51
|
Moon BY, Ali MS, Kwon DH, Heo YE, Hwang YJ, Kim JI, Lee YJ, Yoon SS, Moon DC, Lim SK. Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020-2022. Antibiotics (Basel) 2023; 13:27. [PMID: 38247586 PMCID: PMC10812631 DOI: 10.3390/antibiotics13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The occurrence of antimicrobial-resistant bacteria in companion animals poses public health hazards globally. This study aimed to evaluate the antimicrobial resistance profiles and patterns of commensal E. coli strains obtained from fecal samples of healthy dogs and cats in South Korea between 2020 and 2022. In total, 843 E. coli isolates (dogs, n = 637, and cats, n = 206) were assessed for susceptibility to 20 antimicrobials. The resistance rates of the most tested antimicrobials were significantly higher in dog than in cat isolates. Cefalexin (68.9%) demonstrated the highest resistance rates, followed by ampicillin (38.3%), tetracycline (23.1%), and cefazolin (18.7%). However, no or very low resistance (0-0.6%) to amikacin, imipenem, piperacillin, and colistin was found in both dog and cat isolates. Overall, 42.3% of the isolates exhibited multidrug resistance (MDR). MDR in isolates from dogs (34.9%) was significantly higher than in those from cats (20.9%). The main components of the resistance patterns were cefalexin and ampicillin in both dog and cat isolates. Additionally, MDR patterns in isolates from dogs (29.2%) and cats (16%) were shown to encompass five or more antimicrobials. Multidrug-resistant commensal E. coli could potentially be spread to humans or other animals through clonal or zoonotic transmission. Therefore, the incidence of antimicrobial resistance in companion animals highlights the urgent need to restrict antimicrobial resistance and ensure the prudent use of antimicrobials in Korea.
Collapse
Affiliation(s)
- Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Md. Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Hyeon Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ye-Eun Heo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yu-Jeong Hwang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ji-In Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yun Jin Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Chan Moon
- Division of Antimicrobial Resistance Research, Centre for Infectious Diseases Research, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| |
Collapse
|
52
|
de Araújo-Neto JB, Oliveira-Tintino CDDM, de Araújo GA, Alves DS, Ribeiro FR, Brancaglion GA, Carvalho DT, Lima CMG, Mohammed Ali HSH, Rather IA, Wani MY, Emran TB, Coutinho HDM, Balbino VDQ, Tintino SR. 3-Substituted Coumarins Inhibit NorA and MepA Efflux Pumps of Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1739. [PMID: 38136773 PMCID: PMC10741188 DOI: 10.3390/antibiotics12121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Coumarins are compounds with scientifically proven antibacterial properties, and modifications to the chemical structure are known to improve their effects. This information is even more relevant with the unbridled advances of antibiotic resistance, where Staphylococcus aureus and its efflux pumps play a prominent role. The study's objective was to evaluate the potential of synthetic coumarins with different substitutions in the C-3 position as possible inhibitors of the NorA and MepA efflux pumps of S. aureus. For this evaluation, the following steps took place: (i) the determination of the minimum inhibitory concentration (MIC); (ii) the association of coumarins with fluoroquinolones and ethidium bromide (EtBr); (iii) the assessment of the effect on EtBr fluorescence emission; (iv) molecular docking; and (v) an analysis of the effect on membrane permeability. Coumarins reduced the MICs of fluoroquinolones and EtBr between 50% and 87.5%. Coumarin C1 increased EtBr fluorescence emission between 20 and 40% by reinforcing the evidence of efflux inhibition. The molecular docking results demonstrated that coumarins have an affinity with efflux pumps and establish mainly hydrogen bonds and hydrophobic interactions. Furthermore, C1 did not change the permeability of the membrane. Therefore, we conclude that these 3-substituted coumarins act as inhibitors of the NorA and MepA efflux pumps of S. aureus.
