51
|
Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. BRAIN RESEARCH REVIEWS 2010; 64:195-212. [PMID: 20382182 PMCID: PMC3310160 DOI: 10.1016/j.brainresrev.2010.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/26/2022]
Abstract
The post-translational modification of proteins is critical for the spatial and temporal regulation of signalling cascades. This is especially important in the CNS where the processes affecting differentiation, growth, targeting and communication between neurones are highly complex and very tightly regulated. In recent years it has emerged that modification of proteins by members of the SUMO (small ubiquitin-related modifier) family of proteins play key roles in neuronal function. SUMOylation involves the covalent conjugation of a member of the SUMO family to lysine residues in target proteins. Multiple nuclear and perinuclear SUMOylation targets have been reported to be involved in nuclear organisation and transcriptional regulation. In addition, a growing number of extranuclear SUMO substrates have been identified that can have important acute effects on neuronal function. The SUMOylation of both intra- and extranuclear proteins have been implicated in a diverse array of processes that have far-reaching implications for neuronal function and pathophysiology. Here we review the current understanding of the targets and consequences of protein SUMOylation in the brain and examine its established and potential involvement in a wide range of neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
52
|
Du JX, McConnell BB, Yang VW. A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4. J Biol Chem 2010; 285:28298-308. [PMID: 20584900 DOI: 10.1074/jbc.m110.101717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger transcription factor, Krüppel-like factor 4 (KLF4), regulates numerous biological processes, including proliferation, differentiation, and embryonic stem cell self-renewal. Although the DNA sequence to which KLF4 binds is established, the mechanism by which KLF4 controls transcription is not well defined. Small ubiquitin-related modifier (SUMO) is an important regulator of transcription. Here we show that KLF4 is both SUMOylated at a single lysine residue and physically interacts with SUMO-1 in a region that matches an acidic and hydrophobic residue-rich SUMO-interacting motif (SIM) consensus. The SIM in KLF4 is required for transactivation of target promoters in a SUMO-1-dependent manner. Mutation of either the acidic or hydrophobic residues in the SIM significantly impairs the ability of KLF4 to interact with SUMO-1, activate transcription, and inhibit cell proliferation. Our study provides direct evidence that SIM in KLF4 functions as a transcriptional activation domain. A survey of transcription factor sequences reveals that established transactivation domains of many transcription factors contain sequences highly related to SIM. These results, therefore, illustrate a novel mechanism by which SUMO interaction modulates the activity of transcription factors.
Collapse
Affiliation(s)
- James X Du
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
53
|
Ubc9 gene polymorphisms and late-onset Alzheimer's disease in the Korean population: A genetic association study. Neurosci Lett 2009; 465:272-5. [DOI: 10.1016/j.neulet.2009.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/02/2009] [Accepted: 09/07/2009] [Indexed: 11/19/2022]
|
54
|
Martin S. Nouvelles fonctions extranucléaires de la sumoylation des protéines dans le système nerveux central. Med Sci (Paris) 2009; 25:693-8. [DOI: 10.1051/medsci/2009258-9693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
55
|
Anderson DB, Wilkinson KA, Henley JM. Protein SUMOylation in neuropathological conditions. DRUG NEWS & PERSPECTIVES 2009; 22:255-65. [PMID: 19609463 PMCID: PMC3309023 DOI: 10.1358/dnp.2009.22.5.1378636] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Small ubiquitin-related modifier (SUMO) proteins are approximately 11 kDa proteins that can be covalently conjugated to lysine residues in defined target proteins. The resultant post-translational modification, SUMOylation, is vital for the viability of mammalian cells and regulates, among other things, a range of essential nuclear processes. It has become increasingly apparent in recent years that SUMOylation also serves multiple functions outside the nucleus and that it plays a critical role in the regulation of neuronal integrity and synaptic function. In particular, dysfunction of the SUMOylation pathway has been implicated in the molecular and cellular dysfunction associated with neurodegenerative and psychiatric disorders. Here, we outline current knowledge of the SUMO pathway and discuss the growing evidence for its involvement in multiple neurodegenerative disorders, with a view to highlighting the potential of the SUMO pathway as a putative drug target.
Collapse
Affiliation(s)
- Dina B. Anderson
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| | - Kevin A. Wilkinson
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| | - Jeremy M. Henley
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| |
Collapse
|
56
|
Abstract
Modification of proteins by ubiquitin and SUMO (small ubiquitin-like modifiers) is a dynamic and reversible process. Similar to the ubiquitin pathway, where the action of deubiquitinating enzymes removes ubiquitin from ubiquitin-adducts, SUMO is also removed intact from its substrates by proteases belonging to the sentrin-specific proteases (SENPs) family. In addition to their isopeptidase activity, SENPs also execute another essential function as endopeptidases by removing the short C-terminal extension from immature SUMOs. The defining characteristics of SENPs are their predicted conserved molecular scaffold-defined as members of peptidase Clan CE, conserved catalytic mechanism, and their reported activity on SUMO or Nedd8 conjugated proteins (or the respective precursors). We discuss recent progress on the human SENPs and their substrates.
