51
|
Li J, Strong R, Trevisan J, Fogarty SW, Fullwood NJ, Jones KC, Martin FL. Dose-related alterations of carbon nanoparticles in mammalian cells detected using biospectroscopy: potential for real-world effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10005-10011. [PMID: 23915317 DOI: 10.1021/es4017848] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanotechnologies generate a wide range of engineered nanomaterials that enter into our ecosystem, especially carbon-based nanoparticles (CNPs). As these novel materials acquire ever increasing numbers of applications, they may pose a risk to organisms, including humans. However, our knowledge of nanoparticle-induced effects remains limited. We are yet to understand the interaction between nanoparticles and organisms, and classical toxicology fails to provide models for risk assessment. Biospectroscopy techniques were employed to identify the effects induced by real-world levels of a panel of CNPs. MCF-7 cells concentrated in S-phase or G0/G1-phase were treated for 24 h with short or long multiwalled carbon nanotubes (MWCNTs) or Fullerene (C60) at the following concentrations: 0.0025 mg/L, 0.005 mg/L, 0.01 mg/L, 0.025 mg/L, 0.05 mg/L, and 0.1 mg/L. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy coupled with computational analysis was then applied to interrogate the cells and significant dose-related effects were detected. From derived infrared spectra, distinct spectral biomarkers of cell alteration induced by each CNP type were identified. Additionally, Raman spectroscopy was applied and allowed us to determine that reactive oxygen species (ROS) were generated by CNPs. These observations highlight the potential of biospectroscopy techniques to determine CNP-induced alterations in target mammalian cells at ppb levels.
Collapse
Affiliation(s)
- Junyi Li
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
52
|
Go YM, Roede JR, Walker DI, Duong DM, Seyfried NT, Orr M, Liang Y, Pennell KD, Jones DP. Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems. Mol Cell Proteomics 2013; 12:3285-96. [PMID: 23946468 DOI: 10.1074/mcp.m113.030437] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thioredoxin (Trx) and GSH are the major thiol antioxidants protecting cells from oxidative stress-induced cytotoxicity. Redox states of Trx and GSH have been used as indicators of oxidative stress. Accumulating studies suggest that Trx and GSH redox systems regulate cell signaling and metabolic pathways differently and independently during diverse stressful conditions. In the current study, we used a mass spectrometry-based redox proteomics approach to test responses of the cysteine (Cys) proteome to selective disruption of the Trx- and GSH-dependent systems. Auranofin (ARF) was used to inhibit Trx reductase without detectable oxidation of the GSH/GSSG couple, and buthionine sulfoximine (BSO) was used to deplete GSH without detectable oxidation of Trx1. Results for 606 Cys-containing peptides (peptidyl Cys) showed that 36% were oxidized more than 1.3-fold by ARF, whereas BSO-induced oxidation of peptidyl Cys was only 10%. Mean fold oxidation of these peptides was also higher by ARF than BSO treatment. Analysis of potential functional pathways showed that ARF oxidized peptides associated with glycolysis, cytoskeleton remodeling, translation and cell adhesion. Of 60 peptidyl Cys oxidized due to depletion of GSH, 41 were also oxidized by ARF and included proteins of translation and cell adhesion but not glycolysis or cytoskeletal remodeling. Studies to test functional correlates showed that pyruvate kinase activity and lactate levels were decreased with ARF but not BSO, confirming the effects on glycolysis-associated proteins are sensitive to oxidation by ARF. These data show that the Trx system regulates a broader range of proteins than the GSH system, support distinct function of Trx and GSH in cellular redox control, and show for the first time in mammalian cells selective targeting peptidyl Cys and biological pathways due to deficient function of the Trx system.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Roede JR, Uppal K, Liang Y, Promislow DEL, Wachtman LM, Jones DP. Characterization of plasma thiol redox potential in a common marmoset model of aging. Redox Biol 2013; 1:387-93. [PMID: 24024176 PMCID: PMC3757708 DOI: 10.1016/j.redox.2013.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 11/25/2022] Open
Abstract
Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus) is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys), cystine (CySS), glutathione (GSH) and glutathione disulfide (GSSG). Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (EhCySS) is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (Eh) to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS) to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging. Characterization of the Common Marmoset as a model for aging research. Plasma thiol redox measurements in marmosets ranging in age from 2–16 years. Similar to humans, marmosets exhibit age-related alterations in plasma thiol redox metabolites. Marmoset redox data can be used to classify humans as young or old.
Collapse
Affiliation(s)
- James R Roede
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges.
Collapse
Affiliation(s)
- Young-Mi Go
- From the Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | |
Collapse
|
55
|
Pillay CS, Hofmeyr JH, Mashamaite LN, Rohwer JM. From top-down to bottom-up: computational modeling approaches for cellular redoxin networks. Antioxid Redox Signal 2013; 18:2075-86. [PMID: 23249367 DOI: 10.1089/ars.2012.4771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Thioredoxin, glutaredoxin, and peroxiredoxin systems play critical roles in a large number of redox-sensitive cellular processes. These systems are linked to each other by coupled redox cycles and common reaction intermediates into a larger network. Given the scale and connectivity of this network, computational approaches are required to analyze its dynamics and organization. RECENT ADVANCES Theoretical advances, as well as new redox proteomic methods, have led to the development of both top-down and bottom-up systems biology approaches to analyze the these systems and the network as a whole. Top-down approaches have been based on modifications to the Nernst equation or on graph theoretical approaches, while bottom-up approaches have been based on kinetic or stoichiometric modeling techniques. CRITICAL ISSUES This review will consider the rationale behind these approaches and focus on their advantages and limitations. Further, the review will discuss modeling standards to ensure model accuracy and availability. FUTURE DIRECTIONS Top-down and bottom-up approaches have distinct strengths and limitations in describing cellular redoxin networks. The availability of methods to overcome these limitations, together with the adoption of common modeling standards, is expected to increase the pace of model-led discovery within the redox biology field.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of Kwa-Zulu Natal, Scottsville, South Africa.