Collapse
Affiliation(s)
- José B. de Araújo-Neto
- Postgraduate Program in Biological Sciences, Biosciences Center, Federal University of Pernambuco, Recife 50740-570, PE, Brazil; (J.B.d.A.-N.); (V.d.Q.B.)
| | - Cícera D. de M. Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Gildênia A. de Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Daniel S. Alves
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Fernanda R. Ribeiro
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | - Guilherme A. Brancaglion
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | - Diogo T. Carvalho
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | | | - Hani S. H. Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.H.M.A.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.H.M.A.); (I.A.R.)
| | - Mohmmad Y. Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Talha B. Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Henrique D. M. Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Valdir de Q. Balbino
- Postgraduate Program in Biological Sciences, Biosciences Center, Federal University of Pernambuco, Recife 50740-570, PE, Brazil; (J.B.d.A.-N.); (V.d.Q.B.)
| | - Saulo R. Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| |
Collapse
|
53
|
Li SR, Zeng CM, Peng XM, Chen JP, Li S, Zhou CH. Benzopyrone-mediated quinolones as potential multitargeting antibacterial agents. Eur J Med Chem 2023; 262:115878. [PMID: 37866337 DOI: 10.1016/j.ejmech.2023.115878] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
A new type of benzopyrone-mediated quinolones (BMQs) was rationally designed and efficiently synthesized as novel potential antibacterial molecules to overcome the global increasingly serious drug resistance. Some synthesized BMQs effectively suppressed the growth of the tested strains, outperforming clinical drugs. Notably, ethylidene-derived BMQ 17a exhibited superior antibacterial potential with low MICs of 0.5-2 μg/mL to clinical drugs norfloxacin, it not only displayed rapid bactericidal performance and inhibited bacterial biofilm formation, but also showed low toxicity toward human red blood cells and normal MDA-kb2 cells. Mechanistic investigation demonstrated that BMQ 17a could effectually induce bacterial metabolic disorders and promote the enhancement of reactive oxygen species to disrupt the bacterial antioxidant defense system. It was found that the active molecule BMQ 17a could not only form supramolecular complex with lactate dehydrogenase, which disturbed the biological functions, but also effectively embed into calf thymus DNA, thus affecting the normal function of DNA and achieving cell death. This work would provide an insight into developing new molecules to reduce drug resistance and expand antibacterial spectrum.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chun-Mei Zeng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xin-Mei Peng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
54
|
Liu S, Cui Z, Ding D, Bai Y, Chen J, Cui H, Su R, Qu K. Effect of the molecular weight of DOM on the indirect photodegradation of fluoroquinolone antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119192. [PMID: 37827075 DOI: 10.1016/j.jenvman.2023.119192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous and widespread in natural water and influences the transformation and removal of antibiotics. Nevertheless, the influence of DOM molecular weight (MW) on the indirect photodegradation of antibiotics has rarely been reported. This study attempted to explore the influence of the molecular weight of DOM on the indirect photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and norfloxacin (NOR), by using UV-vis absorption and fluorescence spectroscopy. The results showed that indirect photodegradation was considered the main photodegradation pathway of FQs in DOM fractions. Triplet-state excited organic matter (3DOM*) and singlet oxygen (1O2) were the main reactive intermediates (RIs) that affected the indirect photodegradation of FQs. The indirect photodegradation rate of FQs was significantly promoted in DOM fractions, especially in the low molecular weight DOM fractions (L-MW DOM, MW < 10 kDa). The results of excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) showed that terrestrial humic-like substances had a higher humification degree and fluorophore content in L- MW DOM fractions, which could produce more 3DOM* and 1O2 to promote the indirect photodegradation of FQs. This study provided new insight into the effects of DOM at the molecular weight level on the indirect photodegradation of antibiotics in natural water.
Collapse
Affiliation(s)
- Shukai Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Dongsheng Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Ying Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China.
| | - Jianlei Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Hongwu Cui
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Rongguo Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| |
Collapse
|
55
|
Yang Y, Chi Y, Yang K, Zhang Z, Gu P, Ren X, Wang X, Miao H, Xu X. Iron/nitrogen co-doped biochar derived from salvaged cyanobacterial for efficient peroxymonosulfate activation and ofloxacin degradation: Synergistic effect of Fe/N in non-radical path. J Colloid Interface Sci 2023; 652:350-361. [PMID: 37598435 DOI: 10.1016/j.jcis.2023.08.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
A green, low-cost, high-performance Fe/N co-doped biochar material (Fe-N@C) was synthesized using salvaged cyanobacteria without other extra precursors for peroxymonosulfate (PMS) activation and ofloxacin (OFX) degradation. With the increased pyrolysis temperature, the graphitization degree, the specific surface area and the corresponding groups like OH, COO etc. for Fe-N@C tended to increase, resulting in a greater OFX adsorption. However, the total amount of Fe-NX and graphitic nitrogen groups in the Fe-N@C composites was firstly increased and then decreased, which reached the highest at 800 °C (Fe-N@C-800). All these changes of functional species ascribed to the strong interaction between Fe, N and C led to the highest defect degree of Fe-N@C-800, resulting the highest OFX removal efficiency of 95.0 %. OFX removal experiments indicated the adsorption process promoted the total OFX degradation for different functional groups on Fe-N@C composites separately dominated the process of OFX adsorption and PMS catalysis. Radical quenching and electron paramagnetic resonance (EPR) measurements proved free radical and non-free radical pathways participated in Fe-N@C/PMS system. The non-free radicals based on 1O2 and high-valent iron-oxo species played a more important role in OFX degradation, leading to the minimal effect of co-existing anions and the high universality for other antibiotic pollutants. Fe-NX was utilized as the main catalytic sites and graphitic nitrogen contributed more to the electron transfer for PMS activation, whose synergistic effect efficiently facilitated OFX degradation. Finally, the possible degradation route of OFX in the Fe-N@C-800/PMS system was proposed. All these results will provide the new insights into the intrinsic mechanism of Fe/N species in carbon-based materials for PMS activation.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanxiao Chi
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Suzhou Institute of Environmental Sciences, Postdoctoral Innovation and Practice Base of Jiangsu Province, Suzhou 21500, China.
