51
|
Nadeem A, Ahmad SF, Al-Harbi NO, Attia SM, Bakheet SA, Alsanea S, Ali N, Albekairi TH, Alsaleh NB. Aggravation of autism-like behavior in BTBR T+tf/J mice by environmental pollutant, di-(2-ethylhexyl) phthalate: Role of nuclear factor erythroid 2-related factor 2 and oxidative enzymes in innate immune cells and cerebellum. Int Immunopharmacol 2021; 91:107323. [PMID: 33385713 DOI: 10.1016/j.intimp.2020.107323] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder which manifests itself in early childhood and is distinguished by recurring behavioral patterns, and dysfunction in social/communication skills. Ubiquitous environmental pollutant, di-2-ethylhexyl phthalate (DEHP) is one of the most frequently used plasticizers in various industrial products, e.g. vinyl flooring, plastic toys, and medical appliances. DEHP gets easily released into the environment and leads to human exposure through various routes. DEHP has been described to be linked with oxidative stress in various organs in animal/human studies. Increased concentration of DEHP has also been detected in ASD children which indicates an association between phthalates exposure and ASD. However, effect of DEHP on autism-like behavior has not been investigated previously. Therefore, this study probed the effect of DEHP on autism-like behavior (marble burying, self-grooming and sociability) and innate immune cells (dendritic cells/neutrophils)/cerebellar oxidant-antioxidant balance (NFkB, iNOS, NADPH oxidase, nitrotyrosine, lipid peroxides, Nrf2, SOD, GPx) in BTBR and C57 mice. Our data show that DEHP treatment causes worsening of autism-like behavior in BTBR mice which is associated with enhancement of oxidative stress in innate immune cells and cerebellum with concomitant lack of antioxidant protection. DEHP also causes oxidative stress in C57 mice in both innate immune cells and cerebellar compartment, however there is Nrf2-mediated induction of enzymatic antioxidants which protects them from upregulated oxidative stress. This proposes the notion that ubiquitous environmental pollutants such as DEHP may be involved in the pathogenesis/progression of ASD through dysregulation of antioxidant-antioxidant balance in innate immune cells and cerebellum.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
52
|
Hogberg HT, de Cássia da Silveira E Sá R, Kleensang A, Bouhifd M, Cemiloglu Ulker O, Smirnova L, Behl M, Maertens A, Zhao L, Hartung T. Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Arch Toxicol 2021; 95:207-228. [PMID: 33078273 PMCID: PMC7811506 DOI: 10.1007/s00204-020-02903-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47-the most abundant PBDE congener-with four OPFR (isopropylated phenyl phosphate-IPP, triphenyl phosphate-TPHP, isodecyl diphenyl phosphate-IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)-TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1-5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell-cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.
Collapse
Affiliation(s)
- Helena T Hogberg
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Rita de Cássia da Silveira E Sá
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Andre Kleensang
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mounir Bouhifd
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ozge Cemiloglu Ulker
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Lena Smirnova
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Alexandra Maertens
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liang Zhao
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
53
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
54
|
Alzghoul L, Al-Eitan LN, Aladawi M, Odeh M, Abu Hantash O. The Association Between Serum Vitamin D3 Levels and Autism Among Jordanian Boys. J Autism Dev Disord 2020; 50:3149-3154. [PMID: 30993503 DOI: 10.1007/s10803-019-04017-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study assesses the correlation between vitamin-D deficiency and autism spectrum disorder (ASD) in Jordan. We performed a case-controlled cross-sectional analysis to assess vitamin D levels in 83 children with ASD aged less than 8 years old compared to 106 healthy controls. In addition, the association between vitamin D deficiencies and gastrointestinal (GI) complains and electroencephalogram (EEG) abnormalities commonly found in children with ASD was investigated. Vitamin D levels in ASD patients were significantly lower. Also, Vitamin D levels in ASD patients had significant correlation with GI complains, but no correlation between vitamin D levels and Ca2+or EEG abnormalities was detected. These data suggest a possible role for vitamin D deficiency in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Loai Alzghoul
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| | - Laith N Al-Eitan
- Department of Applied Biological Science, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Maher Odeh
- School of Medicine, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
55
|
Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, Qasem H, Adams JB, Aaseth J, Skalny AV. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med 2020; 160:149-162. [PMID: 32745763 DOI: 10.1016/j.freeradbiomed.2020.07.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
The role of glutathione in autism spectrum disorder (ASD) is emerging as a major topic, due to its role in the maintenance of the intracellular redox balance. Several studies have implicated glutathione redox imbalance as a leading factor in ASD, and both ASD and many other neurodevelopmental disorders involve low levels of reduced glutathione (GSH), high levels of oxidized glutathione (GSSG), and abnormalities in the expressions of glutathione-related enzymes in the blood or brain. Glutathione metabolism, through its impact on redox environment or redox-independent mechanisms, interferes with multiple mechanisms involved in ASD pathogenesis. Glutathione-mediated regulation of glutamate receptors [e.g., N-methyl-d-aspartate (NMDA) receptor], as well as the role of glutamate as a substrate for glutathione synthesis, may be involved in the regulation of glutamate excitotoxicity. However, the interaction between glutathione and glutamate in the pathogenesis of brain diseases may vary from synergism to antagonism. Modulation of glutathione is also associated with regulation of redox-sensitive transcription factors nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) and downstream signaling (proinflammatory cytokines and inducible enzymes), thus providing a significant impact on neuroinflammation. Mitochondrial dysfunction, as well as neuronal apoptosis, may also provide a significant link between glutathione metabolism and ASD. Furthermore, it has been recently highlighted that glutathione can affect and modulate DNA methylation and epigenetics. Review analysis including research studies meeting the required criteria for analysis showed statistically significant differences between the plasma GSH and GSSG levels as well as GSH:GSSG ratio in autistic patients compared with healthy individuals (P = 0.0145, P = 0.0150 and P = 0.0202, respectively). Therefore, the existing data provide a strong background on the role of the glutathione system in ASD pathogenesis. Future research is necessary to investigate the role of glutathione redox signaling in ASD, which could potentially also lead to promising therapeutics.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo I Rana, Norway.
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Božena Hosnedlová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic; Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Olga P Ajsuvakova
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Margarita G Skalnaya
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Afaf El-Ansary
- Medicinal Chemistry Department, King Saud University, Riyadh, Saudi Arabia; Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Qasem
- Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - James B Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
56
|
de Abreu MS, Genario R, Giacomini AC, Demin KA, Lakstygal AM, Amstislavskaya TG, Fontana BD, Parker MO, Kalueff AV. Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience 2020; 445:3-11. [DOI: 10.1016/j.neuroscience.2019.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
57
|
Schrott R, Rajavel M, Acharya K, Huang Z, Acharya C, Hawkey A, Pippen E, Lyerly HK, Levin ED, Murphy SK. Sperm DNA methylation altered by THC and nicotine: Vulnerability of neurodevelopmental genes with bivalent chromatin. Sci Rep 2020; 10:16022. [PMID: 32994467 PMCID: PMC7525661 DOI: 10.1038/s41598-020-72783-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/03/2020] [Indexed: 01/23/2023] Open
Abstract
Men consume the most nicotine and cannabis products but impacts on sperm epigenetics are poorly characterized. Evidence suggests that preconception exposure to these drugs alters offspring neurodevelopment. Epigenetics may in part facilitate heritability. We therefore compared effects of exposure to tetrahydrocannabinol (THC) and nicotine on DNA methylation in rat sperm at genes involved in neurodevelopment. Reduced representation bisulfite sequencing data from sperm of rats exposed to THC via oral gavage showed that seven neurodevelopmentally active genes were significantly differentially methylated versus controls. Pyrosequencing data revealed majority overlap in differential methylation in sperm from rats exposed to THC via injection as well as those exposed to nicotine. Neurodevelopmental genes including autism candidates are vulnerable to environmental exposures and common features may mediate this vulnerability. We discovered that autism candidate genes are significantly enriched for bivalent chromatin structure, suggesting this configuration may increase vulnerability of genes in sperm to disrupted methylation.