Collapse
Affiliation(s)
- Marcin Drag
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
| | | |
Collapse
|
57
|
Pountney DL, Raftery MJ, Chegini F, Blumbergs PC, Gai WP. NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathol 2008; 116:603-14. [PMID: 18836734 DOI: 10.1007/s00401-008-0437-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/11/2008] [Accepted: 09/16/2008] [Indexed: 11/24/2022]
Abstract
Neuronal intranuclear inclusion disease, a progressive ataxia that may be familial or sporadic, is characterized by numerous neuronal intranuclear inclusion bodies similar to those found in polyglutamine repeat diseases. Previously, we found that the intranuclear inclusion bodies are intensely immunopositive for SUMO-1, a protein which covalently conjugates to other proteins in a similar way to ubiquitin. To identify the SUMO-1-associated proteins in the inclusion bodies, we isolated intranuclear inclusion bodies from fresh, frozen brain tissue of a case with familial neuronal intranuclear inclusion disease and solubilized the proteins. SUMO-1-associated inclusion body proteins were then immunocaptured using an anti-SUMO-1 antibody. The proteins, NSF, dynamin-1 and Unc-18-1 (rbSEC1), involved in membrane trafficking of proteins, and the chaperone HSP90, were identified following anti-SUMO-1-immunocapture by using tandem mass spectrometry and database searching. Immunohistochemistry of brain sections and crude brain homogenates of three cases of familial neuronal intranuclear inclusion disease confirmed the presence of these proteins in intranuclear inclusions.
Collapse
Affiliation(s)
- Dean L Pountney
- School of Medical Science, Griffith Institute of Health and Medical Research, Griffith University, Gold Coast Campus, Queensland, QLD, 4222, Australia.
| | | | | | | | | |
Collapse
|
58
|
Takahashi K, Ishida M, Komano H, Takahashi H. SUMO-1 immunoreactivity co-localizes with phospho-Tau in APP transgenic mice but not in mutant Tau transgenic mice. Neurosci Lett 2008; 441:90-3. [PMID: 18586401 DOI: 10.1016/j.neulet.2008.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/26/2008] [Accepted: 06/04/2008] [Indexed: 11/28/2022]
Abstract
Sumoylation is a post-translational modification process that is supposed to be implicated in the pathogenesis of several neurodegenerative diseases. Recently, the microtubule-associated protein Tau was identified as a target for sumoylation in the analysis of the transfected cells. We investigated the localization of SUMO-1 protein in APP transgenic mice and mutant Tau transgenic mice, and found that SUMO-1 immunoreactivity was co-localized with phosphorylated Tau aggregates in amyloid plaques of APP transgenic mice. By contrast, no SUMO-1 immunoreactivity was observed in phosphorylated Tau aggregates of mutant Tau transgenic mice. The contribution of sumoylation to the neurodegeneration in Alzheimer's disease will be further elucidated via the analysis of APP transgenics.
Collapse
Affiliation(s)
- Kaoru Takahashi
- Alzheimer's Disease Research Group, Mitsubishi Kagaku Institute of Life Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
59
|
Woulfe J. Nuclear bodies in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2195-206. [PMID: 18539152 DOI: 10.1016/j.bbamcr.2008.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/31/2008] [Accepted: 05/08/2008] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a relentlessly progressive loss of the functional and structural integrity of the central nervous system. In many cases, these diseases arise sporadically and the causes are unknown. The abnormal aggregation of protein within the cytoplasm or the nucleus of brain cells represents a unifying pathological feature of these diseases. There is increasing evidence for nuclear dysfunction in neurodegenerative diseases. How this relates to protein aggregation in the context of "cause and effect" remains to be determined in most cases. Co-ordinated nuclear function is predicated on the activity of distinct nuclear subdomains, or nuclear bodies, each responsible for a specific function. If nuclear dysfunction represents an important etiopathological feature in neurodegenerative disease, then this should be reflected by functional and/or morphological alterations in this nuclear compartmentalization. For most neurodegenerative diseases, evidence for nuclear dysfunction, with attendant consequences for nuclear architecture, is only beginning to emerge. In this review, I will discuss neurodegenerative diseases in the context of nuclear dysfunction and, more specifically, alterations in nuclear bodies. Although research in this field is in its infancy, identifying alterations in the nucleus in neurodegenerative disease has potentially profound implications for elucidating the pathogenesis of these disorders.