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xueli Ren
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaorui Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
56
|
Xuan X, Li Y, Cao G, Zhang R, Hu J, Jin H, Dong H. Fluoroquinolones increase susceptibility to aortic aneurysm and aortic dissection: Molecular mechanism and clinical evidence. Vasc Med 2023; 28:604-613. [PMID: 37756313 DOI: 10.1177/1358863x231198055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Aortic aneurysm (AA) and aortic dissection (AD) are prevalent severe cardiovascular diseases that result in catastrophic complications and unexpected deaths. Owing to the lack of clinically established and effective medications, the only treatment options are open surgical repair or endovascular therapy. Most researchers have focused on the development of innovative medications or therapeutic targets to slow the progression of AA/AD or lower the risk of malignant consequences. Recent studies have shown that the use of fluoroquinolones (FQs) may increase susceptibility to AA/AD to some extent, especially in patients with aortic dilatation and those at a high risk of AD. Therefore, it is crucial for doctors, particularly those in cardiovascular specialties, to recognize the dangers of FQs and adopt alternatives. In the present review, the main clinical observational studies on the correlation between FQs and AA/AD in recent years are summarized, with an emphasis on the relative physiopathological mechanism incorporating destruction of the extracellular matrix (ECM), phenotypic transformation of vascular smooth muscle cells, and local inflammation. Although additional data are required, it is anticipated that the rational use of FQs will become the standard of care for the treatment of aortic diseases.
Collapse
Affiliation(s)
- Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yaling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Haijiang Jin
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
57
|
Huang Z, Hu LX, Yang JB, Liu YS, He LY, Zhao JL, Ying GG. Comprehensive discovery and migration evaluation of antimicrobial drugs and their transformation products in a swine farm by target, suspect, and nontarget screening. ENVIRONMENT INTERNATIONAL 2023; 181:108304. [PMID: 37931561 DOI: 10.1016/j.envint.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Swine farms contaminated the surrounding environment through manure application and biogas slurry irrigation, hence causing the wide residual of multiple antimicrobial drugs (ADs) and their transformation products (TPs). This study performed target, suspect, and nontarget screening methods to comprehensively investigate the pollution profiles of ADs in a typical swine farm, and characterize the potential transformed pathway of TPs and distinguish specific reactions of different catalog of ADs. Samples of fresh feces, compost, biogas slurry, topsoil, column soil, groundwater and plants were analyzed using the database containing 98 target analytes, 679 suspected parent ADs, and ∼ 107 TPs. In total, 29 ADs were quantitively detected, and tetracyclines (TCs) were mostly frequently detected ADs with the concentrations up to 4251 ng/g in topsoil. Soil column investigation revealed that doxycycline (DOX) and tetracycline (TC) in soil could migrate to depths of approximately 1 m in soil. Suspect screening identified 75 parent ADs, with 10 being reported for the first time in environmental media. Semi-quantification of ADs revealed that one of the less-concerned ADs, clinafloxacin, was detected to exceed 5000 ng/L in biogas slurry, suggesting that significant attentions should be paid to these less-concerned ADs. Moreover, 314 TPs was identified, and most of them were found to undergo microbial/enzymatic metabolism pathways. Overall, our study displays a comprehensive overview of ADs and their TPs in swine farming environments, and provides an inventory of crucial list that worthy of concern. The results emphasize the need to quantify the levels and distribution of previously overlooked ADs and their TPs in livestock farms.
