51
|
Lingamdinne LP, Angaru GKR, Pal CA, Koduru JR, Karri RR, Mubarak NM, Chang YY. Insights into kinetics, thermodynamics, and mechanisms of chemically activated sunflower stem biochar for removal of phenol and bisphenol-A from wastewater. Sci Rep 2024; 14:4267. [PMID: 38383598 PMCID: PMC10881974 DOI: 10.1038/s41598-024-54907-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
This study synthesized a highly efficient KOH-treated sunflower stem activated carbon (KOH-SSAC) using a two-step pyrolysis process and chemical activation using KOH. The resulting material exhibited exceptional properties, such as a high specific surface area (452 m2/g) and excellent adsorption capacities for phenol (333.03 mg/g) and bisphenol A (BPA) (365.81 mg/g). The adsorption process was spontaneous and exothermic, benefiting from the synergistic effects of hydrogen bonding, electrostatic attraction, and stacking interactions. Comparative analysis also showed that KOH-SSAC performed approximately twice as well as sunflower stem biochar (SSB), indicating its potential for water treatment and pollutant removal applications. The study suggests the exploration of optimization strategies to further enhance the efficiency of KOH-SSAC in large-scale scenarios. These findings contribute to the development of improved materials for efficient water treatment and pollution control.
Collapse
Affiliation(s)
| | | | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
52
|
Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, Sun Y, Zhu J, Guo L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168822. [PMID: 38043821 DOI: 10.1016/j.scitotenv.2023.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.
Collapse
Affiliation(s)
- Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
53
|
Gęca M, Wiśniewska M, Nowicki P. Preparation of biochars by conventional pyrolysis of herbal waste and their potential application for adsorption and energy purposes. Chemphyschem 2024; 25:e202300507. [PMID: 38200663 DOI: 10.1002/cphc.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/30/2023] [Indexed: 01/12/2024]
Abstract
The nettle, sage, mint and lemon balm herbs were used for biochars preparation. The physicochemical parameters of obtained materials were related to the lignocellulose composition of the precursors. It has been proved that the content of mineral substance has a significant influence on development of surface area, whereas the amount of hemicellulose affects the content of surface functional groups. It has been also shown that the obtained biochars are characterized by great energy parameters. The higher heating values (HHV) of the carbonaceous materials are comparable to the typical energy sources. The greatest HHV value (20.36 MJ/kg) was characteristic for the biochar obtained by pyrolysis of the lemon balm. In addition, the biochars were used for ionic polymers adsorption from one- and two-components solutions. Despite the adsorbed amounts of macromolecules are not great is has been proved that polyethylenimine and polyacrylic acid have positive influence on their mutual adsorption.
Collapse
Affiliation(s)
- Marlena Gęca
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie- Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie- Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
54
|
Rangappa HS, Herath I, Lin C, Ch S. Industrial waste-based adsorbents as a new trend for removal of water-borne emerging contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123140. [PMID: 38103712 DOI: 10.1016/j.envpol.2023.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Emerging contaminants in wastewater are one of the growing concerns because of their adverse effects on human health and ecosystems. Adsorption technology offers superior performance due to its cost-effectiveness, stability, recyclability, and reliability in maintaining environmental and health standards for toxic pollutants. Despite extensive research on the use of traditional adsorbents to remove emerging contaminants, their expensiveness, lack of selectivity, and complexity of regeneration remain some of the challenges. Industrial wastes viz. blast furnace slag, red mud, and copper slag can be used to develop efficacious adsorbents for the treatment of emerging contaminants in water. Advantages of the use of such industrial wastes include resource utilization, availability, cost-effectiveness, and waste management. Nevertheless, little is known so far about their application, removal efficacy, adsorption mechanisms, and limitations in the treatment of emerging contaminants. A holistic understanding of the application of such unique industrial waste-derived adsorbents in removing emerging contaminants from water is need of the hour to transform this technology from bench-scale to pilot and large-scale applications. This review investigates different water treatment techniques associated with industrial waste-based adsorbents derived from blast furnace slag, red mud, and copper slag. Besides, this review provides important insights into the growing trends of utilizing such novel types of adsorbents to remove emerging contaminants from water with an emphasis on removal efficacy, controlling measures, adsorption mechanisms, advantages, and limitations. The present timely review brings the current state of knowledge into a single reference which could be a strong platform for future research in understanding the latest advancements, decision making, and financial management related to the treatment of wastewater using industrial waste-based adsorbents.
Collapse
Affiliation(s)
- Harsha S Rangappa
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India; Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125 Australia
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216 Australia
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125 Australia
| | - Subrahmanyam Ch
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
55
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
56
|
Gkika DA, Ladomenou K, Bououdina M, Mitropoulos AC, Kyzas GZ. Adsorption and photocatalytic applications of porphyrin-based materials for environmental separation processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168293. [PMID: 37926255 DOI: 10.1016/j.scitotenv.2023.168293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As society progresses and industrializes, the issue of water pollution, caused by a wide array of organic and inorganic pollutants, poses significant risks to both human well-being and the environment. Given its distinctive characteristics, water pollution has become a paramount concern for society, necessitating immediate attention. Numerous studies have been conducted on wastewater treatment, primarily focusing on two key approaches: adsorption and photocatalytic degradation. Adsorption offers unparalleled advantages, including its simplicity, high removal efficiency, and cost-effectiveness. Conversely, photocatalysis harnesses abundant, clean, and non-polluting sunlight, addressing the critical issue of energy scarcity. Porphyrins, which are macrocyclic tetrapyrrole derivatives found widely in nature, have attracted growing interest in recent years. These lipophilic pigments exhibit remarkable chemical stability and have retained their major structural features for up to 1.1 billion years. As such, they are considered vital indicators of life and have been extensively studied, from the remnants of extinct organisms to gain insights into the principles of evolution. Porphyrins are often associated with a central metal ion within their ring system and can be modified through various substituents, including additional rings or ring opening, resulting in a wide range of functionalities. This comprehensive review summarizes recent advancements in the field of porphyrins. It begins by introducing the structures and preparation methods of porphyrins. Subsequently, it delves into notable applications of porphyrins in the context of pollutant adsorption in water and their environmentally friendly photocatalytic degradation.
Collapse
Affiliation(s)
- Despina A Gkika
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - Kalliopi Ladomenou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Athanasios C Mitropoulos
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece.
| |
Collapse
|
57
|
Jaffari ZH, Abbas A, Kim CM, Shin J, Kwak J, Son C, Lee YG, Kim S, Chon K, Cho KH. Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132773. [PMID: 37866140 DOI: 10.1016/j.jhazmat.2023.132773] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar's diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar's physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study's environmental implications.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ather Abbas
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Chang-Min Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Jinwoo Kwak
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Changgil Son
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Sangwon Kim
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
58
|
Dad FP, Khan WUD, Sharif F, Nizami AS. Adsorption of trace heavy metals through organic compounds enriched biochar using isotherm adsorption and kinetic models. ENVIRONMENTAL RESEARCH 2024; 241:117702. [PMID: 37980985 DOI: 10.1016/j.envres.2023.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Trace heavy metals such as copper and nickel, when exceeds a certain level, cause detrimental effects on the ecosystem. The current study examined the potential of organic compounds enriched rice husk biochar (OCEB's) to remove the trace heavy metals from an aqueous solution in four steps. In 1st step, biochar' physical and chemical properties were analyzed through scanning electron microscope (SEM) and Fourier transforms infrared spectroscopy (FTIR). In the 2nd step, two biochar vis-a-vis glycine, alanine enriched biochar (GBC, ABC) was selected based on their adsorption capacity of four different metals Cr, Cu, Ni and Pb (chromium, copper, nickel, and lead). These two adsorbents (GBC, ABC) were further used to evaluate the best interaction of biochar for metal immobilization based on varying concentrations and times. Langmuir isotherm model suggested that the adsorption of Ni and Cu on the adsorbent surface supported the monolayer sorption. The qmax value of GBC for Cu removal increased by 90% compared to SBC (Simple rice husk biochar). The interaction of Cu and Ni with GBC and ABC was chemical, and 10 different time intervals were studied using pseud first and second-order kinetics models. The current study has supported the pseudo second-order kinetic model, which exhibited that the sorption of Ni and Cu occurred due to the chemical processes. The % removal efficiency with GBC was enhanced by 21% and 30% for Cu and Ni, respectively compared to the SBC. It was also noticed that GBC was 21% more efficient for % removal efficiency than the CBC. The study's findings supported that organic compound enriched rice husk biochar (GBC and ABC) is better than SBC for immobilizing the trace heavy metals from an aqueous solution.
Collapse
Affiliation(s)
- Fiza Pir Dad
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Waqas-Ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan; Department of Agriculture, Government College University, Lahore, 54000, Pakistan; Tasmanian Institute of Agriculture, University of Tasmania, Australia.
| | - Faiza Sharif
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Abdul Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| |
Collapse
|
59
|
Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, Zulfiqar U, Rizwan M, Mahmood S, Ullah A, Arslan M, Rehman MHU, Ditta A, Tariq A. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Sci Rep 2024; 14:217. [PMID: 38167973 PMCID: PMC10762257 DOI: 10.1038/s41598-023-50623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The pollution of soil and aquatic systems by inorganic and organic chemicals has become a global concern. Economical, eco-friendly, and sustainable solutions are direly required to alleviate the deleterious effects of these chemicals to ensure human well-being and environmental sustainability. In recent decades, biochar has emerged as an efficient material encompassing huge potential to decontaminate a wide range of pollutants from soil and aquatic systems. However, the application of raw biochars for pollutant remediation is confronting a major challenge of not getting the desired decontamination results due to its specific properties. Thus, multiple functionalizing/modification techniques have been introduced to alter the physicochemical and molecular attributes of biochars to increase their efficacy in environmental remediation. This review provides a comprehensive overview of the latest advancements in developing multiple functionalized/modified biochars via biological and other physiochemical techniques. Related mechanisms and further applications of multiple modified biochar in soil and water systems remediation have been discussed and summarized. Furthermore, existing research gaps and challenges are discussed, as well as further study needs are suggested. This work epitomizes the scientific prospects for a complete understanding of employing modified biochar as an efficient candidate for the decontamination of polluted soil and water systems for regenerative development.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China.
