51
|
Cao B, Stanley JA, Selvaraj S, Mwangi B, Passos IC, Zunta-Soares GB, Soares JC. Evidence of altered membrane phospholipid metabolism in the anterior cingulate cortex and striatum of patients with bipolar disorder I: A multi-voxel (1)H MRS study. J Psychiatr Res 2016; 81:48-55. [PMID: 27376506 DOI: 10.1016/j.jpsychires.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/05/2016] [Accepted: 06/10/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Previous proton magnetic resonance spectroscopy ((1)H MRS) studies have reported elevated glycerophosphocholine plus phosphocholine (GPC+PC) in the basal ganglia of patients with bipolar disorders (BD), which implicates an imbalance between synthesis and degradation activity of neuronal and glia membrane phospholipids (MPLs). However, the full extent of altered metabolites of MPLs in subareas within the basal ganglia, such as caudate and putamen, as well as anterior cingulate cortex (ACC) of BD patients is poorly understood. METHODS Multi-voxel (1)H MRS measurements were acquired in 50 type-one BD (BD-I) and 44 healthy controls (HC) on a 3-T MRI scanner. Four different anatomically defined voxels covering ACC, caudate and putamen were systematically extracted and quantified using LCModel. Group differences in absolute GPC+PC and other metabolites were tested with age and gender as covariates. RESULTS BD-I patients had higher GPC+PC levels in the anterior-dorsal ACC (p = 0.037), caudate (p = 0.005) and putamen (p = 0.004) compared to HC. GPC+PC levels in the caudate were elevated most significantly in currently unmediated BD-I patients (p = 0.022) and were positively correlated with HAM-D scores (r = 0.51, p = 0.005). PCr+Cr and myo-inositol levels were also significantly higher in the caudate head (F(1,45) = 6.010, p = 0.018) of patients compared to HC. NAA and glutamate levels were not significantly different between BD-I and HC in these regions (p > 0.05). CONCLUSION The increased GPC+PC in BD-I patients may reflect an imbalance in the MPL metabolism. Caudate GPC+PC levels may be a potential biomarker for depressive symptoms in BD.
Collapse
Affiliation(s)
- Bo Cao
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX 77054, USA.
| | - Jeffrey A Stanley
- Department of Psychiatry & Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Sudhakar Selvaraj
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX 77054, USA
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX 77054, USA
| | - Ives Cavalcante Passos
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX 77054, USA
| | - Giovana B Zunta-Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX 77054, USA
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX 77054, USA
| |
Collapse
|
52
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
53
|
Souza LS, Silva EF, Santos WB, Asth L, Lobão-Soares B, Soares-Rachetti VP, Medeiros IU, Gavioli EC. Lithium and valproate prevent methylphenidate-induced mania-like behaviors in the hole board test. Neurosci Lett 2016; 629:143-148. [PMID: 27353513 DOI: 10.1016/j.neulet.2016.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
Manic bipolar is diagnosed by psychomotor agitation, increased goal-directed activity, insomnia, grandiosity, excessive speech, and risky behavior. Animal studies aimed to modeling mania are commonly based in psychostimulants-induced hyperlocomotion. The exploration of other behaviors related with mania is mandatory to investigate this phase of bipolar disorder in animals. In this study, the hole board apparatus was suggested for evaluating mania-like behaviors induced by the psychostimulant methylphenidate. The treatment with methylphenidate (10mg/kg, ip) increased locomotion in the open field test. The pretreatment with lithium (50mg/kg, ip) and valproate (400mg/kg, ip) significantly prevented the hyperlocomotion. In the hole-board test, methylphenidate increased interactions with the central and peripheral holes and the exploration of central areas. Lithium was more effective than valproate in preventing all the behavioral manifestations induced by the psychostimulant. These findings were discussed based on the ability of methylphenidate-treated mice mimicking two symptoms of mania in the hole board test: goal-directed action and risk-taking behavior. In conclusion, the results point to a new approach to study mania through the hole board apparatus. The hole board test appears to be a sensitive assay to detect the efficacy of antimanic drugs.
Collapse
Affiliation(s)
- L S Souza
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - E F Silva
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - W B Santos
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - L Asth
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - B Lobão-Soares
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - V P Soares-Rachetti
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - I U Medeiros
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - E C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
54
|
Logan RW, McClung CA. Animal models of bipolar mania: The past, present and future. Neuroscience 2016; 321:163-188. [PMID: 26314632 PMCID: PMC4766066 DOI: 10.1016/j.neuroscience.2015.08.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying 'mood' cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD.
