compared to leanness. SIGNIFICANCE: Proteome and phosphoproteome studies of liver in a controlled postprandial state in obesity and leanness are lacking; however, this information is crucial to understanding how obesity-associated hepatosteatosis influences postprandial nutrient and energy metabolism. In this global shotgun proteome and phosphoproteome analysis, we identified unique protein signatures defining obesity and leanness in liver in the postprandial state and identified potential mechanisms contributing to hepatic metabolic alterations in obesity. The results of this study provide a foundation to focus future experiments on the contribution of altered protein and phosphorylation patterns to postprandial metabolism in obesity-associated hepatosteatosis.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA..
| |
Collapse
|
82
|
Imai K, Nakai K. Tools for the Recognition of Sorting Signals and the Prediction of Subcellular Localization of Proteins From Their Amino Acid Sequences. Front Genet 2020; 11:607812. [PMID: 33324450 PMCID: PMC7723863 DOI: 10.3389/fgene.2020.607812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
At the time of translation, nascent proteins are thought to be sorted into their final subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting or targeting signals). Thus, it is interesting to computationally recognize these signals from the amino acid sequences of any given proteins and to predict their final subcellular localization with such information, supplemented with additional information (e.g., k-mer frequency). This field has a long history and many prediction tools have been released. Even in this era of proteomic atlas at the single-cell level, researchers continue to develop new algorithms, aiming at accessing the impact of disease-causing mutations/cell type-specific alternative splicing, for example. In this article, we overview the entire field and discuss its future direction.
Collapse
Affiliation(s)
- Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
83
|
Wu C, Ba Q, Lu D, Li W, Salovska B, Hou P, Mueller T, Rosenberger G, Gao E, Di Y, Zhou H, Fornasiero EF, Liu Y. Global and Site-Specific Effect of Phosphorylation on Protein Turnover. Dev Cell 2020; 56:111-124.e6. [PMID: 33238149 DOI: 10.1016/j.devcel.2020.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 02/02/2023]
Abstract
To date, the effects of specific modification types and sites on protein lifetime have not been systematically illustrated. Here, we describe a proteomic method, DeltaSILAC, to quantitatively assess the impact of site-specific phosphorylation on the turnover of thousands of proteins in live cells. Based on the accurate and reproducible mass spectrometry-based method, a pulse labeling approach using stable isotope-labeled amino acids in cells (pSILAC), phosphoproteomics, and a unique peptide-level matching strategy, our DeltaSILAC profiling revealed a global, unexpected delaying effect of many phosphosites on protein turnover. We further found that phosphorylated sites accelerating protein turnover are functionally selected for cell fitness, enriched in Cyclin-dependent kinase substrates, and evolutionarily conserved, whereas the glutamic acids surrounding phosphosites significantly delay protein turnover. Our method represents a generalizable approach and provides a rich resource for prioritizing the effects of phosphorylation sites on protein lifetime in the context of cell signaling and disease biology.
Collapse
Affiliation(s)
- Chongde Wu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qian Ba
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pingfu Hou
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Torsten Mueller
- German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | | | - Erli Gao
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yi Di
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
84
|
Wei W, Riley NM, Yang AC, Kim JT, Terrell SM, Li VL, Garcia-Contreras M, Bertozzi CR, Long JZ. Cell type-selective secretome profiling in vivo. Nat Chem Biol 2020; 17:326-334. [PMID: 33199915 PMCID: PMC7904581 DOI: 10.1038/s41589-020-00698-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
Abstract
Secreted polypeptides are a fundamental biochemical axis of intercellular and endocrine communication. However, a global understanding of composition and dynamics of cellular secretomes in intact mammalian organisms has been lacking. Here, we introduce a proximity biotinylation strategy that enables labeling, detection, and enrichment of secreted polypeptides in a cell type-selective manner in mice. We generate a proteomic atlas of hepatocyte, myocyte, pericyte, and myeloid cell secretomes by direct purification of biotinylated secreted proteins from blood plasma. Our secretome dataset validates known cell type-protein pairs, reveals secreted polypeptides that distinguish between cell types, and identifies new cellular sources for classical plasma proteins. Lastly, we uncover a dynamic and previously undescribed nutrient-dependent reprogramming of the hepatocyte secretome characterized by increased unconventional secretion of the cytosolic enzyme BHMT. This secretome profiling strategy enables dynamic and cell-type dissection of the plasma proteome and the secreted polypeptides that mediate intercellular signaling.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Nicholas M Riley