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Muhammad Usman
- Department of Botany, Government College University, Katcheri Road, Lahore, 54000, Punjab, Pakistan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, 410011, China
| | - Salman Mahmood
- Faculty of Economics and Management, Southwest Forestry, Kunming, Yunnan, 650224, China
| | - Abd Ullah
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Muhammad Habib Ur Rehman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir (U), KPK, Sheringal, Pakistan.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| |
Collapse
|
60
|
Rong L, Wu L, Zhang T, Hu C, Tang H, Pan H, Zou X. Significant Differences in the Effects of Nitrogen Doping on Pristine Biochar and Graphene-like Biochar for the Adsorption of Tetracycline. Molecules 2023; 29:173. [PMID: 38202756 PMCID: PMC10779899 DOI: 10.3390/molecules29010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
To improve the adsorption efficiency of pollutants by biochar, preparing graphene-like biochar (GBC) or nitrogen-doped biochar are two commonly used methods. However, the difference in the nitrogen doping (N-doping) effects upon the adsorption of pollutants by pristine biochar (PBC) and GBC, as well as the underlying mechanisms, are still unclear. Take the tetracycline (TC) as an example, the present study analyzed the characteristics of the adsorption of TCs on biochars (PBC, GBC, N-PBC, N-GBC), and significant differences in the effects of N-doping on the adsorption of TCs by PBC and GBC were consistently observed at different solution properties. Specifically, N-doping had varied effects on the adsorption performance of PBC, whereas it uniformly improved the adsorption performance of GBC. To interpret the phenomenon, the N-doping upon the adsorption was revealed by the QSAR model, which indicated that the pore filling (VM) and the interactions between TCs with biochars (Ead-v) were found to be the most important two factors. Furthermore, the density functional theory (DFT) results demonstrated that N-doping slightly affects biochar's chemical reactivity. The van der Waals (vdWs) and electrostatic interactions are the main forces for TCs-biochars interactions. Moreover, N-doping mostly strengthened the electrostatic interactions of TCs-biochars, but the vdWs interactions of most samples remained largely unaffected. Overall, the revealed mechanism of N-doping on TCs adsorption by biochars will enhance our knowledge of antibiotic pollution remediation.
Collapse
Affiliation(s)
- Lingling Rong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji’an 343009, China; (T.Z.); (C.H.); (H.T.)
| | - Ligui Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Tiao Zhang
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji’an 343009, China; (T.Z.); (C.H.); (H.T.)
| | - Cui Hu
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji’an 343009, China; (T.Z.); (C.H.); (H.T.)
| | - Haihui Tang
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji’an 343009, China; (T.Z.); (C.H.); (H.T.)
| | - Hongcheng Pan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji’an 343009, China; (T.Z.); (C.H.); (H.T.)
| |
Collapse
|
61
|
Fighir D, Paduraru C, Ciobanu R, Bucatariu F, Plavan O, Gherghel A, Barjoveanu G, Mihai M, Teodosiu C. Removal of Diclofenac and Heavy Metal Ions from Aqueous Media Using Composite Sorbents in Dynamic Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:33. [PMID: 38202488 PMCID: PMC10780657 DOI: 10.3390/nano14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Pharmaceuticals and heavy metals pose significant risks to human health and aquatic ecosystems, necessitating their removal from water and wastewater. A promising alternative for this purpose involves their removal by adsorption on composite sorbents prepared using a conventional layer-by-layer (LbL) method or an innovative coacervate direct deposition approach. In this study, four novel composite materials based on a silica core (IS) and a polyelectrolyte coacervate shell were used for the investigation of dynamic adsorption of three heavy metals (lead, nickel and cadmium) and an organic drug model (diclofenac sodium salt, DCF-Na). The four types of composite sorbents were tested for the first time in dynamic conditions (columns with continuous flow), and the column conditions were similar to those used in wastewater treatment plants. The influence of the polyanion nature (poly(acrylic acid) (PAA) vs. poly(sodium methacrylate) (PMAA)), maintaining a constant poly(ethyleneimine) (PEI), and the cross-linking degree (r = 0.1 and r = 1.0) of PEI chains on the immobilization of these pollutants (inorganic vs. organic) on the same type of composite was also studied. The experiments involved both single- and multi-component aqueous solutions. The kinetics of the dynamic adsorption process were examined using two non-linear models: the Thomas and Yoon-Nelson models. The tested sorbents demonstrated good adsorption capacities with affinities for the metal ions in the following order: Pb2+ > Cd2+ > Ni2+. An increase in the initial diclofenac sodium concentration led to an enhanced adsorption capacity of the IS/(PEI-PAA)c-r1 sorbent. The calculated sorption capacities were in good agreement with the adsorption capacity predicted by the Thomas and Yoon-Nelson models. The substantial affinity observed between DCF-Na and a column containing composite microparticles saturated with heavy metal ions was explained.
Collapse
Affiliation(s)
- Daniela Fighir
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
| | - Carmen Paduraru
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
| | - Ramona Ciobanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
| | - Florin Bucatariu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Oana Plavan
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
| | - Andreea Gherghel
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
| | - George Barjoveanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
| | - Marcela Mihai
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (D.F.); (C.P.); (R.C.); (F.B.); (O.P.); (A.G.); (G.B.)
| |
Collapse
|
62
|
Ly NH, Khoa NLM, Nguyen NB, Huong VT, Van Duc B, Aminabhavi TM, Vasseghian Y, Joo SW. Microalgae-enhanced bioremediation of Cr(VI) ions using spent coffee ground-derived magnetic biochar MoS 2-Ag composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119259. [PMID: 37827077 DOI: 10.1016/j.jenvman.2023.119259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Composites of magnetic biochar derived from spent coffee grounds were prepared using MoS2 decorated by plasmonic silver nanoparticles (MoS2-Ag), which were used for the bioremediation Cr6+ ions. The composites were characterized by electron microscopy, X-ray diffraction, Raman, and UV-VIS spectroscopy. The bioremediation of Cr6+ ions was enhanced almost two times compared to microalgae, Spirulina maxima. Such an increased activity is attributed to heterojunction formation of Biochar@MoS2-Ag composite due to the synergetic effects of surface plasmon resonance of AgNPs inducing amplified local electric field, thus simultaneously increasing the absorption of MoS2 under visible or near-infrared light. The combination of Biochar@MoS2-Ag and Spirulina maxima powder was effective for the separation (microalga-based absorption and accumulation of Cr6+ ions) of photo-induced carriers (composite-assisted to breakdown Cr6+ ions). This study offers efficient eco-friendly treatment of Cr6+ ions by reporting the first enhanced bioremediation of Cr(VI) ions by microalgae using MoS2-Ag-modified biochar obtained from consumed coffee grounds.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | | | | | - Vu Thi Huong
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Bui Van Duc
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
63
|
Yuan Y, Xia H, Guo W, Huang B, Chen Y, Qiu M, Wang Y, Hu B. The modified biochar from wheat straw by the combined composites of MnFe 2O 4 nanoparticles and chitosan Schiff base for enhanced removal of U(VI) ions from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:126045-126056. [PMID: 38008835 DOI: 10.1007/s11356-023-30961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/05/2023] [Indexed: 11/28/2023]
Abstract
In the last few decades, U(VI) is a significant environmental threat. The innovative and environmentally friendly adsorbent materials for U(VI) removal were urgent. Preparation of the modified biochar from wheat straw by combined composites of MnFe2O4 nanoparticles and chitosan Schiff base (MnFe2O4@CsSB/BC) was characterized, and adsorption experiments were carried out to investigate the performance and interfacial mechanism of U(VI) removal. The results showed that MnFe2O4@CsSB/BC exhibited high adsorption capacity of U(VI) compared with BC. The adsorption process of U(VI) removal by MnFe2O4@CsSB/BC could be ascribed as pseudo-second-order model and Langmuir model. The maximum adsorption capacity of U(VI) removal by MnFe2O4@CsSB/BC reached 19.57 mg/g at pH4.0, 30 mg/L of U(VI), and 25 °C. The possible mechanism was a chemical adsorption process, and it mainly contained electrostatic attraction and surface complexation. Additionally, it also was an economic and environmental friendly adsorbent.
Collapse
Affiliation(s)
- Youdi Yuan
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Haixin Xia
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Weijuan Guo
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Binbin Huang
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Yujun Chen
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Muqing Qiu
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Yuchun Wang
- Zhejiang Kunhe Environmental Protection Technology Co., Ltd., Shaoxing, 312000, People's Republic of China
| | - Baowei Hu
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| |
Collapse
|
64
|
Zhou Y, Li J, Wen X, Li Q. Antibiotic resistance gene profiles and evolutions in composting regulated by reactive oxygen species generated via nano ZVI loaded on biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166487. [PMID: 37611721 DOI: 10.1016/j.scitotenv.2023.166487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In this study, nano zero-valent iron loaded on biochar (BC-nZVI) was analyzed for its effects on antibiotic resistance genes (ARGs) in composting. The results showed that BC-nZVI increased reactive oxygen species (ROS) production, and the peak values of H2O2 and OH were 22.95 % and 55.30 % higher than those of the control group, respectively. After 65 days, the relative abundances of representative ARGs decreased by 56.12 % in the nZVI group (with BC-nZVI added). An analysis of bacterial communities and networks revealed that Actinobacteria, Proteobacteria, and Firmicutes were the main hosts for ARGs, and BC-nZVI weakened the link between ARGs and host bacteria. Distance-based redundancy analysis showed that BC-nZVI altered the microbial community structure through environmental factors and that most ARGs were negatively correlated with ROS, suggesting that ROS significantly affected the relative abundance of ARGs. According to these results, BC-nZVI showed potential for decreasing the relative abundance of ARGs in composting.
