51
|
UCP-3 uncoupling protein confers hypoxia resistance to renal epithelial cells and is upregulated in renal cell carcinoma. Sci Rep 2015; 5:13450. [PMID: 26304588 PMCID: PMC4548255 DOI: 10.1038/srep13450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/01/2015] [Indexed: 01/17/2023] Open
Abstract
Tumor cells can adapt to a hostile environment with reduced oxygen supply. The present study aimed to identify mechanisms that confer hypoxia resistance. Partially hypoxia/reoxygenation (H/R)-resistant proximal tubular (PT) cells were selected by exposing PT cultures to repetitive cycles of H/R. Thereafter, H/R-induced changes in mRNA and protein expression, inner mitochondrial membrane potential (ΔΨm), formation of superoxide, and cell death were compared between H/R-adapted and control PT cultures. As a result, H/R-adapted PT cells exhibited lower H/R-induced hyperpolarization of ΔΨm and produced less superoxide than the control cultures. Consequently, H/R triggered ΔΨm break-down and DNA degradation in a lower percentage of H/R-adapted than control PT cells. Moreover, H/R induced upregulation of mitochondrial uncoupling protein-3 (UCP-3) in H/R-adapted PT but not in control cultures. In addition, ionizing radiation killed a lower percentage of H/R-adapted as compared to control cells suggestive of an H/R-radiation cross-resistance developed by the selection procedure. Knockdown of UCP-3 decreased H/R- and radioresitance of the H/R-adapted cells. Finally, UCP-3 protein abundance of PT-derived clear cell renal cell carcinoma and normal renal tissue was compared in human specimens indicating upregulation of UCP-3 during tumor development. Combined, our data suggest functional significance of UCP-3 for H/R resistance.
Collapse
|
52
|
Zheng GX, Lin JT, Zheng WH, Cao J, Zhao ZJ. Energy intake, oxidative stress and antioxidant in mice during lactation. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:95-102. [PMID: 25855228 DOI: 10.13918/j.issn.2095-8137.2015.2.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reproduction is the highest energy demand period for small mammals, during which both energy intake and expenditure are increased to cope with elevated energy requirements of offspring growth and somatic protection. Oxidative stress life history theory proposed that reactive oxygen species (ROS) were produced in direct proportion to metabolic rate, resulting in oxidative stress and damage to macromolecules. In the present study, several markers of oxidative stress and antioxidants activities were examined in brain, liver, kidneys, skeletal muscle and small intestine in non-lactating (Non-Lac) and lactating (Lac) KM mice. Uncoupling protein (ucps) gene expression was examined in brain, liver and muscle. During peak lactation, gross energy intake was 254% higher in Lac mice than in Non-Lac mice. Levels of H2O2 of Lac mice were 17.7% higher in brain (P<0.05), but 21.1% (P<0.01) and 14.5% (P<0.05) lower in liver and small intestine than that of Non-Lac mice. Malonadialdehyde (MDA) levels of Lac mice were significantly higher in brain, but lower in liver, kidneys, muscle and small intestine than that of Non-Lac mice. Activity of glutathione peroxidase (GSH-PX) was significantly decreased in brain and liver in the Lac group compared with that in the Non-Lac group. Total antioxidant capacity (T-AOC) activity of Lac mice was significantly higher in muscle, but lower in kidneys than Non-Lac mice. Ucp4 and ucp5 gene expression of brain was 394% and 577% higher in Lac mice than in Non-Lac mice. These findings suggest that KM mice show tissue-dependent changes in both oxidative stress and antioxidants. Activities of antioxidants may be regulated physiologically in response to the elevated ROS production in several tissues during peak lactation. Regulations of brain ucp4 and ucp5 gene expression may be involved in the prevention of oxidative damage to the tissue.
