51
|
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023; 28:2505. [PMID: 36985477 PMCID: PMC10054480 DOI: 10.3390/molecules28062505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Salome Yakubu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingsong Zhu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mabruk Adams
- School of Civil Engineering, National University of Ireland, H91 TK33 Galway, Ireland
| |
Collapse
|
52
|
Shi Y, Chen S, Xu K, Zhao L, Liu Y, Zou Q, Zhang H, Zhu H, Zhang T, Sun H. Exposure to nitrogenous based flame retardants in Chinese population: Evidence from a national-scale study. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130653. [PMID: 37056013 DOI: 10.1016/j.jhazmat.2022.130653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 06/19/2023]
Abstract
Extensive use of nitrogen-based flame retardants (NFRs) has resulted in their widespread environmental occurrence. To investigate human exposure to NFRs on a national scale, the abundance and spatial distribution of NFRs were assessed in urine specimens collected from 13 cities in China. Six out of eight target NFRs were detectable in more than half of the urine samples, and the total concentrations of NFRs ranged from 3.22 to 880 ng/mL with a median of 46.7 ng/mL. Cyanuric acid was the most abundant chemical, accounting for 66.2%, followed by melamine (16.3%), ammelide (10.8%), and ammeline (6.11%). Regional differences in concentrations and composition profiles of NFRs were observed within China as a result of different production and application profiles. In addition, we found that urinary NFRs levels were much higher than but statistically correlated with that of organophosphates (r2 = 0.69, p < 0.05), another class of phosphorus-based flame retardant, implying similar emission sources and/or human exposure pathways. Furthermore, the estimated daily intakes and hazard quotients revealed that the Chinese population's exposure to NFRs is within safe limits. To the best of our knowledge, this is the first study to document the ubiquitous occurrence and region-specific variations of human exposure to NFRs in China.
Collapse
Affiliation(s)
- Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ke Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiang Zou
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
53
|
Buekers J, Baken K, Govarts E, Martin LR, Vogel N, Kolossa-Gehring M, Šlejkovec Z, Falnoga I, Horvat M, Lignell S, Lindroos AK, Rambaud L, Riou M, Pedraza-Diaz S, Esteban-Lopez M, Castaño A, Den Hond E, Baeyens W, Santonen T, Schoeters G. Human urinary arsenic species, associated exposure determinants and potential health risks assessed in the HBM4EU Aligned Studies. Int J Hyg Environ Health 2023; 248:114115. [PMID: 36689783 DOI: 10.1016/j.ijheh.2023.114115] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 μg/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 μg/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe.
Collapse
Affiliation(s)
- Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Nina Vogel
- German Environment Agency (UBA), Berlin, Germany
| | | | | | | | | | | | | | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, Saint-Maurice, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, Saint-Maurice, France
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Esteban-Lopez
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Elly Den Hond
- Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | - Willy Baeyens
- Analytical, Environmental & Geo-Chemistry, Free Universtiy of Brussels (VUB), Brussels, Belgium
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
54
|
Li M, Wan Y, Qian X, Wang A, Mahai G, He Z, Li Y, Xu S, Xia W. Urinary metabolites of multiple volatile organic compounds among pregnant women across pregnancy: Variability, exposure characteristics, and associations with selected oxidative stress biomarkers. ENVIRONMENT INTERNATIONAL 2023; 173:107816. [PMID: 36805810 DOI: 10.1016/j.envint.2023.107816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) are a group of pollutants pervasive in daily life with identified adverse health effects. However, no study has investigated the variability in VOC metabolites during pregnancy and their relationships with oxidative stress biomarkers in pregnant women. In the present study, the variability of 21 selected VOC metabolites was examined and their relationships with three selected oxidative stress biomarkers measured in spot urine samples at three trimesters of 1094 pregnant women were analyzed. Nineteen VOC metabolites were ubiquitous in the urine samples with detection rates ranging from 75.9% to 100%. Monohydroxybutenyl mercapturic acid (MHBMA) and s-phenyl mercapturic acid (PMA) had detection rates lower than 1.00%. Intraclass correlation coefficients (ICCs) of the detected analytes at three trimesters ranged 0.07-0.24, and the concentrations were highest in the first trimester. Higher concentrations of some VOC metabolites were related with participant characteristics including higher pre-pregnancy body mass index (BMI), lower education level, unemployment during pregnancy, multiparity, and sampling season of summer or winter. In repeated cross-sectional analyses, interquartile range (IQR) increases in the 19 detected VOC metabolites were positively related with 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), and 4-hydroxy nonenal mercapturic acid (HNEMA) with the estimates ranging from 9.00% to 204%. The mixture effect of the VOC metabolites on the oxidative stress biomarkers was further assessed using weighted quantile sum regression (WQS) models and the results showed that the WQS index of VOC metabolite mixture was significantly associated with 8-OHdG (β: 0.37, 0,32, and 0.39 at the 1st, 2nd, and 3rd trimester, respectively), 8-OHG (0.38, 0.32, and 0.39) and HNEMA (1.21, 1.08, and 1.10). Glycidamide mercapturic acid (GAMA), and trans,trans-muconic acid (MU) were the strongest contributors of the mixture effect on 8-OHdG, 8-OHG, and HNEMA, respectively. Overall, urinary concentrations of the VOC metabolites during pregnancy were strongly associated with the oxidative stress biomarkers.
Collapse
Affiliation(s)
- Mei Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
55
|
Geiger SD, Musaad S, Hill J, Aguiar A, Schantz S. Sex-specific associations between urinary bisphenols concentrations during pregnancy and problematic child behaviors at age 2 years. Neurotoxicol Teratol 2023; 96:107152. [PMID: 36642394 PMCID: PMC10170945 DOI: 10.1016/j.ntt.2023.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Effects of prenatal bisphenol A (BPA) exposure on child behavior are mixed with some reports suggesting increased problematic behaviors in girls (e.g., aggression and emotional reactivity) and in boys (i.e., externalizing behaviors), while other reports suggest decreased problematic behaviors in girls. Little is known about the potential impact of pregnancy bisphenol S (BPS) exposure on child behavior. In a prospective cohort study (n = 68), five maternal spot urine samples collected across pregnancy were pooled and analyzed for BPA and BPS. Child behavior at 2 years was assessed using the Child Behavior Checklist (CBCL). Linear regression models were used to assess associations between bisphenols concentrations and both composite and syndrome CBCL scales. Exposure x child sex interactions were included in addition to their main effects and sex-stratified analyses were conducted. Models were adjusted for maternal age, number of siblings, and child age at CBCL intake. Mean maternal age was 29.7 years. Most women were White (88%), had an annual household income ≥$50,000 (66%), and at least a college degree (81%). Median concentrations were 1.3 ng/mL (range 0.4-7.2) for BPA and 0.3 ng/mL (range 0.1-3.5) for BPS. Sex modified the relationship between BPA and scores on several syndrome scales-anxious-depressed, aggressive, and sleep problems-where the association was consistently inverse in males in lower BPA concentrations, and positive (more reported behavior problems) among girls in the higher BPA group. Higher BPS was associated with more problematic internalizing behaviors among girls but not boys, and sex modified the relationship between BPS and emotionally reactive behaviors (Pinteraction = 0.128), with sex-specific estimates revealing more emotionally reactive behaviors among girls (expβ = 3.92 95% CI 1.16, 13.27; P = 0.028) but not boys. Findings were mixed overall, but one notable finding was that BPS, a replacement for BPA, was associated with increased problematic behaviors. There is a need for replication of findings due to our small sample size.