Collapse
Affiliation(s)
- Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
65
|
Plaza-Rojas CA, Amaya-Orozco NA, Rivera-Hoyos CM, Montaña-Lara JS, Páez-Morales A, Salcedo-Reyes JC, Castillo-Carvajal LC, Martínez-Urrútia W, Díaz-Ariza LA, Pedroza-Rodríguez AM. Use of biochar and a post-coagulation effluent as an adsorbent of malachite green, beneficial bacteria carrier, and seedling substrate for plants belonging to the poaceae family. 3 Biotech 2023; 13:386. [PMID: 37928437 PMCID: PMC10624780 DOI: 10.1007/s13205-023-03766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/03/2023] [Indexed: 11/07/2023] Open
Abstract
Wastewater treatment plants produce solid and semi-solid sludge, which treatment minimises secondary environmental pollution because of wastewater treatment and obtaining new bioproducts. For this reason, in this paper, the co-pyrolysis of biogenic biomasses recovered from a biological reactor with immobilised fungal and bacterial biomass and a tertiary reactor with Chlorella sp. used for dye-contaminated wastewater treatment was carried out. Biogenic biomasses mixed with pine bark allowed the production and characterisation of two types of biochar. The raw material and biochar were on the "in vitro" germination of Lolium sp. seeds, followed by adsorption studies for malachite green (MG) dye using the raw material and the biochar. Results showed that using 60 mg L-1 of a cationic coagulant at pH 6.5 allowed for the recovery of more than 90% of the microalgae after 50 min of processing. Two biochar resulted: BC300, at pH 5.08 ± 0.08 and BC500, at pH 6.78 ± 0.01. The raw material and both biochars were co-inoculated with growth-promoting bacteria; their viabilities ranged from 1.7 × 106 ± 1.0 × 101 to 7.5 × 108 ± 6.0 × 102 CFU g-1 for total heterotrophic, nitrogen-fixing and phosphate-solubilising bacteria. Re-use tests on Lolium sp. seed germination showed that with the post-coagulation effluent, the germination was 100%, while with the biochar, with and without beneficial bacteria, the germination was 98 and 99%, respectively. Finally, BC500 adsorbed the highest percentage of malachite green at pH 4.0, obtaining qecal values of 0.5249 mg g-1 (R2: 0.9875) with the pseudo-second-order model. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03766-x.
Collapse
Affiliation(s)
- Christy A. Plaza-Rojas
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Nelson A. Amaya-Orozco
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Claudia M. Rivera-Hoyos
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - José S. Montaña-Lara
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Adriana Páez-Morales
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Juan Carlos Salcedo-Reyes
- Laboratorio de Películas Delgadas y Nanofotónica, Grupo de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | | | - Wilmar Martínez-Urrútia
- Grupo de Diseño Avanzado, Fundación Universidad de América, P.O. Box 110-23, Bogotá, DC Colombia
| | - Lucía Ana Díaz-Ariza
- Laboratorio Asociaciones Suelo-Panta-Microorganismo, Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| |
Collapse
|
66
|
Zhang X, Bhattacharya T, Wang C, Kumar A, Nidheesh PV. Straw-derived biochar for the removal of antibiotics from water: Adsorption and degradation mechanisms, recent advancements and challenges. ENVIRONMENTAL RESEARCH 2023; 237:116998. [PMID: 37634688 DOI: 10.1016/j.envres.2023.116998] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Antibiotics, a kind of containments with the properties of widely distributed and difficult to degrade, has aroused extensive attention in the world. As a prevalent agricultural waste, straws can be utilized to prepare biochar (straw-derived biochar, SBC) to remove antibiotics from aquatic environment. To date, although a number of review papers have summarized and discussed research on biochar application in wastewater treatment and soil remediation, there are few reviews on SBC for antibiotic removal. Due to the limitations of poor adsorption and degradation performance of the pristine SBC, it is necessary to modify SBC to improve its applications for antibiotics removal. The maximum antibiotic removal capacity of modified SBC could reach 1346.55 mg/g. Moreover, the adsorption mechanisms between modified SBC and antibiotics mainly involve π-π interactions, electrostatic interactions, hydrophobic interactions, and charge dipole interactions. In addition, the modified SBC could completely degrade antibiotics within 6 min by activating oxidants, such as PS, PDS, H2O2, and O3. The mechanisms of antibiotic degradation by SBC activated oxidants mainly include free radicals (including SO4•-, •OH, and O2•-) and non-free radical pathway (such as, 1O2, electrons transfer, and surface-confined reaction). Although SBC and modified SBC have demonstrated excellent performance in removing antibiotics, they still face some challenges in practical applications, such as poor stability, high cost, and difficulties in recycling. Therefore, the further research directions and trends for the development of SBC and biochar-based materials should be taken into consideration.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Tansuhree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Abhishek Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Puthiya Veetil Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
67
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165317. [PMID: 37419350 DOI: 10.1016/j.scitotenv.2023.165317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently used pharmaceuticals for human therapy, pet therapeutics, and veterinary feeds, enabling them to enter into water sources such as wastewater, soil and sediment, and seawater. The control of NSAIDs has led to the advent of the novel materials for treatment techniques. Herein, we review the occurrence, impact and toxicity of NSAIDs against aquatic microorganisms, plants and humans. Typical NSAIDs, e.g., ibuprofen, ketoprofen, diclofenac, naproxen and aspirin were detected at high concentrations in wastewater up to 2,747,000 ng L-1. NSAIDs in water could cause genotoxicity, endocrine disruption, locomotive disorders, body deformations, organs damage, and photosynthetic corruption. Considering treatment methods, among adsorbents for removal of NSAIDs from water, metal-organic frameworks (10.7-638 mg g-1) and advanced porous carbons (7.4-400 mg g-1) were the most robust. Therefore, these carbon-based adsorbents showed promise in efficiency for the treatment of NSAIDs.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
68
|
Shafi M, Jan R, Gani KM. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka. CHEMOSPHERE 2023; 341:139976. [PMID: 37657704 DOI: 10.1016/j.chemosphere.2023.139976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The challenge of emerging contaminants (ECs) in global surface water bodies and particularly in low- and middle-income countries such as India, Pakistan, Bangladesh, and Sri Lanka, is evident from the literature. The complexity arises from the high costs involved in EC analysis and the extensive list of ECs, which complicates the selection of essential compounds for scientific and regulatory investigations. Consequently, monitoring programs often include ECs that may have minimal significance within a region and do not pose known or suspected ecological or human health risks. This study aims to address this issue by employing a multi-risk assessment approach to identify priority ECs in the surface waters of the aforementioned countries. Through an analysis of occurrence levels and frequency data gathered from published literature, an optimized risk quotient (RQ) was derived. The findings reveal a priority list of 38 compounds that exhibit potential environmental risks and merit consideration in future water quality monitoring programs. Furthermore, the majority of antibiotics in India (12 out of 17) and Pakistan (7 out of 17) exhibit a risk quotient for antimicrobial resistance selection (RQAMR) greater than 1, highlighting the need for devising effective strategies to mitigate the escalation of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Mozim Shafi
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ruby Jan
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India.
| |
Collapse
|
69
|
Waghmare C, Ghodmare S, Ansari K, Dehghani MH, Amir Khan M, Hasan MA, Islam S, Khan NA, Zahmatkesh S. Experimental investigation of H 3PO 4 activated papaya peels for methylene blue dye removal from aqueous solution: Evaluation on optimization, kinetics, isotherm, thermodynamics, and reusability studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118815. [PMID: 37633104 DOI: 10.1016/j.jenvman.2023.118815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
This investigation is centered on the effectiveness of methylene blue (MB), a cationic dye, adsorbed from an aqueous media by H3PO4 activated papaya skin/peels (PSPAC), with initial pH (2-10), contact time (30-180 min), MB dye concentration (varying from 10 to 50 mg/L), and MB dose (0.1-0.5 gm). The findings show that the best optimal conditions for MB dye removal occur at a 6 pH, 0.3 gm dose of PSPAC adsorbent for 10 mg/L MB dye concentration, with 90 min of contact time. To optimize and validate the extraction efficiency of MB dye, a response surface methodology (RSM) study was conducted using a central composite design (CCD) with a regression model showing R2 = 0.9940. FT-IR spectroscopy shows, CO, and O-H stretching functional groups while FE-SEM is assessed to supervise morphological features of the PSPAC adsorbent. The peak adsorption capacity with 46.95 mg/g for the Langmuir isotherm model conveniently satisfies the adsorption process with R2 = 0.9984 while with R2 = 0.999, a kinetic model, pseudo-second-order, confirms MB dye adsorption by PSPAC adsorbent. Moreover, thermodynamic parameters including ΔGᵒ, ΔH°, and ΔS° were computed and found to be spontaneous and exothermic. Furthermore, regeneration studies employed with NaOH (0.1 M) and HCl (0.1 M) solution media show an acceptable MB removal efficiency consecutive up to three cycles. The study highlights that H3PO4 papaya skin/peel (PSPAC) is an effectual, sustainable, reasonably available biosorbent to remove industrial cationic dyes disposal.
Collapse
Affiliation(s)
- Charuta Waghmare
- Department of Civil Engineering, Yeshwantrao Chavan College of Engineering, 441110, Nagpur, India; Department of Civil Engineering, School of Engineering and Technology, G. H. Raisoni Amravati University, 444701, Amravati, India.
| | - Sujesh Ghodmare
- Department of Civil Engineering, School of Engineering and Technology, G. H. Raisoni Amravati University, 444701, Amravati, India.
| | - Khalid Ansari
- Department of Civil Engineering, Yeshwantrao Chavan College of Engineering, 441110, Nagpur, India.
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Greater Noida-201310, India.
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| |
Collapse
|
70
|
Numpilai T, Seubsai A, Chareonpanich M, Witoon T. Unraveling the roles of microporous and micro-mesoporous structures of carbon supports on iron oxide properties and As (V) removal performance in contaminated water. ENVIRONMENTAL RESEARCH 2023; 236:116742. [PMID: 37507043 DOI: 10.1016/j.envres.2023.116742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This study investigates the impact of microporous (SP-C) and micro-mesoporous carbon (DP-C) supports on the dispersion and phase transformation of iron oxides and their arsenic (V) removal efficiency. The research demonstrates that carbon-supported iron oxide sorbents exhibit superior As(V) uptake capacity compared to unsupported Fe2O3, attributed to reduced iron oxide crystallite sizes and As(V) adsorption on carbon supports. Maximum As(V) uptake capacities of 23.8 mg/g and 18.9 mg/g were achieved for Fe/SP-C and Fe/DP-C at 30 wt% and 50 wt% iron loading, respectively. The study reveals a nonlinear relationship between As(V) sorption capacity and iron oxide crystallite size after excluding As(V) adsorption capacity on carbon supports, suggesting the iron oxide phase (Fe3O4) plays a role in determining adsorption capacity. Iron oxide-loaded DP-C sorbents exhibit faster adsorption rates at low As(V) concentrations (5 mg/L) than SP-C sorbents due to their bimodal pore structure. Adsorption behavior varies at higher As(V) concentrations (45 mg/L), with Fe/DP-C reaching maximum capacity more slowly due to limited available adsorptive sites. All adsorbents maintained near-complete As(V) removal efficiency over five cycles. The findings provide insights for designing more efficient adsorbents for As(V) removal from contaminated water sources.