Collapse
Affiliation(s)
- Zheng Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jiong-Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
58
|
Zhang P, Shen L, Chen J, Li Z, Zhao W, Wen Y, Liu H. Comparative study of the toxicity mechanisms of quinolone antibiotics on soybean seedlings: Insights from molecular docking and transcriptomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165254. [PMID: 37394075 DOI: 10.1016/j.scitotenv.2023.165254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The ecological effects of quinolone antibiotics (QNs) on non-target organisms have received widespread attention. The toxicological mechanisms of three common QNs, that is, enrofloxacin, levofloxacin, and ciprofloxacin, on soybean seedlings were investigated in this study. Enrofloxacin and levofloxacin caused significant growth inhibition, ultrastructural alterations, photosynthetic suppression, and stimulation of the antioxidant system, with levofloxacin exhibiting the strongest toxic effects. Ciprofloxacin (<1 mg·L-1) did not have a significant effect on the soybean seedlings. As the concentrations of enrofloxacin and levofloxacin increased, antioxidant enzyme activities, malondialdehyde content, and hydrogen peroxide levels also increased. Meanwhile, the chlorophyll content and chlorophyll fluorescence parameters decreased, indicating that the plants underwent oxidative stress and photosynthesis was suppressed. The cellular ultrastructure was also disrupted, which was manifested by swollen chloroplasts, increased starch granules, disintegration of plastoglobules, and mitochondrial degradation. The molecular docking results suggested that the QNs have an affinity for soybean target protein receptors (4TOP, 2IUJ, and 1FHF), with levofloxacin having the highest binding energy (-4.97, -3.08, -3.8, respectively). Transcriptomic analysis has shown that genes were upregulated under the enrofloxacin and levofloxacin treatments were mainly involved in ribosome metabolism and processes to synthesize oxidative stress-related proteins. Downregulated genes in the levofloxacin treatment were primarily enriched in photosynthesis-related pathways, indicating that levofloxacin significantly inhibited gene expression for photosynthesis. Genes expression level by quantitative real-time PCR analysis was consistent with the transcriptomic results. This study confirmed the toxic effect of QNs on soybean seedlings, and provided new insights into the environmental risks of antibiotics.
Collapse
Affiliation(s)
- Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Jiayao Chen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
59
|
Rameel MI, Wali M, Al-Humaidi JY, Liaqat F, Khan MA. Enhanced photocatalytic degradation of levofloxacin over heterostructured C 3N 4/Nb 2O 5 system under visible light. Heliyon 2023; 9:e20479. [PMID: 37800069 PMCID: PMC10550519 DOI: 10.1016/j.heliyon.2023.e20479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
The growing usage of antibiotics and their subsequent release in water bodies have become a serious environmental concern. In this study, heterostructured photocatalysts C3N4/Nb2O5 have been synthesized using a simple hydrothermal method and applied to facilitate the degradation of the widely used antibiotic levofloxacin. The structural, morphological, and optical properties of the photocatalysts were characterized using XRD, SEM, TEM, UV-Vis and PL to establish the structure-property relationship. The type-II heterojunctions C3N4/Nb2O5 show remarkable activity under visible light irradiation, where Nb2O5 facilitates preferential adsorption of levofloxacin at the catalyst surface while C3N4 extends visible light absorption. This synergy resulted in superior catalytic performance (91%) in the optimized system, exceeding that of individual materials (Nb2O5 30% and C3N4 56%). The effect of catalyst dosage, pH, oxygen and point of zero is also investigated. The process is mainly photo-driven, and the trapping experiments reveal superoxide radicals as key species responsible for the degradation. Additionally, the adsorption behaviour, reformation of the degraded pollutant and reusability factors are evaluated to assess the practical feasibility of the photocatalytic system.
