51
|
Distribution of Paramagnetic Fe₂O₃/SiO₂⁻Core/Shell Nanoparticles in the Rat Lung Studied by Time-of-Flight Secondary Ion Mass Spectrometry: No Indication for Rapid Lipid Adsorption. NANOMATERIALS 2018; 8:nano8080571. [PMID: 30049943 PMCID: PMC6116249 DOI: 10.3390/nano8080571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/27/2022]
Abstract
Amorphous silica nanoparticles comprise a class of widely used industrial nanomaterials, which may elicit acute inflammation in the lung. These materials have a large specific surface to which components of the pulmonary micro-milieu can bind. To conduct appropriate binding studies, paramagnetic Fe2O3/SiO2 core/shell nanoparticles (Fe-Si-NP) may be used as an easy-to-isolate silica surrogate, if several prerequisites are fulfilled. To this end, we investigated the distribution of Fe, Si, protein and phosphatidylcholine (PC) by Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) in cryo-sections from the rat lungs to which Fe-Si-NP had been administered for 30 min. Regions-of-interest were identified and analyzed with incident light and enhanced dark-field microscopy (DFM). Fe-Si-NP particles (primary particle size by electron microscopy: 10–20 nm; aggregate size by tracking analysis: 190 ± 20 nm) and agglomerates thereof were mainly attached to alveolar walls and only marginally internalized by cells such as alveolar macrophages. The localization of Fe-Si-NP by DFM was confirmed by ToF-SIMS signals from both, Fe and Si ions. With respect to an optimized signal-to-noise ratio, Fe+, Si+, CH4N+ and the PC head group (C5H15NO4P+) were the most versatile ions to detect iron, silica, protein, and PC, respectively. Largely congruent Fe+ and Si+ signals demonstrated that the silica coating of Fe-Si-NP remained stable under the conditions of the lung. PC, as a major lipid of the pulmonary surfactant, was colocalized with the protein signal alongside alveolar septa, but was not detected on Fe-Si-NP, suggesting that silica nanoparticles do not adsorb lipids of the lung surfactant under native conditions. The study shows that ToF-SIMS is a valuable technique with adequate spatial resolution to analyze nanoparticles together with organic molecules in the lung. The paramagnetic Fe-Si-NP appear well suited to study the binding of proteins to silica nanomaterials in the lung.
Collapse
|
52
|
Großgarten M, Holzlechner M, Vennemann A, Balbekova A, Wieland K, Sperling M, Lendl B, Marchetti-Deschmann M, Karst U, Wiemann M. Phosphonate coating of SiO 2 nanoparticles abrogates inflammatory effects and local changes of the lipid composition in the rat lung: a complementary bioimaging study. Part Fibre Toxicol 2018; 15:31. [PMID: 30012173 PMCID: PMC6048815 DOI: 10.1186/s12989-018-0267-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The well-known inflammatory and fibrogenic changes of the lung upon crystalline silica are accompanied by early changes of the phospholipid composition (PLC) as detected in broncho-alveolar lavage fluid (BALF). Amorphous silica nanoparticles (NPs) evoke transient lung inflammation, but their effect on PLC is unknown. Here, we compared effects of unmodified and phosphonated amorphous silica NP and describe, for the first time, local changes of the PLC with innovative bioimaging tools. METHODS Unmodified (SiO2-n), 3-(trihydroxysilyl) propyl methylphosphonate coated SiO2-n (SiO2-p) as well as a fluorescent surrogate of SiO2-n (SiO2-FITC) nanoparticles were used in this study. In vitro toxicity was tested with NR8383 alveolar macrophages. Rats were intratracheally instilled with SiO2-n, SiO2-p, or SiO2-FITC, and effects on lungs were analyzed after 3 days. BALF from the right lung was analyzed for inflammatory markers. Cryo-sections of the left lung were subjected to fluorescence microscopy and PLC analyses by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MS), Fourier transform infrared microspectroscopy (FT-IR), and tandem mass spectrometry (MS/MS) experiments. RESULTS Compared to SiO2-p, SiO2-n NPs were more cytotoxic to macrophages in vitro and more inflammatory in the rat lung, as reflected by increased concentration of neutrophils and protein in BALF. Fluorescence microscopy revealed a typical patchy distribution of SiO2-FITC located within the lung parenchyma and alveolar macrophages. Superimposable to this particle distribution, SiO2-FITC elicited local increases of phosphatidylglycerol (PG) and phosphatidylinositol (PI), whereas phoshatidylserine (PS) and signals from triacylgyceride (TAG) were decreased in the same areas. No such changes were found in lungs treated with SiO2-p or particle-free instillation fluid. CONCLUSIONS Phosphonate coating mitigates effects of silica NP in the lung and abolishes their locally induced changes in PLC pattern. Bioimaging methods based on MALDI-MS may become a useful tool to investigate the mode of action of NPs in tissues.
Collapse
Affiliation(s)
- Mandy Großgarten
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Matthias Holzlechner
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Antje Vennemann
- IBE R&D Institute for Lung Health gGmbH, Mendelstraße 11, 48149, Münster, Germany
| | - Anna Balbekova
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Karin Wieland
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Martin Wiemann
- IBE R&D Institute for Lung Health gGmbH, Mendelstraße 11, 48149, Münster, Germany.
| |
Collapse
|
53
|
Shu F, Shi Y. Systematic Overview of Solid Particles and Their Host Responses. Front Immunol 2018; 9:1157. [PMID: 29892295 PMCID: PMC5985299 DOI: 10.3389/fimmu.2018.01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Crystalline/particulate substances trigger a plethora of signaling events in host cells. The most prominent consequence is the inflammatory reactions that underlie crystal arthropathies, such as gout and pseudogout. However, their impact on our health was underestimated. Recent work on the role of cholesterol crystal in the development of atherosclerosis and the harm of environmental particulates has set up new frontiers in our defense against their detrimental effects. On the other hand, in the last 100 years, crystalline/particulate substances have been used with increasing frequencies in our daily lives as a part of new industrial manufacturing and engineering. Importantly, they have become a tool in modern medicine, used as vaccine adjuvants and drug delivery vehicles. Their biological effects are also being dissected in great detail, particularly with regard to their inflammatory signaling pathways. Solid structure interaction with host cells is far from being uniform, with outcomes dependent on cell types and chemical/physical properties of the particles involved. In this review, we offer a systematic and broad outlook of this landscape and a sage analysis of the complex nature of this topic.
Collapse
Affiliation(s)
- Fei Shu
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
54
|
Wiemann M, Sauer UG, Vennemann A, Bäcker S, Keller JG, Ma-Hock L, Wohlleben W, Landsiedel R. In Vitro and In Vivo Short-Term Pulmonary Toxicity of Differently Sized Colloidal Amorphous SiO₂. NANOMATERIALS 2018. [PMID: 29534009 PMCID: PMC5869651 DOI: 10.3390/nano8030160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro prediction of inflammatory lung effects of well-dispersed nanomaterials is challenging. Here, the in vitro effects of four colloidal amorphous SiO2 nanomaterials that differed only by their primary particle size (9, 15, 30, and 55 nm) were analyzed using the rat NR8383 alveolar macrophage (AM) assay. Data were compared to effects of single doses of 15 nm and 55 nm SiO2 intratracheally instilled in rat lungs. In vitro, all four elicited the release of concentration-dependent lactate dehydrogenase, β-glucuronidase, and tumor necrosis factor alpha, and the two smaller materials also released H2O2. All effects were size-dependent. Since the colloidal SiO2 remained well-dispersed in serum-free in vitro conditions, effective particle concentrations reaching the cells were estimated using different models. Evaluating the effective concentration–based in vitro effects using the Decision-making framework for the grouping and testing of nanomaterials, all four nanomaterials were assigned as “active.” This assignment and the size dependency of effects were consistent with the outcomes of intratracheal instillation studies and available short-term rat inhalation data for 15 nm SiO2. The study confirms the applicability of the NR8383 AM assay to assessing colloidal SiO2 but underlines the need to estimate and consider the effective concentration of such well-dispersed test materials.
Collapse
Affiliation(s)
- Martin Wiemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstr. 11, 48149 Münster, Germany.
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, 85579 Neubiberg, Germany.
| | - Antje Vennemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstr. 11, 48149 Münster, Germany.
| | - Sandra Bäcker
- BASF SE, Human Biomonitoring and Industrial Hygiene, 67056 Ludwigshafen, Germany.
| | | | - Lan Ma-Hock
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.
| | - Wendel Wohlleben
- BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany.