| | | | | | | |
Collapse
|
56
|
Abstract
Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
57
|
Go YM, Duong DM, Peng J, Jones DP. Protein Cysteines Map to Functional Networks According to Steady-state Level of Oxidation. ACTA ACUST UNITED AC 2013; 4:196-209. [PMID: 22605892 DOI: 10.4172/jpb.1000190] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cysteine (Cys) proteome serves critical roles in protein structure, function and regulation, and includes key targets in oxidative mechanisms of disease. Thioredoxins maintain Cys residues in thiol forms, and previous research shows that the redox potential of thioredoxin in mitochondria and nuclei is more reduced than cytoplasm, suggesting that proteins in these compartments may have different steady-state oxidation. This study measured fractional oxidation of 641 peptidyl Cys residues from 333 proteins in HT29 cells by mass spectrometry. Average oxidation of cytoplasmic, nuclear and mitochondrial proteins was similar (15.8, 15.5, 14%, respectively). Pathway analysis showed that more reduced cytoplasmic Cys were in proteins associated with the cytoskeleton, more reduced nuclear Cys with Ran signaling and RNA post-transcriptional modifcation, and more reduced mitochondrial Cys with energy metabolism, cell growth and cell proliferation. More oxidized cytoplasmic Cys included associations with PI3/Akt, Myc-mediated apoptosis and 14-3-3-mediated signaling. Weaker associations of oxidized nuclear and mitochondrial Cys occurred with granzyme B signaling and intermediary metabolism, respectively. Thus, steady-state peptidyl Cys oxidation is associated with functional pathways rather than simply with organellar distribution. This suggests that oxidative mechanisms of disease could target functional pathways or networks rather than individual proteins or subcellular compartments.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory Proteomics Service Center, Emory University, Atlanta, Georgia 30322 USA
| | | | | | | |
Collapse
|
58
|
Corkey BE, Shirihai O. Metabolic master regulators: sharing information among multiple systems. Trends Endocrinol Metab 2012; 23:594-601. [PMID: 22939743 PMCID: PMC3502692 DOI: 10.1016/j.tem.2012.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/17/2012] [Accepted: 07/21/2012] [Indexed: 12/14/2022]
Abstract
Obesity and diabetes are caused by defects in metabolically sensitive tissues. Attention has been paid to insulin resistance as the key relevant pathosis, with a detailed focus on signal transduction pathways in metabolic tissues. Evidence exists to support an important role for each tissue in metabolic homeostasis and a potential causative role in both diabetes and obesity. The redox metabolome, that coordinates tissue responses and reflects shared control and regulation, is our focus. Consideration is given to the possibility that pathosis results from contributions of all relevant tissues, by virtue of a circulating communication system. Validation of this model would support simultaneous regulation of all collaborating metabolic organs through changes in the circulation, regardless of whether change was initiated exogenously or by a single organ.
Collapse
Affiliation(s)
- Barbara E Corkey
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
59
|
The fairytale of the GSSG/GSH redox potential. Biochim Biophys Acta Gen Subj 2012; 1830:3139-42. [PMID: 23127894 DOI: 10.1016/j.bbagen.2012.10.020] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The term GSSG/GSH redox potential is frequently used to explain redox regulation and other biological processes. SCOPE OF REVIEW The relevance of the GSSG/GSH redox potential as driving force of biological processes is critically discussed. It is recalled that the concentration ratio of GSSG and GSH reflects little else than a steady state, which overwhelmingly results from fast enzymatic processes utilizing, degrading or regenerating GSH. MAJOR CONCLUSIONS A biological GSSG/GSH redox potential, as calculated by the Nernst equation, is a deduced electrochemical parameter based on direct measurements of GSH and GSSG that are often complicated by poorly substantiated assumptions. It is considered irrelevant to the steering of any biological process. GSH-utilizing enzymes depend on the concentration of GSH, not on [GSH](2), as is predicted by the Nernst equation, and are typically not affected by GSSG. Regulatory processes involving oxidants and GSH are considered to make use of mechanistic principles known for thiol peroxidases which catalyze the oxidation of hydroperoxides by GSH by means of an enzyme substitution mechanism involving only bimolecular reaction steps. GENERAL SIGNIFICANCE The negligibly small rate constants of related spontaneous reactions as compared with enzyme-catalyzed ones underscore the superiority of kinetic parameters over electrochemical or thermodynamic ones for an in-depth understanding of GSH-dependent biological phenomena. At best, the GSSG/GSH potential might be useful as an analytical tool to disclose disturbances in redox metabolism. This article is part of a Special Issue entitled Cellular Functions of Glutathione.