Collapse
Affiliation(s)
- Thanapha Numpilai
- Department of Environmental Science, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Anusorn Seubsai
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Metta Chareonpanich
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Thongthai Witoon
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
71
|
Oh S, Nguyen HT. Activated sludge microbiome with H 2O 2-modified biochar enhances the treatment resilience and detoxification of oxytetracycline and its toxic byproducts. ENVIRONMENTAL RESEARCH 2023; 236:116832. [PMID: 37543124 DOI: 10.1016/j.envres.2023.116832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
The widespread presence of oxytetracycline (OTC) in aquatic ecosystems poses both health risks and ecological concerns. The present study revealed the beneficial role of hydrogen peroxide (H2O2)-pretreated biochar (BC) derived from agricultural hardwood waste in an activated sludge (AS) bioprocess. The BC addition significantly enhanced the removal and detoxification of OTC and its byproducts. BC was initially modified using H2O2 to improve its OTC adsorption. Two AS reactors were then established, one with H2O2-modified BC and one without, and both were exposed to OTC. The BC-added reactor exhibited significantly higher OTC removal rates during both the start-up (0.97 d-1) and steady-state (0.98 d-1) phases than the reactor without BC (0.54 d-1 and 0.83 d-1, respectively). Two novel transformation pathways for OTC were proposed, with four byproducts originating from OTC identified, some of which were found to be more toxic than OTC itself. The BC-added reactor had significantly higher system functioning in terms of its heterotrophic activity and the reduction of the toxicity of OTC and its byproducts, as illustrated by structure-based toxicity simulations, antimicrobial susceptibility experiments, analytical chemistry, and bioinformatics analysis. Bioinformatics revealed two novel bacterial populations closely related to the known OTC-degrader Pandoraea. The ecophysiology and selective enrichment of these populations suggested their role in the enzymatic breakdown and detoxification of OTC (e.g., via demethylation and hydrogenation). Overall, the present study highlighted the beneficial role of H2O2-modified BC in combination with the AS microbiome in terms of enhancing treatment performance and resilience, reducing the toxicological disruption to biodiversity, and detoxifying micropollutants.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Hiep T Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
72
|
Lyu P, Li L, Huang J, Ye J, Zhu C, Xie J, Wang Z, Kang M, Yan A. Enhancing sorption of layered double hydroxide-based magnetic biochar for arsenic and cadmium through optimized preparation protocols. BIORESOURCE TECHNOLOGY 2023; 388:129756. [PMID: 37696337 DOI: 10.1016/j.biortech.2023.129756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The impact of multiple preparation protocols on properties and performance of modified biochar remains unclear. This study prepared layered double hydroxide (LDH)-based magnetic biochars (LMBCs) with different LDH loading rates (LLR), pyrolysis temperatures, and biomass sources to explore their performance-characterization relationships toward As(III) and Cd(II). Higher LLR and pyrolysis temperature enhanced LMBCs᾿ adsorption capacities by increasing specific surface area (SSA) and metal/O-containing groups. Hence, LMBC produced at 2:1 LLR (LDH: magnetic biochar) and 800 ℃ pyrolysis exhibited maximum adsorption over 2 times that of LMBC with 0.5:1 LLR and 400 ℃ pyrolysis. Bamboo-sourced LMBC demonstrated superior adsorption than sewage sludge and garlic-sourced LMBCs due to its increased SSA, enabling a higher loading of nano-LDH. Adsorption of As(III) and Cd(II) onto LMBCs was governed by metal-mineral and metal-containing group through co-precipitation and complexation. This study provides a reference for adjusting the preparation protocols to improve sorption performance of modified biochar toward multiple heavy metals.
Collapse
Affiliation(s)
- Peng Lyu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lianfang Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jinli Huang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Ye
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinni Xie
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihan Wang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengqi Kang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ao Yan
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
73
|
Ji Y, Zhuang Y, Jiao X, Cheng Z, Liu C, Yu X, Zhang Y. 3D Monolayer Silanation of Porous Structure Facilitating Multi-Phase Pollutants Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303658. [PMID: 37449342 DOI: 10.1002/smll.202303658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Activated carbon (AC) is widely used to removing hazardous pollutants from air and water, owing to its exceptional adsorption properties. However, the high affinity of water molecules with the surface oxygen-containing functional groups can adversely affect the adsorption performance of AC. In this study, a facile and efficient method is presented for fabrication of hydrophobic AC through surface monolayer silanation. Compared to initial AC, the hydrophobic AC improves the water contact angle from 29.7° to 123.5° while maintaining high specific surface area and enhances the removal capacity of multi-phase pollutants (emulsified oil and toluene). Additionally, the hydrophobic AC exhibits excellent adsorption capability to harmful algal bloom species (Chlorella) (97.56%) and algal organic matter (AOM) (96.23%) owing to electrostatic interactions and surface hydrophobicity. The study demonstrates that this method of surface monolayer silanation can effectively weaken the effect of water molecules on AC adsorption capacity, which has significant potential for practical use in air and water purification, as well as in the control of harmful algal blooms.
Collapse
Affiliation(s)
- Yanzheng Ji
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Yifan Zhuang
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Xuan Jiao
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Zhikang Cheng
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Chunhui Liu
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Xinquan Yu
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Youfa Zhang
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| |
Collapse
|
74
|
Pan X, Zhang N, Yang L, He C, Ma X, Liu X, Liu L, Hou T, Jiao Y. Preparation of a Novel Straw-Sludge Activated Biochar and Its Adsorption Mechanisms for Removal of VOCs. ACS OMEGA 2023; 8:39329-39344. [PMID: 37901520 PMCID: PMC10600887 DOI: 10.1021/acsomega.3c04866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
To simultaneously achieve the objectives of waste resource utilization and clean production, a novel approach involving the utilization of corn straw-sludge hybrid biochar was proposed for the adsorption of VOCs emitted from biomass power plants. This study analyzed the effect of straw-sludge biochar on the adsorption characteristics of VOCs (toluene, isopentane, and ethylene) under different preparation conditions (raw material ratio, activation temperature, and activation time). The findings revealed that the adsorption efficiency of the mixed biochar was significantly superior to that of individual corn straw biochar and sludge biochar. The adsorption of methylbenzene, isopentane, and ethylene was 78.32, 40.81, and 41.18% higher, respectively, compared to the control groups consisting of pure sludge biochar and pure corn straw biochar. Moreover, the adsorption performance of the activated biochar followed the sequence of ethylene < isopentane < methylbenzene in terms of both saturation time and adsorption capacity. The adsorption capacity of VOCs on straw biochar-sludge biochar demonstrated a consistent correlation with the boiling point and molecular weight of the adsorbate, with higher adsorption capacities observed for adsorbates with larger boiling points and molecular weights, specifically methylbenzene > isopentane > ethylene.
Collapse
Affiliation(s)
- Xiaohui Pan
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ninglu Zhang
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Le Yang
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao He
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoran Ma
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Liu
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tingting Hou
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Youzhou Jiao
- Key
Laboratory of New Materials and Facilities for Rural Renewable Energy
of Ministry of Agriculture and Rural Affairs, College of Mechanical
& Electrical Engineering, Henan Agricultural
University, Zhengzhou 450002, China
- Henan
International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
- Henan
Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
75
|
Correa-Navarro Y, López GD, Carazzone C, Giraldo L, Moreno-Piraján JC. Mechanochemical Degradation of Caffeine and Diclofenac Using Biochar of Fique Bagasse in the Presence of Al: Monitoring by Mass Spectrometry. ACS OMEGA 2023; 8:38905-38915. [PMID: 37901549 PMCID: PMC10601424 DOI: 10.1021/acsomega.3c03051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Much research has been carried out to remove emerging contaminants using diverse materials. Furthermore, studies related to pollutant degradation have increased over the past decade. Mechanochemical degradation can successfully decompose molecules that are persistent in the environment. In this study, the biochar of fique bagasse with mixtures SiO2, Al, Al2O3, and Al-Al2O3 was treated with a mechanochemical technique using a planetary ball mill to investigate the degradation of caffeine and diclofenac. These tests resulted in the transformation of caffeine and diclofenac due to the use of Al employing mechanochemistry. In fact, through the use of liquid chromatography coupled with mass spectrometry, eight and six subproducts were identified for caffeine and diclofenac, respectively. Additionally, analysis of the molecules proposed for caffeine and diclofenac transformation suggested hydroxylation, demethylation, decarboxylation, oxidation reactions, and cleavage of the C-C and C-N bonds in the pollutants studied. The formation of these transformation products could be possible by reductant oxygen species generated from the molecular oxygen in the presence of aluminum and the energy delivered for ball milling. The results obtained show the potential application in the environmental management of mechanochemical treatment in the elimination of emerging contaminants caffeine and diclofenac.
Collapse
Affiliation(s)
- Yaned
Milena Correa-Navarro
- Departamento
de Química, Facultad de Ciencias Exactas y Naturales, Grupo
de investigación Estudios Ambientales en Agua y Suelo, Universidad de Caldas, Manizales, Caldas 170004, Colombia
- Departamento
de Química, Facultad de Ciencias, Grupo de investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Carrera 1 No. 18 A-12, Bogotá, D.C. 111711, Colombia
| | - Gerson-Dirceu López
- PhysCheMath
Research Group, Facultad de Ciencias y Humanidades, Universidad de América, Avda. Circunvalar No. 20-53, Bogotá, D.C. 111711, Colombia
| | - Chiara Carazzone
- Laboratory
of Advanced Analytical Techniques in Natural Products (LATNAP), Departamento
de Química, Facultad de Ciencias, Universidad de los Andes, Carrera 1 No. 18 A-12, Bogotá, D.C. 111711, Colombia
| | - Liliana Giraldo
- Departamento
de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, D.C. 11001, Colombia
| | - Juan Carlos Moreno-Piraján
- Departamento
de Química, Facultad de Ciencias, Grupo de investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Carrera 1 No. 18 A-12, Bogotá, D.C. 111711, Colombia
| |
Collapse
|
76
|
Li A, Ye C, Jiang Y, Deng H. Enhanced removal performance of magnesium-modified biochar for cadmium in wastewaters: Role of active functional groups, processes, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129515. [PMID: 37468011 DOI: 10.1016/j.biortech.2023.129515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
In this study, a series of biochar products with different active functional groups were developed by one-pot coprecipitation method, including magnesium-modified biochar (MgBC) and functional group-grafted MgBC (Cys@MgBC, Try@MgBC, and Glu@MgBC), for effective adsorption of cadmium (Cd(II)) from wastewaters. These biochars exhibited excellent removal performance for Cd(II), particularly Cys@MgBC, whose maximum Cd(II) adsorption capacity reached 223.7 mg g-1. The highly active and weakly crystalline Mg could adsorb Cd(II) through precipitation and ion exchange, which was further promoted by the introduced functional groups through complexation and precipitation. After 120 d of natural process, the immobilization efficiency of Cd(II) by Cys@MgBC, Try@MgBC, and Glu@MgBC was still maintained at 98.7%, 95.2%, and 82.7% respectively. This study proposes and clarifies the complexation mechanism of functional group-grafted Mg-modified biochar for heavy metals, providing new insights into the practical application of these biochars.