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.
| |
Collapse
|
55
|
Shin JH, Jeon K, Kim JK, Kim Y, Jo MS, Lee JS, Baek JE, Park HS, An HJ, Park JD, Ahn K, Oh SM, Yu IJ. Subacute inhalation toxicity study of synthetic amorphous silica nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2018; 29:567-576. [DOI: 10.1080/08958378.2018.1426661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jae Hoon Shin
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | | | - Jin Kwon Kim
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Younghun Kim
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Mi Seong Jo
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Jong Seong Lee
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | - Jin Ee Baek
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | - Hye Seon Park
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Hyo Jin An
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | | | - Kangho Ahn
- Department of mechanical Engineering, Hanyang University, Ansan, Korea
| | - Seung Min Oh
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | | |
Collapse
|
56
|
Dissolution of commercial nanoscale silica particles in electrolyte solution: The importance of the solid-solvent-ratio to physical and chemical properties of the solid-liquid interface. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.07.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
57
|
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017; 91:2967-3010. [PMID: 28573455 PMCID: PMC5562771 DOI: 10.1007/s00204-017-1993-y] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Large-scale production and use of amorphous silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs, while their health effects remain unclear. In this review, scientific papers from 2010 to 2016 were systematically selected and sorted based on in vitro and in vivo studies: to provide an update on SiNPs toxicity and to address the knowledge gaps indicated in the review of Napierska (Part Fibre Toxicol 7:39, 2010). Toxicity of SiNPs in vitro is size, dose, and cell type dependent. SiNPs synthesized by wet route exhibited noticeably different biological effects compared to thermal route-based SiNPs. Amorphous SiNPs (particularly colloidal and stöber) induced toxicity via mechanisms similar to crystalline silica. In vivo, route of administration and physico-chemical properties of SiNPs influences the toxicokinetics. Adverse effects were mainly observed in acutely exposed animals, while no significant signs of toxicity were noted in chronically dosed animals. The correlation between in vitro and in vivo toxicity remains less well established mainly due to improper-unrealistic-dosing both in vitro and in vivo. In conclusion, notwithstanding the multiple studies published in recent years, unambiguous linking of physico-chemical properties of SiNPs types to toxicity, bioavailability, or human health effects is not yet possible.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Lode Godderis
- Department of Occupational, Environmental and Insurance Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 35 block d, box 7001, 3000 Louvain, Belgium
| | - Sybille Van Den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Jan Mast
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Frederic Brassinne
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Noham Sebaihi
- General Quality and Safety, Metrology Department, National Standards, North Gate-Office 2A29, Bd du Roi Albert II, 16, 1000 Brussels, Belgium
| | - Peter H. Hoet
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| |
Collapse
|
58
|
Dalzon B, Aude-Garcia C, Collin-Faure V, Diemer H, Béal D, Dussert F, Fenel D, Schoehn G, Cianférani S, Carrière M, Rabilloud T. Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. NANOSCALE 2017; 9:9641-9658. [PMID: 28671223 DOI: 10.1039/c7nr02140b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The technological and economic benefits of engineered nanomaterials may be offset by their adverse effects on living organisms. One of the highly produced nanomaterials under such scrutiny is amorphous silica nanoparticles, which are known to have an appreciable, although reversible, inflammatory potential. This is due to their selective toxicity toward macrophages, and it is thus important to study the cellular responses of this cell type to silica nanoparticles to better understand the direct or indirect adverse effects of nanosilica. We have here studied the responses of the RAW264.7 murine macrophage cells and of the control MPC11 plasma cells to subtoxic concentrations of nanosilica, using a combination of proteomic and targeted approaches. This allowed us to document alterations in the cellular cytoskeleton, in the phagocytic capacity of the cells as well as their ability to respond to bacterial stimuli. More surprisingly, silica nanoparticles also induce a greater sensitivity of macrophages to DNA alkylating agents, such as styrene oxide, even at doses which do not induce any appreciable cell death.
Collapse
Affiliation(s)
- Bastien Dalzon
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Catherine Aude-Garcia
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Véronique Collin-Faure
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - David Béal
- Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), UMR 5819, Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France
| | - Fanny Dussert
- Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), UMR 5819, Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France
| | - Daphna Fenel
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Guy Schoehn
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Marie Carrière
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France.
| |
Collapse
|
59
|
Park EJ, Lee GH, Kim JC, Jin Lee S, Lee K, Lee BS, Chang J, Kim DW. Pulmonary glass particles may persist in the lung suppressing function of immune cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1688-1700. [PMID: 28158922 DOI: 10.1002/tox.22391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
The health effects of silica may depend on the inherent properties of crystalline silica or on external factors affecting the biological activity or distribution of its polymorphs. Inhaled crystalline silica is classified as a Group I carcinogen, however, information on the health effects of amorphous silica is still insufficient. Considering that alveolar macrophages play a key role in both innate and adaptive immune responses for removal of foreign bodies that enter via the respiratory system, we treated sheet-like glass particles (SGPs), a type of noncrystalline amorphous silica, to MH-S cells, an alveolar macrophage cell line. SGPs reduced the generation of ROS and NO and induced cell death via multiple pathways. Although the expression of CD80, CD86, and CD40, increased by exposure to SGPs, the expression of MHC class II molecules had not notably changed. Additionally, expression of ICAM-1 tended to decrease. In mice, SGPs were distributed in the interstitial region of the lung without notable pathological lesion on day 14 after a single intratracheal instillation. Pulmonary total cell number increased significantly with the highest dose, but the levels of all measured inflammatory cytokines and chemokines, except IL-1, were lower in BAL fluid from SGP-treated mice compared to control. More interestingly, the expression of antigen presentation-related proteins was enhanced in the lungs of SGP-exposed mice concomitant with an increase in the number of mature dendritic cells, whereas the expression of ICAM-1, an important adhesion molecule for helper T cell recruitment, was suppressed. Taken together, we suggest that SGPs may induce adverse health effects by down-regulating function of immune cells in the lungs. Furthermore, ICAM-1 may play a key role in immune response to remove pulmonary SGPs.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Brain Science, Ajou University School of Medicine, 164, World cup-ro, Youngtong-gu, Suwon, 16499, Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 136-713, Korea
| | - Jae-Chan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 136-713, Korea
| | - Sang Jin Lee
- National Center for Efficacy Evaluation for Respiratory Disease product, Jeonbuk Department of Research Inhalation Safety, Korea Institute of Toxicology, Jeongeup, 580-185, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease product, Jeonbuk Department of Research Inhalation Safety, Korea Institute of Toxicology, Jeongeup, 580-185, Republic of Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Jaerak Chang
- Department of Brain Science, Ajou University School of Medicine, 164, World cup-ro, Youngtong-gu, Suwon, 16499, Korea
| | - Dong-Wan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 136-713, Korea
| |
Collapse
|
60
|
Wang X, Sun B, Liu S, Xia T. Structure Activity Relationships of Engineered Nanomaterials in inducing NLRP3 Inflammasome Activation and Chronic Lung Fibrosis. NANOIMPACT 2017; 6:99-108. [PMID: 28480337 PMCID: PMC5415341 DOI: 10.1016/j.impact.2016.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
It has been demonstrated that certain engineered nanomaterials (ENMs) could induce chronic lung inflammation and fibrosis, however, the key structure activity relationships (SARs) that the link the physicochemical properties and the fibrogenic effects have not been thoroughly reviewed. Recently, significant progress has been made in our understanding of the SAR, and it has been demonstrated that ENMs including rare earth oxides (REOs), graphene and graphene oxides (GO), fumed silica, as well as high aspect ratio materials (such as CNTs and CeO2 nanowires etc.) could trigger the NLRP3 inflammasome activation and IL-1β production in macrophages and subsequent series of profibrogenic cytokines, i.e. TGF-β1 and PDGF-AA in vitro and in vivo, resulting in synergistically cell-cell communication among macrophages, epithelial cells, and fibroblasts in a process named epithelial-mesenchymal transition (EMT) and collagen deposition in the lung as the adverse outcomes. Interestingly, different ENMs engage a range of distinct pathways leading to the NLRP3 inflammasome activation and IL-1β production in macrophages, which include frustrated phagocytosis, physical piercing, plasma membrane perturbation or damage to lysosomes due to high aspect ratio, particle structure, surface reactivity, transformation, etc. Furthermore, ENM's properties determine the biopersistence in vivo, which also play a major role in chronic lung fibrosis. Based on these progresses, we reviewed recent findings in the literature on the major SARs leading to chronic lung effects.
Collapse
Affiliation(s)
- Xiang Wang
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
| | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
- Corresponding authors:
| |
Collapse
|
61
|
Marquardt C, Fritsch-Decker S, Al-Rawi M, Diabaté S, Weiss C. Autophagy induced by silica nanoparticles protects RAW264.7 macrophages from cell death. Toxicology 2017; 379:40-47. [PMID: 28161448 DOI: 10.1016/j.tox.2017.01.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Although the technological and economic benefits of engineered nanomaterials are obvious, concerns have been raised about adverse effects if such material is inhaled, ingested, applied to the skin or even released into the environment. Here we studied the cytotoxic effects of the most abundant nanomaterial, silica nanoparticles (SiO2-NPs), in murine RAW264.7 macrophages. SiO2-NPs dose-dependently induce membrane leakage and cell death without obvious involvement of reactive oxygen species. Interestingly, at low concentrations SiO2-NPs trigger autophagy, evidenced by morphological and biochemical hallmarks such as autophagolysosomes or increased levels of LC3-II, which serves to protect cells from cytotoxicity. Hence SiO2-NPs initiate an adaptive stress response which dependent on dose serve to balance survival and death and ultimately dictates the cellular fate.