Collapse
Affiliation(s)
- Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| | - Salma Musaad
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Jennifer Hill
- Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Andréa Aguiar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States of America
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States of America
| |
Collapse
|
56
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. RESEARCH SQUARE 2023:rs.3.rs-2565914. [PMID: 36798220 PMCID: PMC9934759 DOI: 10.21203/rs.3.rs-2565914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Agrowing body of literature investigated childhood exposure to environmental chemicals in association with attention deficit hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay, and typical development. Methods A total of 574 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study was administered the Aberrant Behavior Checklist (ABC). This study focused on the Hyperactivity subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in >70% samples were used in statistical analyses. Weighted quantile sum regression for negative binomial outcomes with repeated holdout validation was performed to investigate covariate-adjusted associations between mixtures and ABC scores in 574 children. The mixture analyses were further restricted to 232 children with ASD. Results Phthalate metabolite mixtures, weighted for mono-n-butylphthalate (MNBP), mono-2-heptyl phthalate, and mono-carboxy isononyl phthalate, were associated with the Hyperactivity subscale (mean incidence rate ratio [mIRR] = 1.11; 2.5th, 97.5th percentile: 1.00, 1.23), especially the hyperactivity/impulsivity subdomain (mIRR = 1.14; 2.5th, 97.5th percentile: 1.06, 1.26). These associations remained similar after restricting to children with ASD. The inattention subdomain was associated with a phenols/parabens mixture, weighted for several parabens and bisphenols (mIRR = 1.13; 2.5th, 97.5th percentile: 1.00, 1.28) and a total mixture, weighted for 3,4-dihydroxy benzoic acid, MNBR and mono-(2-ethyl-5-carboxypentyl) phthalate (mIRR = 1.11; 2.5th, 97.5th percentile: 1.01,1.25) only among children with ASD. Conclusions Concurrent exposure to phthalate mixtures was associated with hyperactivity in early childhood. Though causal inference cannot be made based on our cross-sectional findings, this study warrants further research on mixtures of larger number of chemicals from multiple classes in association with ADHD-related behaviors in young children.
Collapse
|
57
|
Che Z, Jia H, Chen R, Pan K, Fan Z, Su C, Wu Z, Zhang T. Associations between exposure to brominated flame retardants and metabolic syndrome and its components in U.S. adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159935. [PMID: 36336051 DOI: 10.1016/j.scitotenv.2022.159935] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Humans are simultaneously exposed to numerous of environmental brominated flame retardants (BFRs). We aim to explore the overall associations of BFRs mixture on metabolic syndrome (MetS) and its components and further identify significant chemicals. METHODS This study included 4641 adults from the National Health and Nutrition Examination Survey (NHANES) in 2007-2016. The weighted logistic regression was conducted to estimate the association of a single BFR exposure with MetS and its components. Meanwhile, the weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were adopted to evaluate the overall associations of BFRs mixture on MetS and its components, and to identify significant chemicals. We also evaluated potential associations modified by sex. RESULTS In the weighted logistic regression model, PBB153 were positively associated with MetS in a dose-dependent manner (Ptrend < 0.05). For its components, increasing quartiles of most BFRs were positively associated with abdominal obesity, hypertriglyceridemia, and low HDL. However, we found no statistically significant associations between BFRs and hypertension and hyperglycemia. WQS analyses found that BFRs mixture was positively associated with MetS (OR: 1.30; 95%CI:1.14, 1.46), abdominal obesity (OR: 1.15; 95%CI:1.03, 1.27), hypertriglyceridemia (OR:1.43; 95%CI:1.19, 1.67), and low HDL (OR: 1.15; 95%CI:1.01, 1.29). BKMR showed associations in a similar direction as WQS for BFRs mixture. For MetS, hypertriglyceridemia and Low HDL, PBB153, PBDE28 and PBDE209 were the most heavily weighting chemicals and had the highest the posterior inclusion probabilities in the WQS and BKMR, respectively. BFRs showed stronger associations of MetS and its components in males than in females. CONCLUSIONS The present study suggested exposure to BFRs mixture was positively associated with MetS and its components in adults, and PBB153, PBDE28 and PBDE209 were the significant chemicals. However, prospective cohort studies are still needed to confirm the causal effect between BFRs mixture and MetS.
Collapse
Affiliation(s)
- Zhiqiang Che
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huixun Jia
- School of Public Health, Fudan University, Shanghai, China; National Clinical Research Center for Ophthalmic Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Keyu Pan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhe Fan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention/Key Laboratory of Trace Element Nutrition of National Health Commission, Beijing 100050, 29 Nanwei Road, Xicheng District, Beijing, China.
| | - Zhenyu Wu
- School of Public Health, Fudan University, Shanghai, China.
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
58
|
Busgang SA, Andra SS, Curtin P, Colicino E, Mazzella MJ, Bixby M, Sanders AP, Meeker JD, Hauptman M, Yelamanchili S, Phipatanakul W, Gennings C. A cross-validation based approach for estimating specific gravity in elementary-school aged children using a nonlinear model. ENVIRONMENTAL RESEARCH 2023; 217:114793. [PMID: 36414110 PMCID: PMC9879698 DOI: 10.1016/j.envres.2022.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
Environmental research often relies on urinary biomarkers which require dilution correction to accurately measure exposures. Specific gravity (SG) and creatinine (UCr) are commonly measured urinary dilution factors. Epidemiologic studies may assess only one of these measures, making it difficult to pool studies that may otherwise be able to be combined. Participants from the National Health and Nutrition Examination Survey 2007-2008 cycle were used to perform k-fold validation of a nonlinear model estimating SG from UCr. The final estimated model was applied to participants from the School Inner-City Asthma Intervention Study, who submitted urinary samples to the Children's Health Exposure Analysis Resource. Model performance was evaluated using calibration metrics to determine how closely the average estimated SG was to the measured SG. Additional models, with interaction terms for age, sex, body mass index, race/ethnicity, relative time of day when sample was collected, log transformed 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and asthma status were estimated and assessed for improvement. The association between monobenzyl phthalate (MBZP) and asthma symptom days, controlling for measured UCr, measured SG, and each estimated SG were compared to assess validity of the estimated SG. The model estimating SG from UCr alone, resulted in a beta estimate of 1.10 (95% CI: 1.01, 1.19), indicating agreement between model-predicted SG and measured SG. Inclusion of age and sex in the model improved estimation (β = 1.06, 95% CI: 0.98, 1.15). The full model accounting for all interaction terms with UCr resulted in the best agreement (β = 1.01, 95% CI: 0.93,1.09). Associations between MBZP and asthma symptoms days, controlling for each estimated SG, were within the range of effect estimates when controlling for measured SG and measured UCr (Rate ratios = 1.28-1.34). Our nonlinear modeling provides opportunities to estimate SG in studies that measure UCr or vice versa, enabling data pooling despite differences in urine dilution factors.