Collapse
|
60
|
Go YM, Orr M, Jones DP. Increased nuclear thioredoxin-1 potentiates cadmium-induced cytotoxicity. Toxicol Sci 2012; 131:84-94. [PMID: 22961094 DOI: 10.1093/toxsci/kfs271] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cadmium (Cd) is a widely dispersed environmental agent that causes oxidative toxicity through mechanisms that are sensitive to thioredoxin-1 (Trx1). Trx1 is a cytoplasmic protein that translocates to nuclei during oxidative stress. Recent research shows that interaction of Trx1 with actin plays a critical role in cell survival and that increased nuclear Trx-1 potentiates proinflammatory signaling and death in cell and mouse models. These observations indicate that oxidative toxicity caused by low-dose Cd could involve disruption of actin-Trx1 interaction, nuclear Trx1 translocation, and potentiation of proinflammatory cell death mechanisms. In this study, we investigated the role of nuclei-localized Trx1 in Cd-induced inflammation and cytotoxicity using in vitro and in vivo models. The results show that Cd stimulated nuclear translocation of Trx1 and p65 of NF-κB. Elevation of Trx1 in nuclei in in vitro cells and kidney of transgenic mice potentiated Cd-stimulated NF-κB activation and cell death. Cd-stimulated Trx1 nuclear translocation and NF-κB activation were inhibited by cytochalasin D, an inhibitor of actin polymerization, suggesting that actin regulates Trx1 nuclear translocation and NF-κB activation by Cd. A nuclear-targeted dominant negative form of Trx1 blocked Cd-stimulated NF-κB activation and decreased cell death. Addition of zinc, known to antagonize Cd toxicity by increasing metallothionein, had no effect on Cd-stimulated nuclear translocation of Trx1 and NF-κB activation. Taken together, the results show that nuclear translocation and accumulation of redox-active Trx1 in nuclei play an important role in Cd-induced inflammation and cell death.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
61
|
Siore AM, Parker RE, Cuppels C, Thorn N, Hansen JM, Stecenko AA, Brigham KL. The role of mitochondrial oxidation in endotoxin-induced liver-dependent swine pulmonary edema. Pulm Pharmacol Ther 2012; 25:407-12. [PMID: 22925572 DOI: 10.1016/j.pupt.2012.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/23/2012] [Accepted: 08/09/2012] [Indexed: 01/11/2023]
Abstract
UNLABELLED We reported previously studies in an in situ perfused swine preparation demonstrating that endotoxemia induced lung injury required the presence of the liver and that the response was accompanied by oxidative stress. To determine whether lung and liver mitochondrial oxidative stress was important to the response, we compared the effects of equimolar amounts of two antioxidants, n-acetylcysteine, which does not replenish mitochondrial glutathione, and procysteine which does, on endotoxemia induced lung injury in the swine preparation. In a swine perfused liver-lung preparation, we measured physiologic, biochemical and cellular responses of liver and lung to endotoxemia with and without the drugs. Endotoxemia caused oxidation of the mitochondria-specific protein, thioredoxin-2, in both the lungs and the liver. Procysteine reduced thioredoxin-2 oxidation, attenuated hemodynamic, gas exchange, hepatocellular dysfunction, and cytokine responses and prevented lung edema. n-acetylcysteine had more modest effects and did not prevent lung edema. CONCLUSIONS We conclude that mitochondrial oxidation may be critical to the pathogenesis of endotoxemia-induced liver-dependent lung injury and that choices of antioxidant therapy for such conditions must consider the desired subcellular target in order to be optimally effective.
Collapse
Affiliation(s)
- Amsel M Siore
- Center for Translational Research in the Lungs, McKelvey Center for Lung Transplantation, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and Predictive Health Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Reactive oxygen species in health and disease. J Biomed Biotechnol 2012; 2012:936486. [PMID: 22927725 PMCID: PMC3424049 DOI: 10.1155/2012/936486] [Citation(s) in RCA: 459] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
During the past decades, it became obvious that reactive oxygen species (ROS) exert a multitude of biological effects covering a wide spectrum that ranges from physiological regulatory functions to damaging alterations participating in the pathogenesis of increasing number of diseases. This review summarizes the key roles played by the ROS in both health and disease. ROS are metabolic products arising from various cells; two cellular organelles are intimately involved in their production and metabolism, namely, the endoplasmic reticulum and the mitochondria. Updates on research that tremendously aided in confirming the fundamental roles of both organelles in redox regulation will be discussed as well. Although not comprehensive, this review will provide brief perspective on some of the current research conducted in this area for better understanding of the ROS actions in various conditions of health and disease.
Collapse
|
63
|
Lichtenfels R, Mougiakakos D, Johansson CC, Dressler SP, Recktenwald CV, Kiessling R, Seliger B. Comparative expression profiling of distinct T cell subsets undergoing oxidative stress. PLoS One 2012; 7:e41345. [PMID: 22911781 PMCID: PMC3401147 DOI: 10.1371/journal.pone.0041345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/20/2012] [Indexed: 12/28/2022] Open
Abstract
The clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response. In order to better define the key pathways/proteins involved in the response to oxidative stress a comparative 2-DE-based proteome analysis of naïve CD45RA+ and their memory/effector CD45RO+ T cell counterparts in the presence and absence of low dose hydrogen peroxide (H2O2) was performed in this pilot study. Based on the profiling data of these T cell subpopulations under the various conditions, a series of differentially expressed spots were defined, members thereof identified by mass spectrometry and subsequently classified according to their cellular function and localization. Representative targets responding to oxidative stress including proteins involved in signaling pathways, in regulating the cellular redox status as well as in shaping/maintaining the structural cell integrity were independently verified at the transcript and protein level under the same conditions in both T cell subsets. In conclusion the resulting profiling data describe complex, oxidative stress-induced, but not strictly concordant changes within the respective expression profiles of CD45RA+ and CD45RO+ T cells. Some of the differentially expressed genes/proteins might be further exploited as potential targets toward modulating the redox capacity of the distinct lymphocyte subsets thereby providing the basis for further studies aiming at rendering them more resistant to tumor micromilieu-induced oxidative stress.
Collapse
Affiliation(s)
- Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Oncology and Pathology, Cancer Center Karolinska, Stockholm, Sweden
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Sven P. Dressler
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Rolf Kiessling
- Department of Oncology and Pathology, Cancer Center Karolinska, Stockholm, Sweden
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- * E-mail:
| |
Collapse
|
64
|
Abstract
Mitochondrial energy metabolism depends upon high-flux and low-flux electron transfer pathways. The former provide the energy to support chemiosmotic coupling for oxidative phosphorylation. The latter provide mechanisms for signaling and control of mitochondrial functions. Few practical methods are available to measure rates of individual mitochondrial electron transfer reactions; however, a number of approaches are available to measure steady-state redox potentials (E (h)) of donor/acceptor couples, and these can be used to gain insight into rate-controlling reactions as well as mitochondrial bioenergetics. Redox changes within the respiratory electron transfer pathway are quantified by optical spectroscopy and measurement of changes in autofluorescence. Low-flux pathways involving thiol/disulfide redox couples are measured by redox western blot and mass spectrometry-based redox proteomics. Together, the approaches provide the opportunity to develop integrated systems biology descriptions of mitochondrial redox signaling and control mechanisms.
Collapse
Affiliation(s)
- James R Roede
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
65
|
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-67. [PMID: 22146081 PMCID: PMC3324814 DOI: 10.1089/ars.2011.4123] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/06/2023]
Abstract
Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function.