Collapse
Affiliation(s)
- Clarissa Marquardt
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | - Susanne Fritsch-Decker
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | - Marco Al-Rawi
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | - Silvia Diabaté
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
62
|
Bomhard EM. Particle-induced Pulmonary Alveolar Proteinosis and Subsequent Inflammation and Fibrosis: A Toxicologic and Pathologic Review. Toxicol Pathol 2017; 45:389-401. [DOI: 10.1177/0192623316688959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review analyzes the published data on cases of pulmonary alveolar proteinosis (PAP) in workers inhaling crystalline aluminum, indium, silicon, and titanium particles and possible sequelae, that is, inflammation and fibrosis, and compares these findings with those from animal experiments. In inhalation studies in rodents using crystalline indium and gallium compounds, pronounced PAP followed by inflammation and fibrosis down to very low concentration ranges have been reported. Crystalline aluminum, silicon, and titanium compounds also induced comparable pulmonary changes in animals, though at higher exposure levels. Laboratory animal species appear to react to the induction of PAP with varying degrees of sensitivity. The sensitivity of humans to environmental causes of PAP seems to be relatively low. Up to now, no cases of PAP, or other pulmonary diseases in humans, have been described for gallium compounds. However, a hazard potential can be assumed based on the results of animal studies. Specific particle properties, responsible for the induction of PAP and its sequelae, have not been identified. This review provides indications that, both in animal studies and in humans, PAP is not often recognized due to the absence of properly directed investigation or is concealed behind other forms of lung pathology.
Collapse
|
63
|
Sauvain JJ, Suarez G, Edmé JL, Bezerra OMPA, Silveira KG, Amaral LS, Carneiro APS, Chérot-Kornobis N, Sobaszek A, Hulo S. Method validation of nanoparticle tracking analysis to measure pulmonary nanoparticle content: the size distribution in exhaled breath condensate depends on occupational exposure. J Breath Res 2017; 11:016010. [PMID: 28054515 DOI: 10.1088/1752-7163/aa56dd] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A particle exposure assessment based on the dose deposited in the lungs would be the gold standard for the evaluation of any resulting health effects. Measuring particles in exhaled breath condensate (EBC)-a matrix containing water and airway lining fluid-could help to evaluate particle retention in the lungs. This study aimed to (1) validate a nanoparticle tracking analysis (NTA) method for determining the particle number concentration and their hydrodynamic size distribution in EBC, and (2) apply this method to EBC collected from workers exposed to soapstone (n = 55) or quartz dust (n = 12) and controls (n = 11). A standard latex bead solution was used to determine the linear range, limit of detection (LOD), repeatability (coefficient of variation, CV), and bias in spiked EBC. An LM10 NanoSight instrument with NTA version 3.1 software was used for measurement. RTubes® were used for field collection of EBC. The repeatability obtained for a D50 size distribution in EBC showed less than 8% variability, with a bias <7%. The particle concentration was linear in the range ≤2.5 × 108 particles ml-1 with a LOD of 4 × 106 particles ml-1. A recovery of 117 ± 20% at 6.2 × 107 particles ml-1 was obtained with a CV <10% and a bias <20%. EBC from workers exposed to quartz, who experienced the largest exposure to silica particles, consistently exhibited a statistically significant (p < 0.01) higher concentration of particles in their EBC, with a size distribution shift towards larger values than the other groups. Results showed that the NTA technique performed well for characterizing the size distribution and concentrations of particles in EBC. The technique needs to be corroborated with a larger population of workers.
Collapse
Affiliation(s)
- J-J Sauvain
- Institute for Work and Health, University of Lausanne and Geneva, Epalinges-Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Sauer UG. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 19:171. [PMID: 28553159 PMCID: PMC5423989 DOI: 10.1007/s11051-017-3850-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/10/2017] [Indexed: 05/14/2023]
Abstract
As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as 'qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Karin Wiench
- Regulatory Toxicology, BASF SE, 67056 Ludwigshafen, Germany
| | - Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
- Advanced Materials Research, BASF SE, 67056 Ludwigshafen, Germany
| | - Ursula G. Sauer
- Scientific Consultancy—Animal Welfare, Hallstattfeld 16, 85579 Neubiberg, Germany
| |
Collapse
|
65
|
Pavan C, Fubini B. Unveiling the Variability of “Quartz Hazard” in Light of Recent Toxicological Findings. Chem Res Toxicol 2016; 30:469-485. [DOI: 10.1021/acs.chemrestox.6b00409] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
- “G. Scansetti” Interdepartmental
Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via P. Giuria 9, 10125 Turin, Italy
| | - Bice Fubini
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
- “G. Scansetti” Interdepartmental
Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via P. Giuria 9, 10125 Turin, Italy
| |
Collapse
|
66
|
Matos JC, Avelar I, Martins MBF, Gonçalves MC. Greensilica ® vectors for smart textiles. Carbohydr Polym 2016; 156:268-275. [PMID: 27842823 DOI: 10.1016/j.carbpol.2016.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 11/18/2022]
Abstract
The present work aims developing a versatile Greensilica® vector/carrier, able to bind to a wide range of textile matrices of carbohydrate polymers and susceptible of being loaded with chemicals/drugs/therapeutic molecules, to create a green tailor-made (multi)functional high-tech textile. A green, eco-friendly, ammonia-free, easily scalable, time-saving sol-gel process was established for the production of those silica-based colloidal particles (SiO2, amine-SiO2, diamine-SiO2, and epoxy-SiO2). Two different textile matrices (cotton, polyester) were functionalized, through the impregnation of Greensilica® particles. The impregnation was performed with and without cure. Diamine-SiO2 colloidal particles exhibited the higher bonding efficiency in cured textile matrices (both cotton and polyester), while with no cure the best adherence to cotton and polyester textile matrices was achieved with diamine-SiO2 and amine-SiO2, respectively. Use once and throw away and continued use applications were envisaged and screened through washing tests. The efficiency of the textiles impregnation was confirmed by SEM, and quantified by ICP.
Collapse
Affiliation(s)
- Joana C Matos
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; CQE, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Inês Avelar
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Bárbara F Martins
- Intracellular Trafficking Modulation for Advanced Drug Delivery Group, iMed.UL, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - M Clara Gonçalves
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; CQE, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Portugal.
| |
Collapse
|
67
|
Han H, Park YH, Park HJ, Lee K, Um K, Park JW, Lee JH. Toxic and adjuvant effects of silica nanoparticles on ovalbumin-induced allergic airway inflammation in mice. Respir Res 2016; 17:60. [PMID: 27194244 PMCID: PMC4870782 DOI: 10.1186/s12931-016-0376-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/06/2016] [Indexed: 01/17/2023] Open
Abstract
Background Silica nanoparticles (SNPs) can easily enter in respiratory system via inhalation because of their low molecular weight and ease of dispersion. Toxicity and adverse effects of SNPs vary according to the physical characteristics of the particle. Methods To evaluate the toxic and adjuvant effects of 3 types of SNPs in the airway system, six-week-old female BALB/c mice were intranasally administered 3 types of SNPs (spherical [S-SNP], mesoporous [M-SNP], and polyethylene glycol-conjugated [P-SNP]) alone or SNPs/ovalbumin (OVA), three times weekly for 2 weeks. Airway hyper-responsiveness (AHR), bronchoalveolar lavage fluid (BALF), cytokine levels, and histology of the lungs were analyzed. Results The S-SNPs/OVA group and M-SNPs/OVA group showed significant AHR, compared to the control group. Among all SNP-treated groups, the group administered SNPs/OVA showed greater inflammatory cell infiltration in BALF, extensive pathological changes, and higher cytokine levels (IL-5, IL-13, IL-1β, and IFN-γ) than those administered SNPs alone or saline/OVA. Conclusion Exposure to SNPs alone and SNPs/OVA induced toxicity in the respiratory system. SNPs alone showed significant toxic effects on the airway system. Meanwhile, SNPs/OVA exerted adjuvant effects to OVA of inducing allergic airway inflammation. In particular, M-SNPs showed the most severe airway inflammation in both direct toxicity and adjuvant effect assays. P-SNPs induced less inflammation than the other types of SNPs in both models.