- Stanford ChEM-H, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Andrew C Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joon T Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Marta Garcia-Contreras
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Stanford ChEM-H, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
85
|
Mashek DG. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab 2020; 50:101115. [PMID: 33186758 PMCID: PMC8324678 DOI: 10.1016/j.molmet.2020.101115] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined by the abundance of lipid droplets (LDs) in hepatocytes. While historically considered simply depots for energy storage, LDs are increasingly recognized to impact a wide range of biological processes that influence cellular metabolism, signaling, and function. While progress has been made toward understanding the factors leading to LD accumulation (i.e. steatosis) and its progression to advanced stages of NAFLD and/or systemic metabolic dysfunction, much remains to be resolved. SCOPE OF REVIEW This review covers many facets of LD biology. We provide a brief overview of the major pathways of lipid accretion and degradation that contribute to steatosis and how they are altered in NAFLD. The major focus is on the relationship between LDs and cell function and the detailed mechanisms that couple or uncouple steatosis from the severity and progression of NAFLD and systemic comorbidities. The importance of specific lipids and proteins within or on LDs as key components that determine whether LD accumulation is linked to cellular and metabolic dysfunction is presented. We discuss emerging areas of LD biology and future research directions that are needed to advance our understanding of the role of LDs in NAFLD etiology. MAJOR CONCLUSIONS Impairments in LD breakdown appear to contribute to disease progression, but inefficient incorporation of fatty acids (FAs) into LD-containing triacylglycerol (TAG) and the consequential changes in FA partitioning also affect NAFLD etiology. Increased LD abundance in hepatocytes does not necessarily equate to cellular dysfunction. While LD accumulation is the prerequisite step for most NAFLD cases, the protein and lipid composition of LDs are critical factors in determining the progression from simple steatosis. Further defining the detailed molecular mechanisms linking LDs to metabolic dysfunction is important for designing effective therapeutic approaches targeting NAFLD and its comorbidities.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota, Suite 6-155, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
86
|
Crook OM, Geladaki A, Nightingale DJH, Vennard OL, Lilley KS, Gatto L, Kirk PDW. A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection. PLoS Comput Biol 2020; 16:e1008288. [PMID: 33166281 PMCID: PMC7707549 DOI: 10.1371/journal.pcbi.1008288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/01/2020] [Accepted: 08/25/2020] [Indexed: 01/13/2023] Open
Abstract
The cell is compartmentalised into complex micro-environments allowing an array of specialised biological processes to be carried out in synchrony. Determining a protein's sub-cellular localisation to one or more of these compartments can therefore be a first step in determining its function. High-throughput and high-accuracy mass spectrometry-based sub-cellular proteomic methods can now shed light on the localisation of thousands of proteins at once. Machine learning algorithms are then typically employed to make protein-organelle assignments. However, these algorithms are limited by insufficient and incomplete annotation. We propose a semi-supervised Bayesian approach to novelty detection, allowing the discovery of additional, previously unannotated sub-cellular niches. Inference in our model is performed in a Bayesian framework, allowing us to quantify uncertainty in the allocation of proteins to new sub-cellular niches, as well as in the number of newly discovered compartments. We apply our approach across 10 mass spectrometry based spatial proteomic datasets, representing a diverse range of experimental protocols. Application of our approach to hyperLOPIT datasets validates its utility by recovering enrichment with chromatin-associated proteins without annotation and uncovers sub-nuclear compartmentalisation which was not identified in the original analysis. Moreover, using sub-cellular proteomics data from Saccharomyces cerevisiae, we uncover a novel group of proteins trafficking from the ER to the early Golgi apparatus. Overall, we demonstrate the potential for novelty detection to yield biologically relevant niches that are missed by current approaches.