Collapse
Affiliation(s)
- Diane E Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
66
|
Escobar J, Pereda J, López-Rodas G, Sastre J. Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 2012; 52:819-37. [PMID: 22178977 DOI: 10.1016/j.freeradbiomed.2011.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
Histone acetylation via CBP/p300 coordinates the expression of proinflammatory cytokines in the activation phase of inflammation, particularly through mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducers and activators of transcription (STAT) pathways. In contrast, histone deacetylases (HDACs) and protein phosphatases are mainly involved in the attenuation phase of inflammation. The role of reactive oxygen species (ROS) in the inflammatory cascade is much more important than expected. Mitochondrial ROS act as signal-transducing molecules that trigger proinflammatory cytokine production via inflammasome-independent and inflammasome-dependent pathways. The major source of ROS in acute inflammation seems to be NADPH oxidases, whereas NF-κB, protein phosphatases, and HDACs are the major targets of ROS and redox signaling in this process. There is a cross-talk between oxidative stress and proinflammatory cytokines through serine/threonine protein phosphatases, tyrosine protein phosphatases, and MAPKs that greatly contributes to amplification of the uncontrolled inflammatory cascade and tissue injury in acute pancreatitis. Chromatin remodeling during induction of proinflammatory genes would depend primarily on phosphorylation of transcription factors and their binding to gene promoters together with recruitment of histone acetyltransferases. PP2A should be considered a key modulator of the inflammatory cascade in acute pancreatitis through the ERK/NF-κB pathway and histone acetylation.
Collapse
Affiliation(s)
- Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
67
|
Abstract
The Banting Medal for Scientific Achievement Award is the American Diabetes Association's highest scientific award and honors an individual who has made significant, long-term contributions to the understanding of diabetes, its treatment, and/or prevention. The award is named after Nobel Prize winner Sir Frederick Banting, who codiscovered insulin treatment for diabetes. Dr. Barbara E. Corkey received the American Diabetes Association's Banting Medal for Scientific Achievement at the Association's 71st Scientific Sessions, 24-28 June 2011, San Diego, California. She presented the Banting Lecture, "Hyperinsulinemia: Cause or Consequence?" on Sunday, 26 June 2011.
Collapse
Affiliation(s)
- Barbara E Corkey
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
68
|
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:229-317. [PMID: 22878108 PMCID: PMC3904795 DOI: 10.1016/b978-0-12-394309-5.00006-7] [Citation(s) in RCA: 1473] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | |
Collapse
|
69
|
Intracellular and extracellular redox status and free radical generation in primary immune cells from children with autism. AUTISM RESEARCH AND TREATMENT 2011; 2012:986519. [PMID: 22928106 PMCID: PMC3420377 DOI: 10.1155/2012/986519] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/12/2011] [Accepted: 09/12/2011] [Indexed: 12/01/2022]
Abstract
The modulation of the redox microenvironment is an important regulator of immune cell activation and proliferation. To investigate immune cell redox status in autism we quantified the intracellular glutathione redox couple (GSH/GSSG) in resting peripheral blood mononuclear cells (PBMCs), activated monocytes and CD4 T cells and the extracellular cysteine/cystine redox couple in the plasma from 43 children with autism and 41 age-matched control children. Resting PBMCs and activated monocytes from children with autism exhibited significantly higher oxidized glutathione (GSSG) and percent oxidized glutathione equivalents and decreased glutathione redox status (GSH/GSSG). In activated CD4 T cells from children with autism, the percent oxidized glutathione equivalents were similarly increased, and GSH and GSH/GSSG were decreased. In the plasma, both glutathione and cysteine redox ratios were decreased in autistic compared to control children. Consistent with decreased intracellular and extracellular redox status, generation of free radicals was significantly elevated in lymphocytes from the autistic children. These data indicate primary immune cells from autistic children have a more oxidized intracellular and extracellular microenvironment and a deficit in glutathione-mediated redox/antioxidant capacity compared to control children. These results suggest that the loss of glutathione redox homeostasis and chronic oxidative stress may contribute to immune dysregulation in autism.
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW To review recently published research into the use of dietary cysteine and/or its derivatives as functional food supplements that will enhance antioxidant status and improve outcome in certain diseases. RECENT FINDINGS L-cysteine is now widely recognized as a conditionally essential or (indispensible) sulphur amino acid. It plays a key role in the metabolic pathways involving methionine, taurine and glutathione (GSH), and may help fight chronic inflammation by boosting antioxidant status. In stressed and inflammatory states, sulphur amino acid metabolism adapts to meet the increased requirements for cysteine as a rate-limiting substrate for GSH. Critically ill patients receiving enteral or parenteral nutrition, enriched with cysteine, exhibit decreased cysteine catabolism and improved GSH synthesis. The naturally occurring cysteine-rich proteins, whey or keratin, have the potential to be manufactured into high quality, high cysteine-containing functional foods for clinical investigation. SUMMARY Cysteine-rich proteins, such as keratin, may have advantages over the simple amino acid or its derivatives, as nutraceuticals, to safely and beneficially improve antioxidant status in health and disease.
Collapse
|
71
|
Kippner LE, Finn NA, Shukla S, Kemp ML. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase. BMC SYSTEMS BIOLOGY 2011; 5:164. [PMID: 21995976 PMCID: PMC3199260 DOI: 10.1186/1752-0509-5-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cellular clearance of reactive oxygen species is dependent on a network of tightly coupled redox enzymes; this network rapidly adapts to oxidative conditions such as aging, viral entry, or inflammation. Current widespread use of shRNA as a means to perturb specific redox couples may be misinterpreted if the targeted effects are not monitored in the context of potential global remodeling of the redox enzyme network. RESULTS Stable cell lines containing shRNA targets for glutaredoxin 1, thioredoxin 1, or glucose-6-phosphate dehydrogenase were generated in order to examine the changes in expression associated with altering cytosolic redox couples. A qRT PCR array revealed systemic off-target effects of altered antioxidant capacity and reactive oxygen species formation. Empty lentiviral particles generated numerous enzyme expression changes in comparison to uninfected cells, indicating an alteration in antioxidant capacity irrespective of a shRNA target. Of the three redox couples perturbed, glutaredoxin 1, attenuation produced the most numerous off-target effects with 10/28 genes assayed showing statistically significant changes. A multivariate analysis extracted strong co-variance between glutaredoxin 1 and peroxiredoxin 2 which was subsequently experimentally verified. Computational modeling of the peroxide clearance dynamics associated with the remodeling of the redox network indicated that the compromised antioxidant capacity compared across the knockdown cell lines was unequally affected by the changes in expression of off-target proteins. CONCLUSIONS Our results suggest that targeted reduction of redox enzyme expression leads to widespread changes in off-target protein expression, changes that are well-insulated between sub-cellular compartments, but compensatory in both the production of and protection against intracellular reactive oxygen species. Our observations suggest that the use of lentivirus can in itself have off-target effects on dynamic responses to oxidative stress due to the changes in species concentrations.