Collapse
Affiliation(s)
- Heejae Han
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hee Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Division of Allergy and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kangtaek Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kiju Um
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Division of Allergy and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Division of Allergy and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Division of Allergy and Immunology, Institute of Allergy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Republic of Korea.
| |
Collapse
|
68
|
Groso A, Petri-Fink A, Rothen-Rutishauser B, Hofmann H, Meyer T. Engineered nanomaterials: toward effective safety management in research laboratories. J Nanobiotechnology 2016; 14:21. [PMID: 26979818 PMCID: PMC4791936 DOI: 10.1186/s12951-016-0169-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/19/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. RESULTS Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. CONCLUSIONS We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation, chemical, etc.) facilitates the management for occupational health and safety specialists. Institutes and school managers can obtain the necessary information to implement an adequate safety management system. Having an easy-to-use tool enables a dialog between all these partners, whose semantic and priorities in terms of safety are often different.
Collapse
Affiliation(s)
- Amela Groso
- />Occupational Safety and Health, School of Basic Sciences, Ecole Polytéchnique Fédérale de Lausanne, Lausanne, Switzerland
- />Group of Chemical and Physical Safety, Ecole Polytéchnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alke Petri-Fink
- />BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Ch. des Verdiers 4, 1700 Fribourg, Switzerland
- />Chemistry Department, University of Fribourg, Ch. Du Musée 9, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- />BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Ch. des Verdiers 4, 1700 Fribourg, Switzerland
| | - Heinrich Hofmann
- />Powder Technology Laboratory, Ecole Polytéchnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thierry Meyer
- />Occupational Safety and Health, School of Basic Sciences, Ecole Polytéchnique Fédérale de Lausanne, Lausanne, Switzerland
- />Group of Chemical and Physical Safety, Ecole Polytéchnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
69
|
Wiemann M, Vennemann A, Sauer UG, Wiench K, Ma-Hock L, Landsiedel R. An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J Nanobiotechnology 2016; 14:16. [PMID: 26944705 PMCID: PMC4779246 DOI: 10.1186/s12951-016-0164-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most in vitro studies investigating nanomaterial pulmonary toxicity poorly correlate to in vivo inhalation studies. Alveolar macrophages (AMs) play an outstanding role during inhalation exposure since they effectively clear the alveoli from particles. This study addresses the applicability of an in vitro alveolar macrophage assay to distinguish biologically active from passive nanomaterials. METHODS Rat NR8383 alveolar macrophages were exposed to 18 inorganic nanomaterials, covering AlOOH, BaSO4, CeO2, Fe2O3, TiO2, ZrO2, and ZnO NMs, amorphous SiO2 and graphite nanoplatelets, and two nanosized organic pigments. ZrO2 and amorphous SiO2 were tested without and with surface functionalization. Non-nanosized quartz DQ12 and corundum were used as positive and negative controls, respectively. The test materials were incubated with the cells in protein-free culture medium. Lactate dehydrogenase, glucuronidase, and tumour necrosis factor alpha were assessed after 16 h. In parallel, H2O2 was assessed after 1.5 h. Using the no-observed-adverse-effect concentrations (NOAECs) from available rat short-term inhalation studies (STIS), the test materials were categorized as active (NOAEC < 10 mg/m(3)) or passive. RESULTS In vitro data reflected the STIS categorization if a particle surface area-based threshold of <6000 mm(2)/mL was used to determine the biological relevance of the lowest observed significant in vitro effects. Significant effects that were recorded above this threshold were assessed as resulting from test material-unspecific cellular 'overload'. Test materials were assessed as active if ≥2 of the 4 in vitro parameters undercut this threshold. They were assessed as passive if 0 or 1 parameter was altered. An overall assay accuracy of 95 % was achieved. CONCLUSIONS The in vitro NR8383 alveolar macrophage assay allows distinguishing active from passive nanomaterials. Thereby, it allows determining whether in vivo short-term inhalation testing is necessary for hazard assessment. Results may also be used to group nanomaterials by biological activity. Further work should aim at validating the assay.
Collapse
Affiliation(s)
- Martin Wiemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstraße 11, 48149, Münster, Germany.
| | - Antje Vennemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstraße 11, 48149, Münster, Germany.
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Hallstattfeld 16, 85579, Neubiberg, Germany.
| | - Karin Wiench
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| | - Lan Ma-Hock
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| |
Collapse
|
70
|
Gun’ko V, Turov V, Zarko V, Pakhlov E, Charmas B, Skubiszewska-Zięba J. Influence of structural organization of silicas on interfacial phenomena. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
71
|
Braakhuis HM, Giannakou C, Peijnenburg WJGM, Vermeulen J, van Loveren H, Park MVDZ. Simple in vitro models can predict pulmonary toxicity of silver nanoparticles. Nanotoxicology 2016; 10:770-9. [PMID: 26809698 DOI: 10.3109/17435390.2015.1127443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To study the effects of nanomaterials after inhalation, a large number of in vitro lung models have been reported in literature. Although the in vitro models contribute to the reduction of animal studies, insufficient data exists to determine the predictive value of these in vitro models for the in vivo situation. The aim of this study was to determine the correlation between in vitro and in vivo data by comparing the dose metrics of silver nanoparticles in an in vitro lung model of increasing complexity to our previously published in vivo inhalation study. In vivo, the previously published study showed that the alveolar dose expressed as particle surface area is the most suitable dose metric to describe the toxicity of silver nanoparticles after inhalation. The results of the present study show that particle surface area is a suitable dose metric to describe the effects of silver nanoparticles when using a simple monolayer of lung epithelial cells. The dose metric shifted from particle surface area to particle mass when adding an increasing number of macrophages. In addition, a co-culture of endothelial cells, epithelial cells and macrophages on a Transwell® insert correlated less well to the in vivo results compared to the epithelial monolayer. We conclude that for studying the acute pulmonary toxicity of nanoparticles simple in vitro models using an epithelial monolayer better predict the in vivo response compared to complex co-culture models.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- a Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands .,b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| | - Christina Giannakou
- a Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands .,b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| | - Willie J G M Peijnenburg
- b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and.,c Centre for Environmental Sciences, University Leiden , Leiden , the Netherlands
| | - Jolanda Vermeulen
- b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| | - Henk van Loveren
- a Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands .,b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| | - Margriet V D Z Park
- b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| |
Collapse
|
72
|
Arts JHE, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Neubauer N, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice. Regul Toxicol Pharmacol 2015; 76:234-61. [PMID: 26687418 DOI: 10.1016/j.yrtph.2015.11.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
Case studies covering carbonaceous nanomaterials, metal oxide and metal sulphate nanomaterials, amorphous silica and organic pigments were performed to assess the Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). The usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. In two tiers that rely exclusively on non-animal test methods followed by a third tier, if necessary, in which data from rat short-term inhalation studies are evaluated, nanomaterials are assigned to one of four main groups (MGs). The DF4nanoGrouping proved efficient in sorting out nanomaterials that could undergo hazard assessment without further testing. These are soluble nanomaterials (MG1) whose further hazard assessment should rely on read-across to the dissolved materials, high aspect-ratio nanomaterials (MG2) which could be assessed according to their potential fibre toxicity and passive nanomaterials (MG3) that only elicit effects under pulmonary overload conditions. Thereby, the DF4nanoGrouping allows identifying active nanomaterials (MG4) that merit in-depth investigations, and it provides a solid rationale for their sub-grouping to specify the further information needs. Finally, the evaluated case study materials may be used as source nanomaterials in future read-across applications. Overall, the DF4nanoGrouping is a hazard assessment strategy that strictly uses animals as a last resort.
Collapse
Affiliation(s)
| | | | | | | | - Delina Lyon
- Shell Health, Shell Oil Company, Houston TX, USA
| | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | |
Collapse
|
73
|
Maser E, Schulz M, Sauer UG, Wiemann M, Ma-Hock L, Wohlleben W, Hartwig A, Landsiedel R. In vitro and in vivo genotoxicity investigations of differently sized amorphous SiO2 nanomaterials. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:57-74. [DOI: 10.1016/j.mrgentox.2015.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/17/2015] [Accepted: 10/27/2015] [Indexed: 12/27/2022]
|
74
|
Di Cristo L, Movia D, Bianchi MG, Allegri M, Mohamed BM, Bell AP, Moore C, Pinelli S, Rasmussen K, Riego-Sintes J, Prina-Mello A, Bussolati O, Bergamaschi E. Proinflammatory Effects of Pyrogenic and Precipitated Amorphous Silica Nanoparticles in Innate Immunity Cells. Toxicol Sci 2015; 150:40-53. [PMID: 26612840 DOI: 10.1093/toxsci/kfv258] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amorphous silica nanoparticles (ASNP) can be synthetized via several processes, 2 of which are the thermal route (to yield pyrogenic silica) and the wet route from a solution containing silicate salts (to obtain precipitated, colloidal, mesoporous silica, or silica gel). Both methods of synthesis lead to ASNP that are applied as food additive (E551). Current food regulation does not require that production methods of additives are indicated on the product label, and, thus, the ASNP are listed without mentioning the production method. Recent results indicate, however, that pyrogenic ASNP are more cytotoxic than ASNP synthesized through the wet route. The present study was aimed at clarifying if 2 representative preparations of ASNP, NM-203 (pyrogenic) and NM-200 (precipitated), of comparable size, specific surface area, surface charge, and hydrodynamic radius in complete growth medium, had different effects on 2 murine macrophage cell lines (MH-S and RAW264.7 cells). Our results show that, when incubated in protein-rich fluids, NM-203 adsorbed on their surface more proteins than NM-200 and, once incubated with macrophages, elicited a greater oxidative stress, assessed from Hmox1 induction and ROS production. Flow cytometry and helium ion microscopy indicated that pyrogenic NM-203 interacted with macrophages more strongly than the precipitated NM-200 and triggered a more evident inflammatory response, evaluated with Nos2 induction, NO production and the secretion of TNF-α, IL-6 and IL-1β. Moreover, both ASNP synergized macrophage activation by bacterial lipopolysaccharide (LPS), with a higher effect observed for NM-203. In conclusion, the results presented here demonstrate that, compared to precipitated, pyrogenic ASNP exhibit enhanced interaction with serum proteins and cell membrane, and cause a larger oxidative stress and stronger proinflammatory effects in macrophages. Therefore, these 2 nanomaterials should not be considered biologically equivalent.