Collapse
Affiliation(s)
- John Woulfe
- Department of Pathology, The Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario, Canada K1Y 4E9.
| |
Collapse
|
60
|
Yang W, Sheng H, Homi HM, Warner DS, Paschen W. Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO) conjugation--a new target for therapeutic intervention? J Neurochem 2008; 106:989-99. [PMID: 18410505 DOI: 10.1111/j.1471-4159.2008.05404.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transient cerebral ischemia/stroke activates various post-translational protein modifications such as phosphorylation and ubiquitin conjugation that are believed to play a major role in the pathological process triggered by an interruption of blood supply and culminating in cell death. A new system of post-translational protein modification has been identified, termed as small ubiquitin-like modifier (SUMO) conjugation. Like ubiquitin, SUMO is conjugated to the lysine residue of target proteins in a complex process. This review summarizes observations from recent experiments focusing on the effect of cerebral ischemia on SUMO conjugation. Transient global and focal cerebral ischemia both induced a rapid, dramatic and long-lasting rise in levels of SUMO2/3 conjugation. After transient focal cerebral ischemia, SUMO conjugation was particularly prominent in neurons located at the border of the ischemic territory where SUMO-conjugated proteins translocated to the nucleus. Many SUMO conjugation target proteins are transcription factors and sumoylation has been shown to have a major impact on the activity, stability, and cellular localization of target proteins. The rise in levels of SUMO-conjugated proteins is therefore likely to have a major effect on the fate of post-ischemic neurons. The sumoylation process could provide an exciting new target for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Yang
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
61
|
Clarke CM, Plata C, Cole B, Tsuchiya K, La Spada AR, Kapur RP. Visceral neuropathy and intestinal pseudo-obstruction in a murine model of a nuclear inclusion disease. Gastroenterology 2007; 133:1971-8. [PMID: 18054568 PMCID: PMC2696337 DOI: 10.1053/j.gastro.2007.08.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/09/2007] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Intestinal dysmotility is a component of many neurodegenerative disorders, including some characterized by neuronal intranuclear inclusions. PrP-SCA7-92Q transgenic mice phenocopy many aspects of the human polyglutamine neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7). The enteric neuropathology of PrP-SCA7-92Q mice was investigated after observing that they develop signs of intestinal pseudo-obstruction. METHODS Gastrointestinal transit of radio-opaque pellets through presymptomatic and symptomatic PrP-SCA7-92Q mice and nontransgenic littermates was compared. Gross, microscopic, and ultrastructural studies were conducted, along with histologic and whole mount immunohistochemistry, to identify intranuclear inclusions and quantify subsets of enteric neurons. Immunoblot analysis was performed to confirm selective loss of particular neuronal populations. RESULTS A subset of cholinergic enteric ganglion cells in PrP-SCA7-92Q mice harbor nuclear inclusions composed of transgene-derived ataxin-7, which contains a pathogenic polyglutamine expansion. These animals die between 15 and 20 weeks of age with intestinal distension and enterocolitis. Signs of disease are preceded by selective loss of nitric oxide synthase-positive neurons (which lack nuclear inclusions), loss of nerve fibers in the myenteric nerve plexus, and delayed gastrointestinal transit. Cholinergic neurons, including those with inclusions, are spared. CONCLUSIONS PrP-SCA7-92Q mice may be useful models for human intestinal pseudoobstruction, particularly visceral neuropathies with neuronal intranuclear inclusions. Loss of inclusion-free inhibitory neurons supports the hypothesis that inclusions may be neuroprotective or coincidental, as opposed to harbingers of neuron death. Because enteric neuropathology in PrP-SCA7-92Q animals is easily missed by routine histopathology, quantitative immunohistochemical approaches may be required to recognize analogous forms of human enteric neuropathy.