Collapse
Affiliation(s)
- Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA.,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Maya Rajavel
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA
| | - Kelly Acharya
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA
| | - Chaitanya Acharya
- Division of Surgical Sciences, Department of Surgery, Center for Applied Therapeutics, Duke University Medical Center, Durham, NC, USA
| | - Andrew Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Erica Pippen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Center for Applied Therapeutics, Duke University Medical Center, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Susan K Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA. .,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
58
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Ayadhi LY, Attia SM, Alasmari AF, As Sobeai HM, Bakheet SA. Ubiquitous plasticizer, Di-(2-ethylhexyl) phthalate enhances existing inflammatory profile in monocytes of children with autism. Toxicology 2020; 446:152597. [PMID: 32991955 DOI: 10.1016/j.tox.2020.152597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
Abstract
Genetic as well as environmental factors are believed to play a significant role in the pathogenesis and progression of autism spectrum disorder (ASD). Phthalates are ubiquitous environmental contaminants as they are used plasticizers in several household/industrial products such as vinyl flooring, plastic toys, and cosmetic products. One of the plasticizers that is quite prevalent in these products is di-2-ethylhexyl phthalate (DEHP) which can cause human exposure via dermal/inhalation/ingestion routes. DEHP and its metabolites are associated with behavioral dysregulations and reported to be increased in systemic circulation of ASD children. DEHP is reported to cause upregulation of several inflammatory cytokines in different cells/tissues, however its role in inflammatory signaling of ASD monocytes has not been investigated earlier. Therefore, this study evaluated the effects of DEHP (at 5 μM final concentration for 24 h) on inflammatory profile (NFkB, STAT3, IL-6, TNF-α, IL-1β) in monocytes of ASD subjects and typically developing control (TDC) children. Our data show that DEHP upregulates NFkB/STAT3 expression which is associated with increased inflammatory profile in monocytes of ASD and TDC subjects, however its effect is much greater in magnitude in the former group. This was confirmed by utilization of NFkB inhibitor, PDTC and STAT3 inhibitor, Stattic which caused reduction in inflammatory cytokines from DEHP-treated monocytes in ASD group. In short, DEHP causes further elevation in inflammatory signaling in ASD monocytes which could be due to existing inflammation in this group. These data suggest that use of plasticizers such as DEHP should be minimized in order to avoid their potential effects on immune dysfunction associated with ASD.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
59
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|
60
|
Duan W, Xu C, Liu Q, Xu J, Weng Z, Zhang X, Basnet TB, Dahal M, Gu A. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: A population-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114630. [PMID: 33618481 DOI: 10.1016/j.envpol.2020.114630] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 05/25/2023]
Abstract
People are exposed to heavy metals in many ways during the course of their daily life. However, the effect of mixtures of heavy metals on mortality in the U.S. general population is unclear. We aimed to investigate the association between heavy metal concentrations (blood [lead, cadmium and mercury] and urine [barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, titanium, tungsten and uranium]) and all-cause, cardiovascular disease (CVD) and cancer mortality. Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 1999-2014. Poisson regression was performed to analyze the associations between single-metal and multimetal exposure and mortality. The following variables were adjusted as covariates: demographic variables (age, education, sex and ethnicity), anthropometric variables (body mass index), lifestyle variables (family income, serum cotinine category and physical activity) and medical comorbidities (CVD and diabetes). A total of 26,056 subjects from the NHANES were included in the present study (mean follow-up, 7.4 years). The age of the participants ranged from 20 to 85 years. The blood metal mixture was associated with all-cause mortality (RR = 1.38, 95% CI 1.25, 1.51), CVD mortality (RR = 1.43, 95% CI 1.06, 1.94) and cancer mortality (RR = 1.41, 95% CI 1.12, 1.76) and cadmium had the highest weight in the weighted quantile sum (WQS) regression for all associations. The urinary metal mixture was associated with an increased risk of all-cause (RR = 1.48, 95% CI 1.30, 1.68) and cancer mortality (RR = 1.60, 95% CI 1.02, 2.52). Sex differences were found in the associations of both blood and urine metal mixtures with cancer mortality. Our study suggests a potential positive association for the concentrations of heavy metal mixtures with overall, CVD and cancer mortality based on a large sample of the U.S. general population. Nevertheless, further studies are needed to confirm these important findings.
Collapse
Affiliation(s)
- Weiwei Duan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Til Bahadur Basnet
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Maginsh Dahal
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
61
|
Kaur S, Sarma SJ, Marshall BL, Liu Y, Kinkade JA, Bellamy MM, Mao J, Helferich WG, Schenk AK, Bivens NJ, Lei Z, Sumner LW, Bowden JA, Koelmel JP, Joshi T, Rosenfeld CS. Developmental exposure of California mice to endocrine disrupting chemicals and potential effects on the microbiome-gut-brain axis at adulthood. Sci Rep 2020; 10:10902. [PMID: 32616744 PMCID: PMC7331640 DOI: 10.1038/s41598-020-67709-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Xenoestrogens are chemicals found in plant products, such as genistein (GEN), and in industrial chemicals, e.g., bisphenol A (BPA), present in plastics and other products that are prevalent in the environment. Early exposure to such endocrine disrupting chemicals (EDC) may affect brain development by directly disrupting neural programming and/or through the microbiome-gut-brain axis. To test this hypothesis, California mice (Peromyscus californicus) offspring were exposed through the maternal diet to GEN (250 mg/kg feed weight) or BPA (5 mg/kg feed weight, low dose- LD or 50 mg/kg, upper dose-UD), and dams were placed on these diets two weeks prior to breeding, throughout gestation, and lactation. Various behaviors, gut microbiota, and fecal metabolome were assessed at 90 days of age. The LD but not UD of BPA exposure resulted in individuals spending more time engaging in repetitive behaviors. GEN exposed individuals were more likely to exhibit such behaviors and showed socio-communicative disturbances. BPA and GEN exposed females had increased number of metabolites involved in carbohydrate metabolism and synthesis. Males exposed to BPA or GEN showed alterations in lysine degradation and phenylalanine and tyrosine metabolism. Current findings indicate cause for concern that developmental exposure to BPA or GEN might affect the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Sarabjit Kaur
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Saurav J Sarma
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Metabolomics Center, University of Missouri, Columbia, MO, 65211, USA
| | - Brittney L Marshall
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Yang Liu
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Madison M Bellamy
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, IL, 61801, USA
| | | | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Zhentian Lei
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Metabolomics Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lloyd W Sumner
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Metabolomics Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jeremy P Koelmel
- Environmental Health Sciences, Yale University, New Haven, CT, 06510, USA
| | - Trupti Joshi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.,Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA. .,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA. .,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA. .,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA. .,Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
62
|
Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020; 34:101475. [PMID: 32336668 PMCID: PMC7327986 DOI: 10.1016/j.redox.2020.101475] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| |
Collapse
|
63
|
Xu L, Huo X, Liu Y, Zhang Y, Qin Q, Xu X. Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. CHEMOSPHERE 2020; 246:125829. [PMID: 31927382 DOI: 10.1016/j.chemosphere.2020.125829] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
Experimental studies have uncovered chemical exposure-induced ototoxicity, but population-based hearing risk assessment especially for early-life exposure to heavy metals and relevant biological mechanism remains unclear. We aimed to measure lead (Pb) and cadmium (Cd) levels, blood DNA methylations of Rb1, CASP8 and MeCP2 and hearing in 116 preschool children 3- to 7-years of age from an e-waste and a reference area, and to evaluate the association of exposures with hearing loss potentially affected by epigenetic modifications. A higher median Pb level but not Cd was found in the exposed group than the reference group. Average hearing thresholds in either ear of the exposed children were higher. Higher promoter methylation levels at cg02978827 and position +14, and lower at position +4 of Rb1 were found in the exposed group. Pb was positively correlated with chewing pencil habit while negatively correlated with washing hands before dinner. Slightly negative trends of promoter methylations in Rb1 and CASP8, while a strong positive trend of MeCP2 promoter methylation, were found along with increasing Pb and Cd levels. Logistic analyses showed the adjusted OR of Pb for hearing loss in the left ear and both ears was 1.46 (95% CI: 1.12, 1.91) and 1.40 (95% CI: 1.06, 1.84), respectively. Our results show an elevated Pb level, altered promoter DNA methylations and hearing ability in children of e-waste areas, suggesting that epigenetic changes of specific genes involves in the development of the auditory system during early exposure to environmental chemicals.
Collapse
Affiliation(s)
- Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yu Liu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China; Department of Cell Biolog Park y and Genetics, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
64
|
Poston RG, Murphy L, Rejepova A, Ghaninejad-Esfahani M, Segales J, Mulligan K, Saha RN. Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes. J Biol Chem 2020; 295:6120-6137. [PMID: 32229587 PMCID: PMC7196656 DOI: 10.1074/jbc.ra119.011138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH-BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH-BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK-ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand-protein docking suggested that 6-OH-BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH-BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH-BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β-lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK-ERK signaling, and axonal guidance.