Collapse
Affiliation(s)
- Luisana Di Cristo
- *Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; School of Medicine and
| | - Dania Movia
- School of Medicine and AMBER centre (CRANN Institute), Trinity College Dublin, Dublin, Ireland
| | | | - Manfredi Allegri
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | | | - Alan P Bell
- Advanced Microscopy Laboratory, Trinity College Dublin, Dublin, Ireland
| | | | - Silvana Pinelli
- *Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Kirsten Rasmussen
- Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Juan Riego-Sintes
- Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Adriele Prina-Mello
- School of Medicine and AMBER centre (CRANN Institute), Trinity College Dublin, Dublin, Ireland
| | - Ovidio Bussolati
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy;
| | - Enrico Bergamaschi
- *Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
75
|
Sun B, Pokhrel S, Dunphy DR, Zhang H, Ji Z, Wang X, Wang M, Liao YP, Chang CH, Dong J, Li R, Mädler L, Brinker CJ, Nel AE, Xia T. Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping. ACS NANO 2015; 9:9357-9372. [PMID: 26200133 PMCID: PMC4687969 DOI: 10.1021/acsnano.5b03443] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and "string-of-pearl-like" aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0-7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances.
Collapse
Affiliation(s)
- Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| | - Darren R. Dunphy
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Juyao Dong
- Department of Chemistry, University of California, Los Angeles, CA 90095, United States
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| | - C. Jeffrey Brinker
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Self-Assembled Materials Department, Sandia National Laboratories, PO Box 5800 MS1349, Albuquerque, New Mexico 87185, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
- Address correspondence to or
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
- Address correspondence to or
| |
Collapse
|
76
|
Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MVDZ, Bellmann S, van der Zande M, Le Gac S, Krystek P, Peters RJB, Rietjens IMCM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 2015; 89:1469-95. [PMID: 25975987 PMCID: PMC4551544 DOI: 10.1007/s00204-015-1518-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 10/28/2022]
Abstract
The increasing use of nanoparticles in products likely results in increased exposure of both workers and consumers. Because of their small size, there are concerns that nanoparticles unintentionally cross the barriers of the human body. Several in vivo rodent studies show that, dependent on the exposure route, time, and concentration, and their characteristics, nanoparticles can cross the lung, gut, skin, and placental barrier. This review aims to evaluate the performance of in vitro models that mimic the barriers of the human body, with a focus on the lung, gut, skin, and placental barrier. For these barriers, in vitro models of varying complexity are available, ranging from single-cell-type monolayer to multi-cell (3D) models. Only a few studies are available that allow comparison of the in vitro translocation to in vivo data. This situation could change since the availability of analytical detection techniques is no longer a limiting factor for this comparison. We conclude that to further develop in vitro models to be used in risk assessment, the current strategy to improve the models to more closely mimic the human situation by using co-cultures of different cell types and microfluidic approaches to better control the tissue microenvironments are essential. At the current state of the art, the in vitro models do not yet allow prediction of absolute transfer rates but they do support the definition of relative transfer rates and can thus help to reduce animal testing by setting priorities for subsequent in vivo testing.
Collapse
Affiliation(s)
- Hedwig M. Braakhuis
- />Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Samantha K. Kloet
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Sanja Kezic
- />AMC, Coronel Institute of Occupational Health, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frieke Kuper
- />TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Margriet V. D. Z. Park
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | - Séverine Le Gac
- />UT BIOS, Lab on a Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Petra Krystek
- />Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Ruud J. B. Peters
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| | - Ivonne M. C. M. Rietjens
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Hans Bouwmeester
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
77
|
|
78
|
Hofmann T, Schneider S, Wolterbeek A, van de Sandt H, Landsiedel R, van Ravenzwaay B. Prenatal toxicity of synthetic amorphous silica nanomaterial in rats. Reprod Toxicol 2015; 56:141-6. [PMID: 25896278 DOI: 10.1016/j.reprotox.2015.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 11/29/2022]
Abstract
Synthetic amorphous silica is a nanostructured material, which is produced and used in a wide variety of technological applications and consumer products. No regulatory prenatal toxicity studies with this substance were reported yet. Therefore, synthetic amorphous silica was tested for prenatal toxicity, according to OECD guideline 414 in Wistar rats following oral (gavage) administration at the dose levels 0, 100, 300, or 1000mg/kg bw/d from gestation day 6-19. At gestation day 20, all pregnant animals were examined by cesarean section. Numbers of corpora lutea, implantations, resorptions, live and dead fetuses were counted. Fetal and placental weights were determined. Fetuses were examined for external, visceral and skeletal abnormalities. No maternal toxicity was observed at any dose level. Likewise, administration of the test compound did not alter cesarean section parameters and did not influence fetal or placental weights. No compound-related increase in the incidence of malformations or variations was observed in the fetuses. The no observed adverse effect level (NOAEL) was 1000mg/kg bw/d.
Collapse
Affiliation(s)
- Thomas Hofmann
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.
| | - Steffen Schneider
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | |
Collapse
|
79
|
Arts JHE, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 2015; 71:S1-27. [PMID: 25818068 DOI: 10.1016/j.yrtph.2015.03.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/22/2022]
Abstract
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources.
Collapse
Affiliation(s)
- Josje H E Arts
- AkzoNobel, Technology and Engineering, Arnhem, Netherlands
| | - Mackenzie Hadi
- Shell Health, Shell International B.V., The Hague, Netherlands
| | | | | | | | - Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | - David Warheit
- DuPont Haskell Global Centers for HES, Newark, DE, USA
| | | | | | | |
Collapse
|
80
|
Choi KM, Kim JH, Park JH, Kim KS, Bae GN. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2015; 12:D153-D160. [PMID: 25751663 DOI: 10.1080/15459624.2015.1009983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study aims to elucidate the exposure properties of nanoparticles (NPs; <100 nm in diameter) in semiconductor manufacturing processes. The measurements of airborne NPs were mainly performed around process equipment during fabrication processes and during maintenance. The number concentrations of NPs were measured using a water-based condensation particle counter having a size range of 10-3,000 nm. The chemical composition, size, and shape of NPs were determined by scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were <100 nm in those areas. On the other hand, particle size exceeded 100 nm in diffusion, metallization, ion implantation, and wet cleaning/etching process. The results show that the SiO2 and TiO2 are the major NPs present in semiconductor cleanroom environments.