Collapse
Affiliation(s)
- Christine M. Clarke
- Department of Laboratories, Children’s Hospital and Regional Medical Center, Seattle, WA 98105
| | - Cara Plata
- Departments of Laboratory Medicine, Medicine (Medical Genetics) & Neurology (Neurogenetics), University of Washington, Seattle, WA 98195
| | - Bonnie Cole
- Department of Laboratories, Children’s Hospital and Regional Medical Center, Seattle, WA 98105
| | - Karen Tsuchiya
- Department of Laboratories, Children’s Hospital and Regional Medical Center, Seattle, WA 98105, Departments of Laboratory Medicine, Medicine (Medical Genetics) & Neurology (Neurogenetics), University of Washington, Seattle, WA 98195
| | - Albert R. La Spada
- Departments of Laboratory Medicine, Medicine (Medical Genetics) & Neurology (Neurogenetics), University of Washington, Seattle, WA 98195, Center for Neurogenetics & Neurotherapeutics, University of Washington, Seattle, WA 98195
| | - Raj P. Kapur
- Department of Laboratories, Children’s Hospital and Regional Medical Center, Seattle, WA 98105, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
62
|
Martin S, Wilkinson KA, Nishimune A, Henley JM. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 2007; 8:948-59. [PMID: 17987030 PMCID: PMC3314512 DOI: 10.1038/nrn2276] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational protein modifications are integral components of signalling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. These modifications have crucial roles in the CNS, where the communication between neurons is particularly complex. SUMOylation is a post-translational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in target proteins. It is well established that SUMOylation controls many aspects of nuclear function, but it is now clear that it is also a key determinant in many extranuclear neuronal processes, and it has also been implicated in a wide range of neuropathological conditions.
Collapse
Affiliation(s)
- Stéphane Martin
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
63
|
Dorval V, Mazzella MJ, Mathews PM, Hay RT, Fraser PE. Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem J 2007; 404:309-16. [PMID: 17346237 PMCID: PMC1868795 DOI: 10.1042/bj20061451] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sequential processing of the APP (amyloid precursor protein) by the beta- and gamma-secretase and generation of the Abeta (amyloid-beta) peptide is a primary pathological factor in AD (Alzheimer's disease). Regulation of the processing or turnover of these proteins represents potential targets for the development of AD therapies. Sumoylation is a process by which SUMOs (small ubiquitin-like modifiers) are covalently conjugated to target proteins, resulting in a number of functional consequences. These include regulation of protein-protein interactions, intracellular trafficking and protein stability, which all have the potential to impact on several aspects of the amyloidogenic pathway. The present study examines the effects of overexpression and knockdown of the major SUMO isoforms (SUMO1, 2 and 3) on APP processing and the production of Abeta peptides. SUMO3 overexpression significantly increased Abeta40 and Abeta42 secretion, which was accompanied by an increase in full-length APP and its C-terminal fragments. These effects of SUMO3 were independent of its covalent attachment or chain formation, as mutants lacking the motifs responsible for SUMO chain formation or SUMO conjugation led to similar changes in Abeta. SUMO3 overexpression also up-regulated the expression of the transmembrane protease BACE (beta-amyloid-cleaving enzyme), but failed to affect levels of several other unrelated proteins. Suppression of SUMO1 or combined SUMO2+3 by RNA interference did not affect APP levels or Abeta production. These findings confirm a specific effect of SUMO3 overexpression on APP processing and the production of Abeta peptides but also suggest that endogenous sumoylation is not essential and likely plays an indirect role in modulating the amyloid processing pathway.
Collapse
Affiliation(s)
- Véronique Dorval
- Department of Medical Biophysics and Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada, M5S 3HZ.
| | | | | | | | | |
Collapse
|
64
|
Dorval V, Fraser PE. SUMO on the road to neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:694-706. [PMID: 17475350 DOI: 10.1016/j.bbamcr.2007.03.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/24/2022]
Abstract
Sumoylation is a post-translational modification by which small ubiquitin-like modifiers (SUMO) are covalently conjugated to target proteins. This reversible pathway provides a rapid and efficient way to modulate the subcellular localization, activity and stability of a wide variety of substrates. Similar to its well-known cousin ubiquitin, SUMO co-localize with the neuronal inclusions associated with several neurodegenerative diseases, including multiple system atrophy, Huntington's disease and other related polyglutamine disorders. The identification of huntingtin, ataxin-1, tau and alpha-synuclein as SUMO substrates further supports the involvement of sumoylation in the pathogenesis of this family of neurological diseases. In addition to direct targeting of these constituent proteins, sumoylation also impacts other disease pathways such as oxidative stress, protein aggregation and proteasome-mediated degradation. This review highlights the recent advances in understanding the contributions of SUMO to neurodegeneration and the underlying pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Véronique Dorval
- Department of Medical Biophysics, Centre for Research in Neurodegenerative Diseases, University of Toronto, 6 Queen's Park Crescent West, Toronto, Ontario, Canada M5S 3H2.