Collapse
Affiliation(s)
- Oliver M. Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, Cambridge, UK
| | - Aikaterini Geladaki
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Genetics, Universtiy of Cambridge, Cambridge, UK
| | - Daniel J. H. Nightingale
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Owen L. Vennard
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, Cambridge, UK
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, Cambridge, UK
| | - Laurent Gatto
- de Duve Institute, UCLouvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Paul D. W. Kirk
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, UK
| |
Collapse
|
87
|
Tenopoulou M, Doulias PT. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism. F1000Res 2020; 9. [PMID: 33042519 PMCID: PMC7531049 DOI: 10.12688/f1000research.19998.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide is an endogenously formed gas that acts as a signaling molecule in the human body. The signaling functions of nitric oxide are accomplished through two primer mechanisms: cGMP-mediated phosphorylation and the formation of S-nitrosocysteine on proteins. This review presents and discusses previous and more recent findings documenting that nitric oxide signaling regulates metabolic activity. These discussions primarily focus on endothelial nitric oxide synthase (eNOS) as the source of nitric oxide.
Collapse
Affiliation(s)
- Margarita Tenopoulou
- Children's Hospital of Philadelphia Research Institute, 3517 Civic Center Boulevard, Philadelphia, Pennsylvania, 19104-4318, USA.,Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Research Institute, 3517 Civic Center Boulevard, Philadelphia, Pennsylvania, 19104-4318, USA.,Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
88
|
Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020; 111S:154320. [PMID: 32712221 PMCID: PMC7377759 DOI: 10.1016/j.metabol.2020.154320] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical, histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver biopsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applications are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology. Omics are also generating non-invasive diagnostic modalities for the distinct stages of NAFLD, that remain though to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as prospectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of these techniques in understanding, diagnosing and treating NAFLD are summarized herein.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA..
| | - Konstantinos Stefanakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
89
|
Schwerbel K, Kamitz A, Krahmer N, Hallahan N, Jähnert M, Gottmann P, Lebek S, Schallschmidt T, Arends D, Schumacher F, Kleuser B, Haltenhof T, Heyd F, Gancheva S, Broman KW, Roden M, Joost HG, Chadt A, Al-Hasani H, Vogel H, Jonas W, Schürmann A. Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation. J Hepatol 2020; 73:771-782. [PMID: 32376415 PMCID: PMC7957830 DOI: 10.1016/j.jhep.2020.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associating with increased hepatic triglycerides. Herein, we aimed to identify genomic variants responsible for this association. METHODS Recombinant congenic mice carrying 5.3 Mbp of Ltg/NZO were fed a high-fat diet and characterized for liver fat. Bioinformatic analysis, mRNA profiles and electrophoretic mobility shift assays were performed to identify genes responsible for the Ltg/NZO phenotype. Candidate genes were manipulated in vivo by injecting specific microRNAs into C57BL/6 mice. Pulldown coupled with mass spectrometry-based proteomics and immunoprecipitation were performed to identify interaction partners of IFGGA2. RESULTS Through positional cloning, we identified 2 immunity-related GTPases (Ifgga2, Ifgga4) that prevent hepatic lipid storage. Expression of both murine genes and the human orthologue IRGM was significantly lower in fatty livers. Accordingly, liver-specific suppression of either Ifgga2 or Ifgga4 led to a 3-4-fold greater increase in hepatic fat content. In the liver of low-fat diet-fed mice, IFGGA2 localized to endosomes/lysosomes, while on a high-fat diet it associated with lipid droplets. Pulldown experiments and proteomics identified the lipase ATGL as a binding partner of IFGGA2 which was confirmed by co-immunoprecipitation. Both proteins partially co-localized with the autophagic marker LC3B. Ifgga2 suppression in hepatocytes reduced the amount of LC3B-II, whereas overexpression of Ifgga2 increased the association of LC3B with lipid droplets and decreased triglyceride storage. CONCLUSION IFGGA2 interacts with ATGL and protects against hepatic steatosis, most likely by enhancing the binding of LC3B to lipid droplets. LAY SUMMARY The genetic basis of non-alcoholic fatty liver disease remains incompletely defined. Herein, we identified members of the immunity-related GTPase family in mice and humans that act as regulators of hepatic fat accumulation, with links to autophagy. Overexpression of the gene Ifgga2 was shown to reduce hepatic lipid storage and could be a therapeutic target for the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Kristin Schwerbel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Natalie Krahmer
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, D-85764 München-Neuherberg, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Sandra Lebek
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Tanja Schallschmidt
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Fabian Schumacher
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, D-14558 Nuthetal, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, D-14558 Nuthetal, Germany
| | - Tom Haltenhof
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, D-14195 Berlin, Germany
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, D-14195 Berlin, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, WI 53706 Madison, Wisconsin, United States
| | - Michael Roden
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany.