Collapse
Affiliation(s)
- Kwang-Min Choi
- a Samsung Health Research Institute, Samsung Electronics , Yongin-City , Korea
| | | | | | | | | |
Collapse
|
81
|
Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine (Lond) 2014; 9:2557-85. [DOI: 10.2217/nnm.14.149] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To date, guidance on how to incorporate in vitro assays into integrated approaches for testing and assessment of nanomaterials is unavailable. In addressing this shortage, this review compares data from in vitro studies to results from in vivo inhalation or intratracheal instillation studies. Globular nanomaterials (ion-shedding silver and zinc oxide, poorly soluble titanium dioxide and cerium dioxide, and partly soluble amorphous silicon dioxide) and nanomaterials with higher aspect ratios (multiwalled carbon nanotubes) were assessed focusing on the Organisation for Economic Co-Operation and Development (OECD) reference nanomaterials for these substances. If in vitro assays are performed with dosages that reflect effective in vivo dosages, the mechanisms of nanomaterial toxicity can be assessed. In early tiers of integrated approaches for testing and assessment, knowledge on mechanisms of toxicity serves to group nanomaterials thereby reducing the need for animal testing.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy – Animal Welfare, Neubiberg, Germany
| | | | - Jürgen Schnekenburger
- Biomedical Technology Centre of the Medical Faculty of Westphalian Wilhelms University Münster, Münster, Germany
| | - Martin Wiemann
- IBE R&D gGmbH Institute for Lung Health, Münster, Germany
| |
Collapse
|
82
|
Panas A, Comouth A, Saathoff H, Leisner T, Al-Rawi M, Simon M, Seemann G, Dössel O, Mülhopt S, Paur HR, Fritsch-Decker S, Weiss C, Diabaté S. Silica nanoparticles are less toxic to human lung cells when deposited at the air-liquid interface compared to conventional submerged exposure. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1590-1602. [PMID: 25247141 PMCID: PMC4168966 DOI: 10.3762/bjnano.5.171] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/28/2014] [Indexed: 05/30/2023]
Abstract
BACKGROUND Investigations on adverse biological effects of nanoparticles (NPs) in the lung by in vitro studies are usually performed under submerged conditions where NPs are suspended in cell culture media. However, the behaviour of nanoparticles such as agglomeration and sedimentation in such complex suspensions is difficult to control and hence the deposited cellular dose often remains unknown. Moreover, the cellular responses to NPs under submerged culture conditions might differ from those observed at physiological settings at the air-liquid interface. RESULTS In order to avoid problems because of an altered behaviour of the nanoparticles in cell culture medium and to mimic a more realistic situation relevant for inhalation, human A549 lung epithelial cells were exposed to aerosols at the air-liquid interphase (ALI) by using the ALI deposition apparatus (ALIDA). The application of an electrostatic field allowed for particle deposition efficiencies that were higher by a factor of more than 20 compared to the unmodified VITROCELL deposition system. We studied two different amorphous silica nanoparticles (particles produced by flame synthesis and particles produced in suspension by the Stöber method). Aerosols with well-defined particle sizes and concentrations were generated by using a commercial electrospray generator or an atomizer. Only the electrospray method allowed for the generation of an aerosol containing monodisperse NPs. However, the deposited mass and surface dose of the particles was too low to induce cellular responses. Therefore, we generated the aerosol with an atomizer which supplied agglomerates and thus allowed a particle deposition with a three orders of magnitude higher mass and of surface doses on lung cells that induced significant biological effects. The deposited dose was estimated and independently validated by measurements using either transmission electron microscopy or, in case of labelled NPs, by fluorescence analyses. Surprisingly, cells exposed at the ALI were less sensitive to silica NPs as evidenced by reduced cytotoxicity and inflammatory responses. CONCLUSION Amorphous silica NPs induced qualitatively similar cellular responses under submerged conditions and at the ALI. However, submerged exposure to NPs triggers stronger effects at much lower cellular doses. Hence, more studies are warranted to decipher whether cells at the ALI are in general less vulnerable to NPs or specific NPs show different activities dependent on the exposure method.
Collapse
Affiliation(s)
- Alicja Panas
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andreas Comouth
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Harald Saathoff
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Leisner
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Marco Al-Rawi
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Simon
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Campus South, Kaiserstraße 12, 76128 Karlsruhe, Germany
| | - Gunnar Seemann
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Campus South, Kaiserstraße 12, 76128 Karlsruhe, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Campus South, Kaiserstraße 12, 76128 Karlsruhe, Germany
| | - Sonja Mülhopt
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hanns-Rudolf Paur
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Susanne Fritsch-Decker
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Silvia Diabaté
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
83
|
Braakhuis HM, Park MVDZ, Gosens I, De Jong WH, Cassee FR. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 2014; 11:18. [PMID: 24725891 PMCID: PMC3996135 DOI: 10.1186/1743-8977-11-18] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/04/2014] [Indexed: 02/02/2023] Open
Abstract
The increasing manufacture and use of products based on nanotechnology raises concerns for both workers and consumers. Various studies report induction of pulmonary inflammation after inhalation exposure to nanoparticles, which can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Each of these aspects can affect their toxicity, although it is largely unknown to what extent. The aim of the current review is to analyse published data on inhalation of nanoparticles to identify and evaluate the contribution of their physicochemical characteristics to the onset and development of pulmonary inflammation. Many physicochemical characteristics of nanoparticles affect their lung deposition, clearance, and pulmonary response that, in combination, ultimately determine whether pulmonary inflammation will occur and to what extent. Lung deposition is mainly determined by the physical properties of the aerosol (size, density, shape, hygroscopicity) in relation to airflow and the anatomy of the respiratory system, whereas clearance and translocation of nanoparticles are mainly determined by their geometry and surface characteristics. Besides size and chemical composition, other physicochemical characteristics influence the induction of pulmonary inflammation after inhalation. As some nanoparticles dissolve, they can release toxic ions that can damage the lung tissue, making dissolution rate an important characteristic that affects lung inflammation. Fibre-shaped materials are more toxic to the lungs compared to spherical shaped nanoparticles of the same chemical composition. In general, cationic nanoparticles are more cytotoxic than neutral or anionic nanoparticles. Finally, surface reactivity correlates well with observed pulmonary inflammation. With all these characteristics affecting different stages of the events leading to pulmonary inflammation, no unifying dose metric could be identified to describe pulmonary inflammation for all nanomaterials, although surface reactivity might be a useful measure. To determine the extent to which the various characteristics influence the induction of pulmonary inflammation, the effect of these characteristics on lung deposition, clearance, and pulmonary response should be systematically evaluated. The results can then be used to facilitate risk assessment by categorizing nanoparticles according to their characteristics.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
- Department of Toxicogenomics, Maastricht University, PO Box 616, Maastricht 6200MD, The Netherlands
| | - Margriet VDZ Park
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Ilse Gosens
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Wim H De Jong
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, PO Box 80.163, Utrecht 3508TD, The Netherlands
| |
Collapse
|
84
|
Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, van Ravenzwaay B. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 2014; 11:16. [PMID: 24708749 PMCID: PMC4113196 DOI: 10.1186/1743-8977-11-16] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/11/2014] [Indexed: 11/29/2022] Open
Abstract
Background A standard short-term inhalation study (STIS) was applied for hazard assessment of 13 metal oxide nanomaterials and micron-scale zinc oxide. Methods Rats were exposed to test material aerosols (ranging from 0.5 to 50 mg/m3) for five consecutive days with 14- or 21-day post-exposure observation. Bronchoalveolar lavage fluid (BALF) and histopathological sections of the entire respiratory tract were examined. Pulmonary deposition and clearance and test material translocation into extra-pulmonary organs were assessed. Results Inhaled nanomaterials were found in the lung, in alveolar macrophages, and in the draining lymph nodes. Polyacrylate-coated silica was also found in the spleen, and both zinc oxides elicited olfactory epithelium necrosis. None of the other nanomaterials was recorded in extra-pulmonary organs. Eight nanomaterials did not elicit pulmonary effects, and their no observed adverse effect concentrations (NOAECs) were at least 10 mg/m3. Five materials (coated nano-TiO2, both ZnO, both CeO2) evoked concentration-dependent transient pulmonary inflammation. Most effects were at least partially reversible during the post-exposure period. Based on the NOAECs that were derived from quantitative parameters, with BALF polymorphonuclear (PMN) neutrophil counts and total protein concentration being most sensitive, or from the severity of histopathological findings, the materials were ranked by increasing toxic potency into 3 grades: lower toxic potency: BaSO4; SiO2.acrylate (by local NOAEC); SiO2.PEG; SiO2.phosphate; SiO2.amino; nano-ZrO2; ZrO2.TODA; ZrO2.acrylate; medium toxic potency: SiO2.naked; higher toxic potency: coated nano-TiO2; nano-CeO2; Al-doped nano-CeO2; micron-scale ZnO; coated nano-ZnO (and SiO2.acrylate by systemic no observed effect concentration (NOEC)). Conclusion The STIS revealed the type of effects of 13 nanomaterials, and micron-scale ZnO, information on their toxic potency, and the location and reversibility of effects. Assessment of lung burden and material translocation provided preliminary biokinetic information. Based upon the study results, the STIS protocol was re-assessed and preliminary suggestions regarding the grouping of nanomaterials for safety assessment were spelled out.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Du Z, Zhao D, Jing L, Cui G, Jin M, Li Y, Liu X, Liu Y, Du H, Guo C, Zhou X, Sun Z. Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovasc Toxicol 2014; 13:194-207. [PMID: 23322373 DOI: 10.1007/s12012-013-9198-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this work was to investigate the cardiovascular toxicity of different sizes and different dosages of silica nanoparticles in Wistar rats. The three silica nanoparticles (30, 60, and 90 nm) and one fine silica particles (600 nm) at three doses of 2, 5, and 10 (mg/Kg bw) were used in the present experiment. After intratracheal instillation for a total of 16 times, concentration of Si in hearts and serum was measured by inductively coupled plasma optical emission spectrometer. The hematology parameters were analyzed by an automated hematology analyzer, and the inflammatory reaction, oxidative stress, endothelial dysfunction, and the myocardial enzymes in serum were measured by kits. Our results showed intratracheal-instilled silica nanoparticles could pass through the alveolar-capillary barrier into systemic circulation. Concentration of Si in the heart and serum depended on the particles size and dosage. The levels of reactive oxygen species (ROS) at 5, 10 mg/Kg bw of the three silica nanoparticles were higher than the fine silica particles. Blood levels of inflammation-related high-sensitivity C-reactive protein and cytokines such as interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha were increased after exposure to three silica nanoparticles at 10 mg/Kg bw. Moreover, the levels of IL-1β and IL-6 at 10 mg/Kg bw of silica nanoparticles (30 nm) were higher than the fine silica particles. Significant decrease in superoxide dismutase, glutathione peroxidase and significant increase in malondialdehyde were observed at 10 mg/Kg bw of the three silica nanoparticles. A significant decrease in nitric oxide (NO) production was induced which coincided with the reduction of nitric oxide synthase (NOS) activity and the excessive generation of ROS in rats. The levels of intercellular adhesion molecule-l and vascular cell adhesion molecule-l elevated significantly after exposure to three silica nanoparticles at 10 mg/Kg bw, which are considered as early steps of endothelial dysfunction. We conclude that cardiovascular toxicity of silica nanoparticles could be related to the particles size and dosage. Oxidative stress could be involved in inflammatory reaction and endothelial dysfunction, all of which could aggravate cardiovascular toxicology. In addition, endothelial NO/NOS system disorder caused by nanoparticles could be one of the mechanisms for endothelial dysfunction.