Collapse
Affiliation(s)
- Linda E Kippner
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
72
|
Zhu JW, Yuan JF, Yang HM, Wang ST, Zhang CG, Sun LL, Yang H, Zhang H. Extracellular cysteine (Cys)/cystine (CySS) redox regulates metabotropic glutamate receptor 5 activity. Biochimie 2011; 94:617-27. [PMID: 21964032 DOI: 10.1016/j.biochi.2011.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 09/15/2011] [Indexed: 01/12/2023]
Abstract
Extracellular cysteine (Cys)/cystine (CySS) redox potential (E(h)) has been shown to regulate diverse biological processes, including enzyme catalysis, gene expression, and signaling pathways for cell proliferation and apoptosis, and is sensitive to aging, smoking, and other host factors. However, the effects of extracellular Cys/CySS redox on the nervous system remain unknown. In this study, we explored the role of extracellular Cys/CySS E(h) in metabotropic glutamate receptor 5 (mGlu5) activation to understand the mechanism of its regulation of nerve cell growth and activation. We showed that the oxidized Cys/CySS redox state (0 mV) in C6 glial cells induced a significant increase in mGlu5-mediated phosphorylation of extracellular signal-regulated kinase (ERK), blocked by an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK), U0126, a nonpermeant alkylating agent, 4-acetamide-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS), and a specific mGlu5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), respectively. ERK phosphorylation under oxidized extracellular Cys/CySS E(h) was confirmed in mGlu5-overexpressed human embryonic kidney 293 (HEK293) cells. Oxidized extracellular Cys/CySS E(h) also stimulated the generation of intracellular reactive oxygen species (ROS) involved in the phosphorylation of ERK by mGlu5. Moreover, activation of mGlu5 by oxidized extracellular Cys/CySS E(h) was found to affect expression of NF-κB and inducible nitric oxide synthase (iNOS). The results also showed that extracellular Cys/CySS E(h) involved in the activation of mGlu5 controlled cell death and cell activation in neurotoxicity. In addition, plasma Cys/CySS E(h) was found to be associated with the process of Parkinson's disease (PD) in a rotenone-induced rat model of PD together with dietary deficiency and supplementation of sulfur amino acid (SAA). The effects of extracellular Cys/CySS E(h) on SAA dietary deficiency in the rotenone-induced rat model of PD was almost blocked by MPEP pretreatment, further indicating that oxidized extracellular Cys/CySS E(h) plays a role in mGlu5 activity. Taken together, the results indicate that mGlu5 can be activated by extracellular Cys/CySS redox in nerve cells, which possibly contributes to the process of PD. These in vitro and in vivo findings may aid in the development of potential new nutritional strategies that could assist in slowing the degeneration of PD.
Collapse
Affiliation(s)
- Jia Wei Zhu
- Department of Cell Biology, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Krzywanski DM, Moellering DR, Fetterman JL, Dunham-Snary KJ, Sammy MJ, Ballinger SW. The mitochondrial paradigm for cardiovascular disease susceptibility and cellular function: a complementary concept to Mendelian genetics. J Transl Med 2011; 91:1122-35. [PMID: 21647091 PMCID: PMC3654682 DOI: 10.1038/labinvest.2011.95] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial-nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success.
Collapse
Affiliation(s)
- David M Krzywanski
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
74
|
Increased inflammatory signaling and lethality of influenza H1N1 by nuclear thioredoxin-1. PLoS One 2011; 6:e18918. [PMID: 21526215 PMCID: PMC3078150 DOI: 10.1371/journal.pone.0018918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 03/25/2011] [Indexed: 01/30/2023] Open
Abstract
Background Cell culture studies show that the antioxidant thiol protein, thioredoxin-1 (Trx1), translocates to cell nuclei during stress, facilitates DNA binding of transcription factors NF-κB and glucocorticoid receptor (GR) and potentiates signaling in immune cells. Excessive proinflammatory signaling in vivo contributes to immune hyper-responsiveness and disease severity, but no studies have addressed whether nuclear Trx1 mediates such responses. Methodology/Principal Findings Transgenic mice (Tg) expressing human Trx1 (hTrx1) with added nuclear localization signal (NLS) showed broad tissue expression and nuclear localization. The role of nuclear Trx1 in inflammatory signaling was examined in Tg and wild-type (WT) mice following infection with influenza (H1N1) virus. Results showed that Tg mice had earlier and more extensive NF-κB activation, increased TNF-α and IL-6 expression, greater weight loss, slower recovery and increased mortality compared to WT. Decreased plasma glutathione (GSH) and oxidized plasma GSH/GSSG redox potential (EhGSSG) following infection in Tg mice showed that the increased nuclear thiol antioxidant caused a paradoxical downstream oxidative stress. An independent test of this nuclear reductive stress showed that glucocorticoid-induced thymocyte apoptosis was increased by NLS-Trx1. Conclusion/Significance Increased Trx1 in cell nuclei can increase severity of disease responses by potentiation of redox-sensitive transcription factor activation.