Collapse
Affiliation(s)
- Robert G Poston
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Lillian Murphy
- Department of Biological Sciences, Center for Interdisciplinary Molecular Biology: Education, Research and Advancement (CIMERA), California State University, Sacramento, California 95819
| | - Ayna Rejepova
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Mina Ghaninejad-Esfahani
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Joshua Segales
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Kimberly Mulligan
- Department of Biological Sciences, Center for Interdisciplinary Molecular Biology: Education, Research and Advancement (CIMERA), California State University, Sacramento, California 95819
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343.
| |
Collapse
|
65
|
Butler MC, Long CN, Kinkade JA, Green MT, Martin RE, Marshall BL, Willemse TE, Schenk AK, Mao J, Rosenfeld CS. Endocrine disruption of gene expression and microRNA profiles in hippocampus and hypothalamus of California mice: Association of gene expression changes with behavioural outcomes. J Neuroendocrinol 2020; 32:e12847. [PMID: 32297422 PMCID: PMC7207022 DOI: 10.1111/jne.12847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023]
Abstract
The hypothalamus and hippocampus are sensitive to early exposure to endocrine disrupting chemicals (EDCs). Two EDCs that have raised particular concerns are bisphenol A (BPA), a widely prevalent chemical in many common household items, and genistein (GEN), a phyto-oestrogen present in soy and other plants. We hypothesised that early exposure to BPA or GEN may lead to permanent effects on gene expression profiles for both coding RNAs (mRNAs) and microRNAs (miRs), which can affect the translation of mRNAs. Such EDC-induced biomolecular changes may affect behavioural and metabolic patterns. California mice (Peromyscus californicus) male and female offspring were developmentally exposed via the maternal diet to BPA (5 mg kg-1 feed weight low dose [LD] and 50 mg kg-1 feed weight upper dose [UD]), GEN (250 mg kg-1 feed weight) or a phyto-oestrogen-free diet (AIN) control. Behavioural and metabolic tests were performed at 180 days of age. A quantitative polymerase chain reacttion analysis was performed for candidate mRNAs and miRs in the hypothalamus and hippocampus. LD BPA and GEN exposed California mice offspring showed socio-communication impairments. Hypothalamic Avp, Esr1, Kiss1 and Lepr were increased in LD BPA offspring. miR-153 was elevated but miR-181a was reduced in LD BPA offspring. miR-9 and miR-153 were increased in the hippocampi of LD BPA offspring, whereas GEN decreased hippocampal miR-7a and miR-153 expression. Correlation analyses revealed neural expression of miR-153 and miR-181a was associated with socio-communication deficits in LD BPA individuals. The findings reveal a cause for concern such that developmental exposure of BPA or GEN in California mice (and potentially by translation in humans) can lead to long standing neurobehavioural consequences.
Collapse
Affiliation(s)
- Mary C Butler
- Department of Chemistry, Truman State University, Kirksville, MO, USA
| | - Camryn N Long
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Madison T Green
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Rachel E Martin
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Brittney L Marshall
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Tess E Willemse
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | | | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
66
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
67
|
Al-Dewik N, Al-Jurf R, Styles M, Tahtamouni S, Alsharshani D, Alsharshani M, Ahmad AI, Khattab A, Al Rifai H, Walid Qoronfleh M. Overview and Introduction to Autism Spectrum Disorder (ASD). ADVANCES IN NEUROBIOLOGY 2020; 24:3-42. [PMID: 32006355 DOI: 10.1007/978-3-030-30402-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder generally manifesting in the first few years of life and tending to persist into adolescence and adulthood. It is characterized by deficits in communication and social interaction and restricted, repetitive patterns of behavior, interests, and activities. It is a disorder with multifactorial etiology. In this chapter, we will focus on the most important and common epidemiological studies, pathogenesis, screening, and diagnostic tools along with an explication of genetic testing in ASD.
Collapse
Affiliation(s)
- Nader Al-Dewik
- Clinical and Metabolic Genetics Section, Pediatrics Department, Hamad General Hospital (HGH), Women's Wellness and Research Center (WWRC) and Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar. .,Faculty of Health and Social Care Sciences, Kingston University, St. George's University of London, London, UK.
| | - Rana Al-Jurf
- Department of Biomedical Science, College of Health Science, Qatar University, Doha, Qatar
| | - Meghan Styles
- Health Profession Awareness Program, Health Facilities Development, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Sona Tahtamouni
- Child Development Center, Hamad Medical Corporation, Doha, Qatar
| | - Dalal Alsharshani
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mohammed Alsharshani
- Diagnostic Genetics Division (DGD), Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Amal I Ahmad
- Qatar Rehabilitation Institute (QRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Azhar Khattab
- Qatar Rehabilitation Institute (QRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Hilal Al Rifai
- Department of Pediatrics and Neonatology, Newborn Screening Unit, Hamad Medical Corporation, Doha, Qatar
| | - M Walid Qoronfleh
- Research and Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
68
|
Freitas BC, Beltrão-Braga PCB, Marchetto MC. Modeling Inflammation on Neurodevelopmental Disorders Using Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:207-218. [PMID: 32578148 DOI: 10.1007/978-3-030-45493-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders (ND) are characterized by an impairment of the nervous system during its development, with a wide variety of phenotypes based on genetic or environmental cues. There are currently several disorders grouped under ND including intellectual disabilities (ID), attention-deficit hyperactivity disorder (ADHD), and autism spectrum disorders (ASD). Although NDs can have multiple culprits with varied diagnostics, several NDs present an inflammatory component. Taking advantage of induced pluripotent stem cells (iPSC), several disorders were modeled in a dish complementing in vivo data from rodent models or clinical data. Monogenic syndromes displaying ND are more feasible to be modeled using iPSCs also due to the ability to recruit patients and clinical data available. Some of these genetic disorders are Fragile X Syndrome (FXS), Rett Syndrome (RTT), and Down Syndrome (DS). Environmental NDs can be caused by maternal immune activation (MIA), such as the infection with Zika virus during pregnancy known to cause neural damage to the fetus. Our goal in this chapter is to review the advances of using stem cell research in NDs, focusing on the role of neuroinflammation on ASD and environmental NDs studies.
Collapse
Affiliation(s)
- Beatriz C Freitas
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Patricia C B Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
69
|
Hu Z, Ying X, Huang L, Zhao Y, Zhou D, Liu J, Zhong J, Huang T, Zhang W, Cheng F, Duan S. Association of human serotonin receptor 4 promoter methylation with autism spectrum disorder. Medicine (Baltimore) 2020; 99:e18838. [PMID: 31977880 PMCID: PMC7004686 DOI: 10.1097/md.0000000000018838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human serotonin receptor 4 (HTR4) encodes a 5-HT4 receptor involved in learning, memory, depression, anxiety, and feeding behavior. The aim of this study was to investigate the association between the deoxyribonucleic acid (DNA) methylation of HTR4 promoter and autism spectrum disorder (ASD), a disease characterized by communication disorder and repetitive or restrictive behavior.Peripheral blood DNA was obtained from 61 ASD children and 66 healthy children, and the DNA methylation of HTR4 promoter was assessed by quantitative methylation-specific polymerase chain reaction. We used percentage of methylated reference (PMR) to represent DNA methylation level.Due to significant age differences between ASD cases and controls (3 [2, 5] years and 6 [5, 6] years, P = 3.34E-10), we used binary logistic regression analysis for adjustment. Our results showed that the DNA methylation levels of HTR4 promoter were significantly lower in children with ASD than in healthy children (median PMR: 66.23% vs 94.31%,P = .028, age-adjusted P = .034). In addition, the DNA methylation of HTR4 promoter was inversely associated with age in male ASD cases (total cases: r = -0.283, P = .027; male cases: r = -0.431, P = .002; female cases: r = -0.108, P = .752). Dual-luciferase reporter gene assay showed that the reporter gene expression in the strain with recombinant pGL3-promoter-HTR4 plasmid was significantly higher than that in the strain with pGL3-promoter plasmid (fold change = 2.01, P = .0065), indicating that the HTR4 promoter fragment may contain transcription factors to upregulate promoter activity.Our study suggested that hypomethylation of the HTR4 promoter is a potential biomarker for predicting the risk of male ASD.
Collapse
Affiliation(s)
- Zhenyu Hu
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Ling Huang
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Yuanzhi Zhao
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Jing Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwu Zhang
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Fang Cheng
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
70
|
Chun H, Leung C, Wen SW, McDonald J, Shin HH. Maternal exposure to air pollution and risk of autism in children: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113307. [PMID: 31733973 DOI: 10.1016/j.envpol.2019.113307] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The number of children diagnosed with autism spectrum disorder (ASD) has been increasing. Previous studies suggested potential association between pregnancy air pollution exposure and ASD. This systematic review and meta-analysis is intended to summarize the association between maternal exposure to outdoor air pollution and ASD in children by trimester based on recent studies. METHODS A systematic literature search in 3 databases (Medline, Embase, and Web of Science) was performed using subject headings related to ASD and air pollution since 2007. Eligible studies were screened and evaluated based on predetermined criteria. For meta-analyses, the studies were grouped by air pollutant and exposure time (prenatal period and trimesters). Within-group studies were standardized by log odds ratio (OR) and then combined by three meta-analysis methods: frequentist fixed and random effects models, and Bayesian random effects model. RESULTS Initial search identified 1564 papers, of which 25 studies remained for final analysis after duplicates and ineligible studies were removed. Of the 25 studies, 13, 14, 12, and 7 studies investigated ASD in children associated with PM2.5, PM10, NO2, and ozone, respectively. The frequentist and Bayesian random effects models resulted in different statistical significance. For prenatal period, frequentist meta-analysis returned significant pooled ORs with 95% confidence intervals, 1.06(1.01,1.11) for PM2.5 and 1.02(1.01,1.04) for NO2, whereas Bayesian meta-analysis showed similar ORs with wider 95% posterior intervals, 1.06(1.00,1.13) for PM2.5 and 1.02(1.00,1.05) for NO2. Third trimester appeared to have higher pooled ORs for PM2.5, PM10, and ozone, but patterns in the time-varying associations over the trimester were inconsistent. CONCLUSIONS For positive association between maternal exposure to ambient air pollution and ASD in children, there is some evidence for PM2.5, weak evidence for NO2 and little evidence for PM10 and ozone. However, patterns in associations over trimesters were inconsistent among studies and among air pollutants.