Collapse
Affiliation(s)
- Stefanie A Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J Mazzella
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moira Bixby
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison P Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Marissa Hauptman
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA; Region 1: New England Pediatric Environmental Health Specialty Unit, Boston, MA, USA
| | - Shirisha Yelamanchili
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, MA, USA; Division of Allergy and Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
59
|
Rivera-Núñez Z, Kinkade CW, Zhang Y, Rockson A, Bandera EV, Llanos AAM, Barrett ES. Phenols, Parabens, Phthalates and Puberty: a Systematic Review of Synthetic Chemicals Commonly Found in Personal Care Products and Girls' Pubertal Development. Curr Environ Health Rep 2022; 9:517-534. [PMID: 35867279 PMCID: PMC9742306 DOI: 10.1007/s40572-022-00366-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Exposure to endocrine disrupting chemicals through personal care products (PCPs) is widespread and may disrupt hormone-sensitive endpoints, such as timing of puberty. Given the well-documented (and ongoing) decline in age at menarche in many populations, we conducted a systematic review of the epidemiological literature on exposure to chemicals commonly found in PCPs (including certain phthalates, phenols, and parabens) in relation to girls' pubertal development. RECENT FINDINGS The preponderance of research on this topic has examined phthalate exposures with the strongest evidence indicating that prenatal monoethyl phthalate (MEP) concentrations may be associated with slightly earlier timing of puberty, including age at menarche. Findings examining peri-pubertal phthalate exposures and pubertal outcomes were less consistent as were studies of prenatal and peri-pubertal phenol exposures. Very few studies had examined parabens in relation to girls' pubertal development. Common study limitations included potential exposure misclassification related to use of spot samples and/or mistimed biomarker assessment with respect to the outcomes. The role of body size as a mediator in these relationships remains unresolved. Overall, evidence of associations between chemical exposures in PCPs and girls' pubertal development was conflicting. When associations were observed, effect sizes were small. Nevertheless, given the many environmental, social, and behavioral factors in the modern environment that may act synergistically to accelerate timing of puberty, even marginal changes may be cause for concern, with implications for cancer risk, mental health, and cardiometabolic disease in later life.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA. .,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Yingting Zhang
- Robert Wood Johnson Library of the Health Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Amber Rockson
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|
60
|
Politis MD, Yao M, Gennings C, Tamayo-Ortiz M, Valvi D, Kim-Schulze S, Qi J, Amarasiriwardena C, Pantic I, Tolentino MC, Estrada-Gutierrez G, Greenberg JH, Téllez-Rojo MM, Wright RO, Sanders AP, Rosa MJ. Prenatal Metal Exposures and Associations with Kidney Injury Biomarkers in Children. TOXICS 2022; 10:692. [PMID: 36422900 PMCID: PMC9699100 DOI: 10.3390/toxics10110692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Prenatal exposure to arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) may be nephrotoxic, yet limited studies have examined subclinical kidney injury biomarkers in children. We assessed whether metal exposure in the second trimester (2T), a crucial time of kidney development, is associated with altered urine kidney injury and function biomarkers in preadolescent children. Analyses included 494 children participating in a birth cohort study in Mexico City. Concentrations of As, Cd, and Pb were measured from pregnant women in 2T blood and urine, and Hg in urine only. Kidney biomarkers were measured from children in urine at age 8-12 years. We assessed the associations between individual metals and (1) kidney biomarkers using linear regression and (2) a multi-protein kidney mixture using weighted quantile sum (WQS) regression. Associations of separate urine and blood metal mixtures with individual kidney biomarkers were assessed via WQS. Within the multi-protein mixture, the association with increased urinary As was predominated by urine alpha-1-microglobulin (A1M), interferon gamma-induced protein 10 (IP10), and fatty acid binding protein 1; the association with increased urinary Cd was predominated by A1M, clusterin, and albumin. The urine metal mixture was associated with increased albumin (0.23 ng/mL; 95% confidence interval (CI): 0.10, 0.37), IP10 (0.15 ng/mL; 95% CI: 0.02, 0.28), and cystatin C (0.17 ng/mL; 95% CI: 0.04, 0.31); these associations were mainly driven by urinary As and Cd. We observed null associations between prenatal blood or urine metal mixtures and estimated glomerular filtration rate. Higher prenatal urinary metals, individually and as a mixture were associated with altered kidney injury biomarkers in children. Further research and longer participant follow-up are required to ascertain the risk of kidney disease later in life.
Collapse
Affiliation(s)
- Maria D. Politis
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City 06600, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jingjing Qi
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Pantic
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City 06600, Mexico
| | - Mari Cruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City 06600, Mexico
| | | | - Jason H. Greenberg
- Department of Pediatrics, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alison P. Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
61
|
Heilmann NZ, Reeves KW, Hankinson SE. Phthalates and bone mineral density: a systematic review. Environ Health 2022; 21:108. [PMID: 36369032 PMCID: PMC9652984 DOI: 10.1186/s12940-022-00920-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/20/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to endocrine disruptors, such as phthalates, may impact bone mineral density (BMD) through a variety of mechanisms. Studies of phthalate exposure and BMD in humans are scarce. OBJECTIVES To synthesize published data on the association between phthalate metabolites and BMD in humans and to provide methodological suggestions for future research. METHODS A single investigator searched PubMed for relevant studies, including observational studies of phthalate exposure and BMD in children and postmenopausal women. Twelve studies were screened with 5 meeting the eligibility criteria and included for review. A quality assessment form was used as a quality measure and key information was extracted from the included studies. RESULTS In one prospective study among postmenopausal women, higher levels of monocarboxyoctyl phthalate (MCOP) and monocarboxynonyl phthalate (MCNP) were significantly associated with lower BMD among nonusers of hormone therapy (HT). In cross-sectional studies of postmenopausal women, monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono (3-carboxypropyl) phthalate (MCPP), and mono-benzyl phthalate (MBzP) were negatively associated with BMD, and MCNP was positively associated with BMD, but these results were not replicated across studies. In studies of fetal exposure to phthalates and childhood BMD, significant positive associations between MCPP and BMD in children at age 12 years were found in 1 study, while associations were null in the other study. CONCLUSIONS Studies among postmenopausal women provide suggestive evidence of an association between urinary phthalate metabolite concentration and decreased BMD. Results from studies of childhood BMD are inconclusive given the limited data and their limitations. More research is needed to address limitations and further investigate the association between phthalate exposure and human BMD.