Collapse
|
75
|
Go YM, Jones DP. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med 2011; 50:495-509. [PMID: 21130865 PMCID: PMC3040416 DOI: 10.1016/j.freeradbiomed.2010.11.029] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Extracellular thiol/disulfide redox environments are highly regulated in healthy individuals. The major thiol/disulfide redox couple in human plasma is cysteine (Cys) and its disulfide form, cystine (CySS). Oxidation of this redox couple, measured as a more positive steady-state redox potential (E(h)), is associated with risk factors for cardiovascular disease (CVD), including aging, smoking, obesity, and alcohol abuse. Rodent and vascular cell studies show that the extracellular redox state of Cys/CySS (E(h)CySS) can play a vital role in controlling CVD through proinflammatory signaling. This inflammatory signaling is regulated by cell-surface protein redox state and involves mitochondrial oxidation, nuclear factor-κB activation, and elevated expression of genes for monocyte recruitment to endothelial cells. Gene array and proteomics studies reveal the global nature of redox effects, and different cell types, e.g., endothelial cells, monocytes, fibroblasts, and epithelial cells, show cell-specific redox responses with different phenotypic traits, e.g., proliferation and apoptosis, which can contribute to CVD. The critical nature of the proinflammatory redox signaling and cell biology associated with E(h)CySS supports the use of plasma levels of Cys, CySS, and E(h)CySS as key indicators of vascular health. Plasma redox-state-based pharmacologic interventions to control or improve E(h)CySS may be effective in preventing CVD onset or progression.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
76
|
Cheng X, Siow RCM, Mann GE. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid Redox Signal 2011; 14:469-87. [PMID: 20524845 DOI: 10.1089/ars.2010.3283] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes is an age-related disease associated with vascular pathologies, including severe blindness, renal failure, atherosclerosis, and stroke. Reactive oxygen species (ROS), especially mitochondrial ROS, play a key role in regulating the cellular redox status, and an overproduction of ROS may in part underlie the pathogenesis of diabetes and other age-related diseases. Cells have evolved endogenous defense mechanisms against sustained oxidative stress such as the redox-sensitive transcription factor nuclear factor E2-related factor 2 (Nrf2), which regulates antioxidant response element (ARE/electrophile response element)-mediated expression of detoxifying and antioxidant enzymes and the cystine/glutamate transporter involved in glutathione biosynthesis. We hypothesize that diminished Nrf2/ARE activity contributes to increased oxidative stress and mitochondrial dysfunction in the vasculature leading to endothelial dysfunction, insulin resistance, and abnormal angiogenesis observed in diabetes. Sustained hyperglycemia further exacerbates redox dysregulation, thereby providing a positive feedback loop for severe diabetic complications. This review focuses on the role that Nrf2/ARE-linked gene expression plays in regulating endothelial redox homeostasis in health and type 2 diabetes, highlighting recent evidence that Nrf2 may provide a therapeutic target for countering oxidative stress associated with vascular disease and aging.
Collapse
Affiliation(s)
- Xinghua Cheng
- Cardiovascular Division, School of Medicine, King's College London, London, United Kingdom
| | | | | |
Collapse
|
77
|
Jones DP, Go YM. Mapping the cysteine proteome: analysis of redox-sensing thiols. Curr Opin Chem Biol 2011; 15:103-12. [PMID: 21216657 DOI: 10.1016/j.cbpa.2010.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 01/01/2023]
Abstract
The cysteine (Cys) proteome includes 214,000 Cys with thiol and other forms. A relatively small subset functions in cell signaling, while a larger number coordinate cell functions in response to redox state. The former are redox-signaling thiols while the latter are defined as redox-sensing thiols. Bulk measurements are not very informative for systems biology because reactivity of thiols in proteins differs by seven orders of magnitude. Proteomic databases contain annotation of Cys, for example, disulfides and zinc fingers, but do not include quantitative information necessary to develop functional models. Complementary databases and Cys proteome maps are needed to describe thiol redox circuits and connect these to functional redox-dependent pathways. This article summarizes progress in quantitative redox proteomics to develop such maps.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
78
|
Abstract
Living systems have three major types of cell signalling systems that are dependent upon high-energy chemicals, redox environment and transmembranal ion-gating mechanisms. Development of integrated systems biology descriptions of cell signalling require conceptual models incorporating all three. Recent advances in redox biology show that thiol-disulphide redox systems are regulated under dynamic, nonequilibrium conditions, progressively oxidized with the life cycle of cells and distinct in terms of redox potentials amongst subcellular compartments. This article uses these observations as a basis to distinguish 'redox-sensing' mechanisms, which are more global biologic redox control mechanisms, from 'redox signalling', which involves conveyance of discrete activating or inactivating signals. Both redox sensing and redox signalling use sulphur switches, especially cysteine (Cys) residues in proteins which are sensitive to reversible oxidation, nitrosylation, glutathionylation, acylation, sulfhydration or metal binding. Unlike specific signalling mechanisms, the redox-sensing mechanisms provide means to globally affect the rates and activities of the high-energy, ion-gating and redox-signalling systems by controlling sensitivity, distribution, macromolecular interactions and mobility of signalling proteins. Effects mediated through Cys residues not directly involved in signalling means redox-sensing control can be orthogonal to the signalling mechanisms. This provides a capability to integrate signals according to cell cycle and physiologic state without fundamentally altering the signalling mechanisms. Recent findings that thiol-disulphide pools in humans are oxidized with age, environmental exposures and disease risk suggest that redox-sensing thiols could provide a central mechanistic link in disease development and progression.
Collapse
Affiliation(s)
- D P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
79
|
Abstract
Mammalian cells are highly organized to optimize function. For instance, oxidative energy-producing processes in mitochondria are sequestered away from plasma membrane redox signalling complexes and also from nuclear DNA, which is subject to oxidant-induced mutation. Proteins are unique among macromolecules in having reversible oxidizable elements, 'sulphur switches', which support dynamic regulation of structure and function. Accumulating evidence shows that redox signalling and control systems are maintained under kinetically limited steady states, which are highly displaced from redox equilibrium and distinct among organelles. Mitochondria are most reducing and susceptible to oxidation under stressed conditions, while nuclei are also reducing but relatively resistant to oxidation. Within compartments, the glutathione and thioredoxin systems serve parallel and non-redundant functions to maintain the dynamic redox balance of subsets of protein cysteines, which function in redox signalling and control. This organization allows cells to be poised to respond to cell stress but also creates sites of vulnerability. Importantly, disruption of redox organization is a common basis for disease. Research tools are becoming available to elucidate details of subcellular redox organization, and this development highlights an opportunity for a new generation of targeted antioxidants to enhance and restore redox signalling and control in disease prevention.