Collapse
Affiliation(s)
- HeeKyoung Chun
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, GA, USA
| | - Cheryl Leung
- Department of Obstetrics, Gynecology, and Newborn Care, University of Ottawa, Ottawa, ON, Canada
| | - Shi Wu Wen
- Department of Obstetrics, Gynecology, and Newborn Care, University of Ottawa, Ottawa, ON, Canada; Ottawa Hospital Research Institute Clinical Epidemiology, Ottawa, ON, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Judy McDonald
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Hwashin H Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
71
|
Gillera SEA, Marinello WP, Horman BM, Phillips AL, Ruis MT, Stapleton HM, Reif DM, Patisaul HB. Sex-specific effects of perinatal FireMaster® 550 (FM 550) exposure on socioemotional behavior in prairie voles. Neurotoxicol Teratol 2019; 79:106840. [PMID: 31730801 DOI: 10.1016/j.ntt.2019.106840] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
The rapidly rising incidence of neurodevelopmental disorders with social deficits is raising concern that developmental exposure to environmental contaminants may be contributory. Firemaster 550 (FM 550) is one of the most prevalent flame-retardant (FR) mixtures used in foam-based furniture and baby products and contains both brominated and organophosphate components. We and others have published evidence of developmental neurotoxicity and sex specific effects of FM 550 on anxiety-like and exploratory behaviors. Using a prosocial animal model, we investigated the impact of perinatal FM 550 exposure on a range of socioemotional behaviors including anxiety, attachment, and memory. Virtually unknown to toxicologists, but widely used in the behavioral neurosciences, the prairie vole (Microtus ochrogaster) is a uniquely valuable model organism for examining environmental factors on sociality because this species is spontaneously prosocial, biparental, and displays attachment behaviors including pair bonding. Dams were exposed to 0, 500, 1000, or 2000 μg of FM 550 via subcutaneous (sc) injections throughout gestation, and pups were directly exposed beginning the day after birth until weaning. Adult offspring of both sexes were then subjected to multiple tasks including open field, novel object recognition, and partner preference. Effects were dose responsive and sex-specific, with females more greatly affected. Exposure-related outcomes in females included elevated anxiety, decreased social interaction, decreased exploratory motivation, and aversion to novelty. Exposed males also had social deficits, with males in all three dose groups failing to show a partner preference. Our studies demonstrate the utility of the prairie vole for investigating the impact of chemical exposures on social behavior and support the hypothesis that developmental FR exposure impacts the social brain. Future studies will probe the possible mechanisms by which these effects arise.
Collapse
Affiliation(s)
| | - William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Allison L Phillips
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Matthew T Ruis
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - David M Reif
- Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
72
|
Koureas M, Rousou X, Haftiki H, Mouchtouri VA, Rachiotis G, Rakitski V, Tsakalof A, Hadjichristodoulou C. Spatial and temporal distribution of p,p'-DDE (1‑dichloro‑2,2‑bis (p‑chlorophenyl) ethylene) blood levels across the globe. A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:440-451. [PMID: 31181528 DOI: 10.1016/j.scitotenv.2019.05.261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although p,p'‑DDT (1,1,1‑trichloro-2,2‑bis (p‑chlorophenyl)‑ethane) has been banned for decades in most countries, its major metabolite p,p'-DDE (1‑dichloro‑2,2‑bis (p‑chlorophenyl) ethylene) is still detected in the vast majority of human blood samples. OBJECTIVES The purpose of this study was to quantitatively estimate the geographical distribution of DDE blood levels and record time-trends for specific countries and continents, exploiting available data from the scientific literature. METHODS A literature search was performed in SCOPUS and PUBMED databases. Studies were screened at 2 levels applying different sets of inclusion/exclusion criteria. Blood levels of DDE along with other variables of interest were extracted, and a meta-analysis of random effects was conducted, by using the package metafor within the statistical programming language R. Results were expressed as pooled geometric means (GM [95% confidence intervals, CIs]). RESULTS A total of 418 papers were included in the quantitative synthesis that contained data for 854 population subgroups, and analyzed a total of 195,595 samples. Overall global DDE concentrations dropped from 5207 (95% CI: 3616-7499) ng/g lipids during 1951-1969 to 207 (95% CI: 159-269) ng/g lipids for studies reporting sampling after 2000. Analyses for studies published from 2001 and onward revealed geographical differences regarding DDE burden. DISCUSSION The significant decline in DDE blood levels after its restriction is demonstrated in our results. Differences in decrease trends were observed in different parts of the globe, which can be explained by deferred implementation of environmental policies. In some countries DDE concentrations remain high, and systematic biomonitoring is proposed.
Collapse
Affiliation(s)
- M Koureas
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - X Rousou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - H Haftiki
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - V A Mouchtouri
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - G Rachiotis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - V Rakitski
- Russian Institute for Pesticides Hygiene, Toxicology and Chemical Safety, Russia
| | - A Tsakalof
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece; Department of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - C Hadjichristodoulou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece.
| |
Collapse
|
73
|
Drobná B, Fabišiková A, Čonka K, Gago F, Oravcová P, Wimmerová S, Oktapodas Feiler M, Šovčíková E. PBDE serum concentration and preschool maturity of children from Slovakia. CHEMOSPHERE 2019; 233:387-395. [PMID: 31176902 DOI: 10.1016/j.chemosphere.2019.05.284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenylethers (PBDEs) are persistent organic pollutants (POPs), they are considered endocrine disruptors and can bioaccumulate in nature, and in living tissue. Human exposure to and the presence of PBDEs in human samples is of concern due to their potential health risks. Young children are one of the most vulnerable populations to PBDE's potential health effects. Ninety-one serum samples of 6-year-old children, residing in a contaminated location, due to former production of polychlorinated biphenyls (PCBs), were analysed to examine children's exposure to PBDEs in Slovakia. Median serum concentrations found for individual PBDE congeners BDE-28+33, -47, -99, -100, -153, -154 and -183 were 0.015, 0.184, 0.079, 0.046, 0.176, 0.014, and 0.097 ng g-1 lipid weight, respectively. Children's preschool maturity was measured using the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III) test. In multivariate analyses BDE-153 serum concentrations were significantly inversely associated with WPPSI-III composite score (p = 0.011, β = -23.6), while adjusting for PCB-153 and sex. Significant negative associations were observed for BDE-153 serum concentrations (p = 0.002, β = -29.8) and WPPSI-III composite score, after controlling for PCB-118 and sex. Negative associations were also observed for BDE-47, BDE-100 and BDE-153, with different individual WPPSI subtest scores, after adjustment with PCB-153 and/or PCB-118 and sex. Serum concentrations of PCB-153 and PCB-118 were not statistically significantly associated with WPPSI-III composite score and individual subtest scores. These findings demonstrate adverse effects of PBDE serum exposure on preschool maturity of children, and PBDEs potentially negative impact on child neuropsychological development.