Collapse
Affiliation(s)
- Nina Z Heilmann
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Katherine W Reeves
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
62
|
Chen WJ, Robledo C, Davis EM, Goodman JR, Xu C, Hwang J, Janitz AE, Garwe T, Calafat AM, Peck JD. Assessing urinary phenol and paraben mixtures in pregnant women with and without gestational diabetes mellitus: A case-control study. ENVIRONMENTAL RESEARCH 2022; 214:113897. [PMID: 35839910 PMCID: PMC9514543 DOI: 10.1016/j.envres.2022.113897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 05/11/2023]
Abstract
Prior studies have identified the associations between environmental phenol and paraben exposures and increased risk of gestational diabetes mellitus (GDM), but no study addressed these exposures as mixtures. As methods have emerged to better assess exposures to multiple chemicals, our study aimed to apply Bayesian kernel machine regression (BKMR) to evaluate the association between phenol and paraben mixtures and GDM. This study included 64 GDM cases and 237 obstetric patient controls from the University of Oklahoma Medical Center. Mid-pregnancy spot urine samples were collected to quantify concentrations of bisphenol A (BPA), benzophenone-3, triclosan, 2,4-dichlorophenol, 2,5-dichlorophenol, butylparaben, methylparaben, and propylparaben. Multivariable logistic regression was used to evaluate the associations between individual chemical biomarkers and GDM while controlling for confounding. We used probit implementation of BKMR with hierarchical variable selection to estimate the mean difference in GDM probability for each component of the phenol and paraben mixtures while controlling for the correlation among the chemical biomarkers. When analyzing individual chemicals using logistic regression, benzophenone-3 was positively associated with GDM [adjusted odds ratio (aOR) per interquartile range (IQR) = 1.54, 95% confidence interval (CI) 1.15, 2.08], while BPA was negatively associated with GDM (aOR 0.61, 95% CI 0.37, 0.99). In probit-BKMR analysis, an increase in z-score transformed log urinary concentrations of benzophenone-3 from the 10th to 90th percentile was associated with an increase in the estimated difference in the probability of GDM (0.67, 95% Credible Interval 0.04, 1.30), holding other chemicals fixed at their medians. No associations were identified between other chemical biomarkers and GDM in the BKMR analyses. We observed that the association of BPA and GDM was attenuated when accounting for correlated phenols and parabens, suggesting the importance of addressing chemical mixtures in perinatal environmental exposure studies. Additional prospective investigations will increase the understanding of the relationship between benzophenone-3 exposure and GDM development.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Candace Robledo
- Department of Population Health and Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Erin M Davis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Jean R Goodman
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Missouri, Columbia, MO, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda E Janitz
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tabitha Garwe
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer D Peck
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
63
|
Choi G, Kuiper JR, Bennett DH, Barrett ES, Bastain TM, Breton CV, Chinthakindi S, Dunlop AL, Farzan SF, Herbstman JB, Karagas MR, Marsit CJ, Meeker JD, Morello-Frosch R, O'Connor TG, Pellizzari ED, Romano ME, Sathyanarayana S, Schantz S, Schmidt RJ, Watkins DJ, Zhu H, Kannan K, Buckley JP, Woodruff TJ. Exposure to melamine and its derivatives and aromatic amines among pregnant women in the United States: The ECHO Program. CHEMOSPHERE 2022; 307:135599. [PMID: 36055588 PMCID: PMC9748524 DOI: 10.1016/j.chemosphere.2022.135599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Melamine, melamine derivatives, and aromatic amines are nitrogen-containing compounds with known toxicity and widespread commercial uses. Nevertheless, biomonitoring of these chemicals is lacking, particularly during pregnancy, a period of increased susceptibility to adverse health effects. OBJECTIVES We aimed to measure melamine, melamine derivatives, and aromatic amine exposure in pregnant women across the United States (U.S.) and evaluate associations with participant and urine sample collection characteristics. METHODS We measured 43 analytes, representing 45 chemicals (i.e., melamine, three melamine derivatives, and 41 aromatic amines), in urine from pregnant women in nine diverse ECHO cohorts during 2008-2020 (N = 171). To assess relations with participant and urine sample collection characteristics, we used generalized estimating equations to estimate prevalence ratios (PRs) for analytes dichotomized at the detection limit, % differences (%Δ) for continuous analytes, and 95% confidence intervals. Multivariable models included age, race/ethnicity, marital status, urinary cotinine, and year of sample collection. RESULTS Twelve chemicals were detected in >60% of samples, with near ubiquitous detection of cyanuric acid, melamine, aniline, 4,4'-methylenedianiline, and a composite of o-toluidine and m-toluidine (99-100%). In multivariable adjusted models, most chemicals were associated with higher exposures among Hispanic and non-Hispanic Black participants. For example, concentrations of 3,4-dichloroaniline were higher among Hispanic (%Δ: +149, 95% CI: +17, +431) and non-Hispanic Black (%Δ: +136, 95% CI: +35, +311) women compared with non-Hispanic White women. We observed similar results for ammelide, o-/m-toluidine, 4,4'-methylenedianiline, and 4-chloroaniline. Most chemicals were positively associated with urinary cotinine, with strongest associations observed for o-/m-toluidine (%Δ: +23; 95% CI: +16, +31) and 3,4-dichloroaniline (%Δ: +25; 95% CI: +17, +33). Some chemicals exhibited annual trends (e.g., %Δ in melamine per year: -11; 95% CI: -19, -1) or time of day, seasonal, and geographic variability. DISCUSSION Exposure to melamine, cyanuric acid, and some aromatic amines was ubiquitous in this first investigation of these analytes in pregnant women. Future research should expand biomonitoring, identify sources of exposure disparities by race/ethnicity, and evaluate potential adverse health effects.