Collapse
Affiliation(s)
- Anyu Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Chenghui Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yanhong Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
77
|
Lekene RBN, Ntep TMM, Fetzer MNA, Strothmann T, Nsami JN, Janiak C. The efficient removal of ibuprofen, caffeine, and bisphenol A using engineered egusi seed shells biochar: adsorption kinetics, equilibrium, thermodynamics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100095-100113. [PMID: 37624498 DOI: 10.1007/s11356-023-29377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Contaminants of emerging concern (CECs), also known as micropollutants, have been recognized in recent years as substantial water pollutants because of the potential threats they pose to the environment and human health. This study was aimed at preparing biochar (BC) based on egusi seed shells (ESS) with well-developed porosity and excellent adsorption capacity towards CECs including ibuprofen (IBP), caffeine (CAF), and bisphenol A (BPA). BC samples were prepared by pyrolysis at different temperatures (400 to 800 °C) and were characterized using nitrogen sorption, FTIR, powder X-ray diffraction (PXRD), SEM/EDS, elemental analysis, and thermal analysis. The nitrogen sorption and SEM results showed that the textural properties were more prominent as the pyrolysis temperature increased. The BC sample obtained at 800 °C which exhibited the largest specific surface area (688 m2/g) and the highest pore volume (0.320 cm3/g) was selected for the adsorption study of CECs. The kinetic study shows that the adsorption equilibrium of CAF and BPA was faster than that of IBP. The pseudo-first- and pseudo-second-order kinetic models best fitted the adsorption data. The Langmuir maximum monolayer adsorption capacities of biochar were found to be ~ 180, 121, and 73 mg/g respectively for IBP, CAF, and BPA. The thermodynamic study shows that the adsorption process was spontaneous and endothermic for the three CECs. The results of the adsorption and the analysis of BC after adsorption showed that hydrogen bonding, van der Waals, π-π, n-π interactions, and pore filling were involved in the adsorption mechanism. The prepared biochar BC from ESS displayed a large surface area and good morphology and significantly promotes adsorption of CECs and good efficiency on synthetic effluent. Finally, it offers a low-cost and cleaner production method.
Collapse
Affiliation(s)
- René Blaise Ngouateu Lekene
- Applied Physical and Analytical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, Düsseldorf, 40204, Germany.
| | - Tobie Matemb Ma Ntep
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, Düsseldorf, 40204, Germany
| | - Marcus N A Fetzer
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, Düsseldorf, 40204, Germany
| | - Till Strothmann
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, Düsseldorf, 40204, Germany
| | - Julius Ndi Nsami
- Applied Physical and Analytical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, Düsseldorf, 40204, Germany
| |
Collapse
|
78
|
Prelac M, Palčić I, Cvitan D, Anđelini D, Repajić M, Ćurko J, Kovačević TK, Goreta Ban S, Užila Z, Ban D, Major N. From Waste to Green: Water-Based Extraction of Polyphenols from Onion Peel and Their Adsorption on Biochar from Grapevine Pruning Residues. Antioxidants (Basel) 2023; 12:1697. [PMID: 37760000 PMCID: PMC10525769 DOI: 10.3390/antiox12091697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Onion peels (OP) are rich in bioactive compounds with a plethora of benefits for human health, but this valuable material is often wasted and underutilized due to its inedibility. Likewise, grapevine pruning residues are commonly treated as agricultural waste, but biochar (BC) obtained from this material has favorable characteristics as an adsorbent. This study investigated the potential of BC in removal of targeted polyphenolic compounds from OP extracts. The OP extracts were obtained adhering to green chemistry principles using deionized water amplified by three methods: maceration (MAC), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE). The extraction efficiency on the polyphenolic profile and antioxidant capacity was investigated with different extraction temperatures and solid-to-liquid (s/l) ratios. For further analysis, UAE at 90 °C with an s/l ratio of 1:100 was used due to higher polyphenolic compound yield. The BC adsorption capacity of individual polyphenols was fitted with the Langmuir and Freundlich isotherm models. Quercetin-3,4'-diglucoside obtained the highest R2 coefficient in both models, and the highest qmax value. The optimum conditions in the dosage experiment suggested an amount of 0.5 g of BC using 3 g/L extracts. The studied BC showed a high affinity for targeted phytochemicals from OP extracts, indicating its potential to be applied for the green adsorption of valuable polyphenolic compounds.
Collapse
Affiliation(s)
- Melissa Prelac
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Igor Palčić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Danko Cvitan
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Dominik Anđelini
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Maja Repajić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Tvrtko Karlo Kovačević
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Zoran Užila
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| |
Collapse
|
79
|
Eniola JO, Sizirici B, Fseha Y, Shaheen JF, Aboulella AM. Application of conventional and emerging low-cost adsorbents as sustainable materials for removal of contaminants from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88245-88271. [PMID: 37440129 DOI: 10.1007/s11356-023-28399-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
The impact of water pollution has led to the search for cost-effective and environmentally friendly treatment processes to alleviate the associated environmental hazards. Adsorption is identified as an advanced treatment technology that offers simplicity and cheap alternatives to water treatment technologies when low-cost adsorbents such as industrial by-products, waste, and agricultural waste are utilized. The utilization of these materials as low-cost adsorbents for the treatment of drinking water will bring them some value. Several practices have been done to improve the removal efficiencies of the low-cost adsorbents in order to achieve WHO standards of drinking water quality. The paper highlights some of the synthesis routes employed for the modification of low-cost adsorbents. This updated review provides information on the different applications of low-cost adsorbents in removing pollutants and their adsorption capacities in an attempt to deploy the recent sustainable low-cost adsorbents with high removal efficiencies for water treatment. Future research should focus on the fabrication of hybrid low-cost adsorbents with multifunctional and antimicrobial properties. In addition, life cycle assessment (LCA) should be conducted to reveal the environmental burdens associated with the modification of the low-cost adsorbent to improve their removal efficiencies.
Collapse
Affiliation(s)
- Jamiu O Eniola
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Banu Sizirici
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yohanna Fseha
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jamal F Shaheen
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahmed Mamdouh Aboulella
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
80
|
Jiang Z, Chen M, Lee X, Feng Q, Cheng N, Zhang X, Wang S, Wang B. Enhanced removal of sulfonamide antibiotics from water by phosphogypsum modified biochar composite. J Environ Sci (China) 2023; 130:174-186. [PMID: 37032034 DOI: 10.1016/j.jes.2022.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/19/2023]
Abstract
Antibiotic pollution has become a global eco-environmental issue. To reduce sulfonamide antibiotics in water and improve resource utilization of solid wastes, phosphogypsum modified biochar composite (PMBC) was prepared via facile one-step from distillers grains, wood chips, and phosphogypsum. The physicochemical properties of PMBC were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Zeta potential, X-ray diffraction (XRD), etc. The influencing factors, adsorption behaviors, and mechanisms of sulfadiazine (SD) and sulfamethazine (SMT) onto PMBC were studied by batch and fixed bed column adsorption experiments. The results showed that the removal rates of SD and SMT increased with the increase of phosphogypsum proportion, while decreased with the increase of solution pH. The maximum adsorption capacities of modified distillers grain and wood chips biochars for SD were 2.98 and 4.18 mg/g, and for SMT were 4.40 and 8.91 mg/g, respectively, which was 9.0-22.3 times that of pristine biochar. Fixed bed column results demonstrated that PMBC had good adsorption capacities for SD and SMT. When the solution flow rate was 2.0 mL/min and the dosage of PMBC was 5.0 g, the removal rates of SD and SMT by modified wood chips biochar were both higher than 50% in 4 hr. The main mechanisms of SD and SMT removal by PMBC are hydrogen bonding, π-π donor-acceptor, electrostatic interaction, and hydrophobic interaction. This study provides an effective method for the removal of antibiotics in water and the resource utilization of phosphogypsum.
Collapse
Affiliation(s)
- Zonghong Jiang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, China.
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, China
| | - Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
81
|
Basirun AA, Karim WAWA, Wei NC, Wu J, Wilfred CD. Manganese Removal Using Functionalised Thiosalicylate-Based Ionic Liquid: Water Filtration System Application. Molecules 2023; 28:5777. [PMID: 37570745 PMCID: PMC10420996 DOI: 10.3390/molecules28155777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Aiming at the generation of new functionalised thiosalicylate-based ionic liquids, a polymeric hydrogel consisting of 1-hexylimidazole propionitrile thiosalicylate [HIMP][TS], with a solid biomaterial support based on polyvinyl alcohol (PVA)-alginate beads, was produced. This study aimed to develop a treatment method for removing manganese (Mn) heavy metal from industrial wastewater, which is known to be toxic and harmful towards the environment and human health. The method utilised an adsorption-based approach with an alginate adsorbent that incorporated a functionalised thiosalicylate-based ionic liquid. The synthesised smooth round beads of PVA-alginate-[HIMP][TS] adsorbent were structurally characterised using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The Mn concentration and removal efficiency were evaluated using atomic absorption spectroscopy (AAS). Three important parameters were evaluated: pH, adsorbent dosage, and contact time. During optimisation using the interactive factor design of experiments through the Box-Behnken model, the results showed that the system achieved a maximum Mn removal efficiency of 98.91% at an initial pH of 7.15, with a contact time of 60 min, using a bead dosage of 38.26 g/L. The beads were also tested in an available water filtration prototype system to illustrate their industrial application, and the performance showed a removal efficiency of 99.14% with 0 NTU total suspended solid (TSS) and 0.13 mg/L turbidity analysis. The recyclability of PVA-alginate-[HIMP][TS] beads using 0.5 M HCl resulted in four cycles with constant 99% Mn removal. The adsorption capacity of Mn was also determined in optimum conditions with 56 mg/g. Therefore, the alginate-thiosalicylate-based ionic liquid system is considered an effective and environmentally friendly method for removing Mn heavy metal due to the high removal efficiency achieved.