Collapse
Affiliation(s)
- Beata Drobná
- Department of Toxic Organic Pollutants, Faculty of Medicine, Slovak Medical University in Bratislava, Slovakia.
| | - Anna Fabišiková
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Austria
| | - Kamil Čonka
- Department of Toxic Organic Pollutants, Faculty of Medicine, Slovak Medical University in Bratislava, Slovakia
| | - František Gago
- Department of Toxic Organic Pollutants, Faculty of Medicine, Slovak Medical University in Bratislava, Slovakia
| | - Petra Oravcová
- Department of Toxic Organic Pollutants, Faculty of Medicine, Slovak Medical University in Bratislava, Slovakia
| | - Soňa Wimmerová
- Department of Biostatistical Analysis, Faculty of Public Health, Slovak Medical University in Bratislava, Slovakia
| | - Marina Oktapodas Feiler
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry; Rochester, New York, USA
| | - Eva Šovčíková
- Institute of Psychology, Faculty of Medicine, Slovak Medical University in Bratislava, Slovakia
| |
Collapse
|
74
|
Caparros-Gonzalez RA, Giménez-Asensio MJ, González-Alzaga B, Aguilar-Garduño C, Lorca-Marín JA, Alguacil J, Gómez-Becerra I, Gómez-Ariza JL, García-Barrera T, Hernandez AF, López-Flores I, Rohlman DS, Romero-Molina D, Ruiz-Pérez I, Lacasaña M. Childhood chromium exposure and neuropsychological development in children living in two polluted areas in southern Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1550-1560. [PMID: 31277024 DOI: 10.1016/j.envpol.2019.06.084] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 05/28/2023]
Abstract
This study aimed to assess the association between exposure to chromium and neuropsychological development among children. A cross-sectional study was conducted with 393 children aged 6-11 years old randomly selected from State-funded schools in two provinces in Southern Spain (Almeria and Huelva), in 2010 and 2012. Chromium levels in urine and hair samples were analyzed by inductively coupled plasma mass spectrometry with an octopole reaction system. Neuropsychological development was evaluated using the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) and three computerized tests from the Behavioural Assessment and Research System (BARS): Reaction Time Test (RTT), Continuous Performance Test (CPT) and Selective Attention Test (SAT). Multivariable linear regression models adjusted for potential confounders, including heavy metals, were applied to examine the association between chromium levels and neuropsychological outcomes. A 10-fold increase in urine chromium levels was associated with a decrease of 5.99 points on the WISC-IV Full-Scale IQ (95% CI: 11.98 to -0.02). Likewise, a 10-fold increase in urine chromium levels in boys was associated with a decrease of 0.03 points in the percentage of omissions (95% CI: 0.0 to 0.05) in the SAT, with an increase of 68.35 points in latency (95% CI: 6.60 to 130.12) in the RTT, and with an increase in the number of trials with latencies > 1000 ms (β = 37.92; 95% CI: 2.73 to 73.12) in the RTT. An inverse significant association was detected between chromium levels in hair and latency in the SAT in boys (β = -50.53; 95% CI: 86.86 to -14.22) and girls (β = -55.95; 95% CI: 78.93 to -32.97). Excluding trials with latencies >1000 ms in the RTT increased latency scores by 29.36 points in boys (95% CI: 0.17 to 58.57), and 39.91 points in girls (95% CI: 21.25 to 58.59). This study is the first to show the detrimental effects of postnatal chromium exposure on neuropsychological development in school-aged children.
Collapse
Affiliation(s)
- Rafael A Caparros-Gonzalez
- Mind, Brain and Behaviour Research Center (CIMCYC), Faculty of Psychology, University of Granada, Granada, Spain; Department of Nursing, Faculty of Health Sciences, University of Jaen, Jaen, Spain
| | | | - Beatriz González-Alzaga
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | | | - J Andrés Lorca-Marín
- Department of Clinical, Experimental and Social Psychology, University of Huelva, Huelva, Spain; Natural Resources, Health, and Environment Research Centre (RENSMA), University of Huelva, Huelva, Spain
| | - Juan Alguacil
- Natural Resources, Health, and Environment Research Centre (RENSMA), University of Huelva, Huelva, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - José L Gómez-Ariza
- Professor José Carlos Vílchez Martín, Department of Chemistry, University of Huelva, Huelva, Spain; Natural Resources, Health, and Environment Research Centre (RENSMA), University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Professor José Carlos Vílchez Martín, Department of Chemistry, University of Huelva, Huelva, Spain; Natural Resources, Health, and Environment Research Centre (RENSMA), University of Huelva, Huelva, Spain
| | - Antonio F Hernandez
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain
| | - Inmaculada López-Flores
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Diane S Rohlman
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, USA
| | - Desiree Romero-Molina
- Department of Statistics and Operational Research, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Isabel Ruiz-Pérez
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marina Lacasaña
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
75
|
Poston RG, Saha RN. Epigenetic Effects of Polybrominated Diphenyl Ethers on Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152703. [PMID: 31362383 PMCID: PMC6695782 DOI: 10.3390/ijerph16152703] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Disruption of epigenetic regulation by environmental toxins is an emerging area of focus for understanding the latter's impact on human health. Polybrominated diphenyl ethers (PBDEs), one such group of toxins, are an environmentally pervasive class of brominated flame retardants that have been extensively used as coatings on a wide range of consumer products. Their environmental stability, propensity for bioaccumulation, and known links to adverse health effects have evoked extensive research to characterize underlying biological mechanisms of toxicity. Of particular concern is the growing body of evidence correlating human exposure levels to behavioral deficits related to neurodevelopmental disorders. The developing nervous system is particularly sensitive to influence by environmental signals, including dysregulation by toxins. Several major modes of actions have been identified, but a clear understanding of how observed effects relate to negative impacts on human health has not been established. Here, we review the current body of evidence for PBDE-induced epigenetic disruptions, including DNA methylation, chromatin dynamics, and non-coding RNA expression while discussing the potential relationship between PBDEs and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robert G Poston
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
76
|
Raciti M, Salma J, Spulber S, Gaudenzi G, Khalajzeyqami Z, Conti M, Anderlid BM, Falk A, Hermanson O, Ceccatelli S. NRXN1 Deletion and Exposure to Methylmercury Increase Astrocyte Differentiation by Different Notch-Dependent Transcriptional Mechanisms. Front Genet 2019; 10:593. [PMID: 31316548 PMCID: PMC6610538 DOI: 10.3389/fgene.2019.00593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/05/2019] [Indexed: 01/11/2023] Open
Abstract
Controversial evidence points to a possible involvement of methylmercury (MeHg) in the etiopathogenesis of autism spectrum disorders (ASD). In the present study, we used human neuroepithelial stem cells from healthy donors and from an autistic patient bearing a bi-allelic deletion in the gene encoding for NRXN1 to evaluate whether MeHg would induce cellular changes comparable to those seen in cells derived from the ASD patient. In healthy cells, a subcytotoxic concentration of MeHg enhanced astroglial differentiation similarly to what observed in the diseased cells (N1), as shown by the number of GFAP positive cells and immunofluorescence signal intensity. In both healthy MeHg-treated and N1 untreated cells, aberrations in Notch pathway activity seemed to play a critical role in promoting the differentiation toward glia. Accordingly, treatment with the established Notch inhibitor DAPT reversed the altered differentiation. Although our data are not conclusive since only one of the genes involved in ASD is considered, the results provide novel evidence suggesting that developmental exposure to MeHg, even at subcytotoxic concentrations, induces alterations in astroglial differentiation similar to those observed in ASD.
Collapse
Affiliation(s)
- Marilena Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jahan Salma
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Gaudenzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mirko Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Centre for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
77
|
Berghuis SA, Roze E. Prenatal exposure to PCBs and neurological and sexual/pubertal development from birth to adolescence. Curr Probl Pediatr Adolesc Health Care 2019; 49:133-159. [PMID: 31147261 DOI: 10.1016/j.cppeds.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several chemical compounds are resistant to degradation and end up in the food chain. One group of these chemicals is polychlorinated biphenyls (PCBs) which are used as flame retardants and plasticizers. Although PCBs were banned several decades ago, PCBs are still found in environmental media, including in the body of humans. PCBs are transferred from mother to fetus via the placenta during pregnancy. Considering that the prenatal period is a sensitive period during which essential developmental processes take place, exposure to environmental chemicals might have considerable and permanent consequences for outcomes in later life. The aim of this review is to provide an update on the latest insights on the effects of prenatal exposure to PCBs on neurological, sexual and pubertal development in children. We give an overview of recent literature, and discuss it in the light of the findings in a unique Dutch birth cohort, with data on both neurological and pubertal development into adolescence. The findings in the studies included in this review, together with the findings in the Dutch cohort, demonstrate that prenatal exposure to PCBs can interfere with normal child development, not only during the perinatal period, but up to and including adolescence. Higher prenatal exposure to PCBs was found to be both negatively and positively associated with neurodevelopmental outcomes. Regarding pubertal development, higher prenatal PCB exposure was found to be associated with more advanced pubertal development, also in the Dutch cohort, whereas other studies also found delayed pubertal development. These findings raise concern regarding the effects of man-made chemical compounds on child development. They further contribute to the awareness of how environmental chemical compounds can interfere with child development and negatively influence healthy ageing.