Collapse
Affiliation(s)
- Guo-Xiao Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiang-Tao Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei-Hong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
53
|
Kiermayer C, Northrup E, Schrewe A, Walch A, de Angelis MH, Schoensiegel F, Zischka H, Prehn C, Adamski J, Bekeredjian R, Ivandic B, Kupatt C, Brielmeier M. Heart-Specific Knockout of the Mitochondrial Thioredoxin Reductase (Txnrd2) Induces Metabolic and Contractile Dysfunction in the Aging Myocardium. J Am Heart Assoc 2015; 4:e002153. [PMID: 26199228 PMCID: PMC4608093 DOI: 10.1161/jaha.115.002153] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/19/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ubiquitous deletion of thioredoxin reductase 2 (Txnrd2) in mice is embryonically lethal and associated with abnormal heart development, while constitutive, heart-specific Txnrd2 inactivation leads to dilated cardiomyopathy and perinatal death. The significance of Txnrd2 in aging cardiomyocytes, however, has not yet been examined. METHODS AND RESULTS The tamoxifen-inducible heart-specific αMHC-MerCreMer transgene was used to inactivate loxP-flanked Txnrd2 alleles in adult mice. Hearts and isolated mitochondria from aged knockout mice were morphologically and functionally analyzed. Echocardiography revealed a significant increase in left ventricular end-systolic diameters in knockouts. Fractional shortening and ejection fraction were decreased compared with controls. Ultrastructural analysis of cardiomyocytes of aged mice showed mitochondrial degeneration and accumulation of autophagic bodies. A dysregulated autophagic activity was supported by higher levels of lysosome-associated membrane protein 1 (LAMP1), microtubule-associated protein 1A/1B-light chain 3-I (LC3-I), and p62 in knockout hearts. Isolated Txnrd2-deficient mitochondria used less oxygen and tended to produce more reactive oxygen species. Chronic hypoxia inducible factor 1, α subunit stabilization and altered transcriptional and metabolic signatures indicated that energy metabolism is deregulated. CONCLUSIONS These results imply a novel role of Txnrd2 in sustaining heart function during aging and suggest that Txnrd2 may be a modifier of heart failure.
Collapse
MESH Headings
- Age Factors
- Animals
- Autophagy
- Blood Pressure
- Disease Models, Animal
- Energy Metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Heart Failure/enzymology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/metabolism
- Metabolomics/methods
- Mice, Knockout
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/ultrastructure
- Myocardial Contraction
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/ultrastructure
- Oxidative Stress
- Phenotype
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Stroke Volume
- Thioredoxin Reductase 2/deficiency
- Thioredoxin Reductase 2/genetics
- Time Factors
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Claudia Kiermayer
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Emily Northrup
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Anja Schrewe
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Axel Walch
- Reserach Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
- Chair of Experimental Genetics, Technische Universität MünchenMunich, Germany
| | - Frank Schoensiegel
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Hans Zischka
- Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
- Chair of Experimental Genetics, Technische Universität MünchenMunich, Germany
| | - Raffi Bekeredjian
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Boris Ivandic
- Department of Internal Medicine III, University of HeidelbergHeidelberg, Germany
| | - Christian Kupatt
- I. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, TU MunichMunich, Germany
- German Center for Cardiovascular Research (DZHK) partner site Munich Heart AllianceMunich, Germany
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| |
Collapse
|
54
|
Liemburg-Apers DC, Willems PHGM, Koopman WJH, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015; 89:1209-26. [PMID: 26047665 PMCID: PMC4508370 DOI: 10.1007/s00204-015-1520-y] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans.
Collapse
Affiliation(s)
- Dania C. Liemburg-Apers
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sander Grefte
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- />Department of Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
55
|
Effect of heat stress-induced production of mitochondrial reactive oxygen species on NADPH oxidase and heme oxygenase-1 mRNA levels in avian muscle cells. J Therm Biol 2015; 52:8-13. [PMID: 26267493 DOI: 10.1016/j.jtherbio.2015.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/21/2015] [Accepted: 04/29/2015] [Indexed: 11/21/2022]
Abstract
Heat stress is a major factor inducing oxidative disturbance in cells. In the present study, we investigated the mechanism of overproduction of reactive oxygen species (ROS) in cultured avian muscle cells in response to heat stress, and also focused attention on the interaction of mitochondrial superoxide anions with altered NADPH oxidase (NOX), superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) mRNA levels in heat-stressed cells. Exposure of cells to heat stress conditions (41°C, 6h) resulted in increased mitochondrial superoxide and intracellular ROS levels, and increased carbonyl protein content as compared with that of normal cells (37°C). The mitochondrial uncoupler 2,4-dinitrophenol lowered intracellular ROS levels in heat-stressed cells. Heat stress increased NOX4 mRNA and decreased HO-1 mRNA levels, while SOD1 and SOD2 mRNA levels remained relatively stable in heat-stressed cells. Addition of the superoxide scavenger 4-hydroxy TEMPO to the culture medium of heat-stressed cells restored mitochondrial superoxide and intracellular ROS levels as well as NOX4 and HO-1 mRNA levels to near-normal values. We suggest that mitochondrial superoxide production could play an influential role in augmenting oxidative damage to avian muscle cells, possibly via the up-regulation of NOX4 and down-regulation of HO-1 in heat-stressed avian muscle cells.