Collapse
Affiliation(s)
- Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sridhar Chinthakindi
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, CA, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester, Rochester, NY, USA
| | | | - Megan E Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tracey J Woodruff
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
64
|
Davalos AD, Mínguez-Alarcón L, van T' Erve TJ, Keil AP, Williams PL, Meeker JD, Milne GL, Zhao S, Hauser R, Ferguson KK. Associations between mixtures of urinary phthalate metabolite concentrations and oxidative stress biomarkers among couples undergoing fertility treatment. ENVIRONMENTAL RESEARCH 2022; 212:113342. [PMID: 35461852 PMCID: PMC9233083 DOI: 10.1016/j.envres.2022.113342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 05/29/2023]
Abstract
Phthalate exposure has been associated with adverse reproductive outcomes and oxidative stress is a potential mechanism by which they act. However, few human studies have explored co-exposure confounding or joint effects. Furthermore, most studies examine associations between biomarkers of exposure and oxidative stress from the same urine sample. We investigated single-exposure, co-exposure-adjusted, and joint associations between phthalate metabolites and oxidative stress in the Environment and Reproductive Health (EARTH) study among couples undergoing fertility treatment. We examined cross-sectional associations in both women and men, and longitudinal associations in women. Urine was collected in the follicular phase (women only) and at the time of fertility procedure (women and men), and analyzed for 11 phthalate metabolites. Urine from the time of fertility procedure was analyzed for oxidative stress biomarkers, including free 8-iso-prostaglandin F2α (8-iso-PGF2α), its primary metabolite (2,3-dinor-5,6-dihydro-15-F2t-isoprostane [F2-IsoP-M]), and prostaglandin F2α (PGF2α). Linear mixed effects models were used to estimate single-exposure associations. Bayesian Kernel Machine Regression (BKMR) was used to adjust for co-exposures and to estimate joint effects. Among women, we observed positive associations between all phthalate metabolites and oxidative stress biomarkers in single-exposure models, but there was clear co-exposure confounding. For instance, in a single-exposure model, we estimated a 63% (95% confidence interval: 51, 77) increase in the 8-iso-PGF2α metabolite per interquartile range (IQR) difference in mono-n-butyl phthalate (MBP) versus a 34% (95% credible interval: 12, 60) increase in co-adjusted models. However, several phthalate metabolites remained associated with oxidative stress in co-exposure models, and the joint effects of all exposures were high (e.g., an 114% increase in the 8-iso-PGF2α metabolite per IQR difference in all exposures). Longitudinal results were also attenuated compared to cross-sectional results in women; however, the joint effect of all exposures and the 8-iso-PGF2α metabolite remained positive and statistically significant (11% increase per IQR difference in all exposures, 95% credible interval: 0.2, 23). In men, associations were generally less pronounced, although the joint effect of the mixture on 8-iso-PGF2α was above the null. Because oxidative stress is related to reproductive success among couples seeking fertility treatment, mitigating phthalate exposure should be considered as a potentially beneficial measure.
Collapse
Affiliation(s)
- Angel D Davalos
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Thomas J van T' Erve
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Division of Environmental Health, Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Alexander P Keil
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
65
|
Welch BM, Keil AP, Buckley JP, Calafat AM, Christenbury KE, Engel SM, O'Brien KM, Rosen EM, James-Todd T, Zota AR, Ferguson KK. Associations Between Prenatal Urinary Biomarkers of Phthalate Exposure and Preterm Birth: A Pooled Study of 16 US Cohorts. JAMA Pediatr 2022; 176:895-905. [PMID: 35816333 PMCID: PMC9274448 DOI: 10.1001/jamapediatrics.2022.2252] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 01/16/2023]
Abstract
Importance Phthalate exposure is widespread among pregnant women and may be a risk factor for preterm birth. Objective To investigate the prospective association between urinary biomarkers of phthalates in pregnancy and preterm birth among individuals living in the US. Design, Setting, and Participants Individual-level data were pooled from 16 preconception and pregnancy studies conducted in the US. Pregnant individuals who delivered between 1983 and 2018 and provided 1 or more urine samples during pregnancy were included. Exposures Urinary phthalate metabolites were quantified as biomarkers of phthalate exposure. Concentrations of 11 phthalate metabolites were standardized for urine dilution and mean repeated measurements across pregnancy were calculated. Main Outcomes and Measures Logistic regression models were used to examine the association between each phthalate metabolite with the odds of preterm birth, defined as less than 37 weeks of gestation at delivery (n = 539). Models pooled data using fixed effects and adjusted for maternal age, race and ethnicity, education, and prepregnancy body mass index. The association between the overall mixture of phthalate metabolites and preterm birth was also examined with logistic regression. G-computation, which requires certain assumptions to be considered causal, was used to estimate the association with hypothetical interventions to reduce the mixture concentrations on preterm birth. Results The final analytic sample included 6045 participants (mean [SD] age, 29.1 [6.1] years). Overall, 802 individuals (13.3%) were Black, 2323 (38.4%) were Hispanic/Latina, 2576 (42.6%) were White, and 328 (5.4%) had other race and ethnicity (including American Indian/Alaskan Native, Native Hawaiian, >1 racial identity, or reported as other). Most phthalate metabolites were detected in more than 96% of participants. Higher odds of preterm birth, ranging from 12% to 16%, were observed in association with an interquartile range increase in urinary concentrations of mono-n-butyl phthalate (odds ratio [OR], 1.12 [95% CI, 0.98-1.27]), mono-isobutyl phthalate (OR, 1.16 [95% CI, 1.00-1.34]), mono(2-ethyl-5-carboxypentyl) phthalate (OR, 1.16 [95% CI, 1.00-1.34]), and mono(3-carboxypropyl) phthalate (OR, 1.14 [95% CI, 1.01-1.29]). Among approximately 90 preterm births per 1000 live births in this study population, hypothetical interventions to reduce the mixture of phthalate metabolite levels by 10%, 30%, and 50% were estimated to prevent 1.8 (95% CI, 0.5-3.1), 5.9 (95% CI, 1.7-9.9), and 11.1 (95% CI, 3.6-18.3) preterm births, respectively. Conclusions and Relevance Results from this large US study population suggest that phthalate exposure during pregnancy may be a preventable risk factor for preterm delivery.
Collapse
Affiliation(s)
- Barrett M. Welch
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | | | - Jessie P. Buckley
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Kate E. Christenbury
- Social & Scientific Systems, Inc, a DLH Holdings Company, Raleigh, North Carolina
| | | | - Katie M. O'Brien
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Emma M. Rosen
- University of North Carolina at Chapel Hill, Chapel Hill
| | | | - Ami R. Zota
- Milken School of Public Health, George Washington University, Washington, DC
| | - Kelly K. Ferguson
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | | |
Collapse
|
66
|
Eick SM, Geiger SD, Alshawabkeh A, Aung M, Barrett E, Bush NR, Cordero JF, Ferguson KK, Meeker JD, Milne GL, Nguyen RHN, Padula AM, Sathyanarayana S, Welch BM, Schantz SL, Woodruff TJ, Morello-Frosch R. Associations between social, biologic, and behavioral factors and biomarkers of oxidative stress during pregnancy: Findings from four ECHO cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155596. [PMID: 35490822 PMCID: PMC9177811 DOI: 10.1016/j.scitotenv.2022.155596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Lower socioeconomic status (SES) and elevated psychosocial stress are known contributors to adverse pregnancy outcomes; however, biological mechanisms linking these factors to adverse pregnancy outcomes are not well-characterized. Oxidative stress may be an important, yet understudied mechanistic pathway. We used a pooled study design to examine biological, behavioral, and social factors as predictors of prenatal oxidative stress biomarkers. METHODS Leveraging four pregnancy cohorts from the Environmental influences on Child Health Outcomes (ECHO) Program spanning multiple geographic regions across the United States (U.S.) (N = 2082), we measured biomarkers of oxidative stress in urine samples at up to three time points during pregnancy, including 8-isoprostane-prostaglandin F2α (8-isoPGF2α), its major metabolite, 2,3-dinor-5,6-dihydro-15-F2t-isoprostane, and prostaglandin F2α (PGF2α). Maternal age, pre-pregnancy body mass index, marital/partnered status, parity, and smoking status were included as biological and behavioral factors while race/ethnicity, maternal education, and stressful life events were considered social factors. We examined associations between each individual biological, behavioral, and social factor with oxidative stress biomarkers using multivariable-adjusted linear mixed models. RESULTS Numerous biological, behavioral, and social factors were associated with elevated levels of 8-isoPGF2α, its major metabolite, and PGF2α. Pregnant people who were current smokers relative to non-smokers or had less than a high school education relative to a college degree had 11.04% (95% confidence interval [CI] = -1.97%, 25.77%) and 9.13% (95% CI = -1.02%, 20.32%) higher levels of 8-isoPGF2α, respectively. CONCLUSIONS Oxidative stress biomarkers are elevated among pregnant people with higher socioeconomic disadvantage and may represent one pathway linking biological, behavioral, and social factors to adverse pregnancy and child health outcomes, which should be explored in future work.