Collapse
Affiliation(s)
- Muhammad Imran Rameel
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Mehar Wali
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Jehan Y Al-Humaidi
- Department of Chemistry College of Science Princess Nourah bint Abdulrahman University. P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Faroha Liaqat
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Muhammad Abdullah Khan
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad, Pakistan
| |
Collapse
|
60
|
Narciso A, Barra Caracciolo A, De Carolis C. Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics (Basel) 2023; 12:1471. [PMID: 37760767 PMCID: PMC10525971 DOI: 10.3390/antibiotics12091471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics (ABs) have made it possible to treat bacterial infections, which were in the past untreatable and consequently fatal. Regrettably, their use and abuse among humans and livestock led to antibiotic resistance, which has made them ineffective in many cases. The spread of antibiotic resistance genes (ARGs) and bacteria is not limited to nosocomial environments, but also involves water and soil ecosystems. The environmental presence of ABs and ARGs is a hot topic, and their direct and indirect effects, are still not well known or clarified. A particular concern is the presence of antibiotics in agroecosystems due to the application of agro-zootechnical waste (e.g., manure and biosolids), which can introduce antibiotic residues and ARGs to soils. This review provides an insight of recent findings of AB direct and indirect effects on terrestrial organisms, focusing on plant and invertebrates. Possible changing in viability and organism growth, AB bioaccumulation, and shifts in associated microbiome composition are reported. Oxidative stress responses of plants (such as reactive oxygen species production) to antibiotics are also described.
Collapse
Affiliation(s)
- Alessandra Narciso
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
| | - Chiara De Carolis
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
- Department of Environmental Biology, La Sapienza’ University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
61
|
Chen X, Jiang Y, Liu Y, Yao C. Y 3+@CdTe quantum dot nanoprobe as a fluorescence signal enhancement sensing platform for the visualization of norfloxacin. Analyst 2023. [PMID: 37455634 DOI: 10.1039/d3an00921a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Quinolone antibiotics (norfloxacin) pose a serious threat to animal and human health due to their misuse and difficulty in being broken down in surface water and food. Rapid and effective detection of norfloxacin (NOR) is essential for environmental testing and ecosystems. In this study, yttrium was coordinated with mercaptopropionic acid (MPA)-modified CdTe quantum dots (QDs) to obtain a novel fluorescence sensor Y3+@CdTe QDs for the sensitive detection of NOR. NOR can bind to Y3+ to form a complex (NOR-Y3+). This complex enhances the luminescence of NOR and blue-shifts to 423 nm. The fluorescence intensity of NOR-Y3+ at 423 nm (I423) gradually increased with increasing NOR concentration; meanwhile, the fluorescence intensity of CdTe QDs at 634 nm (I634) gradually decreased due to aggregation induction. The ratio of I423 to I634 was used for the quantitative determination of NOR. The linear range of the constructed fluorescent probes was from 1.0 to 150.0 μM, with a detection limit of 31.8 nM. CdTe QDs act as a red fluorescent background, and with the addition of NOR, the color of the system transitions from red to purple and finally blue. This method was rapid (immediate) and visual, providing a simple analysis of various actual samples (tap water, lake water, honey, milk and human serum) for NOR.
Collapse
Affiliation(s)
- Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuanhang Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ying Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
62
|
Xu N, Shen Y, Jiang L, Jiang B, Li Y, Yuan Q, Zhang Y. Occurrence and risk levels of antibiotic pollution in the coastal waters of eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27500-5. [PMID: 37162672 DOI: 10.1007/s11356-023-27500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
In order to preliminarily explore the distribution of antibiotic pollution in the coastal waters of eastern China, the concentrations of 13 antibiotics in 5 representative coastal rivers in Jiangsu and 21 sampling sites in the coastal waters of Jiangsu were analyzed. The total antibiotic concentrations in the 5 rivers ranged from 33.14 to 417.78 ng L-1, and the total antibiotic concentrations in the 21 sampling sites ranged from 0.90 to 86.33 ng L-1. Macrolides exhibited the highest total concentration and the maximum detection frequency in both coastal rivers and the coastal waters. The concentrations of antibiotics in a sampling site decreased as the distance of the sampling site from the coastline increased, indicating that river inputs are important sources of antibiotic pollution in the coastal waters of Jiangsu. The detection frequencies of roxithromycin, lincomycin, azithromycin, and sulfamethoxazole in the rivers and sampling sites were above 70%. Correlation analysis showed that the concentrations of antibiotics were positively correlated with the levels of chemical oxygen demand, total phosphorus, and total nitrogen. Risk assessments revealed that roxithromycin and ofloxacin posed medium ecological and resistance risks, respectively, to the most sensitive aquatic organisms in the coastal waters of Jiangsu. The results of this study highlight the significance of monitoring and controlling the concentrations of antibiotic contaminants in the coastal waters of Jiangsu.