Collapse
|
56
|
Lightfoot AP, McArdle A, Jackson MJ, Cooper RG. In the idiopathic inflammatory myopathies (IIM), do reactive oxygen species (ROS) contribute to muscle weakness? Ann Rheum Dis 2015; 74:1340-6. [DOI: 10.1136/annrheumdis-2014-207172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/05/2015] [Indexed: 12/13/2022]
Abstract
The idiopathic inflammatory myopathies (IIMs) are a group of rare autoimmune disorders, collectively known as myositis. Affected patients present with proximal muscle weakness, which usually improves following treatment with immunosuppressants, but often incompletely so, thus many patients remain weak. IIMs are characterised histologically by inflammatory cell infiltrates into skeletal muscle and overexpression of major histocompatibility complex I on muscle cell surfaces. Although inflammatory cell infiltrates represent a major feature of myositis there is growing evidence that muscle weakness correlates only poorly with the degree of cellular infiltration, while weakness may in fact precede such infiltrations. The mechanisms underpinning such non-immune cell mediated weakness in IIM are poorly understood. Activation of the endoplasmic reticulum stress pathways appears to be a potential contributor. Data from non-muscle cells indicate that endoplasmic reticulum stress results in altered redox homeostasis capable of causing oxidative damage. In myopathological situations other than IIM, as seen in ageing and sepsis, evidence supports an important role for reactive oxygen species (ROS). Modified ROS generation is associated with mitochondrial dysfunction, depressed force generation and activation of muscle catabolic and autophagy pathways. Despite the growing evidence demonstrating a key role for ROS in skeletal muscle dysfunction in myopathologies other than IIM, no research has yet investigated the role of modified generation of ROS in inducing the weakness characteristic of IIM. This article reviews current knowledge regarding muscle weakness in the absence of immune cells in IIM, and provides a background to the potential role of modified ROS generation as a mechanism of muscle dysfunction. The authors suggest that ROS-mediated mechanisms are potentially involved in non-immune cell mediated weakness seen in IIM and outline how these mechanisms might be investigated in this context. This appears a timely strategy, given recent developments in targeted therapies which specifically modify ROS generation.
Collapse
|
57
|
Hagve M, Gjessing PF, Fuskevåg OM, Larsen TS, Irtun Ø. Skeletal muscle mitochondria exhibit decreased pyruvate oxidation capacity and increased ROS emission during surgery-induced acute insulin resistance. Am J Physiol Endocrinol Metab 2015; 308:E613-20. [PMID: 25670828 DOI: 10.1152/ajpendo.00459.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/04/2015] [Indexed: 01/01/2023]
Abstract
Development of acute insulin resistance represents a negative factor after surgery, but the underlying mechanisms are not fully understood. We investigated the postoperative changes in insulin sensitivity, mitochondrial function, enzyme activities, and release of reactive oxygen species (ROS) in skeletal muscle and liver in pigs on the 2nd postoperative day after major abdominal surgery. Peripheral and hepatic insulin sensitivity were assessed by D-[6,6-²H₂]glucose infusion and hyperinsulinemic euglycemic step clamping. Surgical trauma elicited a decline in peripheral insulin sensitivity (∼34%, P<0.01), whereas hepatic insulin sensitivity remained unchanged. Intramyofibrillar (IFM) and subsarcolemma mitochondria (SSM) isolated from skeletal muscle showed a postoperative decline in ADP-stimulated respiration (V(ADP)) for pyruvate (∼61%, P<0.05, and ∼40%, P<0.001, respectively), whereas V(ADP) for glutamate and palmitoyl-L-carnitine (PC) was unchanged. Mitochondrial leak respiration with PC was increased in SSM (1.9-fold, P<0.05) and IFM (2.5-fold, P<0.05), indicating FFA-induced uncoupling. The activity of the pyruvate dehydrogenase complex (PDC) was reduced (∼32%, P<0.01) and positively correlated to the decline in peripheral insulin sensitivity (r=0.748, P<0.05). All other mitochondrial enzyme activities were unchanged. No changes in mitochondrial function in liver were observed. Mitochondrial H₂O₂ and O₂·⁻ emission was measured spectrofluorometrically, and H₂O₂ was increased in SSM, IFM, and liver mitochondria (∼2.3-, ∼2.5-, and ∼2.3-fold, respectively, all P<0.05). We conclude that an impairment in skeletal muscle mitochondrial PDC activity and pyruvate oxidation capacity arises in the postoperative phase along with increased ROS emission, suggesting a link between mitochondrial function and development of acute postoperative insulin resistance.