Collapse
Affiliation(s)
- Zhongjun Du
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Horie M, Nishio K, Kato H, Endoh S, Fujita K, Nakamura A, Hagihara Y, Yoshida Y, Iwahashi H. Evaluation of cellular effects of silicon dioxide nanoparticles. Toxicol Mech Methods 2014; 24:196-203. [PMID: 24392881 DOI: 10.3109/15376516.2013.879505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Silica nanoparticles (nSiO2s) are an important type of manufactured nanoparticles. Although there are some reports about the cytotoxicity of nSiO2, the association between physical and chemical properties of nSiO2s and their cellular effects is still unclear. In this study, we examined the correlation between the physiochemical properties and cellular effects of three kinds of amorphous nSiO2s; sub-micro-scale amorphous SiO2, and micro-scale amorphous and crystalline SiO2 particles. The SiO2 particles were dispersed in culture medium and applied to HaCaT human keratinocytes and A549 human lung carcinoma cells. nSiO2s showed stronger protein adsorption than larger SiO2 particles. Moreover, the cellular effects of SiO2 particles were independent of the particle size and crystalline phase. The extent of cell membrane damage and intracellular ROS levels were different among nSiO2s. Upon exposure to nSiO2s, some cells released lactate dehydrogenase (LDH), whereas another nSiO2 did not induce LDH release. nSiO2s caused a slight increase in intracellular ROS levels. These cellular effects were independent of the specific surface area and primary particle size of the nSiO2s. Additionally, association of solubility and protein adsorption ability of nSiO2 to its cellular effects seemed to be small. Taken together, our data suggest that nSiO2s do not exert potent cytotoxic effects on cells in culture, especially compared to the effects of micro-scale SiO2 particles. Further studies are needed to address the role of surface properties of nSiO2s on cellular processes and cytotoxicity.
Collapse
Affiliation(s)
- Masanori Horie
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health , Fukuoka , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Rancan F, Blume-Peytavi U, Vogt A. Utilization of biodegradable polymeric materials as delivery agents in dermatology. Clin Cosmet Investig Dermatol 2014; 7:23-34. [PMID: 24470766 PMCID: PMC3891488 DOI: 10.2147/ccid.s39559] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biodegradable polymeric materials are ideal carrier systems for biomedical applications. Features like controlled and sustained delivery, improved drug pharmacokinetics, reduced side effects and safe degradation make the use of these materials very attractive in a lot of medical fields, with dermatology included. A number of studies have shown that particle-based formulations can improve the skin penetration of topically applied drugs. However, for a successful translation of these promising results into a clinical application, a more rational approach is needed to take into account the different properties of diseased skin and the fate of these polymeric materials after topical application. In fact, each pathological skin condition poses different challenges and the way diseased skin interacts with polymeric carriers might be markedly different to that of healthy skin. In most inflammatory skin conditions, the skin's barrier is impaired and the local immune system is activated. A better understanding of such mechanisms has the potential to improve the efficacy of carrier-based dermatotherapy. Such knowledge would allow the informed choice of the type of polymeric carrier depending on the skin condition to be treated, the type of drug to be loaded, and the desired release kinetics. Furthermore, a better control of polymer degradation and release properties in accordance with the skin environment would improve the safety and the selectivity of drug release. This review aims at summarizing the current knowledge on how polymeric delivery systems interact with healthy and diseased skin, giving an overview of the challenges that different pathological skin conditions pose to the development of safer and more specific dermatotherapies.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
88
|
Human health risk of ingested nanoparticles that are added as multifunctional agents to paints: an in vitro study. PLoS One 2013; 8:e83215. [PMID: 24358264 PMCID: PMC3865187 DOI: 10.1371/journal.pone.0083215] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/01/2013] [Indexed: 01/10/2023] Open
Abstract
Microorganisms growing on painted surfaces are not only an aesthetic problem, but also actively contribute to the weathering and deterioration of materials. A widely used strategy to combat microbial colonization is the addition of biocides to the paint. However, ecotoxic, non-degradable biocides with a broad protection range are now prohibited in Europe, so the paint industry is considering engineered nanoparticles (ENPs) as an alternative biocide. There is concern that ENPs in paint might be released in run-off water and subsequently consumed by animals and/or humans, potentially coming into contact with cells of the gastrointestinal tract and affecting the immune system. Therefore, in the present study we evaluated the cytotoxic effects of three ENPs (nanosilver, nanotitanium dioxide and nanosilicon dioxide) that have a realistic potential for use in paints in the near future. When exposed to nanotitanium dioxide and nanosilicon dioxide in concentrations up to 243 µg/mL for 48 h, neither the gastrointestinal cells (CaCo-2) nor immune system cells (Jurkat) were significantly affected. However, when exposed to nanosilver, several cell parameters were affected, but far less than by silver ions used as a control. No differences in cytotoxicity were observed when cells were exposed to ENP-containing paint particles, compared with the same paint particles without ENPs. Paint particles containing ENPs did not affect cell morphology, the release of reactive oxygen species or cytokines, cell activity or cell death in a different manner to the same paint particles without ENPs. The results suggest that paints doped with ENPs do not pose an additional acute health hazard for humans.
Collapse
|
89
|
Rancan F, Nazemi B, Rautenberg S, Ryll M, Hadam S, Gao Q, Hackbarth S, Haag SF, Graf C, Rühl E, Blume-Peytavi U, Lademann J, Vogt A, Meinke MC. Ultraviolet radiation and nanoparticle induced intracellular free radicals generation measured in human keratinocytes by electron paramagnetic resonance spectroscopy. Skin Res Technol 2013; 20:182-93. [DOI: 10.1111/srt.12104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 01/18/2023]
Affiliation(s)
- F. Rancan
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - B. Nazemi
- Department of Dermatology and Allergy; Center of Experimental and Applied Cutaneous Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - S. Rautenberg
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - M. Ryll
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - S. Hadam
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Q. Gao
- Physikalische Chemie; Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - S. Hackbarth
- Photobiophysik; Institut für Physik; Humboldt Universität Berlin; Berlin Germany
| | - S. F. Haag
- Department of Dermatology and Allergy; Center of Experimental and Applied Cutaneous Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - C. Graf
- Physikalische Chemie; Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - E. Rühl
- Physikalische Chemie; Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - U. Blume-Peytavi
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Lademann
- Department of Dermatology and Allergy; Center of Experimental and Applied Cutaneous Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - A. Vogt
- Department of Dermatology and Allergy; Clinical Research Center for Hair and Skin Science; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - M. C. Meinke
- Department of Dermatology and Allergy; Center of Experimental and Applied Cutaneous Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
90
|
Polyak MJ, Vivithanaporn P, Maingat FG, Walsh JG, Branton W, Cohen EA, Meeker R, Power C. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J 2013; 27:2829-44. [PMID: 23608145 DOI: 10.1096/fj.13-227868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.