Collapse
Affiliation(s)
- Ain Aqilah Basirun
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | | | - Ng Cheah Wei
- Camfil Malaysia Sdn Bhd, Plot 9A & 9B, Lorong Bemban 1, Bemban Industrial Estate, Batu Gajah 31000, Perak, Malaysia; (N.C.W.); (J.W.)
| | - Jiquan Wu
- Camfil Malaysia Sdn Bhd, Plot 9A & 9B, Lorong Bemban 1, Bemban Industrial Estate, Batu Gajah 31000, Perak, Malaysia; (N.C.W.); (J.W.)
| | - Cecilia Devi Wilfred
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
82
|
Lee J, Lee S, Park YK. Reduction of Odor-causing Compounds in Wastewater using Biochar: A Review. BIORESOURCE TECHNOLOGY 2023:129419. [PMID: 37422094 DOI: 10.1016/j.biortech.2023.129419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Wastewater contains chemical compounds that cause malodors, such as ammonium cation, dimethyl sulfide, and volatile organic compounds. Biochar-based reduction in the odorants has been proposed as an effective approach along with maintaining environmental neutrality as biochar is a sustainable material made from biomass and biowaste. Biochar can have high specific surface area and microporous structure with proper activation, appropriate for sorption purposes. Recently, various research directions have been proposed to determine the removal efficiency of biochar for different odorants contained in wastewater. This article is aimed at providing the most updated review of biochar-based removal of odor-causing compounds in wastewater while highlighting the current advances. It was distinguished that the odorant removal performance of biochar is highly associated with the raw material and modification method of biochar, and the kind of odorants. Further research should be required for more practical use of biochar for the reduction of odorants in wastewater.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seonho Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
83
|
Rusu L, Suceveanu EM, Blaga AC, Nedeff FM, Șuteu D. Insights into Recent Advances of Biomaterials Based on Microbial Biomass and Natural Polymers for Sustainable Removal of Pharmaceuticals Residues. Polymers (Basel) 2023; 15:2923. [PMID: 37447569 DOI: 10.3390/polym15132923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Pharmaceuticals are acknowledged as emerging contaminants in water resources. The concentration of pharmaceutical compounds in the environment has increased due to the rapid development of the pharmaceutical industry, the increasing use of human and veterinary drugs, and the ineffectiveness of conventional technologies to remove pharmaceutical compounds from water. The application of biomaterials derived from renewable resources in emerging pollutant removal techniques constitutes a new research direction in the field. In this context, the article reviews the literature on pharmaceutical removal from water sources using microbial biomass and natural polymers in biosorption or biodegradation processes. Microorganisms, in their active or inactive form, natural polymers and biocomposites based on inorganic materials, as well as microbial biomass immobilized or encapsulated in polymer matrix, were analyzed in this work. The review examines the benefits, limitations, and drawbacks of employing these biomaterials, as well as the prospects for future research and industrial implementation. From these points of view, current trends in the field are clearly reviewed. Finally, this study demonstrated how biocomposites made of natural polymers and microbial biomass suggest a viable adsorbent biomaterial for reducing environmental pollution that is also efficient, inexpensive, and sustainable.
Collapse
Affiliation(s)
- Lăcrămioara Rusu
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Elena-Mirela Suceveanu
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Alexandra-Cristina Blaga
- Faculty of Chemical Engineering an Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University from Iasi, 71 A Mangeron Blvd., 700050 Iasi, Romania
| | - Florin Marian Nedeff
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Daniela Șuteu
- Faculty of Chemical Engineering an Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University from Iasi, 71 A Mangeron Blvd., 700050 Iasi, Romania
| |
Collapse
|
84
|
Ali A, Alharthi S, Al-Shaalan NH, Naz A, Fan HJS. Efficient Removal of Hexavalent Chromium (Cr(VI)) from Wastewater Using Amide-Modified Biochar. Molecules 2023; 28:5146. [PMID: 37446811 DOI: 10.3390/molecules28135146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The utilization of biochar, derived from agricultural waste, has garnered attention as a valuable material for enhancing soil properties and serving as a substitute adsorbent for the elimination of hazardous heavy metals and organic contaminants from wastewater. In the present investigation, amide-modified biochar was synthesized via low-temperature pyrolysis of rice husk and was harnessed for the removal of Cr(VI) from wastewater. The resultant biochar was treated with 1-[3-(trimethoxysilyl) propyl] urea to incorporate an amide group. The amide-modified biochar was characterized by employing Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. During batch experiments, the effect of various parameters, such as adsorbent dosage, metal concentration, time duration, and pH, on Cr(VI) removal was investigated. The optimal conditions for achieving maximum adsorption of Cr(VI) were observed at a pH 2, an adsorbent time of 60 min, an adsorbent dosage of 2 g/L, and a metal concentration of 100 mg/L. The percent removal efficiency of 97% was recorded for the removal of Cr(VI) under optimal conditions using amide-modified biochar. Freundlich, Langmuir, and Temkin isotherm models were utilized to calculate the adsorption data and determine the optimal fitting model. It was found that the adsorption data fitted well with the Langmuir isotherm model. A kinetics study revealed that the Cr(VI) adsorption onto ABC followed a pseudo-second-order kinetic model. The findings of this study indicate that amide-functionalized biochar has the potential to serve as an economically viable substitute adsorbent for the efficient removal of Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Ashraf Ali
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Sarah Alharthi
- Center of Advanced Research in Science and Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Alia Naz
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643099, China
| |
Collapse
|
85
|
Prelac M, Palčić I, Cvitan D, Anđelini D, Repajić M, Ćurko J, Kovačević TK, Goreta Ban S, Užila Z, Ban D, Major N. Biochar from Grapevine Pruning Residues as an Efficient Adsorbent of Polyphenolic Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4716. [PMID: 37445031 DOI: 10.3390/ma16134716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Agricultural waste, which is produced in large quantities annually, can be a threat to the environment. Biochar (BC) production represents a potential solution for reducing the amount of grapevine pruning residues and, accordingly, the impact on the environment and climate change. Biochar produced by the process of pyrolysis from grapevine pruning residues was investigated and characterized to be applied as an adsorbent of polyphenolic compounds with the aim of using the waste from viticultural production to obtain a quality product with adsorption and recovery potential. Standards of caffeic acid (CA), gallic acid (GA), and oleuropein (OLP) were used as polyphenolic representatives. The obtained data were fitted with the Langmuir and Freundlich isotherms models to describe the adsorption process. The best KL (0.39) and R2 (0.9934) were found for OLP using the Langmuir model. Furthermore, the adsorption dynamics and recovery potential of BC were investigated using an adapted BC column and performed on an HPLC instrument. The adsorption dynamics of biochar resulted in the adsorption of 5.73 mg CA g-1 of BC, 3.90 mg GA g-1 of BC, and 3.17 mg OLP g-1 of BC in a 24 h contact. The online solid phase extraction of the compounds performed on an HPLC instrument yielded a recovery of 41.5 ± 1.71% for CA, 61.8 ± 1.16% for GA, and 91.4 ± 2.10% for OLP. The investigated biochar has shown a higher affinity for low-polar compound adsorption and, consequently, a higher polar compound recovery suggesting its potential as an efficient polyphenolic compound adsorbent.
Collapse
Affiliation(s)
- Melissa Prelac
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Igor Palčić
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Danko Cvitan
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Dominik Anđelini
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Maja Repajić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | | | | | - Zoran Užila
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Dean Ban
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikola Major
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|
86
|
Li B, Xu D, Zhou X, Yin Y, Feng L, Liu Y, Zhang L. Environmental behaviors of emerging contaminants in freshwater ecosystem dominated by submerged plants: A review. ENVIRONMENTAL RESEARCH 2023; 227:115709. [PMID: 36933641 DOI: 10.1016/j.envres.2023.115709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Persistent exposure of emerging contaminants (ECs) in freshwater ecosystem has initiated intense global concerns. Freshwater ecosystem dominated by submerged plants (SP-FES) has been widely constructed to control eutrophic water. However, the environmental behaviors (e.g. migration, transformation, and degradation) of ECs in SP-FES have rarely been concerned and summarized. This review briefly introduced the sources of ECs, the pathways of ECs entering into SP-FES, and the constituent elements of SP-FES. And then the environmental behaviors of dissolved ECs and refractory solid ECs in SP-FES were comprehensively summarized, and the feasibility of removing ECs from SP-FES was critically evaluated. Finally, the challenges and perspectives on the future development for ECs removal from SP-FES were prospected, giving possible research gaps and key directions. This review will provide theoretical and technical support for the effective removal of ECs in freshwater ecosystem, especially in SP-FES.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China; School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dandan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhou
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yijun Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
87
|
Cao S, Huang J, Tian J, Liu Z, Su H, Chen Z. Deep insight into selective adsorption behavior and mechanism of novel deep eutectic solvent functionalized bio-sorbent towards methcathinone: Experiments and DFT calculation. ENVIRONMENTAL RESEARCH 2023; 227:115792. [PMID: 36997045 DOI: 10.1016/j.envres.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
This work designed and synthesized novelly selective, highly efficient and friendly environmental biochar nanomaterial (ZMBC@ChCl-EG) by screening suitable deep eutectic solvent (DES) as the functional monomer via Density Functional Theory (DFT). The prepared ZMBC@ChCl-EG achieved the highly efficient adsorption of methcathinone (MC) and exhibited excellent selectivity as well as good reusability. Selectivity analysis concluded that the distribution coefficient value (KD) of ZMBC@ChCl-EG towards MC was 3.247 L/g, which was about 3 times higher than that of ZMBC, corresponding to stronger selective adsorption capacity. The studies of isothermal and kinetics indicated that ZMBC@ChCl-EG had an excellent adsorption capacity towards MC and the adsorption was mainly chemically controlled. In addition, DFT was used to calculate the binding energies between MC and each component. The binding energies were -10.57 kcal/mol for ChCl-EG/MC, -3.15∼-9.51 kcal/mol for BCs/MC, -2.33 kcal/mol for ZIF-8/MC, respectively, suggesting that DES played a major role in enhancing methcathinone adsorption. Lastly, the adsorption mechanisms were revealed by variables experiment combined with characterizations and DFT calculation. The main mechanisms were hydrogen bonding and π-π interaction.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Jing Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Tian
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
88
|
Zhong Y, Wan X, Lian X, Cheng W, Ma X, Wang D. Hydroxylamine facilitated catalytic degradation of methylene blue in a Fenton-like system for heat-treatment modified drinking water treatment residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27780-x. [PMID: 37284959 DOI: 10.1007/s11356-023-27780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Rational treatment of drinking water treatment residues (WTR) has become an environmental and social issue due to the risk of secondary contamination. WTR has been commonly used to prepare adsorbents because of its clay-like pore structure, but then requires further treatment. In this study, a Fenton-like system of H-WTR/HA/H2O2 was constructed to degrade organic pollutants in water. Specifically, WTR was modified by heat treatment to increase its adsorption active site, and to accelerate Fe(III)/Fe(II) cycling on the catalyst surface by the addition of hydroxylamine (HA). Moreover, the effects of pH, HA and H2O2 dosage on the degradation were discussed with methylene blue (MB) as the target pollutant. The mechanism of the action of HA was analyzed and the reactive oxygen species in the reaction system were determined. Combined with the reusability and stability experiments, the removal efficiency of MB remained 65.36% after 5 cycles. Consequently, this study may provide new insights into the resource utilization of WTR.