Collapse
Affiliation(s)
- Martin Hagve
- Laboratory of Surgical Research, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway;
| | - Petter Fosse Gjessing
- Laboratory of Surgical Research, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Digestive Surgery, University Hospital of North Norway, Tromsø, Norway; and
| | - Ole Martin Fuskevåg
- Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North Norway, Tromsø, Norway
| | - Terje S Larsen
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Øivind Irtun
- Laboratory of Surgical Research, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Digestive Surgery, University Hospital of North Norway, Tromsø, Norway; and
| |
Collapse
|
58
|
Acosta A, Camilleri M, Shin A, Vazquez-Roque MI, Iturrino J, Lanza IR, Nair KS, Burton D, O'Neill J, Eckert D, Carlson P, Vella A, Zinsmeister AR. Association of UCP-3 rs1626521 with obesity and stomach functions in humans. Obesity (Silver Spring) 2015; 23:898-906. [PMID: 25755013 PMCID: PMC4380685 DOI: 10.1002/oby.21039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine the association of gene variants of uncoupling proteins (UCP)-2 and -3 with obesity and gastrointestinal (GI) traits. METHODS In 255 overweight or obese adults, the associations of gene variants in UCP-2 (-3474, rs659366) and UCP-3 (rs1626521, rs2075577, rs15763) with body weight (BW) and GI traits were studied. Gene variants were genotyped by TaqMan® assay. The associations of genotypes with BW and GI traits (gastric emptying, gastric volume, satiety by buffet meal, satiation by nutrient drink test and GI hormones) were assessed using ANOVA corrected for false detection rate (FDR). RESULTS A novel UCP-3 gene variant, rs1626521, was identified; it was associated with BW (P = 0.039), waist circumference (P = 0.035), and significantly higher postprandial gastric volume (P = 0.003) and calories ingested at buffet meal (P = 0.006, both significant with FDR). In a subgroup of 11 participants, rs1626521 was also associated with reduced mitochondrial bioenergetics efficiency in skeletal muscle (P = 0.051). In an in vitro study in HEK293 cells, rs1626521 reduced UCP-3 protein expression (P = 0.049). Associations detected between other genotypes and GI traits were nonsignificant with FDR. CONCLUSIONS A newly identified functional variant (rs1626521) in UCP-3 affects postprandial gastric functions and satiety and may contribute to weight gain and alter human mitochondrial function.
Collapse
Affiliation(s)
- Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
McLean JB, Moylan JS, Andrade FH. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. Front Physiol 2014; 5:503. [PMID: 25566096 PMCID: PMC4270181 DOI: 10.3389/fphys.2014.00503] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
AIMS Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM) would impair the mitochondrial electron transport chain (ETC) and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 min, 2, 4, 24 or 48 h. We measured protein content by western blot; oxidant production by 2',7'-dichlorofluorescin diacetate (DCF), 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF), and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR) of intact myotubes by Seahorse XF Analyzer. RESULTS LCM treatment for 2 or 24 h decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS). In particular, mitochondrial superoxide (MitoSOX) was elevated at 2 h. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. CONCLUSION These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance.
Collapse
Affiliation(s)
- Julie B McLean
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Jennifer S Moylan
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Francisco H Andrade
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
60
|
Mitochondrial function in rat cerebral cortex and hippocampus after short- and long-term hypobaric hypoxia. Brain Res 2014; 1598:66-75. [PMID: 25527397 DOI: 10.1016/j.brainres.2014.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 01/19/2023]
Abstract
Taking into account the importance of aerobic metabolism in brain, the aim of the present work was to evaluate mitochondrial function in cerebral cortex and hippocampus in a model of sustained hypobaric hypoxia (5000 m simulated altitude) during a short (1 mo) and a long (7 mo) term period, in order to precise the mechanisms involved in hypoxia acclimatization. Hippocampal mitochondria from rats exposed to short-term hypobaric hypoxia showed lower respiratory rates than controls in both states 4 (45%) and 3 (41%), and increased NO production (1.3 fold) as well as eNOS and nNOS expression associated to mitochondrial membranes, whereas mitochondrial membrane potential decreased (7%). No significant changes were observed in cortical mitochondria after 1 mo hypobaric hypoxia in any of the mitochondrial functionality parameters evaluated. After 7 mo hypobaric hypoxia, oxygen consumption was unchanged as compared with control animals both in hippocampal and cortical mitochondria, but mitochondrial membrane potential decreased by 16% and 8% in hippocampus and cortex respectively. Also, long-term hypobaric hypoxia induced an increase in hippocampal NO production (0.7 fold) and in eNOS expression. A clear tendency to decrease in H2O2 production was observed in both tissues. Results suggest that after exposure to hypobaric hypoxia, hippocampal mitochondria display different responses than cortical mitochondria. Also, the mechanisms responsible for acclimatization to hypoxia would be time-dependent, according to the physiological functions of the brain studied areas. Nitric oxide metabolism and membrane potential changes would be involved as self-protective mechanisms in high altitude environment.