Collapse
Affiliation(s)
- Stephanie M Eick
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA.
| | - Sarah Dee Geiger
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30606, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ruby H N Nguyen
- Division of Epidemiology & Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454, USA
| | - Amy M Padula
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | - Barrett M Welch
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
67
|
Kuiper JR, O’Brien KM, Welch BM, Barrett ES, Nguyen RH, Sathyanarayana S, Milne GL, Swan SH, Ferguson KK, Buckley JP. Combining Urinary Biomarker Data From Studies With Different Measures of Urinary Dilution. Epidemiology 2022; 33:533-540. [PMID: 35473917 PMCID: PMC9585883 DOI: 10.1097/ede.0000000000001496] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Guidance is lacking for how to combine urinary biomarker data across studies that use different measures of urinary dilution, that is, creatinine or specific gravity. METHODS Among 741 pregnant participants from four sites of The Infant Development and Environment Study (TIDES) cohort, we assessed the relation of maternal urinary di-2-ethylhexyl phthalate (DEHP) concentrations with preterm birth. We compared scenarios in which all sites measured either urinary creatinine or specific gravity, or where measure of dilution differed by site. In addition to a scenario with no dilution adjustment, we applied and compared three dilution-adjustment approaches: a standard regression-based approach for creatinine, a standard approach for specific gravity (Boeniger method), and a more recently developed approach that has been applied to both (covariate-adjusted standardization method). For each scenario and dilution-adjustment method, we estimated the association between a doubling in the molar sum of DEHP (∑DEHP) and odds of preterm birth using logistic regression. RESULTS All dilution-adjustment approaches yielded comparable associations (odds ratio [OR]) that were larger in magnitude than when we did not perform dilution adjustment. A doubling of ∑DEHP was associated with 9% greater odds of preterm birth (OR = 1.09, 95% confidence interval [CI] = 0.91, 1.30) when applying no dilution-adjustment method, whereas dilution-adjusted point estimates were higher, and similar across all scenarios and methods: 1.13-1.20 (regression-based), 1.15-1.18 (Boeniger), and 1.14-1.21 (covariate-adjusted standardization). CONCLUSIONS In our applied example, we demonstrate that it is possible and straightforward to combine urinary biomarker data across studies when measures of dilution differ.
Collapse
Affiliation(s)
- Jordan R. Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Barrett M. Welch
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ
| | - Ruby H.N. Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington and Seattle Children’s Research Institute, Seattle, WA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
68
|
Wu X, Cao X, Lintelmann J, Peters A, Koenig W, Zimmermann R, Schneider A, Wolf K. Assessment of the association of exposure to polycyclic aromatic hydrocarbons, oxidative stress, and inflammation: A cross-sectional study in Augsburg, Germany. Int J Hyg Environ Health 2022; 244:113993. [PMID: 35777219 DOI: 10.1016/j.ijheh.2022.113993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to acute and chronic health effects through the suggested pathways of oxidative stress and inflammation. However, evidence is still limited. We aimed to investigate jointly the relationship of PAHs, oxidative stress, and inflammation. METHODS We measured 13 biomarkers of PAH exposure (n = 6: hydroxylated polycyclic aromatic hydrocarbons, [OH-PAHs]), oxidative stress (n = 6: malondialdehyde (MDA); 8-hydroxy-2'-deoxyguanosine (8-OHdG); and 4 representatives of the compound class of F2α-isoprostanes) in urine, and inflammation (n = 1: high-sensitivity C-reactive protein, [hs-CRP]) in serum from 400 participants at the second follow-up (2013/2014) of the German KORA survey S4. Multiple linear regression models were applied to investigate the interplay between biomarkers. RESULTS Concentrations of biomarkers varied according to sex, age, smoking status, season, and a history of obesity, diabetes, or chronic kidney disease. All OH-PAHs were significantly and positively associated with oxidative stress biomarkers. An interquartile range (IQR) increase in sum OH-PAHs was associated with a 13.3% (95% CI: 9.9%, 16.9%) increase in MDA, a 6.5% (95% CI: 3.5%, 9.6%) increase in 8-OHdG, and an 8.4% (95% CI: 6.6%, 11.3%) increase in sum F2α-isoprostanes. Associations were more pronounced between OH-PAHs and F2α-isoprostanes but also between OH-PAHs and 8-OHdG for participants with potential underlying systemic inflammation (hs-CRP ≥ 3 mg/L). We observed no association between OH-PAHs and hs-CRP levels. While 8-OHdG was significantly positively associated with hs-CRP (13.7% [95% CI: 2.2%, 26.5%] per IQR increase in 8-OHdG), F2α-isoprostanes and MDA indicated only a positive or null association, respectively. CONCLUSION The results of this cross-sectional study suggest, at a population level, that exposure to PAHs is associated with oxidative stress even in a low exposure setting. Oxidative stress markers, but not PAHs, were associated with inflammation. Individual risk factors were important contributors to these processes and should be considered in future studies. Further longitudinal studies are necessary to investigate the causal chain of the associations.
Collapse
Affiliation(s)
- Xiao Wu
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xin Cao
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jutta Lintelmann
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Munich, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wolfgang Koenig
- German Heart Centre Munich, Technical University of Munich, Munich, Germany; DZHK, German Centre for Cardiovascular Research, Partner Site Munich, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Ralf Zimmermann
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
| | | |
Collapse
|
69
|
Ješeta M, Franzová K, Machynová S, Kalina J, Kohoutek J, Mekiňová L, Crha I, Kempisty B, Kašík M, Žáková J, Ventruba P, Navrátilová J. The Bisphenols Found in the Ejaculate of Men Does Not Pass through the Testes. TOXICS 2022; 10:toxics10060311. [PMID: 35736919 PMCID: PMC9230672 DOI: 10.3390/toxics10060311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023]
Abstract
Exposure to bisphenols is related to negative effects on male reproduction. The bisphenols exposure is associated with several modes of action including negative impact on the blood–testis barrier (BTB) in testes or direct effect on spermatozoa. Bisphenols have been detected in human seminal plasma, but the possible mechanism of seminal transfer of bisphenols is not clear. Some authors consider the transfer through the blood–testis barrier to be crucial. Therefore, in this work, we compared normozoospermic men and men after vasectomy who have interrupted vas deferens and their ejaculate does not contain testicular products. We measured the concentration of bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) in the urine and seminal plasma of these men using liquid chromatography tandem mass spectrometry (LC/MSMS). We found that the ratio of urinary and seminal plasma content of bisphenols did not differ in normozoospermic men or men after vasectomy. From the obtained data, it can be concluded that the pathways of transport of bisphenols into seminal plasma are not primarily through the testicular tissue, but this pathway is applied similarly to other routes of transmission by a corresponding ejaculate volume ratio. To a much greater extent than through testicular tissue, bisphenols enter the seminal plasma mainly as part of the secretions of the accessory glands.