Collapse
Affiliation(s)
- Yu Zhong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiancheng Wan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyan Lian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenyu Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoying Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dongtian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
89
|
Zhao H, Wang Z, Liang Y, Wu T, Chen Y, Yan J, Zhu Y, Ding D. Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar. ENVIRONMENTAL RESEARCH 2023; 226:115676. [PMID: 36907344 DOI: 10.1016/j.envres.2023.115676] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Efficient abatement of antibiotics from livestock wastewater is in urgent demand, but still challenging. In this study, alkaline-modified biochar with larger surface area (130.520 m2 g-1) and pore volume (0.128 cm3 g-1) was fabricated and explored for the adsorption of different types of antibiotics from livestock wastewater. Batch adsorption experiments demonstrated that the adsorption process was mainly determined by chemisorption and was heterogeneous, which could be moderately affected by the variations of solution pH (3-10). Furthermore, the computational analysis based on density functional theory (DFT) indicated that the -OH groups on biochar surface could serve as the dominant active sites for antibiotics adsorption due to the strongest adsorption energies between antibiotics and -OH groups. In addition, the antibiotics removal was also evaluated in multi-pollutants system, where biochar performed synergistic adsorption towards Zn2+/Cu2+ and antibiotics. Overall, these findings not only deepen our understandings on the adsorption mechanism between biochar and antibiotics, but also promote the application of biochar in the remediation of livestock wastewater.
Collapse
Affiliation(s)
- Haiyan Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yonghong Liang
- Jiangsu Provincial Cultivated Land Quality and Agricultural Environmental Protection Station, China
| | - Tianxiang Wu
- Jiangsu Provincial Cultivated Land Quality and Agricultural Environmental Protection Station, China
| | - Yiliang Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jieru Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
90
|
Morán-Valencia M, Huerta-Aguilar CA, Mora A, Mahlknecht J, Saber AN, Cervantes-Avilés P. Influence of PFDA on the nutrient removal from wastewater by hydrogels containing microalgae-bacteria. Heliyon 2023; 9:e17586. [PMID: 37408922 PMCID: PMC10319196 DOI: 10.1016/j.heliyon.2023.e17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
PFAS have demonstrated to affect some aerobic microorganisms applied for wastewater treatment. This study evaluated the nutrient removal of three types of hydrogels containing a consortium of microalgae-bacteria (HB), activated carbon (HC), or both (HBC) in presence of perfluorodecanoic acid (PFDA). The nutrients evaluated were ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), phosphate (PO4), and chemical oxygen demand (COD). Fluorine (F-) concentration and the integrity of HB exposed to PFDA were also determined at the end of experiments to understand the potential sorption and effects of PFDA on hydrogel. The results indicated that the presence of PFDA did affect the nitrification process, 13% and 36% to HB and HBC, respectively. Mass balance confirmed negative impact of PFDA on nitrogen consumption in HB (-31.37%). However, NH4-N was removed by all types of hydrogels in a range of 61-79%, while PO4 was mainly removed by hydrogels containing activated carbon (AC), 37.5% and 29.2% for HC and HBC, respectively. The removal of both NH4 and PO4, was mainly attributed to sorption processes in hydrogels, which was enhanced by the presence of AC. PFDA was also adsorbed in hydrogels, decreasing its concentration between 18% and 28% from wastewater, and up to 39% using HC. Regarding COD concentration, this increased overtime but was not related to hydrogel structure, since Transmission Electron Microscopy imaging revealed that their structure was preserved in presence of PFDA. COD increasement could be attributed to soluble algal products as well as to PVA leaching from hydrogels. In general, the presence of AC in hydrogels can contribute to mitigate the toxic effect of PFDA over microorganisms involved in biological nutrient removal, and hydrogels can be a technique to partially remove this contaminant from aqueous matrices.
Collapse
Affiliation(s)
- Marien Morán-Valencia
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Puebla, México
| | - Carlos Alberto Huerta-Aguilar
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Puebla, México
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Puebla, México
| | - Jurgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64149, Nuevo León, México
| | - Ayman N Saber
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agriculture Research Center, Egypt
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Puebla, México
| |
Collapse
|
91
|
Gao J, Han H, Gao C, Wang Y, Dong B, Xu Z. Organic amendments for in situ immobilization of heavy metals in soil: A review. CHEMOSPHERE 2023:139088. [PMID: 37268229 DOI: 10.1016/j.chemosphere.2023.139088] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
There is a growing need for soil remediation due to the increase in heavy metals (HMs) migrating into the soil environment, especially those from man-made sources dominated by industry and agriculture. In situ immobilization technology, because of its lower life cycle environmental footprint, can achieve "green and sustainable remediation" of soil heavy-metal pollution. Among the various in situ immobilization remediation agents, organic amendments (OAs) stand out as they can act as soil conditioners while acting as HMs immobilization agents, and therefore have excellent application prospects. In this paper, the types and remediation effects of OAs for HMs in situ immobilization in soil are summarized. OAs have an important effect on the soil environment and other active substances in soil while interacting with HMs in soil. Based on these factors, the principle and mechanism of HMs in situ immobilization in soil using OAs are summarized. Given the complex differential characteristics of soil itself, it is impossible to determine whether it can remain stable after heavy-metal remediation; therefore, there is still a gap in knowledge regarding the compatibility and long-term effectiveness of OAs with soil. In the future, it is necessary to develop a reasonable HMs contamination remediation program for in situ immobilization and long-term monitoring through interdisciplinary integration techniques. These findings are expected to provide a reference for the development of advanced OAs and their applications in engineering.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Haoxuan Han
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
92
|
Shi Q, Wang W, Zhang H, Bai H, Liu K, Zhang J, Li Z, Zhu W. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. BIORESOURCE TECHNOLOGY 2023; 383:129213. [PMID: 37230330 DOI: 10.1016/j.biortech.2023.129213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In this study, a high-performance porous adsorbent was prepared from biochar through a simple one-step alkali-activated pyrolysis treatment of walnut shells, and it was effective in removing tetracycline (TC). The specific surface area (SSA) of potassium hydroxide-pretreated walnut shell-derived biochar pyrolyzed at 900°C (KWS900) increased remarkably compared to that of the pristine walnut shell and reached 1713.87±37.05 m2·g-1. The maximum adsorption capacity of KWS900 toward TC was 607.00±31.87 mg·g-1. The pseudo-second-order kinetic and Langmuir isotherm models were well suited to describe the TC adsorption process onto KWS900. The KWS900 exhibited high stability and reusability for TC adsorption in the presence of co-existing anions or cations over a wide pH range of 1.0-11.0. Further investigations demonstrated that the proposed adsorption mechanism involved pore filling, hydrogen bonding, π-π stacking, and electrostatic interaction. These findings provide a valuable reference for developing biochar-based adsorbents for pollutant removal.
Collapse
Affiliation(s)
- Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wangbo Wang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongmin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- School of literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
93
|
Jiang F, Li F, Zimmerman AR, Yu Z, Ji L, Wei C, Zhang X, Gao B. Remarkable synergy between sawdust biochar and attapulgite/diatomite after co-ball milling to adsorb methylene blue. RSC Adv 2023; 13:14384-14392. [PMID: 37180009 PMCID: PMC10173820 DOI: 10.1039/d3ra01123b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Biochar has been recognized as a promising sustainable adsorbent for removing pollutants from wastewater. In this study, two natural minerals, attapulgite (ATP) and diatomite (DE) were co-ball milled with sawdust biochar (pyrolyzed at 600 °C for 2 h) at ratios of 10-40% (w/w) and examined the ability of methylene blue (MB) to be removed from aqueous solutions by them. All the mineral-biochar composites sorbed more MB than both ball milled biochar (MBC) and ball milled mineral alone, indicating there was a positive synergy in co-ball milling biochar with these minerals. The 10% (w/w) composites of ATP:BC (MABC10%) and DE:BC (MDBC10%) had the greatest MB maximum adsorption capacities (modeled by Langmuir isotherm modeling) and were 2.7 and 2.3 times that of MBC, respectively. The adsorption capacities of MABC10% and MDBA10% were 183.0 mg g-1 and 155.0 mg g-1 at adsorption equilibrium, respectively. These improvements can be owing to the greater content of oxygen-containing functional groups and higher cation exchange capacity of the MABC10% and MDBC10% composites. In addition, the characterization results also reveal that pore filling, π-π stacking interactions, hydrogen bonding of hydrophilic functional groups, and electrostatic adsorption of oxygen-containing functional groups also contribute prominently to the adsorption of MB. This, along with the greater MB adsorption at higher pH and ionic strengths, suggests the roles in MB adsorption was an electrostatic interaction and an ion exchange mechanism. These results demonstrate that mineral-biochar composites prepared by co-ball milling treatment were promising sorbents of ionic contaminants for environmental applications.
Collapse
Affiliation(s)
- Fei Jiang
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida Gainesville 32611 FL USA
| | - Zhongpu Yu
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Licheng Ji
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Chengcheng Wei
- College of Resources and Environment Science, Anhui Science and Technology University Fengyang 233100 China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology Xuzhou 221018 PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida Gainesville 32611 FL USA
| |
Collapse
|
94
|
Ghanbari J, Mobinikhaledi A. Synthesis and characterization of a novel N-rich porous organic polymer and its application as an efficient porous adsorbent for the removal of Pb(II) and Cd(II) ions from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68919-68933. [PMID: 37129814 DOI: 10.1007/s11356-023-27274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
In this study, a novel N-rich triazine-based porous organic polymer (NR-POP) was synthesized via Schiff-base condensation. The structure of the synthesized porous polymer was identified using FT-IR, XRD, SEM, EDS, TEM, TGA, and BET analyses. The adsorption efficiency of this polymer was investigated for the removal of lead and cadmium ions pollutants. The adsorption processes of Pb(II) and Cd(II) metal ions by this polymer adsorbent were exothermic and matched by the Langmuir isotherm with a high correlation coefficient (R2 = 0.9904, 0.9778), the maximum adsorption capacity (833.33, 178.57 mg g-1), and the pseudo-second-order kinetic model. Furthermore, NR-POP showed an excellent adsorption selectivity for Pb(II) compared to Cd(II).