Collapse
|
61
|
Dhahri W, Drolet MC, Roussel E, Couet J, Arsenault M. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation. BMC Cardiovasc Disord 2014; 14:123. [PMID: 25249193 PMCID: PMC4189197 DOI: 10.1186/1471-2261-14-123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 11/23/2022] Open
Abstract
Background The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Methods Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. Results As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. Conclusions HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility. Electronic supplementary material The online version of this article (doi:10.1186/1471-2261-14-123) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Jacques Couet
- Groupe de Recherche en Valvulopathies, Centre de Recherche, Institut universitaire de cardiologie et de pneumologie de Québec, 2725, Chemin Sainte-Foy, Quebec City, Quebec G1V 4G5, Canada.
| | | |
Collapse
|
62
|
Lou PH, Lucchinetti E, Zhang L, Affolter A, Gandhi M, Hersberger M, Warren BE, Lemieux H, Sobhi HF, Clanachan AS, Zaugg M. Loss of Intralipid®- but not sevoflurane-mediated cardioprotection in early type-2 diabetic hearts of fructose-fed rats: importance of ROS signaling. PLoS One 2014; 9:e104971. [PMID: 25127027 PMCID: PMC4134246 DOI: 10.1371/journal.pone.0104971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. METHODS Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained. RESULTS Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3. CONCLUSIONS Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection.
Collapse
Affiliation(s)
- Phing-How Lou
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Liyan Zhang
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Andreas Affolter
- Department of Clinical Chemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Department of Clinical Chemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Blair E. Warren
- Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Hany F. Sobhi
- Coppin Center for Organic Synthesis, Coppin State University, Baltimore, Maryland, United States of America
| | | | - Michael Zaugg
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
63
|
Zhou Y, Kaminski HJ, Gong B, Cheng G, Feuerman JM, Kusner L. RNA expression analysis of passive transfer myasthenia supports extraocular muscle as a unique immunological environment. Invest Ophthalmol Vis Sci 2014; 55:4348-59. [PMID: 24917137 DOI: 10.1167/iovs.14-14422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Myasthenia gravis demonstrates a distinct predilection for involvement of the extraocular muscles (EOM), and we have hypothesized that this may be due to a unique immunological environment. To assess this hypothesis, we took an unbiased approach to analyze RNA expression profiles in EOM, diaphragm, and extensor digitorum longus (EDL) in rats with experimentally acquired myasthenia gravis (EAMG). METHODS Experimentally acquired myasthenia gravis was induced in rats by intraperitoneal injection of antibody directed against the acetylcholine receptor (AChR), whereas control rats received antibody known to bind the AChR but not induce disease. After 48 hours, animals were killed and muscles analyzed by RNA expression profiling. Profiling results were validated using qPCR and immunohistochemical analysis. RESULTS Sixty-two genes common among all muscle groups were increased in expression. These fell into four major categories: 12.8% stress response, 10.5% immune response, 10.5% metabolism, and 9.0% transcription factors. EOM expressed 212 genes at higher levels, not shared by the other two muscles, and a preponderance of EOM gene changes fell into the immune response category. EOM had the most uniquely reduced genes (126) compared with diaphragm (26) and EDL (50). Only 18 downregulated genes were shared by the three muscles. Histological evaluation and disease load index (sum of fold changes for all genes) demonstrated that EOM had the greatest degree of pathology. CONCLUSIONS Our studies demonstrated that consistent with human myasthenia gravis, EOM demonstrates a distinct RNA expression signature from EDL and diaphragm, which is based on differences in the degree of muscle injury and inflammatory response.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States
| | - Henry J Kaminski
- Departments of Neurology, Pharmacology, and Physiology, George Washington University, Washington, DC, United States
| | - Bendi Gong
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States
| | - Georgiana Cheng
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, United States
| | - Jason M Feuerman