| | | |
Collapse
|
65
|
Navascués J, Bengoechea R, Tapia O, Vaqué JP, Lafarga M, Berciano MT. Characterization of a new SUMO-1 nuclear body (SNB) enriched in pCREB, CBP, c-Jun in neuron-like UR61 cells. Chromosoma 2007; 116:441-51. [PMID: 17549507 DOI: 10.1007/s00412-007-0107-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/22/2007] [Accepted: 03/30/2007] [Indexed: 12/29/2022]
Abstract
The neuron-like UR61 cell is a stable PC12 subline that contains a mouse N-ras oncogene. Dexamethasone (Dex) treatment induces a neuron-like differentiation, which is associated with neuritogenesis and nuclear expression of the glucocorticoid receptor and c-Jun. In differentiated UR61 cells, small ubiquitin-like modifiers 1 (SUMO-1) is concentrated in a new category of SUMO-1 nuclear bodies (SNBs) distinct from promyelocytic leukemia (PML) bodies by their large size and absence of PML protein. SNBs are 1 to 3 mum in diameter and exhibit a fine granular texture by electron microscopy. They are free of splicing factors and transcription foci and show spatial associations with Cajal bodies. In addition to SUMO-1 and the E2-conjugating enzyme Ubc9, which is essential for sumoylation, SNBs concentrate the transcriptional regulators CBP, CREB, and c-Jun. Moreover, transfection experiments demonstrate that SNBs accumulate the active conjugating form of SUMO-1 but not the conjugation defective variant of SUMO-1, supporting that SNBs are sites of sumoylation. Our results suggest that SNBs play a role in the control of the nucleoplasmic concentration of transcription regulators involved in neuroprotection and survival of the UR61 cells.
Collapse
Affiliation(s)
- Joaquín Navascués
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, University of Dundee, DD1 5EH, Dundee, UK
| | | | | | | | | | | |
Collapse
|
66
|
Woulfe JM. Abnormalities of the nucleus and nuclear inclusions in neurodegenerative disease: a work in progress. Neuropathol Appl Neurobiol 2007; 33:2-42. [PMID: 17239006 DOI: 10.1111/j.1365-2990.2006.00819.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized pathologically by the abnormal accumulation of pathogenic protein species within the cell. Several neurodegenerative diseases feature intranuclear protein aggregation in the form of intranuclear inclusion bodies. Studies of these intranuclear inclusions are providing important clues regarding the cellular pathophysiology of these diseases, as exemplified by recent progress in defining the genetic basis of a subset of frontotemporal dementia cases. The precise role of intranuclear inclusion bodies in disease pathogenesis is currently a focus of debate. The present review provides an overview of the diverse family of neurodegenerative diseases in which nuclear inclusions form part of the neuropathological spectrum. In addition, current pathogenetic concepts relevant to these diseases will be reviewed and arguments for and against a protective role for intranuclear inclusions will be presented. The relationship of pathological intranuclear inclusions to functional intranuclear bodies will also be discussed. Finally, by analogy with pathological intranuclear inclusions, I will speculate on the possibility that intranuclear protein aggregation may represent a constitutive cellular protective mechanism occurring in neurons under physiological conditions.
Collapse
Affiliation(s)
- J M Woulfe
- Department of Pathology, The Ottawa Hospital, University of Ottawa, and Cancer Research Program, The Ottawa Health Research Institute, Ottawa, Canada.
| |
Collapse
|
67
|
Takahashi-Fujigasaki J, Fujigasaki H. Histone deacetylase (HDAC) 4 involvement in both Lewy and Marinesco bodies. Neuropathol Appl Neurobiol 2006; 32:562-6. [PMID: 16972890 DOI: 10.1111/j.1365-2990.2006.00733.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
68
|
Beyer K. Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol 2006; 112:237-51. [PMID: 16845533 DOI: 10.1007/s00401-006-0104-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 11/26/2022]
Abstract
Alpha-synuclein aggregation is thought to be a key event in the pathogenesis of synucleinopathies. Although different alpha-synuclein alterations and modifications have been proposed to be responsible for early aggregation steps, the mechanisms underlying these events remain unclarified. Alpha-synuclein is a small protein localized to synaptic terminals and its intrinsic structure has been claimed to be an important factor for self-oligomerization and self-aggregation. Alpha-synuclein expression studies in cell cultures have demonstrated that posttranslational modifications, such as phosphorylation, oxidation, and sumoylation, are primarily involved in alpha-synuclein aggregation. Furthermore, in the last few years accumulating evidence has pointed to alternative splicing as a crucial mechanism in the development of neurodegenerative disorders. At least three different alpha-synuclein isoforms have been described as products of alternative splicing. Two of these isoforms (alpha-synuclein 112 and alpha-synuclein 126) are shorter proteins with probably altered functions and aggregation propensity. The present review attempts to summarize the data so far available on alpha-synuclein structure, posttranslational modifications, and alternative splicing as possible enhancers of aggregation.