Collapse
Affiliation(s)
- Michal Ješeta
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, 16500 Prague, Czech Republic
- Correspondence:
| | - Kateřina Franzová
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
| | - Simona Machynová
- Department of Urology, Faculty of Medicine, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (S.M.); (M.K.)
| | - Jiří Kalina
- RECETOX Centre, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (J.K.); (J.N.)
| | - Jiří Kohoutek
- RECETOX Centre, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (J.K.); (J.N.)
| | - Lenka Mekiňová
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
| | - Igor Crha
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
- Department of Health Sciences, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Marek Kašík
- Department of Urology, Faculty of Medicine, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (S.M.); (M.K.)
| | - Jana Žáková
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
| | - Pavel Ventruba
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
| | - Jana Navrátilová
- RECETOX Centre, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (J.K.); (J.N.)
| |
Collapse
|
70
|
Buckley J, Kuiper JR, Bennett DH, Barrett ES, Bastain T, Breton CV, Chinthakindi S, Dunlop AL, Farzan SF, Herbstman JB, Karagas MR, Marsit CJ, Meeker JD, Morello-Frosch R, O’Connor TG, Romano ME, Schantz S, Schmidt RJ, Watkins DJ, Zhu H, Pellizzari ED, Kannan K, Woodruff TJ. Exposure to Contemporary and Emerging Chemicals in Commerce among Pregnant Women in the United States: The Environmental influences on Child Health Outcome (ECHO) Program. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6560-6573. [PMID: 35536918 PMCID: PMC9118548 DOI: 10.1021/acs.est.1c08942] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/10/2023]
Abstract
Prenatal chemical exposures can influence maternal and child health; however, few industrial chemicals are routinely biomonitored. We assessed an extensive panel of contemporary and emerging chemicals in 171 pregnant women across the United States (U.S.) and Puerto Rico in the Environmental influences on Child Health Outcomes (ECHO) Program. We simultaneously measured urinary concentrations of 89 analytes (103 total chemicals representing 73 parent compounds) in nine chemical groups: bactericides, benzophenones, bisphenols, fungicides and herbicides, insecticides, organophosphate esters (OPEs), parabens, phthalates/alternative plasticizers, and polycyclic aromatic hydrocarbons (PAHs). We estimated associations of creatinine-adjusted concentrations with sociodemographic and specimen characteristics. Among our diverse prenatal population (60% non-Hispanic Black or Hispanic), we detected 73 of 89 analytes in ≥1 participant and 36 in >50% of participants. Five analytes not currently included in the U.S. biomonitoring were detected in ≥90% of samples: benzophenone-1, thiamethoxam, mono-2-(propyl-6-carboxy-hexyl) phthalate, monocarboxy isooctyl phthalate, and monohydroxy-iso-decyl phthalate. Many analyte concentrations were higher among women of Hispanic ethnicity compared to those of non-Hispanic White women. Concentrations of certain chemicals decreased with the calendar year, whereas concentrations of their replacements increased. Our largest study to date identified widespread exposures to prevalent and understudied chemicals in a diverse sample of pregnant women in the U.S.
Collapse
Affiliation(s)
- Jessie
P. Buckley
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21218, United States
| | - Jordan R. Kuiper
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21218, United States
| | - Deborah H. Bennett
- Department
of Public Health Sciences, University of California Davis, Davis, California 95616, United States
| | - Emily S. Barrett
- Department
of Biostatistics and Epidemiology, Rutgers
School of Public Health, Piscataway, New Jersey 08854, United States
| | - Tracy Bastain
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Carrie V. Breton
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Sridhar Chinthakindi
- Department
of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Anne L. Dunlop
- Department
of Gynecology and Obstetrics, Emory University
School of Medicine, Atlanta, Georgia 30322, United States
| | - Shohreh F. Farzan
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Julie B. Herbstman
- Department
of Environmental Health Sciences, Columbia, New York, NY 10032, United States
| | - Margaret R. Karagas
- Department
of Epidemiology, Dartmouth Geisel School
of Medicine, Lebanon, New Hampshire 03756, United States
| | - Carmen J. Marsit
- Department
of Environmental Health, Rollins School
of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - John D. Meeker
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Rachel Morello-Frosch
- Department
of Environmental Science, Policy and Management and School of Public
Health, University of California, Berkeley California 94720, United States
| | - Thomas G. O’Connor
- Department
of Psychiatry, University of Rochester, Rochester, New York 14627, United States
| | - Megan E. Romano
- Department
of Epidemiology, Dartmouth Geisel School
of Medicine, Lebanon, New Hampshire 03756, United States
| | - Susan Schantz
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rebecca J. Schmidt
- Department
of Public Health Sciences, University of California Davis, Davis, California 95616, United States
| | - Deborah J. Watkins
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Hongkai Zhu
- Department
of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Edo D. Pellizzari
- RTI International, Research Triangle
Park, North Carolina 27709, United States
| | - Kurunthachalam Kannan
- Department
of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Tracey J. Woodruff
- Department
of Obstetrics, Gynecology, and Reproductive Sciences and the Philip
R. Lee Institute for Health Policy Studies, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
71
|
Petroff RL, Padmanabhan V, Dolinoy DC, Watkins DJ, Ciarelli J, Haggerty D, Ruden DM, Goodrich JM. Prenatal Exposures to Common Phthalates and Prevalent Phthalate Alternatives and Infant DNA Methylation at Birth. Front Genet 2022; 13:793278. [PMID: 35432478 PMCID: PMC9010032 DOI: 10.3389/fgene.2022.793278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Phthalates are a diverse group of chemicals used in consumer products. Because they are so widespread, exposure to these compounds is nearly unavoidable. Recently, growing scientific consensus has suggested that phthalates produce health effects in developing infants and children. These effects may be mediated through mechanisms related to the epigenome, the constellation of mitotically heritable chemical marks and small compounds that guide transcription and translation. The present study examined the relationship between prenatal, first-trimester exposure of seven phthalates and epigenetics in two pregnancy cohorts (n = 262) to investigate sex-specific alterations in infant blood DNA methylation at birth (cord blood or neonatal blood spots). Prenatal exposure to several phthalates was suggestive of association with altered DNA methylation at 4 loci in males (all related to ΣDEHP) and 4 loci in females (1 related to ΣDiNP; 2 related to BBzP; and 1 related to MCPP) at a cutoff of q < 0.2. Additionally, a subset of dyads (n = 79) was used to interrogate the relationships between two compounds increasingly used as substitutions for common phthalates (ΣDINCH and ΣDEHTP) and cord blood DNA methylation. ΣDINCH, but not ΣDEHTP, was suggestive of association with DNA methylation (q < 0.2). Together, these results demonstrate that prenatal exposure to both classically used phthalate metabolites and their newer alternatives is associated with sex-specific infant DNA methylation. Research and regulatory actions regarding this chemical class should consider the developmental health effects of these compounds and aim to avoid regrettable substitution scenarios in the present and future.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Deborah J. Watkins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Diana Haggerty