Collapse
Affiliation(s)
- R W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States
| | - C A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
55
|
Parekh PK, McClung CA. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity. Front Psychiatry 2016; 6:187. [PMID: 26793129 PMCID: PMC4709415 DOI: 10.3389/fpsyt.2015.00187] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022] Open
Abstract
Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward-related behavior.
Collapse
Affiliation(s)
- Puja K. Parekh
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A. McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
56
|
van Enkhuizen J, Milienne-Petiot M, Geyer MA, Young JW. Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: chronic lithium treats most, but not all features. Psychopharmacology (Berl) 2015; 232:3455-67. [PMID: 26141192 PMCID: PMC4537820 DOI: 10.1007/s00213-015-4000-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022]
Abstract
RATIONALE Bipolar disorder (BD) is a disabling and life-threatening disease characterized by states of depression and mania. New and efficacious treatments have not been forthcoming partly due to a lack of well-validated models representing both facets of BD. OBJECTIVES We hypothesized that cholinergic- and dopaminergic-pharmacological manipulations would model depression and mania respectively, each attenuated by lithium treatment. METHODS C57BL/6 J mice received the acetylcholinesterase inhibitor physostigmine or saline before testing for "behavioral despair" (immobility) in the tail suspension test (TST) and forced swim test (FST). Physostigmine effects on exploration and sensorimotor gating were assessed using the cross-species behavioral pattern monitor (BPM) and prepulse inhibition (PPI) paradigms. Other C57BL/6 J mice received chronic lithium drinking water (300, 600, or 1200 mg/l) before assessing their effects alone in the BPM or with physostigmine on FST performance. Another group was tested with acute GBR12909 (dopamine transporter inhibitor) and chronic lithium (1000 mg/l) in the BPM. RESULTS Physostigmine (0.03 mg/kg) increased immobility in the TST and FST without affecting activity, exploration, or PPI. Lithium (600 mg/l) resulted in low therapeutic serum concentrations and normalized the physostigmine-increased immobility in the FST. GBR12909 induced mania-like behavior in the BPM of which hyper-exploration was attenuated, though not reversed, after chronic lithium (1000 mg/ml). CONCLUSIONS Increased cholinergic levels induced depression-like behavior and hyperdopaminergia induced mania-like behavior in mice, while chronic lithium treated some, but not all, facets of these effects. These data support a cholinergic-monoaminergic mechanism for modeling BD aspects and provide a way to assess novel therapeutics.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Research Service, VA San Diego Healthcare System, San Diego, CA
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Research Service, VA San Diego Healthcare System, San Diego, CA
- Correspondence: Jared W. Young, Ph.D., Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California, 92093-0804, Tel: +1 619 543 3582, Fax: +1 619 735 9205,
| |
Collapse
|
57
|
van Enkhuizen J, Geyer MA, Minassian A, Perry W, Henry BL, Young JW. Investigating the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to models: Rodent and human studies. Neurosci Biobehav Rev 2015; 58:4-18. [PMID: 26297513 DOI: 10.1016/j.neubiorev.2015.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/16/2015] [Indexed: 11/18/2022]
Abstract
Psychiatric patients with bipolar disorder suffer from states of depression and mania, during which a variety of symptoms are present. Current treatments are limited and neurocognitive deficits in particular often remain untreated. Targeted therapies based on the biological mechanisms of bipolar disorder could fill this gap and benefit patients and their families. Developing targeted therapies would benefit from appropriate animal models which are challenging to establish, but remain a vital tool. In this review, we summarize approaches to create a valid model relevant to bipolar disorder. We focus on studies that use translational tests of multivariate exploratory behavior, sensorimotor gating, decision-making under risk, and attentional functioning to discover profiles that are consistent between patients and rodent models. Using this battery of translational tests, similar behavior profiles in bipolar mania patients and mice with reduced dopamine transporter activity have been identified. Future investigations should combine other animal models that are biologically relevant to the neuropsychiatric disorder with translational behavioral assessment as outlined here. This methodology can be utilized to develop novel targeted therapies that relieve symptoms for more patients without common side effects caused by current treatments.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - Brook L Henry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|