Collapse
Affiliation(s)
- Sietske Annette Berghuis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ, Groningen, the Netherlands.
| | - Elise Roze
- Division of Neonatology, Department of Pediatrics, Wilhelmina Children's Hospital, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
78
|
Guo BQ, Li HB, Liu YY. Association between hair lead levels and autism spectrum disorder in children: A systematic review and meta-analysis. Psychiatry Res 2019; 276:239-249. [PMID: 31121530 DOI: 10.1016/j.psychres.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/11/2019] [Indexed: 01/08/2023]
Abstract
A number of studies measured lead levels in hair from children with autism spectrum disorder (ASD) to detect the relationship between cumulated lead exposure and the development of ASD, but results are inconsistent. We aimed to conduct a systematic review and meta-analysis using the published studies to explore the actual association of hair lead levels with ASD in children. We searched PubMed, Embase, PsycINFO, and Cochrane Library databases (up to December 11, 2018). The random-effects model was applied to summarize effect sizes. Subgroup and meta-regression analyses were performed simultaneously. Twenty eligible studies involving 1787 participants (941 autistic children and 846 healthy subjects) were included. Our results of primary analysis showed that there were no statistically significant differences in the levels of hair lead between children with ASD and healthy individuals (Hedges's g = 0.251; 95% confidence interval: -0.121, 0.623; P = 0.187). We identified 2 sources of between-study heterogeneity: analytical technology and the sample size of patients. Additionally, no publication bias was observed in this meta-analysis. In conclusion, this study does not support the association of hair lead levels with ASD in children, and the involvement of cumulated lead exposure in the occurrence of ASD.
Collapse
Affiliation(s)
- Bao-Qiang Guo
- Department of Child and Adolescent Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, China.
| | - Hong-Bin Li
- Department of Child and Adolescent Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, China
| | - Ying-Ying Liu
- Key Laboratory of Environmental Pollutants and Health Effects Assessment, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
79
|
Geng R, Fang S, Li G. The association between particulate matter 2.5 exposure and children with autism spectrum disorder. Int J Dev Neurosci 2019; 75:59-63. [PMID: 31078619 DOI: 10.1016/j.ijdevneu.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Particulate matter (PM) as an environmental pollutant is suspected to be associated with autism spectrum disorder (ASD). The aim of this study was to assess whether exposures to PM2.5 during the first three years of life in relation to the risk and degree of the severity of ASD. METHODS A total of two hundred and ninety-seven 3-6 years old Chinese children (99 confirmed autism cases and 198 their age-gender matched control subjects) were included. Children's exposures to PM2.5 (particulate matter with aerodynamic diameter <2.5 μm) during the first three years after birth were estimated. Logistic regression analysis was used to examine the PM2.5-ASD association. RESULTS The mean levels of PM2.5 exposures in ASD and typical developmental children during the first three years of life were 89.8[standard deviations (SD): 6.1] μg/m3 and 87.3(6.6) μg/m3, respectively (p = 0.002). A statistically significant positive correlation was found between the serum levels of PM2.5 and the Childhood Autism Rating Scale (CARS) score indicating severity of autism (r = 0.259; p = 0.010). Based on the receiver operating characteristic (ROC) curve, the optimal cutoff value of PM2.5 levels as an indicator for auxiliary diagnosis of ASD was projected to be 89.5ug/m3, which yielded a sensitivity of 65.4% and a specificity of 63.2%, with the area under the curve at 0.61 (95% confidence intervals [CIs], 0.54-0.68; P < 0.001). Multivariate analysis models were used to assess ASD risk according to PM2.5 quartiles (the lowest quartile [Q1] as the reference), with the adjusted odds ratios (ORs) (95% CIs) were recorded. As shown in the Table 2, the 3rd and 4th quartile of PM2.5 were compared against the Q1, and the risks were increased by 103% (OR = 2.03; 95%CI: 1.13-5.54; p = 0.015) and 311% (4.15; 2.04-9.45; p = 0.002), respectively. CONCLUSIONS To conclude, the evidence from this study allowed us to conclude that there was an association between PM2.5 exposure and ASD risk and severity.
Collapse
Affiliation(s)
- Ruihua Geng
- Department of Pediatrics, People's Hospital of Kenli District, Dongying City, Shandong Province, 257500, China
| | - Suqin Fang
- Department of Pediatrics, People's Hospital of Kenli District, Dongying City, Shandong Province, 257500, China
| | - Guizhi Li
- Department of Pediatrics, People's Hospital of Kenli District, Dongying City, Shandong Province, 257500, China.
| |
Collapse
|
80
|
Bisphenol A Activates Calcium Influx in Immortalized GnRH Neurons. Int J Mol Sci 2019; 20:ijms20092160. [PMID: 31052388 PMCID: PMC6539360 DOI: 10.3390/ijms20092160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Bisphenol A (BPA) is one of the most widely used chemicals worldwide, e.g., as a component of plastic containers for food and water. It is considered to exert an estrogenic effect, by mimicking estradiol (E2) action. Because of this widespread presence, it has attracted the interest and concern of researchers and regulators. Despite the vast amount of related literature, the potential adverse effects of environmentally significant doses of BPA are still object of controversy, and the mechanisms by which it can perturb endocrine functions, and particularly the neuroendocrine axis, are not adequately understood. One of the ways by which endocrine disruptors (EDCs) can exert their effects is the perturbation of calcium signaling mechanisms. In this study, we addressed the issue of the impact of BPA on the neuroendocrine system with an in vitro approach, using a consolidated model of immortalized Gonadotropin-Releasing Hormone (GnRH) expressing neurons, the GT1–7 cell line, focusing on the calcium signals activated by the endocrine disruptor. The investigation was limited to biologically relevant doses (nM–µM range). We found that BPA induced moderate increases in intracellular calcium concentration, comparable with those induced by nanomolar doses of E2, without affecting cell survival and with only a minor effect on proliferation.
Collapse
|
81
|
Exposure routes and health effects of heavy metals on children. Biometals 2019; 32:563-573. [DOI: 10.1007/s10534-019-00193-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
82
|
Chen Y, Liu S, Xu H, Zheng H, Bai C, Pan W, Zhou H, Liao M, Huang C, Dong Q. Maternal exposure to low dose BDE209 and Pb mixture induced neurobehavioral anomalies in C57BL/6 male offspring. Toxicology 2019; 418:70-80. [DOI: 10.1016/j.tox.2019.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/26/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022]
|
83
|
Pelch KE, Bolden AL, Kwiatkowski CF. Environmental Chemicals and Autism: A Scoping Review of the Human and Animal Research. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:46001. [PMID: 30942615 PMCID: PMC6785231 DOI: 10.1289/ehp4386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Estimates of autism prevalence have increased dramatically over the past two decades. Evidence suggests environmental factors may contribute to the etiology of the disorder. OBJECTIVES This scoping review aimed to identify and categorize primary research and reviews on the association between prenatal and early postnatal exposure to environmental chemicals and the development of autism in epidemiological studies and rodent models of autism. METHODS PubMed was searched through 8 February 2018. Included studies assessed exposure to environmental chemicals prior to 2 months of age in humans or 14 d in rodents. Rodent studies were considered relevant if they included at least one measurement of reciprocal social communicative behavior or repetitive and stereotyped behavior. Study details are presented in interactive displays using Tableau Public. RESULTS The search returned 21,603 unique studies, of which 54 epidemiological studies, 46 experimental rodent studies, and 50 reviews were deemed relevant, covering 152 chemical exposures. The most frequently studied exposures in humans were particulate matter ([Formula: see text]), mercury ([Formula: see text]), nonspecific air pollution ([Formula: see text]), and lead ([Formula: see text]). In rodent studies, the most frequently studied exposures were chlorpyrifos ([Formula: see text]), mercury ([Formula: see text]), and lead ([Formula: see text]). DISCUSSION Although research is growing rapidly, wide variability exists in study design and conduct, exposures investigated, and outcomes assessed. Conclusions focus on recommendations to guide development of best practices in epidemiology and toxicology, including greater harmonization across these fields of research to more quickly and efficiently identify chemicals of concern. In particular, we recommend chlorpyrifos, lead, and polychlorinated biphenyls (PCBs) be systematically reviewed in order to assess their relationship with the development of autism. There is a pressing need to move forward quickly and efficiently to understand environmental influences on autism in order to answer current regulatory questions and inform treatment and prevention efforts. https://doi.org/10.1289/EHP4386.