Collapse
Affiliation(s)
- D P Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
80
|
Siow RCM, Mann GE. Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis? Mol Aspects Med 2010; 31:468-77. [PMID: 20837051 DOI: 10.1016/j.mam.2010.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/02/2010] [Indexed: 12/14/2022]
Abstract
During the past decade nutrigenomic studies in humans, animal models and cultured cells have provided important and novel insights into the mechanisms by which dietary isoflavones afford protection against vascular dysfunction through the amelioration of oxidative modifications and upregulation of endogenous antioxidant signaling pathways. In this review, we highlight that increased generation of nitric oxide (NO) and reactive oxygen species (ROS) in the vessel wall in response to dietary isoflavones enhance the activity of antioxidant defense enzymes in endothelial and smooth muscle cells. The estrogenic properties of isoflavones are likely to contribute to the molecular mechanisms by which these compounds activate signal transduction pathways involved in sustaining endothelial function and transcriptional activation of antioxidant defense genes in vascular cells. We evaluate the recent literature that estrogenic and hormetic properties of phytoestrogens are of benefit for the maintenance of vascular function, and conclude that dietary isoflavones can protect against cardiovascular diseases by virtue of their ability to activate signaling pathways leading to increased NO bioavailability and regulation of phase II and antioxidant enzyme expression via the redox sensitive transcription factor Nrf2. In context of epigenetics and the developmental origins of adult disease, it is noteworthy that exposure to dietary soy during fetal development reduces the susceptibility to CVD and obesity in adulthood. Thus, the Nrf2/Keap1 defense pathway provides a key mechanism by which isoflavones can act as hormetic agents to modulate intracellular redox signaling in the vasculature to prolong healthspan and reduce the incidence of age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | | |
Collapse
|
81
|
Go YM, Jones DP. Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods Enzymol 2010; 474:165-79. [PMID: 20609910 DOI: 10.1016/s0076-6879(10)74010-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular thiol/disulfide redox environments are highly regulated in healthy individuals and become oxidized in disease. This oxidation affects the function of cell surface receptors, ion channels, and structural proteins. Downstream signaling due to changes in extracellular redox potential can be studied using a redox clamp in which thiol and disulfide concentrations are varied to obtain a series of controlled redox potentials. Previous applications of this approach show that cell proliferation, apoptosis, and proinflammatory signaling respond to extracellular redox potential. Furthermore, gene expression and proteomic studies reveal the global nature of redox effects, and different cell types, for example, endothelial cells, fibroblasts, monocytes, and epithelial cells, show cell-specific redox responses. Application of the redox clamp to studies of different signaling pathways could enhance the understanding of redox transitions in many aspects of normal physiology and disease.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
82
|
Roede JR, Jones DP. Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:380-90. [PMID: 20544880 PMCID: PMC5906392 DOI: 10.1002/em.20553] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial dysfunction is a global term used in the context of "unhealthy" mitochondria. In practical terms, mitochondria are extremely complex and highly adaptive in structure, chemical and enzymatic composition, subcellular distribution and functional interaction with other components of cells. Consequently, altered mitochondrial properties that are used in experimental studies as measures of mitochondrial dysfunction often provide little or no distinction between adaptive and maladaptive changes. This is especially a problem in terms of generation of oxidant species by mitochondria, wherein increased generation of superoxide anion radical (O(2*)(-)) or hydrogen peroxide (H(2)O(2)) is often considered synonymously with mitochondrial dysfunction. However, these oxidative species are signaling molecules in normal physiology so that a change in production or abundance is not a good criterion for mitochondrial dysfunction. In this review, we consider generation of reactive electrophiles and consequent modification of mitochondrial proteins as a means to define mitochondrial dysfunction. Accumulated evidence indicates that 4-hydroxynonenal (HNE) modification of proteins reflects mitochondrial dysfunction and provides an operational criterion for experimental definition of mitochondrial dysfunction. Improved means to detect and quantify mitochondrial HNE-protein adduct formation could allow its use for environmental healthrisk assessment. Furthermore, application of improved mass spectrometry-based proteomic methods will lead to further understanding of the critical targets contributing to disease risk.
Collapse
Affiliation(s)
- James R. Roede
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
83
|
Mannery YO, Ziegler TR, Park Y, Jones DP. Oxidation of plasma cysteine/cystine and GSH/GSSG redox potentials by acetaminophen and sulfur amino acid insufficiency in humans. J Pharmacol Exp Ther 2010; 333:939-47. [PMID: 20207721 PMCID: PMC2879932 DOI: 10.1124/jpet.110.166421] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/03/2010] [Indexed: 02/02/2023] Open
Abstract
Variations in plasma sulfur amino acid (SAA) pools are associated with disease risks, but little information is available about the factors affecting plasma SAA pools. Drug metabolism by glutathione (GSH) and sulfate conjugation can, in principle, represent a quantitatively important burden on SAA supply. The present study was designed to determine whether therapeutic doses of acetaminophen (APAP) alter SAA metabolism in healthy human adults. A double-blind, crossover design incorporating four treatment periods with diets providing 100% of the recommended dietary allowance (RDA) for SAA without or with APAP (15 mg/kg) and 0% RDA for SAA without or with APAP, in randomized order. After a 3-day equilibration period, chemically defined diets with 100 or 0% RDA for SAA were given for 2 complete days. On day 3, APAP or placebo was given in two successive doses (6-h interval), and timed plasma samples were collected. With SAA intake at 100% RDA, APAP administration oxidized the plasma cysteine/cystine redox potential (E(h)CySS) but not the plasma GSH/GSSG redox potential (E(h)GSSG). The extent of oxidation caused by APAP was similar to that seen with 0% SAA and no APAP. However, APAP administration with 0% SAA did not cause further oxidation beyond APAP or 0% SAA alone. In contrast, an oxidation of the plasma E(h)GSSG was apparent for SAA insufficiency only with APAP. The results suggest a need to evaluate possible effects of APAP in association with SAA insufficiency as a contributing factor in disease risk.