Collapse
Affiliation(s)
- Ning Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yi Shen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lei Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Bin Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ying Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
63
|
Wu Y, Zhou Y, Long H, Chen X, Jiang Y, Zhang L, Le T. A novel Zn/Eu-MOF for the highly sensitive, reversible and visualized sensing of ofloxacin residues in pork, beef and fish. Food Chem 2023; 422:136250. [PMID: 37126953 DOI: 10.1016/j.foodchem.2023.136250] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The study investigates a bimetallic organic framework (Zn/Eu-MOF) based fluorescent probe for visual detection of ofloxacin (OFL) in pork, beef and fish. The developed sensing probe recognizes OFL through internal filtration and cation-π interaction between OFL and Zn/Eu-MOF, resulting in a distinct color change from orange-red to light green. The content of OFL can be determined through RGB analysis by a mobile-phone. The developed sensing probe offers several advantages such as broad linear range (0.1 ∼ 80 μM), rapid response time (30 s), low detection line (0.44 μM). The effectiveness of the sensing probe can last for five rounds with good recovery. Moreover, the application of the sensing probe on pork, beef and fish samples are reliable, with recoveries ranging from 93.4 to 112.1%, and the relative standard deviations (RSD) within 1.17% to 2.06%. These results suggest that the developed sensing probe could have significant potential for practical on-site test in food.
Collapse
Affiliation(s)
- Yan Wu
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Yue Zhou
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Hongchen Long
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiangyu Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Yuanyuan Jiang
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Lei Zhang
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Science, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
64
|
Zhao Y, Huang Y, Hu S, Xu T, Fang Y, Liu H, Xi Y, Qu R. Combined effects of fluoroquinolone antibiotics and organophosphate flame retardants on Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53050-53062. [PMID: 36853534 DOI: 10.1007/s11356-023-25974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
As freshwater harmful algal blooms continue to rise in frequency and severity, increasing focus is made on the effects of mixed pollutants and the dominant cyanobacterial species Microcystis aeruginosa (M. aeruginosa). However, few studies have investigated whether M. aeruginosa has a synergistic relationship with two common pollutants, namely, organophosphate flame retardants (OPFRs) and fluoroquinolone antibiotics (FQs). In this paper, three FQs and three OPFRs commonly detected in freshwaters were selected to construct a ternary mixture of FQs, a ternary mixture of OPFRs, and a six-component mixture of OPFRs and FQs. The effects of single substance and mixture on the growth of M. aeruginosa were determined at 24, 48, 72, and 96 h, and the toxicities of the mixture were evaluated by concentration addition model and independent action model. The results showed that the mixture of FQs and the mixture of OPFRs do not show toxicological interaction. However, partial mixtures of OPFRs and FQs showed antagonism or synergism at different concentrations and times. This indicated that combined toxicities of OPFRs and FQs on M. aeruginosa were mixture ratio dependent, concentration dependent and time dependent. This study improves our understanding of the role of OPFRs and FQs in cyanobacterial outbreaks of Microcystis.
Collapse
Affiliation(s)
- Yang Zhao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Shuang Hu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Tao Xu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yanfen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Huigang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Ying Xi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China.
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China.
| |
Collapse
|
65
|
Zhang J, Battini N, Ou JM, Zhang SL, Zhang L, Zhou CH. New Efforts toward Aminothiazolylquinolones with Multitargeting Antibacterial Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2322-2332. [PMID: 36700862 DOI: 10.1021/acs.jafc.2c08293] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
New antibacterial 3-(aminothiazolyl)quinolones (ATQs) were designed and efficiently synthesized to counteract the growing multidrug resistance in animal husbandry. Bioactive assays manifested that N,N-dicyclohexylaminocarbonyl ATQ 10e and methyl ATQ 17a, respectively, showed better antibacterial behavior against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa than reference drug norfloxacin. Notably, highly active ATQ 17a with low hemolysis, negligible mammalian cytotoxicity, and good pharmacokinetic properties displayed low trends to induce resistance and synergistic combinations with norfloxacin. Preliminary mechanism exploration implied that representative ATQ 17a could inhibit the formation of biofilms and destroy bacterial membrane integrity, further binding to intracellular DNA and DNA gyrase to hinder bacterial DNA replication. ATQ 17a could also induce the production of excess reactive oxygen species and reduce bacterial metabolism to accelerate bacterial death. These results provided a promise for 3-(aminothiazolyl)quinolones as new potential multitargeting antibacterial agents to treat bacterial infection of animals.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia-Ming Ou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
66
|
Chen H, Wu J, Xiong Q, Li X, Huang X. Efficient capture of fluoroquinolones in urine and milk samples with multi-monolith fibers solid phase microextraction based on hybrid metal-organic framework/monolith material. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
67
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|