Collapse
Affiliation(s)
| | | | - Carol F. Kwiatkowski
- The Endocrine Disruption Exchange, Eckert, Colorado, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
84
|
Zhai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. ENVIRONMENTAL RESEARCH 2019; 171:501-509. [PMID: 30743242 DOI: 10.1016/j.envres.2019.01.060] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 05/24/2023]
Abstract
Autism spectrum disorder (ASD) is a neuro-developmental disorder that is characterized by impairments of reciprocal social interaction and restricted stereotyped repetitive behavior. The goal of the present study was to investigate the trace element and gut microbiota profiles of Chinese autistic children and screen out potential metallic or microbial indicators of the disease. One hundred and thirty-six children (78 with ASD and 58 healthy controls) aged from 3 to 7 years were enrolled. The levels of lead, cadmium, arsenic, copper, zinc, iron, mercury, calcium and magnesium in hair samples from the children were analyzed. Fecal samples were also collected and the children's gut microbiota profiles were characterized by 16s rRNA sequencing. Concentrations of lead, arsenic, copper, zinc, mercury, calcium and magnesium were significantly higher in the ASD group than in the control group. Linear discriminant analysis effect size analysis indicated that the relative abundance of nine genera was increased in the autistic children. Redundancy analysis showed that arsenic and mercury were significantly associated with Parabacteroides and Oscillospira in the gut. A random forest model was trained with high accuracy (84.00%) and the metallic and microbial biomarkers of ASD were established. Our results indicate significant alterations in the trace element and gut microbiota profiles of Chinese children with ASD and reveal the potential pathogenesis of this disease in terms of metal metabolism and gut microecology.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, PRChina
| | - Shi Cen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jinchi Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China.
| |
Collapse
|
85
|
Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 2019; 76:1275-1297. [PMID: 30570672 PMCID: PMC6420889 DOI: 10.1007/s00018-018-2988-4] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition of heterogeneous etiology. While it is widely recognized that genetic and environmental factors and their interactions contribute to autism phenotypes, their precise causal mechanisms remain poorly understood. This article reviews our current understanding of environmental risk factors of ASD and their presumed adverse physiological mechanisms. It comprehensively maps the significance of parental age, teratogenic compounds, perinatal risks, medication, smoking and alcohol use, nutrition, vaccination, toxic exposures, as well as the role of extreme psychosocial factors. Further, we consider the role of potential protective factors such as folate and fatty acid intake. Evidence indicates an increased offspring vulnerability to ASD through advanced maternal and paternal age, valproate intake, toxic chemical exposure, maternal diabetes, enhanced steroidogenic activity, immune activation, and possibly altered zinc-copper cycles and treatment with selective serotonin reuptake inhibitors. Epidemiological studies demonstrate no evidence for vaccination posing an autism risk. It is concluded that future research needs to consider categorical autism, broader autism phenotypes, as well as autistic traits, and examine more homogenous autism variants by subgroup stratification. Our understanding of autism etiology could be advanced by research aimed at disentangling the causal and non-causal environmental effects, both founding and moderating, and gene-environment interplay using twin studies, longitudinal and experimental designs. The specificity of many environmental risks for ASD remains unknown and control of multiple confounders has been limited. Further understanding of the critical windows of neurodevelopmental vulnerability and investigating the fit of multiple hit and cumulative risk models are likely promising approaches in enhancing the understanding of role of environmental factors in the etiology of ASD.
Collapse
Affiliation(s)
- Sven Bölte
- Department of Women's and Children's Health, Karolinska Institutet & Child and Adolescent Psychiatry, Stockholm Health Care Services, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Stockholm County Council, Stockholm, Sweden.
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia.
| | - Sonya Girdler
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia
| | - Peter B Marschik
- Department of Women's and Children's Health, Karolinska Institutet & Child and Adolescent Psychiatry, Stockholm Health Care Services, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Stockholm County Council, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- iDN-interdisciplinary Developmental Neuroscience, Department of Phoniatrics, Medical University of Graz, Graz, Austria
| |
Collapse
|
86
|
Identifying Windows of Susceptibility by Temporal Gene Analysis. Sci Rep 2019; 9:2740. [PMID: 30809014 PMCID: PMC6391370 DOI: 10.1038/s41598-019-39318-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/15/2019] [Indexed: 11/08/2022] Open
Abstract
Increased understanding of developmental disorders of the brain has shown that genetic mutations, environmental toxins and biological insults typically act during developmental windows of susceptibility. Identifying these vulnerable periods is a necessary and vital step for safeguarding women and their fetuses against disease causing agents during pregnancy and for developing timely interventions and treatments for neurodevelopmental disorders. We analyzed developmental time-course gene expression data derived from human pluripotent stem cells, with disease association, pathway, and protein interaction databases to identify windows of disease susceptibility during development and the time periods for productive interventions. The results are displayed as interactive Susceptibility Windows Ontological Transcriptome (SWOT) Clocks illustrating disease susceptibility over developmental time. Using this method, we determine the likely windows of susceptibility for multiple neurological disorders using known disease associated genes and genes derived from RNA-sequencing studies including autism spectrum disorder, schizophrenia, and Zika virus induced microcephaly. SWOT clocks provide a valuable tool for integrating data from multiple databases in a developmental context with data generated from next-generation sequencing to help identify windows of susceptibility.
Collapse
|
87
|
Arancio AL, Cole KD, Dominguez AR, Cohenour ER, Kadie J, Maloney WC, Cilliers C, Schuh SM. Bisphenol A, Bisphenol AF, di-n-butyl phthalate, and 17β-estradiol have shared and unique dose-dependent effects on early embryo cleavage divisions and development in Xenopus laevis. Reprod Toxicol 2018; 84:65-74. [PMID: 30579998 DOI: 10.1016/j.reprotox.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA), Bisphenol AF (BPAF), and di-n-butyl phthalate (DBP) are widespread compounds used in the production of plastics. We used Xenopus laevis to compare their effects on early embryo cell division and development. Directly after in vitro fertilizations, embryos were exposed to BPA, BPAF, DBP, or 17β-estradiol (E2) for up to 96 h. BPA (1-50 μM) and BPAF (0.003-25 μM) caused disrupted cleavage divisions, slowed cytokinesis, and cellular dissociation within 1-6 h. Flexures of the spinal cord, shorter body axis/tail, craniofacial malformations, and significant mortality occurred with environmentally relevant doses of BPAF (LC50 = 0.013 μM). DBP (10-200 μM) showed similar effects, but with severe ventral edema. There were both shared and unique effects of all compounds, with BPAF having the greatest potency and toxicity (BPAF > BPA > estradiol > DBP). These findings underscore the pleiotropic effects of widespread toxicants on early development and highlight the need for better toxicological characterization.
Collapse
Affiliation(s)
- Ashley L Arancio
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Kyla D Cole
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Anyssa R Dominguez
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Emry R Cohenour
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Julia Kadie
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - William C Maloney
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Chane Cilliers
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Sonya M Schuh
- Department of Biology, School of Science, Saint Mary's College of California, United States.
| |
Collapse
|
88
|
Sethi S, Keil KP, Lein PJ. 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 2018; 92:3337-3345. [PMID: 30225637 PMCID: PMC6196112 DOI: 10.1007/s00204-018-2307-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
PCB 11 (3,3'-dichlorobiphenyl), a contemporary congener produced as a byproduct of current pigment production processes, has recently emerged as a prevalent worldwide pollutant. We recently demonstrated that exposure to PCB 11 increases dendritic arborization in vitro, but the mechanism(s) mediating this effect remain unknown. To address this data gap, primary cortical neuron-glia co-cultures derived from neonatal Sprague-Dawley rats were exposed for 48 h to either vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM in the absence or presence of pharmacologic antagonists of established molecular targets of higher chlorinated PCBs. Reporter cell lines were used to test activity of PCB 11 at the aryl hydrocarbon receptor (AhR) and thyroid hormone receptor (THR). PCB 11 lacked activity at the AhR and THR, and antagonism of these receptors had no effect on the dendrite-promoting activity of PCB 11. Pharmacologic antagonism of various calcium channels or treatment with antioxidants also did not alter PCB 11-induced dendritic arborization. In contrast, pharmacologic blockade or shRNA knockdown of cAMP response element-binding protein (CREB) significantly decreased dendritic growth in PCB 11-exposed cultures, suggesting PCB 11 promotes dendritic growth via CREB-mediated mechanisms. Since CREB signaling is crucial for normal neurodevelopment, and perturbations of CREB signaling have been associated with neurodevelopmental disorders, our findings suggest that this contemporary pollutant poses a threat to the developing brain, particularly in individuals with heritable mutations that promote CREB signaling.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
89
|
Dórea JG. Multiple low-level exposures: Hg interactions with co-occurring neurotoxic substances in early life. Biochim Biophys Acta Gen Subj 2018; 1863:129243. [PMID: 30385391 DOI: 10.1016/j.bbagen.2018.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
All chemical forms of Hg can affect neurodevelopment; however, low levels of organic Hg (methylmercury-MeHg and ethylmercury-EtHg in Thimerosal-containing vaccines, hereafter 'TCV') exposures during early life (pregnancy and lactation) co-occur with other environmental neurotoxic substances. These neurotoxicants may act in parallel, synergistically, or antagonistically to Hg. Nevertheless, the risks of neurotoxicity associated with multiple neuro-toxicants depend on type, time, combinations of exposure, and environmental and/or genetic-associated factors. Neurological developmental disorders, delays in cognition and behavioral outcomes associated with multiple exposures (which include Hg) may show transient or lasting outcomes depending on constitutional and/or environmental factors that can interact to neutralize, aggravate or attenuate these effects; often these studies are challenging to interpret. During pregnancy and lactation, fish-MeHg exposure is frequently confounded with the opposing effects of neuroactive nutrients (in fish) that lead to positive, negative, or no effects on neurobehavioral tests. In infancy, exposures to acute binary mixtures (TCV- EtHg and Al-adjuvants in infant immunizations) are associated with increased risks of tics and other developmental disorders. Despite the certitude that promulgates single environmental neurotoxicants, empirical comparisons of combined exposures indicate that Hg-related outcome is uneven. Hg in combination with other neurotoxic mixtures may elevate risks of neurotoxicity, but these risks arise in circumstances that are not yet predictable. Therefore, to achieve the goals of the Minamata treaty and to safeguard the health of children, low levels of mercury exposure (in any chemical form) needs to be further reduced whether the source is environmental (air- and food-borne) or iatrogenic (pediatric TCVs).