Collapse
Affiliation(s)
- Yanci O Mannery
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
84
|
Jones DP, Park Y, Gletsu-Miller N, Liang Y, Yu T, Accardi CJ, Ziegler TR. Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition 2010; 27:199-205. [PMID: 20471805 DOI: 10.1016/j.nut.2010.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Oxidation of plasma cysteine/cystine (Cys/CySS) redox potential (E(h)CySS) has been associated with risk factors for cardiovascular disease in humans. Cys and CySS are derived from dietary sulfur amino acids (SAA), but the specific effects of SAA depletion and repletion on Cys/CySS redox indices are unknown. The present study examined the effect of dietary SAA intake level on free Cys, free CySS, and E(h)CySS in human plasma under fasting conditions. METHODS Healthy individuals aged 18-36 y (n = 13) were equilibrated to foods providing the RDA for SAA and then fed chemically defined diets without SAA (0 mg · kg(-1) · d(-1); n = 13) followed by SAA at levels approximating the mean (56 mg · kg(-1) · d(-1); n = 8) or 99th percentile (117 mg · kg(-1) · d(-1); n = 5) intake levels of Americans. Fasting plasma samples were collected daily during 4-d study periods and analyzed for free Cys, free CySS, and the E(h)CySS. RESULTS The SAA-free diet significantly (P < 0.05) decreased plasma-free Cys concentrations and oxidized E(h)CySS values after 4 d of SAA depletion. With SAA repletion at 56 mg · kg(-1) · d(-1), plasma-free Cys increased significantly and values for E(h)CySS became more reduced. Administration of a diet providing a higher dose of SAA (117 mg · kg(-1) · d(-1)) resulted in a significantly higher level of free Cys and a more reduced E(h)CySS. CONCLUSIONS These results show that free Cys and Cys/CySS redox potential (E(h)CySS) in fasting plasma are affected by dietary SAA intake level in humans. Significant changes occur slowly over 4 d with insufficient SAA intake, but rapidly (after 1 d) with repletion.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, Georgia, USA.
| | | | | | | | | | | | | |
Collapse
|
85
|
Oshikawa J, Urao N, Kim HW, Kaplan N, Razvi M, McKinney R, Poole LB, Fukai T, Ushio-Fukai M. Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS One 2010; 5:e10189. [PMID: 20422004 PMCID: PMC2858087 DOI: 10.1371/journal.pone.0010189] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/25/2010] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS), in particular, H(2)O(2), is essential for full activation of VEGF receptor2 (VEGFR2) signaling involved in endothelial cell (EC) proliferation and migration. Extracellular superoxide dismutase (ecSOD) is a major secreted extracellular enzyme that catalyzes the dismutation of superoxide to H(2)O(2), and anchors to EC surface through heparin-binding domain (HBD). Mice lacking ecSOD show impaired postnatal angiogenesis. However, it is unknown whether ecSOD-derived H(2)O(2) regulates VEGF signaling. Here we show that gene transfer of ecSOD, but not ecSOD lacking HBD (ecSOD-DeltaHBD), increases H(2)O(2) levels in adductor muscle of mice, and promotes angiogenesis after hindlimb ischemia. Mice lacking ecSOD show reduction of H(2)O(2) in non-ischemic and ischemic limbs. In vitro, overexpression of ecSOD, but not ecSOD-DeltaHBD, in cultured medium in ECs enhances VEGF-induced tyrosine phosphorylation of VEGFR2 (VEGFR2-pY), which is prevented by short-term pretreatment with catalase that scavenges extracellular H(2)O(2). Either exogenous H(2)O(2) (<500 microM), which is diffusible, or nitric oxide donor has no effect on VEGF-induced VEGFR2-pY. These suggest that ecSOD binding to ECs via HBD is required for localized generation of extracellular H(2)O(2) to regulate VEGFR2-pY. Mechanistically, VEGF-induced VEGFR2-pY in caveolae/lipid rafts, but non-lipid rafts, is enhanced by ecSOD, which localizes at lipid rafts via HBD. One of the targets of ROS is protein tyrosine phosphatases (PTPs). ecSOD induces oxidation and inactivation of both PTP1B and DEP1, which negatively regulates VEGFR2-pY, in caveolae/lipid rafts, but not non-lipid rafts. Disruption of caveolae/lipid rafts, or PTPs inhibitor orthovanadate, or siRNAs for PTP1B and DEP1 enhances VEGF-induced VEGFR2-pY, which prevents ecSOD-induced effect. Functionally, ecSOD promotes VEGF-stimulated EC migration and proliferation. In summary, extracellular H(2)O(2) generated by ecSOD localized at caveolae/lipid rafts via HBD promotes VEGFR2 signaling via oxidative inactivation of PTPs in these microdomains. Thus, ecSOD is a potential therapeutic target for angiogenesis-dependent cardiovascular diseases.
Collapse
Affiliation(s)
- Jin Oshikawa
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Norifumi Urao
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ha Won Kim
- Department of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nihal Kaplan
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Masooma Razvi
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ronald McKinney
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Tohru Fukai
- Department of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Masuko Ushio-Fukai
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
86
|
Jones DP, Lemasters JJ, Han D, Boelsterli UA, Kaplowitz N. Mechanisms of pathogenesis in drug hepatotoxicity putting the stress on mitochondria. Mol Interv 2010; 10:98-111. [PMID: 20368370 PMCID: PMC2895369 DOI: 10.1124/mi.10.2.7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondria play key roles in aerobic life and in cell death. Thus, interference of normal mitochondrial function impairs cellular energy and lipid metabolism and leads to the unleashing of mediators of cell death. The role of mitochondria in cell death due to drug hepatotoxicity has been receiving renewed attention and it is therefore timely to assess the current status of this area.
Collapse
Affiliation(s)
- Dean P Jones
- Dept of Medicine, Emory University, 4131 Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|