Collapse
Affiliation(s)
- Katrin Beyer
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Barcelona, Spain.
| |
Collapse
|
69
|
Dorval V, Fraser PE. Small Ubiquitin-like Modifier (SUMO) Modification of Natively Unfolded Proteins Tau and α-Synuclein. J Biol Chem 2006; 281:9919-24. [PMID: 16464864 DOI: 10.1074/jbc.m510127200] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sumoylation is an important post-translational modification that provides a rapid and reversible means for controlling the activity, subcellular localization, and stability of target proteins. We have examined the covalent attachment of the small ubiquitin-like modifier (SUMO) proteins to tau and alpha-synuclein, two natively unfolded proteins that define several neurodegenerative diseases. Both brain proteins were preferentially modified by SUMO1, as compared with SUMO2 or SUMO3. Tau contains two SUMO consensus sequences, and mutational analyses identified Lys(340) as the major sumoylation site. Although both tau and alpha-synuclein are targets for proteasomal degradation, only tau sumoylation was affected by inhibitors of the proteasome pathway. Tau is a microtubule-associated protein, whose ability to bind and stabilize microtubules is negatively regulated by phosphorylation. Treatment with the phosphatase inhibitor, okadaic acid, or the microtubule depolymerizing drug, colchicine, up-regulated tau sumoylation. This suggests that SUMO modification may preferentially target a free soluble pool of the substrate. These findings revealed a new, possibly regulatory, modification of tau and alpha-synuclein that may also have implications for their pathogenic roles in neurodegenerative diseases.
Collapse
Affiliation(s)
- Véronique Dorval
- Department of Medical Biophysics and Centre for Research in Neurodegenerative Diseases, University of Toronto, 6 Queen's Park Crescent West, Toronto, Ontario M5S 3H2, Canada
| | | |
Collapse
|
70
|
Takahashi-Fujigasaki J, Arai K, Funata N, Fujigasaki H. SUMOylation substrates in neuronal intranuclear inclusion disease. Neuropathol Appl Neurobiol 2006; 32:92-100. [PMID: 16409557 DOI: 10.1111/j.1365-2990.2005.00705.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized pathologically by the presence of ubiquitinated intranuclear inclusions (NII) in neuronal cells. We demonstrate that NIIs in both sporadic and familial NIID contained the small ubiquitin modifier-1 (SUMO-1) and the SUMOylation substrates promyelocytic leukaemia protein (PML) and histone deacetylase 4 (HDAC4). Both PML and SUMO-1 are major components of nuclear bodies (NBs), suggesting that the NIIs in NIID, as well as the intranuclear inclusions in polyglutamine diseases, might derive from these intranuclear functional domains that serve as sites for ubiquitin-related protein degradation. HDAC4 was also a major component of the NIIs. HDACs are transcriptional corepressors that regulate histone remodelling, and NBs are thought to be sites at which the level of histone acetylation is controlled. The presence of PML, SUMO-1 and HDAC4 in NIIs suggests that transcriptional activity regulated by histone acetylation might contribute to the disease process in NIID. In addition, we showed that another SUMOylation substrate, RanGAP1 is associated with NIIs only in the familial NIID patient. This might be explained by different pathogenetic mechanisms underlying subcategories of NIID, which is very heterogeneous.
Collapse
Affiliation(s)
- J Takahashi-Fujigasaki
- Division of Neuropathology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | | | | | | |
Collapse
|
71
|
Mackenzie IR, Baker M, West G, Woulfe J, Qadi N, Gass J, Cannon A, Adamson J, Feldman H, Lindholm C, Melquist S, Pettman R, Sadovnick AD, Dwosh E, Whiteheart SW, Hutton M, Pickering-Brown SM. A family with tau-negative frontotemporal dementia and neuronal intranuclear inclusions linked to chromosome 17. ACTA ACUST UNITED AC 2006; 129:853-67. [PMID: 16401619 DOI: 10.1093/brain/awh724] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over 30 different mutations have now been identified in MAPt that cause frontotemporal dementia (FTD). However, there are several families with FTD that show definite linkage to the region on chromosome 17 that contains MAPt, in which no mutation(s) has been identified. Although these families could have a complex mutation of the MAPt locus that has evaded detection it is also possible that another gene in this region is associated with FTD. This possibility is supported by neuropathological findings in these families, which consist of neuronal inclusions that are immunoreactive for ubiquitin (ub-ir) but not for tau. In addition to neuronal cytoplasmic inclusions, several chromosome 17-linked families are reported to have ub-ir neuronal intranuclear inclusions (NII); a finding which is uncommon in sporadic FTD. Here, we describe detailed clinical and neuropathological findings in a new large, multigenerational family with autosomal dominant FTD and autopsy proven tau-negative, ub-ir neuronal cytoplasmic and intranuclear inclusions. We have demonstrated that this family is linked to a 19.06 cM region of chromosome 17q21 with a maximum multipoint LOD score of 3.911 containing MAPt. By combining the results of our genetic analysis with those previously published for other families with similar pathology, we have further refined the minimal region to a 3.53 cM region of chromosome 17q21. We did not identify point mutations in MAPt by direct sequencing or any gross MAPt gene alterations using fluorescent in situ hybridization. In addition, tau protein extracted from members of this family was unremarkable in size and quantity as assessed by western blotting. Neuropathological characterization of the ub-ir NII in this family shows that they are positive for promyelocytic leukaemia protein (PML) and SUMO-1 that suggests that these inclusions form in the nuclear body and suggests a possible mechanism of neurodegeneration in tau-negative FTD linked to chromosome 17q21.