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília 70919-970, DF, Brazil..
| |
Collapse
|
90
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
91
|
Prenatal exposure to TiO 2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Transl Psychiatry 2018; 8:193. [PMID: 30237468 PMCID: PMC6148221 DOI: 10.1038/s41398-018-0251-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Environmental factors are involved in the etiology of autism spectrum disorder (ASD) and may contribute to the raise in its incidence rate. It is currently unknown whether the increasing use of nanoparticles such as titanium dioxide (TiO2 NPs) in consumer products and biomedical applications may play a role in these associations. While nano-sized TiO2 is generally regarded as safe and non-toxic, excessive exposure to TiO2 NPs may be associated with negative health consequences especially when occurring during sensitive developmental periods. To test if prenatal exposure to TiO2 NPs alters fetal development and behavioral functions relevant to ASD, C57Bl6/N dams were subjected to a single intravenous injection of a low (100 µg) or high (1000 µg) dose of TiO2 NPs or vehicle solution on gestation day 9. ASD-related behavioral functions were assessed in the offspring using paradigms that index murine versions of ASD symptoms. Maternal exposure to TiO2 NPs led to subtle and dose-dependent impairments in neonatal vocal communication and juvenile sociability, as well as a dose-dependent increase in prepulse inhibition of the acoustic startle reflex of both sexes. These behavioral alterations emerged in the absence of pregnancy complications. Prenatal exposure to TiO2 NPs did not cause overt fetal malformations or changes in pregnancy outcomes, nor did it affect postnatal growth of the offspring. Taken together, our study provides a first set of preliminary data suggesting that prenatal exposure to nano-sized TiO2 can induce behavioral deficits relevant to ASD and related neurodevelopmental disorders without inducing major changes in physiological development. If extended further, our preclinical findings may provide an incentive for epidemiological studies examining the role of prenatal TiO2 NPs exposure in the etiology of ASD and other neurodevelopmental disorders.
Collapse
|
92
|
Hamed NO, Al-Ayadhi L, Osman MA, Elkhawad AO, Qasem H, Al-Marshoud M, Merghani NM, El-Ansary A. Understanding the roles of glutamine synthetase, glutaminase, and glutamate decarboxylase autoantibodies in imbalanced excitatory/inhibitory neurotransmission as etiological mechanisms of autism. Psychiatry Clin Neurosci 2018; 72:362-373. [PMID: 29356297 DOI: 10.1111/pcn.12639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
AIM Autism is a heterogeneous neurological disorder that is characterized by impairments in communication and social interactions, repetitive behaviors, and sensory abnormalities. The etiology of autism remains unclear. Animal, genetic, and post-mortem studies suggest that an imbalance exists in the neuronal excitation and inhibition system in autism. The aim of this study was to determine whether alterations of the measured parameters in children with autism are significantly associated with the risk of a sensory dysfunction. METHODS The glutamine synthetase (GS), kidney-type glutaminase (GLS1), and glutamic acid decarboxylase autoantibody levels were analyzed in 38 autistic children and 33 age- and sex-matched controls using enzyme-linked immunosorbent assays. RESULTS The obtained data demonstrated significant alterations in glutamate and glutamine cycle enzymes, as represented by GS and GLS1, respectively. While the glutamic acid decarboxylase autoantibodies levels were remarkably increased, no significant difference was observed compared to the healthy control participants. CONCLUSION The obtained data indicate that GS and GLS1 are promising indicators of a neuronal excitation and inhibition system imbalance and that combined measured parameters are good predictive biomarkers of autism.
Collapse
Affiliation(s)
- Najat O Hamed
- Department of Medical Biochemistry, University of Medical Sciences and Technology, Khartoum, Sudan.,Department of Pharmacology, Almaarefa Colleges for Science & Technology (MCST), Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, King Khalid University Hospital, Riyadh, Saudi Arabia.,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Osman
- Department of Medical Biochemistry, University of Medical Sciences and Technology, Khartoum, Sudan.,Department of Pharmacology, Faculty of Pharmacy, University of Medical Sciences and Technology, Sudan Medical and Scientific Research Institute, Khartoum, Sudan
| | | | - Hanan Qasem
- Autism Research and Treatment Center, King Khalid University Hospital, Riyadh, Saudi Arabia
| | - Majida Al-Marshoud
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Nada M Merghani
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Autism Research and Treatment Center, King Khalid University Hospital, Riyadh, Saudi Arabia.,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia.,Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
93
|
Gonçalves R, Zanatta AP, Cavalari FC, do Nascimento MAW, Delalande-Lecapitaine C, Bouraïma-Lelong H, Silva FRMB. Acute effect of bisphenol A: Signaling pathways on calcium influx in immature rat testes. Reprod Toxicol 2018; 77:94-102. [PMID: 29476780 DOI: 10.1016/j.reprotox.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
We investigated the acute effect of low concentrations of BPA on calcium influx and the mechanism of action of BPA in this rapid response in the rat testis. BPA increased calcium influx at 1 pM and 1 nM at 300 s of incubation, in a similar manner to that of estradiol. At 1 pM, BPA stimulated calcium influx independently of classical estrogen receptors, consistent with a G-protein coupled receptor. This effect also involves the modulation of ionic channels, such as K+, TRPV1 and Cl- channels. Furthermore, BPA is able to modulate calcium from intracellular storages by inhibiting SERCA and activating IP3 receptor/Ca2+ channels at the endoplasmic reticulum and activate kinase proteins, such as PKA and PKC. The rapid responses of BPA on calcium influx could, in turn, trigger a cross talk by MEK and p38MAPK activation and also mediate genomic responses.
Collapse
Affiliation(s)
- Renata Gonçalves
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; UNOCHAPECÓ, Brazil; Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France
| | | | - Fernanda Carvalho Cavalari
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Monica Andressa Wessner do Nascimento
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Christelle Delalande-Lecapitaine
- Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France; INRA USC 2006, CAEN cedex 5, France
| | - Hélène Bouraïma-Lelong
- Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France; INRA USC 2006, CAEN cedex 5, France
| | - Fátima Regina Mena Barreto Silva
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
94
|
Skalny AV, Simashkova NV, Skalnaya MG, Klyushnik TP, Chernova LN, Tinkov AA. Mercury and autism spectrum disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:75-79. [DOI: 10.17116/jnevro20181185275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
95
|
Lactonase Activity and Lipoprotein-Phospholipase A 2 as Possible Novel Serum Biomarkers for the Differential Diagnosis of Autism Spectrum Disorders and Rett Syndrome: Results from a Pilot Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5694058. [PMID: 29317982 PMCID: PMC5727786 DOI: 10.1155/2017/5694058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 11/05/2017] [Indexed: 12/27/2022]
Abstract
Rett syndrome (RTT) and autism spectrum disorders (ASDs) are not merely expression of brain dysfunction but also reflect the perturbation of physiological/metabolic homeostasis. Accordingly, both disorders appear to be associated with increased vulnerability to toxicants produced by redox imbalance, inflammation, and pollution, and impairment of systemic-detoxifying agents could play a role in the exacerbation of these detrimental processes. To check this hypothesis, the activities of two mechanistically related blood-based enzymes, paraoxonase-1 (arylesterase, paraoxonase, and lactonase), and lipoprotein-associated phospholipase A2 (Lp-PLA2) were measured in the serum of 79 ASD and 95 RTT patients, and 77 controls. Lactonase and Lp-PLA2 showed a similar trend characterized by significantly lower levels of both activities in ASD compared to controls and RTT (p < 0.001 for all pairwise comparisons). Noteworthy, receiving operator curve (ROC) analysis revealed that lactonase and, mostly, Lp-PLA2 were able to discriminate between ASD and controls (lactonase: area under curve, AUC = 0.660; Lp-PLA2, AUC = 0.780), and, considering only females, between ASD and RTT (lactonase, AUC = 0.714; Lp-PLA2, AUC = 0.881). These results suggest that lactonase and, especially, Lp-PLA2 activities might represent novel candidate biomarkers for ASD.
Collapse
|