Collapse
Affiliation(s)
- Maria J Polyak
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Comparative cytological responses of lung epithelial and pleural mesothelial cells following in vitro exposure to nanoscale SiO2. Toxicol In Vitro 2013; 27:24-33. [DOI: 10.1016/j.tiv.2012.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/20/2012] [Accepted: 09/06/2012] [Indexed: 11/23/2022]
|
92
|
Choi KM, Kim TH, Kim KS, Kim SG. Hazard identification of powder generated from a chemical vapor deposition process in the semiconductor manufacturing industry. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2013; 10:D1-D5. [PMID: 23130679 DOI: 10.1080/15459624.2012.734274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Kwang-Min Choi
- Samsung Health Research Institute, Samsung Electronics Co. Ltd., Yongin-City, Gyeonggi-do, Republic of Korea
| | | | | | | |
Collapse
|
93
|
Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72hour and 7day exposures to commercial silica nanoparticles. Toxicol Appl Pharmacol 2012; 263:89-101. [DOI: 10.1016/j.taap.2012.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/27/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022]
|
94
|
Karakoti A, Munusamy P, Hostetler K, Kodali V, Kuchibhatla S, Orr G, Pounds J, Teeguarden J, Thrall B, Baer D. Preparation and Characterization Challenges to Understanding Environmental and Biological Impacts of Nanoparticles. SURF INTERFACE ANAL 2012; 44:882-889. [PMID: 23430137 PMCID: PMC3575181 DOI: 10.1002/sia.5006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Increasingly, it is recognized that understanding and predicting nanoparticle behavior is often limited by the degree to which the particles can be reliably produced and adequately characterized. Two examples that demonstrate how sample preparation methods and processing history may significantly impact particle behavior are: 1) an examination of cerium oxide (ceria) particles reported in the literature in relation to the biological responses observed and 2) observations related that influence synthesis and aging of ceria nanoparticles. Examining data from the literature for ceria nanoparticles suggests that thermal history is one factor that has a strong influence on biological impact. Thermal processing may alter many physicochemical properties of the particles, including density, crystal structure, and the presence of surface contamination. However, these properties may not be sufficiently recorded or reported to determine the ultimate source of an observed impact. A second example shows the types of difficulties that can be encountered in efforts to apply a well-studied synthesis route to producing well-defined particles for biological studies. These examples and others further highlight the importance of characterizing particles thoroughly and recording details of particle processing and history that too often are underreported.
Collapse
Affiliation(s)
- A.S. Karakoti
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - P. Munusamy
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - K Hostetler
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - V. Kodali
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - S. Kuchibhatla
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - G. Orr
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - J.G. Pounds
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - J.G. Teeguarden
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - B.D. Thrall
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| | - D.R. Baer
- Pacific Northwest National Laboratory, Richland Washington, 99354, USA
| |
Collapse
|
95
|
Michel K, Scheel J, Karsten S, Stelter N, Wind T. Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation. Nanotoxicology 2012; 7:974-88. [PMID: 22548260 PMCID: PMC3741016 DOI: 10.3109/17435390.2012.689881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since nanomaterials are a heterogeneous group of substances used in various applications, risk assessment needs to be done on a case-by-case basis. Here the authors assess the risk (hazard and exposure) of a glass cleaner with synthetic amorphous silicon dioxide (SAS) nanoparticles during production and consumer use (spray application). As the colloidal material used is similar to previously investigated SAS, the hazard profile was considered to be comparable. Overall, SAS has a low toxicity. Worker exposure was analysed to be well controlled. The particle size distribution indicated that the aerosol droplets were in a size range not expected to reach the alveoli. Predictive modelling was used to approximate external exposure concentrations. Consumer and environmental exposure were estimated conservatively and were not of concern. It was concluded based on the available weight-of-evidence that the production and application of the glass cleaner is safe for humans and the environment under intended use conditions.
Collapse
Affiliation(s)
- Karin Michel
- Henkel AG & Co. KGaA, Corporate Scientific Services - Toxicology , Düsseldorf , Germany.
| | | | | | | | | |
Collapse
|
96
|
Landsiedel R, Ma-Hock L, Haussmann HJ, van Ravenzwaay B, Kayser M, Wiench K. Inhalation studies for the safety assessment of nanomaterials: status quo and the way forward. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:399-413. [PMID: 22639437 DOI: 10.1002/wnan.1173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While technical and medical potential offered by nanotechnologies increase, the safety assessment of engineered nanomaterials (NMs) needs to follow this pace. Inhalation is a major route of occupational and environmental exposure, and is most relevant for most of the respective safety assessment studies. Control and generation of aerosol from the test materials for this route of administration are technically demanding, and not surprisingly, there are relatively few NMs tested in toxicokinetic, short-term, and subchronic inhalation studies. These studies were in part adapted to the peculiarities of inhaled NMs, but few were also conducted according to organization for economic co-operation and development (OECD) test guidelines. Inhalation studies on the potential to develop chronic diseases, or studies to check the potential analogy to cardiovascular diseases associated with adverse health effects from ambient air pollution, are largely missing. On the way forward, appropriate inhalation studies need to be performed on a number of NMs to assess their hazards and to provide a sound database for correlation and validation of alternative in vitro methods. Moreover, these studies can potentially aid in the grouping of different NMs based on their biokinetics or biological effects. For carcinogenic and cardiovascular effects, research studies are needed to verify-or disprove-the relevance and the mechanisms by which NMs contribute to these effects.
Collapse
|
97
|
Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol 2012; 86:1137-51. [DOI: 10.1007/s00204-012-0834-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
|
98
|
Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 2012; 294:61-79. [PMID: 22349641 DOI: 10.1016/j.tox.2012.02.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/16/2022]
Abstract
Synthetic amorphous silica (SAS), in the form of pyrogenic (fumed), precipitated, gel or colloidal SAS, has been used in a wide variety of industrial and consumer applications including food, cosmetics and pharmaceutical products for many decades. Based on extensive physico-chemical, ecotoxicology, toxicology, safety and epidemiology data, no environmental or health risks have been associated with these materials if produced and used under current hygiene standards and use recommendations. With internal structures in the nanoscale size range, pyrogenic, precipitated and gel SAS are typical examples of nanostructured materials as recently defined by the International Organisation for Standardisation (ISO). The manufacturing process of these SAS materials leads to aggregates of strongly (covalently) bonded or fused primary particles. Weak interaction forces (van der Waals interactions, hydrogen bonding, physical adhesion) between aggregates lead to the formation of micrometre (μm)-sized agglomerates. Typically, isolated nanoparticles do not occur. In contrast, colloidal SAS dispersions may contain isolated primary particles in the nano-size range which can be considered nano-objects. The size of the primary particle resulted in the materials often being considered as "nanosilica" and in the inclusion of SAS in research programmes on nanomaterials. The biological activity of SAS can be related to the particle shape and surface characteristics interfacing with the biological milieu rather than to particle size. SAS adsorbs to cellular surfaces and can affect membrane structures and integrity. Toxicity is linked to mechanisms of interactions with outer and inner cell membranes, signalling responses, and vesicle trafficking pathways. Interaction with membranes may induce the release of endosomal substances, reactive oxygen species, cytokines and chemokines and thus induce inflammatory responses. None of the SAS forms, including colloidal nano-sized particles, were shown to bioaccumulate and all disappear within a short time from living organisms by physiological excretion mechanisms with some indications that the smaller the particle size, the faster the clearance is. Therefore, despite the new nomenclature designating SAS a nanomaterial, none of the recent available data gives any evidence for a novel, hitherto unknown mechanism of toxicity that may raise concerns with regard to human health or environmental risks. Taken together, commercial SAS forms (including colloidal silicon dioxide and surface-treated SAS) are not new nanomaterials with unknown properties, but are well-studied materials that have been in use for decades.
Collapse
Affiliation(s)
- Claudia Fruijtier-Pölloth
- CATS Consultants GmbH, Toxicology and Preclinical Affairs, Ussenried 7, D-87463 Dietmannsried, Germany.
| |
Collapse
|
99
|
Panas A, Marquardt C, Nalcaci O, Bockhorn H, Baumann W, Paur HR, Mülhopt S, Diabaté S, Weiss C. Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology 2012; 7:259-73. [PMID: 22276741 DOI: 10.3109/17435390.2011.652206] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cell culture studies, foetal calf serum (FCS) comprising numerous different proteins is added, which might coat the surface of engineered nanomaterials (ENMs) and thus could profoundly alter their biological activities. In this study, a panel of industrially most relevant metal oxide nanoparticles (NPs) was screened for toxic effects in A549 lung epithelial cells and RAW264.7 macrophages in the presence and absence of FCS. In medium without FCS amorphous SiO2-NPs were the most cytotoxic NPs and induced a significant pro-inflammatory response in both cell types. An increased anti-oxidative response after exposure to SiO2-NPs was, however, only observed in RAW264.7 macrophages. Furthermore, pre-coating of SiO2-NPs with FCS proteins or simply bovine serum albumin abrogated responses in A549 lung epithelial cells. Thus, the protein corona bound to the surface of SiO2-NPs suppresses their biological effects, an issue which needs to be more carefully considered for in vitro-in vivo extrapolations.
Collapse
Affiliation(s)
- A Panas
- Karlsruhe Institute of Technology, Campus North, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Gehrke H, Frühmesser A, Pelka J, Esselen M, Hecht LL, Blank H, Schuchmann HP, Gerthsen D, Marquardt C, Diabaté S, Weiss C, Marko D. In vitrotoxicity of amorphous silica nanoparticles in human colon carcinoma cells. Nanotoxicology 2012; 7:274-93. [DOI: 10.3109/17435390.2011.652207] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|