- Scholarly Activities and Scientific Support, Spectrum Health West Michigan, Grand Rapids, MI, United States
| | - Douglas M. Ruden
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
72
|
Deng YL, Luo Q, Liu C, Zeng JY, Lu TT, Shi T, Cui FP, Yuan XQ, Miao Y, Zhang M, Chen PP, Li YF, Lu WQ, Zeng Q. Urinary biomarkers of exposure to drinking water disinfection byproducts and ovarian reserve: A cross-sectional study in China. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126683. [PMID: 34315024 DOI: 10.1016/j.jhazmat.2021.126683] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Experimental studies have demonstrated that disinfection byproducts (DBPs) can cause ovarian toxicity including inhibition of antral follicle growth and disruption of steroidogenesis, but there is a paucity of human evidence. We aimed to investigate whether urinary biomarkers of exposure to drinking water DBPs were associated with ovarian reserve. The present study included 956 women attending an infertility clinic in Wuhan, China from December 2018 to January 2020. Antral follicle count (AFC), ovarian volume (OV), anti-Mullerian hormone (AMH), and follicle-stimulating hormone (FSH) were measured as indicators of ovarian reserve. Urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were assessed as potential biomarkers of drinking water DBP exposures. Multivariate linear and Poisson regression models were applied to estimate the associations of urinary DCAA and TCAA concentrations with indicators of ovarian reserve. Elevated urinary DCAA and TCAA levels were monotonically associated with reduced total AFC (- 5.98%; 95% CI: - 10.30%, - 1.44% in DCAA and - 12.98%; 95% CI: - 17.00%, - 8.76% in TCAA comparing the extreme tertiles; both P for trends ≤ 0.01), and the former was only observed in right AFC but not in left AFC, whereas the latter was estimated for both right and left AFC. Moreover, elevated urinary TCAA levels were monotonically associated with decreased AMH (- 14.09%; 95% CI: - 24.79%, - 1.86% comparing the extreme tertiles; P for trend = 0.03). These negative associations were still observed for the exposure biomarkers modeled as continuous variables. Our findings suggest that exposure to drinking water DBPs may be associated with decreased ovarian reserve.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
73
|
Liu C, Sun Y, Mustieles V, Chen YJ, Huang LL, Deng YL, Wang YX, Lu WQ, Messerlian C. Prenatal Exposure to Disinfection Byproducts and Intrauterine Growth in a Chinese Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16011-16022. [PMID: 34813313 DOI: 10.1021/acs.est.1c04926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Disinfection byproduct (DBP) exposure has been associated with birth size, pregnancy oxidative stress, and other adverse perinatal outcomes. However, little is known about the potential effect of prenatal DBP exposure on intrauterine growth. The present study included 1516 pregnant women from the Xiaogan Disinfection By-Products (XGDBP) birth cohort who were measured for four blood trihalomethanes [i.e., chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and two urinary haloacetic acids [i.e., dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA)] across pregnancy trimesters. Second- and third-trimester fetal ultrasound measures of the abdominal circumference (AC), head circumference, biparietal diameter, femur length, and estimated fetal weight and birth weight were converted into z-scores. After adjusting for potential confounders, linear mixed models showed a decreasing AC z-score across tertiles of blood brominated THM (Br-THMs, the sum of BDCM, DBCM, and TBM) and total THM (THM4, the sum of Br-THMs and TCM) concentrations (both p for trend <0.01). We also observed a decreasing AC z-score across categories of blood TBM during pregnancy trimesters (p for trend = 0.03). Urinary haloacetic acids were unrelated to fetal growth parameters. In summary, prenatal exposure to THMs, particularly during the first trimester, was associated with reduced fetal abdominal circumference.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid 28029, Spain
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Li-Li Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
74
|
Feric Z, Bohm Agostini N, Beene D, Signes-Pastor AJ, Halchenko Y, Watkins D, MacKenzie D, Karagas M, Manjourides J, Alshawabkeh A, Kaeli D. A Secure and Reusable Software Architecture for Supporting Online Data Harmonization. PROCEEDINGS : ... IEEE INTERNATIONAL CONFERENCE ON BIG DATA. IEEE INTERNATIONAL CONFERENCE ON BIG DATA 2021; 2021:2801-2812. [PMID: 35449545 PMCID: PMC9020435 DOI: 10.1109/bigdata52589.2021.9671538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Retrospective data harmonization across multiple research cohorts and studies is frequently done to increase statistical power, provide comparison analysis, and create a richer data source for data mining. However, when combining disparate data sources, harmonization projects face data management and analysis challenges. These include differences in the data dictionaries and variable definitions, privacy concerns surrounding health data representing sensitive populations, and lack of properly defined data models. With the availability of mature open-source web-based database technologies, developing a complete software architecture to overcome the challenges associated with the harmonization process can alleviate many roadblocks. By leveraging state-of-the-art software engineering and database principles, we can ensure data quality and enable cross-center online access and collaboration. This paper outlines a complete software architecture developed and customized using the Django web framework, leveraged to harmonize sensitive data collected from three NIH-support birth cohorts. We describe our framework and show how we successfully overcame challenges faced when harmonizing data from these cohorts. We discuss our efforts in data cleaning, data sharing, data transformation, data visualization, and analytics, while reflecting on what we have learned to date from these harmonized datasets.
Collapse
Affiliation(s)
- Zlatan Feric
- Dept. of Electrical and Computer Engineering, Northeastern University
| | | | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, Health Sciences Center, University of New Mexico
| | | | - Yuliya Halchenko
- Department of Epidemiology, Geisel School of Medicine at Dartmouth
| | - Deborah Watkins
- Environmental Health Sciences, School of Public Health, University of Michigan
| | - Debra MacKenzie
- Community Environmental Health Program, College of Pharmacy, Health Sciences Center, University of New Mexico
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth
| | | | - Akram Alshawabkeh
- Dept. of Civil and Environmental Engineering, Northeastern University
| | - David Kaeli
- Dept. of Electrical and Computer Engineering, Northeastern University
| |
Collapse
|