Collapse
Affiliation(s)
- Ian R Mackenzie
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Villagra NT, Navascues J, Casafont I, Val-Bernal JF, Lafarga M, Berciano MT. The PML-nuclear inclusion of human supraoptic neurons: a new compartment with SUMO-1- and ubiquitin-proteasome-associated domains. Neurobiol Dis 2005; 21:181-93. [PMID: 16125395 DOI: 10.1016/j.nbd.2005.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/30/2005] [Accepted: 07/06/2005] [Indexed: 12/12/2022] Open
Abstract
It is well known that the cell nucleus is organized in structural and functional compartments involved in transcription, RNA processing and protein modifications such as conjugation with SUMO-1 and proteolysis. Promyelocytic leukaemia (PML) bodies are dynamic nuclear structures that concentrate PML protein, SUMO-1 and several sumoylated and non-sumoylated protein regulators of nuclear functions. PML bodies and their associated CBP has been involved in neuronal survival. By light and electron microscopy immunocytochemistry and in situ hybridization we reported the presence, in non-pathological conditions, of a large PML-nuclear inclusion (PML-NI) in human supraoptic neurons. This inclusion appears as a single nuclear structure composed of a capsule enriched in PML, SUMO-1 and CBP proteins and a central lattice of filaments immunoreactive for class III beta-tubulin, ubiquitinated proteins and proteasomes. Furthermore, the PML-NI concentrates the SUMO-conjugating enzyme E2 (UBC9). The PML-NI may be considered a nuclear factory involved in sumoylation and proteolysis via ubiquitin-proteasome system, two nuclear pathways engaged in the control of the nucleoplasmic concentration of active transcriptional regulators. Interestingly, the structural and molecular organization of the PML-NI is related to the Marinesco bodies, age-associated ubiquitinated intranuclear inclusions, and to the intranuclear rodlets enriched in class III beta-tubulin, which are nuclear structures markedly decreased in Alzheimer's disease.
Collapse
Affiliation(s)
- Nuria T Villagra
- Department of Anatomic Pathology, Marqués de Valdecilla University Hospital, University of Cantabria, Santander, Spain
| | | | | | | | | | | |
Collapse
|
73
|
McFadden K, Hamilton RL, Insalaco SJ, Lavine L, Al-Mateen M, Wang G, Wiley CA. Neuronal intranuclear inclusion disease without polyglutamine inclusions in a child. J Neuropathol Exp Neurol 2005; 64:545-52. [PMID: 15977647 PMCID: PMC1402362 DOI: 10.1093/jnen/64.6.545] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare and heterogeneous group of slowly progressive neurodegenerative disorders characterized by the widespread presence of eosinophilic neuronal intranuclear inclusions (NII) accompanied by a more restricted pattern of neuronal loss. We report here the pathologic findings in a 13-year-old boy who died after a 6-year clinical history of progressive ataxia, extrapyramidal manifestations, and lower motor neuron abnormalities. Histological evaluation of the brain revealed widespread NII in most neurons. Marked loss of cerebellar Purkinje cells and neurons in the dentate nucleus, red nucleus, and spinal cord anterior horns was accompanied by a modest astrocytosis. Because of the abundance of NII and the absence of a relationship between NII and neuronal loss or microglial activation, we conclude that loss of cerebellar, brainstem, and spinal cord neurons reflects selective neuronal vulnerability. NII were immunoreactive for ubiquitin, glucocorticoid receptor, and SUMO-1, a small, ubiquitin-like protein purportedly involved in protein transport and gene transcription. NII were non-reactive for polyglutamine (1C2), TATA binding protein, promyelocytic leukemia protein, heat shock protein 90, tau, alpha-synuclein, neurofilament, and beta amyloid. The moderate ubiquitin and strong SUMO-1 staining of NII in juvenile cases is the reverse of the pattern noted in adult diseases, suggesting the two age groups are pathogenically distinct. We suggest that juvenile NIID is a spinocerebellar brainstem ataxic disease possibly related to an abnormality in SUMOylation.