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, D-14558 Nuthetal, Germany.
| |
Collapse
|
90
|
Mann M. The Origins of Organellar Mapping by Protein Correlation Profiling. Proteomics 2020; 20:e1900330. [PMID: 32744740 DOI: 10.1002/pmic.201900330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Indexed: 11/09/2022]
Abstract
Cells have a rich inner structure that is commonly explored by microscopy. Classical biochemical methods that break apart the cells and fractionate them along a gradient have now gotten a new lease on life through modern methods of mass spectrometry-based proteomics. Their common principle is to comprehensively measure all the proteins in each of the fractions. The resulting quantitative profile then associates thousands of proteins to their cellular homes. Here, the author recounts how protein correlation profiling, the first such technique, was conceived and how it was applied to answer intricate cell biological questions.
Collapse
Affiliation(s)
- Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
91
|
C57BL/6J substrain differences in response to high-fat diet intervention. Sci Rep 2020; 10:14052. [PMID: 32820201 PMCID: PMC7441320 DOI: 10.1038/s41598-020-70765-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
C57BL/6J-related mouse strains are widely used animal models for diet-induced obesity (DIO). Multiple vendors breed C57BL/6J-related substrains which may introduce genetic drift and environmental confounders such as microbiome differences. To address potential vendor/substrain specific effects, we compared DIO of C57BL/6J-related substrains from three different vendors: C57BL/6J (Charles Rivers), C57BL/6JBomTac (Taconic Bioscience) and C57BL/6JRj (Janvier). After local acclimatization, DIO was induced by either a high-fat diet (HFD, 60% energy from fat) or western diet (WD, 42% energy from fat supplemented with fructose in the drinking water). All three groups on HFD gained a similar amount of total body weight, yet the relative amount of fat percentage and mass of inguinal- and epididymal white adipose tissue (iWAT and eWAT) was lower in C57BL/6JBomTac compared to the two other C57BL/6J-releated substrains. In contrast to HFD, the three groups on WD responded differently in terms of body weight gain, where C57BL/6J was particularly prone to WD. This was associated with a relative higher amount of eWAT, iWAT, and liver triglycerides. Although the HFD and WD had significant impact on the microbiota, we did not observe any major differences between the three groups of mice. Together, these data demonstrate significant differences in HFD- and WD-induced adiposity in C57BL/6J-related substrains, which should be considered in the design of animal DIO studies.
Collapse
|
92
|
Bohnert M. Tether Me, Tether Me Not—Dynamic Organelle Contact Sites in Metabolic Rewiring. Dev Cell 2020; 54:212-225. [DOI: 10.1016/j.devcel.2020.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 02/04/2023]
|
93
|
Borner GHH. Organellar Maps Through Proteomic Profiling - A Conceptual Guide. Mol Cell Proteomics 2020; 19:1076-1087. [PMID: 32345598 PMCID: PMC7338086 DOI: 10.1074/mcp.r120.001971] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Indexed: 11/29/2022] Open
Abstract
Protein subcellular localization is an essential and highly regulated determinant of protein function. Major advances in mass spectrometry and imaging have allowed the development of powerful spatial proteomics approaches for determining protein localization at the whole cell scale. Here, a brief overview of current methods is presented, followed by a detailed discussion of organellar mapping through proteomic profiling. This relatively simple yet flexible approach is rapidly gaining popularity, because of its ability to capture the localizations of thousands of proteins in a single experiment. It can be used to generate high-resolution cell maps, and as a tool for monitoring protein localization dynamics. This review highlights the strengths and limitations of the approach and provides guidance to designing and interpreting profiling experiments.