Collapse
Affiliation(s)
- Javad Ghanbari
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88138, Iran
| | - Akbar Mobinikhaledi
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88138, Iran.
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran.
| |
Collapse
|
95
|
Mo Z, Zhang H, Shahab A, khan FA, Chen J, Huang C. Functionalized metal-organic framework UIO-66 nanocomposites with ultra-high stability for efficient adsorption of heavy metals: Kinetics, thermodynamics, and isothermal adsorption. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
96
|
Kuang Y, Xie X, Zhou S, Chen L, Zheng J, Ouyang G. Customized oxygen-rich biochar with ultrahigh microporosity for ideal solid phase microextraction of substituted benzenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161840. [PMID: 36716883 DOI: 10.1016/j.scitotenv.2023.161840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The synergistic effect of high microporosity and abundant heteroatoms is important for improving the performance of biochar in various fields. However, it is still challenging to create enough micropores for biochar, while simultaneously retaining the heteroatoms from biomass. A series of biochar with variable microstructures was successfully prepared by carbonization and following ball milling on lotus pedicel (LP), watermelon rind (WR), and litchi rind (LR). The pore structures and heteroatoms of biochar were characterized in detail. Notably, high microporosity could be realized by the carbonization of LR, and further ball milling resulted in a higher microporous surface area (1323.4 m2·g-1) and richer oxygen. Furthermore, the obtained biochar was fabricated as solid phase microextraction (SPME) coatings with uniform morphologies and similar thicknesses to deeply investigate the relationships between the microstructures and extraction performance. The best performance was demonstrated by the LR800BM, with enrichment factors from 1780 to 155,217. Finally, it was coupled with gas chromatography-mass spectrometry (GC-MS) to develop an analytical method with a wide linear range (1-50,000 ng·L-1), low limits of detection (0.10-1.4 ng·L-1), good repeatability (0.83 %-7.5 %) and reproducibility (4.2 %-8.9 %). This work provides valuable insights into the structure-performance relationship of biochar, which is important for the design of high-performance biochar-based adsorbents and their applications in the environment.
Collapse
Affiliation(s)
- Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xintong Xie
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, China.
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
97
|
Zong Y, Wang X, Zhang H, Li Y, Yu J, Wang C, Cai Z, Wei J, Ding L. Preparation of a ternary composite based on water caltrop shell derived biochar and gelatin/alginate for cadmium removal from contaminated water: Performances assessment and mechanism insight. Int J Biol Macromol 2023; 234:123637. [PMID: 36775227 DOI: 10.1016/j.ijbiomac.2023.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
A ternary composite (SA/GE@BC) for cadmium removal from wastewater was successfully prepared. The alginate and gelatin were successfully impregnated with biochar (derived from water caltrop shell) to improve the recyclability and adsorption capacity. The prepared SA/GE@BC demonstrated a good removal for cadmium at pH 4.0-7.0 conditions. The cadmium removal increased with increasing SA/GE@BC dosage. The adsorption kinetics process was well consistent with the pseudo-second order model. And the Langmuir model (R2 > 0.99) best described the isotherm data. The calculated adsorption capacity reached a maximum of 86.25 mg/g. The adsorption was a spontaneous and endothermic process, and elevating temperature favored the removal of cadmium. The alginate-gelatin composition enhanced the number of oxygenated functional groups and exchangeable ions. This enhanced the removal of cadmium by complexation and cation ion exchange. Also, the removal mechanism of cadmium on SA/GE@BC involved electrostatic attraction and π-bond coordination. The saturated SA/GE@BC could be well regenerated by 0.1 M HNO3. All these results suggested the preparation of SA/GE@BC could effectively use waste resources to produce highly effective adsorbents for removing cadmium from contaminated water.
Collapse
Affiliation(s)
- Yiming Zong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Xinxiang Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Hao Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Jian Yu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Chen Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Zhantao Cai
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Jincheng Wei
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
98
|
Wei Z, Hou C, Gao Z, Wang L, Yang C, Li Y, Liu K, Sun Y. Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO 3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride. Molecules 2023; 28:molecules28073188. [PMID: 37049949 PMCID: PMC10096365 DOI: 10.3390/molecules28073188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The effective removal of oxytetracycline hydrochloride (OTC) from the water environment is of great importance. Adsorption as a simple, stable, and cost-effective technology is regarded as an important method for removing OTC. Herein, a low-cost biochar with a developed mesoporous structure was synthesized via pyrolysis of poplar leaf with potassium bicarbonate (KHCO3) as the activator. KHCO3 can endow biochar with abundant mesopores, but excessive KHCO3 cannot continuously promote the formation of mesoporous structures. In comparison with all of the prepared biochars, PKC-4 (biochar with a poplar leaf to KHCO3 mass ratio of 5:4) shows the highest adsorption performance for OTC as it has the largest surface area and richest mesoporous structure. The pseudo-second-order kinetic model and the Freundlich equilibrium model are more consistent with the experimental data, which implies that the adsorption process is multi-mechanism and multi-layered. In addition, the maximum adsorption capacities of biochar are slightly affected by pH changes, different metal ions, and different water matrices. Moreover, the biochar can be regenerated by pyrolysis, and its adsorption capacity only decreases by approximately 6% after four cycles. The adsorption of biochar for OTC is mainly controlled by pore filling, though electrostatic interactions, hydrogen bonding, and π-π interaction are also involved. This study realizes biomass waste recycling and highlights the potential of poplar leaf-based biochar for the adsorption of antibiotics.
Collapse
Affiliation(s)
- Zhenhua Wei
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chao Hou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zhishuo Gao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Luolin Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chuansheng Yang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yudong Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Kun Liu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yongbin Sun
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| |
Collapse
|
99
|
Liu P, Song T, Deng R, Hou X, Yi J. The efficient removal of congo red and ciprofloxacin by peony seeds shell activated carbon with ultra-high specific surface area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53177-53190. [PMID: 36853543 PMCID: PMC9973249 DOI: 10.1007/s11356-023-26146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Preparation of high-performance activated carbon from agroforestry waste biomass can effectively improve the shortcomings of traditional biomass carbon performance. Using the waste biomass peony seeds shell (PSS) as the precursors in this study, high performance activated carbon was prepared by the KOH two-step activation method and used to remove congo red (CR) and ciprofloxacin (CIP) in water pollution. The obtained PSS-based activated carbons (PSACs) were characterized by SEM, EDS, N2 adsorption-desorption isotherm, FTIR, and XRD methods. The results showed that the activated carbon at 700 °C (PSAC-700) had an ultra-high specific surface area (2980.96 m2/g), excellent micropore volume (1.12 cm3/g), and abundant surface functional groups. The results of adsorption performance revealed that PSAC-700 exhibited excellent adsorption capacity for CR (qmax = 2003.2 mg/g) and CIP (qmax = 782.3 mg/g), which was superior to the carbon-based adsorbents reported reviously in the literature. Langmuir model could well describe the adsorption process of PSACs for CR and CIP, indicating that the pollutant molecules were uniformly adsorbed on the surface monolayer. The regeneration experiment suggested that after three cycles, the adsorption capacities of PSAC-700 for CR and CIP reached 1814 mg/g and 697 mg/g, respectively, with good repeatability. The preparation of PSAC-700 in this study has high adsorption capacity and strong application, which is an ideal material for wastewater purification adsorbent and has broad application prospect.
Collapse
Affiliation(s)
- Pu Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Tianpeng Song
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Ruixue Deng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Xiaogai Hou
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Junpeng Yi
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| |
Collapse
|
100
|
Soares MB, Duckworth OW, Alleoni LRF. The role of dissolved pyrogenic carbon from biochar in the sorption of As(V) in biogenic iron (oxyhydr)oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161286. [PMID: 36587679 PMCID: PMC9892336 DOI: 10.1016/j.scitotenv.2022.161286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Water contamination by arsenic (As) affects millions of people around the world, making techniques to immobilize or remove this contaminant a pressing societal need. Biochar and iron (oxyhydr)oxides [in particular, biogenic iron (oxyhydr)oxides (BIOS)] offer the possibility of stabilizing As in remediation systems. However, little is known about the potential antagonism in As sorption generated by the dissolved organic carbon (DOC) from biochar, or whether DOC affects how As(V) interacts with BIOS. For this reason, our objectives were to evaluate the i) As(V) sorption potential in BIOS when there is presence of DOC from pyrolyzed biochars at different temperatures; and ii) identify whether the presence of DOC alters the surface complexes formed by As(V) sorbed in the BIOS. We conducted As(V) sorption experiments with BIOS at circumneutral pH conditions and in the presence of DOC from sugarcane (Saccharum officinarum) straw biochar at pyrolyzed 350 (BC350) and 750 °C (BC750). The As(V) content was quantified by inductively coupled plasma mass spectrometry, and the BIOS structure and As(V) sorption mechanisms were investigated by X-ray absorption spectroscopy. In addition, the organic moieties comprising the DOC from biochars were investigated by attenuated total reflectance Fourier transform infrared spectroscopy. The addition of DOC did not change the biomineral structure or As(V) oxidation state. The presence of DOC, however, reduced by 25 % the sorption of As(V), with BC350 being responsible for the greatest reduction in As(V) sorption capacity. Structural modeling revealed As(V) predominantly formed binuclear bidentate surface complexes on BIOS. The presence of DOC did not change the binding mechanism of As(V) in BIOS, suggesting that the reduction of As(V) sorption to BIOS was due to site blocking. Our results bring insights into the fate of As(V) in surface waters and provide a basis for understanding the competitive sorption of As(V) in environments with biochar application.
Collapse
Affiliation(s)
- Matheus B Soares
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418900 Piracicaba, SP, Brazil; Department of Crop and Soil Sciences, North Carolina State University, 27695 Raleigh, NC, USA.
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, 27695 Raleigh, NC, USA
| | - Luís R F Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418900 Piracicaba, SP, Brazil
| |
Collapse
|