Collapse
Affiliation(s)
- Kathryn McFadden
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
74
|
Pountney DL, Chegini F, Shen X, Blumbergs PC, Gai WP. SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neurosci Lett 2005; 381:74-9. [PMID: 15882793 DOI: 10.1016/j.neulet.2005.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/18/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Conjugation of the small ubiquitin-like modifier, SUMO-1, to target proteins is linked to the regulation of multiple cellular pathways, including nucleocytoplasmic trafficking, cell cycle progression, the ubiquitin-proteasome system and apoptosis. Recently, the accumulation of SUMOylated proteins in pathological neuronal intranuclear aggregates has been found in several neurodegenerative diseases. The aim of our study was to examine SUMO-1 in the alpha-synucleinopathy diseases, Multiple System Atrophy (MSA) and Dementia with Lewy Bodies (DLB). We conducted anti-SUMO-1 immunostaining of fixed brain tissue sections and smears of unfixed brain tissue homogenates of DLB and MSA cases. We found that oligodendroglial cytoplasmic inclusions, the alpha-synuclein-positive cytoplasmic aggregates that characterize MSA, exhibit robust punctate SUMO-1 immunostaining, marking discrete submicron-sized subdomains within the inclusion bodies. Lewy bodies in smears of DLB tissue homogenates showed similar SUMO-1-positive structures, although these were not detected in fixed tissue. In cell culture experiments, we found that the nuclear and perinuclear accumulation of SUMO-1 aggregates could be induced in glioma cells by chemical inhibition of proteasomal protein degradation.
Collapse
Affiliation(s)
- D L Pountney
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
75
|
Abstract
SUMO (small ubiquitin-related modifier) family proteins are not only structurally but also mechanistically related to ubiquitin in that they are posttranslationally attached to other proteins. As ubiquitin, SUMO is covalently linked to its substrates via amide (isopeptide) bonds formed between its C-terminal glycine residue and the epsilon-amino group of internal lysine residues. The enzymes involved in the reversible conjugation of SUMO are similar to those mediating the ubiquitin conjugation. Since its discovery in 1996, SUMO has received a high degree of attention because of its intriguing and essential functions, and because its substrates include a variety of biomedically important proteins such as tumor suppressor p53, c-jun, PML and huntingtin. SUMO modification appears to play important roles in diverse processes such as chromosome segregation and cell division, DNA replication and repair, nuclear protein import, protein targeting to and formation of certain subnuclear structures, and the regulation of a variety of processes including the inflammatory response in mammals and the regulation of flowering time in plants.
Collapse
Affiliation(s)
- R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany.
| |
Collapse
|
76
|
Abstract
The small ubiquitin-related modifier SUMO posttranslationally modifies many proteins with roles in diverse processes including regulation of transcription, chromatin structure, and DNA repair. Similar to nonproteolytic roles of ubiquitin, SUMO modification regulates protein localization and activity. Some proteins can be modified by SUMO and ubiquitin, but with distinct functional consequences. It is possible that the effects of ubiquitination and SUMOylation are both largely due to binding of proteins bearing specific interaction domains. Both modifications are reversible, and in some cases dynamic cycles of modification may be required for activity. Studies of SUMO and ubiquitin in the nucleus are yielding new insights into regulation of gene expression, genome maintenance, and signal transduction.
Collapse
Affiliation(s)
- Grace Gill
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
77
|
Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL. SUMO modification of Huntingtin and Huntington's disease pathology. Science 2004; 304:100-4. [PMID: 15064418 DOI: 10.1126/science.1092194] [Citation(s) in RCA: 525] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Huntington's disease (HD) is characterized by the accumulation of a pathogenic protein, Huntingtin (Htt), that contains an abnormal polyglutamine expansion. Here, we report that a pathogenic fragment of Htt (Httex1p) can be modified either by small ubiquitin-like modifier (SUMO)-1 or by ubiquitin on identical lysine residues. In cultured cells, SUMOylation stabilizes Httex1p, reduces its ability to form aggregates, and promotes its capacity to repress transcription. In a Drosophila model of HD, SUMOylation of Httex1p exacerbates neurodegeneration, whereas ubiquitination of Httex1p abrogates neurodegeneration. Lysine mutations that prevent both SUMOylation and ubiquitination of Httex1p reduce HD pathology, indicating that the contribution of SUMOylation to HD pathology extends beyond preventing Htt ubiquitination and degradation.
Collapse
Affiliation(s)
- Joan S Steffan
- Department of Psychiatry and Human Behavior, Gillespie 2121, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Affiliation(s)
- Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|