Collapse
Affiliation(s)
- Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
94
|
Crook OM, Smith T, Elzek M, Lilley KS. Moving Profiling Spatial Proteomics Beyond Discrete Classification. Proteomics 2020; 20:e1900392. [PMID: 32558233 DOI: 10.1002/pmic.201900392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The spatial subcellular proteome is a dynamic environment; one that can be perturbed by molecular cues and regulated by post-translational modifications. Compartmentalization of this environment and management of these biomolecular dynamics allows for an array of ancillary protein functions. Profiling spatial proteomics has proved to be a powerful technique in identifying the primary subcellular localization of proteins. The approach has also been refashioned to study multi-localization and localization dynamics. Here, the analytical approaches that have been applied to spatial proteomics thus far are critiqued, and challenges particularly associated with multi-localization and dynamic relocalization is identified. To meet some of the current limitations in analytical processing, it is suggested that Bayesian modeling has clear benefits over the methods applied to date and should be favored whenever possible. Careful consideration of the limitations and challenges, and development of robust statistical frameworks, will ensure that profiling spatial proteomics remains a valuable technique as its utility is expanded.
Collapse
Affiliation(s)
- Oliver M Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mohamed Elzek
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
95
|
Hepatic lipid droplet homeostasis and fatty liver disease. Semin Cell Dev Biol 2020; 108:72-81. [PMID: 32444289 DOI: 10.1016/j.semcdb.2020.04.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
In cells, lipids are stored in lipid droplets, dynamic organelles that adapt their size, abundance, lipid and protein composition and organelle interactions to metabolic changes. Lipid droplet accumulation in the liver is the hallmark of non-alcoholic fatty liver disease (NAFLD). Due to the prevalence of obesity, the strongest risk factor for steatosis, NAFLD and its associated complications are currently affecting more than 1 billion people worldwide. Here, we review how triglyceride and phospholipid homeostasis are regulated in hepatocytes and how imbalances between lipid storage, degradation and lipoprotein secretion lead to NAFLD. We discuss how organelle interactions are altered in NAFLD and provide insights how NAFLD progression is associated with changes in hepatocellular signaling and organ-crosstalk. Finally, we highlight unsolved questions in hepatic LD and lipoprotein biology and give an outlook on therapeutic options counteracting hepatic lipid accumulation.
Collapse
|
96
|
Mejhert N, Kuruvilla L, Gabriel KR, Elliott SD, Guie MA, Wang H, Lai ZW, Lane EA, Christiano R, Danial NN, Farese RV, Walther TC. Partitioning of MLX-Family Transcription Factors to Lipid Droplets Regulates Metabolic Gene Expression. Mol Cell 2020; 77:1251-1264.e9. [PMID: 32023484 PMCID: PMC7397554 DOI: 10.1016/j.molcel.2020.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leena Kuruvilla
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katlyn R Gabriel
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shane D Elliott
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marie-Aude Guie
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huajin Wang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Lane
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Romain Christiano
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
97
|
Tannous A, Boonen M, Zheng H, Zhao C, Germain CJ, Moore DF, Sleat DE, Jadot M, Lobel P. Comparative Analysis of Quantitative Mass Spectrometric Methods for Subcellular Proteomics. J Proteome Res 2020; 19:1718-1730. [PMID: 32134668 DOI: 10.1021/acs.jproteome.9b00862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Knowledge of intracellular location can provide important insights into the function of proteins and their respective organelles, and there is interest in combining classical subcellular fractionation with quantitative mass spectrometry to create global cellular maps. To evaluate mass spectrometric approaches specifically for this application, we analyzed rat liver differential centrifugation and Nycodenz density gradient subcellular fractions by tandem mass tag (TMT) isobaric labeling with reporter ion measurement at the MS2 and MS3 level and with two different label-free peak integration approaches, MS1 and data independent acquisition (DIA). TMT-MS2 provided the greatest proteome coverage, but ratio compression from contaminating background ions resulted in a narrower accurate dynamic range compared to TMT-MS3, MS1, and DIA, which were similar. Using a protein clustering approach to evaluate data quality by assignment of reference proteins to their correct compartments, all methods performed well, with isobaric labeling approaches providing the highest quality localization. Finally, TMT-MS2 gave the lowest percentage of missing quantifiable data when analyzing orthogonal fractionation methods containing overlapping proteomes. In summary, despite inaccuracies resulting from ratio compression, data obtained by TMT-MS2 assigned protein localization as well as other methods but achieved the highest proteome coverage with the lowest proportion of missing values.
Collapse
Affiliation(s)
- Abla Tannous
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Marielle Boonen
- URPhyM-Intracellular Trafficking Biology, NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Colin J Germain
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - David E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Michel Jadot
- URPhyM-Physiological Chemistry, NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| |
Collapse
|
98
|
Lundberg E, Borner GHH. Spatial proteomics: a powerful discovery tool for cell biology. Nat Rev Mol Cell Biol 2020; 20:285-302. [PMID: 30659282 DOI: 10.1038/s41580-018-0094-y] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein subcellular localization is tightly controlled and intimately linked to protein function in health and disease. Capturing the spatial proteome - that is, the localizations of proteins and their dynamics at the subcellular level - is therefore essential for a complete understanding of cell biology. Owing to substantial advances in microscopy, mass spectrometry and machine learning applications for data analysis, the field is now mature for proteome-wide investigations of spatial cellular regulation. Studies of the human proteome have begun to reveal a complex architecture, including single-cell variations, dynamic protein translocations, changing interaction networks and proteins localizing to multiple compartments. Furthermore, several studies have successfully harnessed the power of comparative spatial proteomics as a discovery tool to unravel disease mechanisms. We are at the beginning of an era in which spatial proteomics finally integrates with cell biology and medical research, thereby paving the way for unbiased systems-level insights into cellular processes. Here, we discuss current methods for spatial proteomics using imaging or mass spectrometry and specifically highlight global comparative applications. The aim of this Review is to survey the state of the field and also to encourage more cell biologists to apply spatial proteomics approaches.
Collapse
Affiliation(s)
- Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Genetics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany.
| |
Collapse
|
99
|
Ochoa D, Jarnuczak AF, Viéitez C, Gehre M, Soucheray M, Mateus A, Kleefeldt AA, Hill A, Garcia-Alonso L, Stein F, Krogan NJ, Savitski MM, Swaney DL, Vizcaíno JA, Noh KM, Beltrao P. The functional landscape of the human phosphoproteome. Nat Biotechnol 2020; 38:365-373. [PMID: 31819260 PMCID: PMC7100915 DOI: 10.1038/s41587-019-0344-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a key post-translational modification regulating protein function in almost all cellular processes. Although tens of thousands of phosphorylation sites have been identified in human cells, approaches to determine the functional importance of each phosphosite are lacking. Here, we manually curated 112 datasets of phospho-enriched proteins, generated from 104 different human cell types or tissues. We re-analyzed the 6,801 proteomics experiments that passed our quality control criteria, creating a reference phosphoproteome containing 119,809 human phosphosites. To prioritize functional sites, we used machine learning to identify 59 features indicative of proteomic, structural, regulatory or evolutionary relevance and integrate them into a single functional score. Our approach identifies regulatory phosphosites across different molecular mechanisms, processes and diseases, and reveals genetic susceptibilities at a genomic scale. Several regulatory phosphosites were experimentally validated, including identifying a role in neuronal differentiation for phosphosites in SMARCC2, a member of the SWI/SNF chromatin-remodeling complex.
Collapse
Affiliation(s)
- David Ochoa
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Andrew F Jarnuczak
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cristina Viéitez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maja Gehre
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Margaret Soucheray
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology and the Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Askar A Kleefeldt
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony Hill
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luz Garcia-Alonso
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Frank Stein
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology and the Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology and the Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Juan A Vizcaíno
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Beltrao
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
100
|
Abstract
The rising incidence of alcohol-related liver disease (ALD) demands making urgent progress in understanding the fundamental molecular basis of alcohol-related hepatocellular damage. One of the key early events accompanying chronic alcohol usage is the accumulation of lipid droplets (LDs) in the hepatocellular cytoplasm. LDs are far from inert sites of neutral lipid storage; rather, they represent key organelles that play vital roles in the metabolic state of the cell. In this review, we will examine the biology of these structures and outline recent efforts being made to understand the effects of alcohol exposure on the biogenesis, catabolism, and motility of LDs and how their dynamic nature is perturbed in the context of ALD.
Collapse
Affiliation(s)
- Ryan J. Schulze
- Department of Biochemistry and Molecular Biology and the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA,Corresponding author. Department of Biochemistry and Molecular Biology and the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA. (R.J. Schulze)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|