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Linda Kusner
- Departments of Neurology, Pharmacology, and Physiology, George Washington University, Washington, DC, United States
| |
Collapse
|
64
|
Fraccarollo D, Galuppo P, Motschenbacher S, Ruetten H, Schäfer A, Bauersachs J. Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition. Basic Res Cardiol 2014; 109:421. [PMID: 24907870 DOI: 10.1007/s00395-014-0421-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 01/09/2023]
Abstract
Impaired nitric oxide (NO)-soluble guanylate cyclase (sGC)-cGMP signaling is involved in the pathogenesis of ischemic heart diseases, yet the impact of long-term sGC activation on progressive cardiac remodeling and heart failure after myocardial infarction (MI) has not been explored. Moreover, it is unknown whether stimulating the NO/heme-independent sGC provides additional benefits to ACE inhibition in chronic ischemic heart failure. Starting 10 days after MI, rats were treated with placebo, the sGC activator ataciguat (10 mg/kg/twice daily), ramipril (1 mg/kg/day), or a combination of both for 9 weeks. Long-term ataciguat therapy reduced left ventricular (LV) diastolic filling pressure and pulmonary edema, improved the rightward shift of the pressure-volume curve, LV contractile function and diastolic stiffness, without lowering blood pressure. NO/heme-independent sGC activation provided protection over ACE inhibition against mitochondrial superoxide production and progressive fibrotic remodeling, ultimately leading to a further improvement of cardiac performance, hypertrophic growth and heart failure. We found that ataciguat stimulating sGC activity was potentiated in (myo)fibroblasts during hypoxia-induced oxidative stress and that NO/heme-independent sGC activation modulated fibroblast-cardiomyocyte crosstalk in the context of heart failure and hypoxia. In addition, ataciguat inhibited human cardiac fibroblast differentiation and extracellular matrix protein production in response to TGF-β1. Overall, long-term sGC activation targeting extracellular matrix homeostasis conferred cardioprotection against progressive cardiac dysfunction, pathological remodeling and heart failure after myocardial infarction. NO/heme-independent sGC activation may prove to be a useful therapeutic target in patients with chronic heart failure and ongoing fibrotic remodeling.
Collapse
Affiliation(s)
- Daniela Fraccarollo
- Klinik fuer Kardiologie und Angiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30175, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
65
|
Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. PLoS One 2014; 9:e98969. [PMID: 24904988 PMCID: PMC4056835 DOI: 10.1371/journal.pone.0098969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.
Collapse
|
66
|
Gozzi GJ, Pires ADRA, Martinez GR, Rocha MEM, Noleto GR, Echevarria A, Canuto AV, Cadena SMSC. The antioxidant effect of the mesoionic compound SYD-1 in mitochondria. Chem Biol Interact 2013; 205:181-7. [DOI: 10.1016/j.cbi.2013.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022]
|
67
|
Morota S, Piel S, Hansson MJ. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition. BMC Cell Biol 2013; 14:40. [PMID: 24053891 PMCID: PMC3849260 DOI: 10.1186/1471-2121-14-40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022] Open
Abstract
Background Ischemic preconditioning has been proposed to involve changes in mitochondrial H+ and K+ fluxes, in particular through activation of uncoupling proteins and ATP-sensitive K+ channels (MitoKATP). The objectives of the present study were to explore how increased H+ and K+ fluxes influence heart mitochondrial physiology with regard to production and scavenging of reactive oxygen species (ROS), volume changes and resistance to calcium-induced mitochondrial permeability transition (mPT). Results Isolated rat heart mitochondria were exposed to a wide concentration range of the protonophore CCCP or the potassium ionophore valinomycin to induce increased H+ and K+ conductance, respectively. Simultaneous monitoring of mitochondrial respiration and calcium retention capacity (CRC) demonstrated that the relative increase in respiration caused by valinomycin or CCCP correlated with a decrease in CRC, and that no level of respiratory uncoupling was associated with enhanced resistance to mPT. Mitochondria suspended in hyperosmolar buffer demonstrated a dose-dependent reduction in CRC with increasing osmolarity. However, mitochondria in hypoosmolar buffer to increase matrix volume did not display increased CRC. ROS generation was reduced by both K+- and H+-mediated respiratory uncoupling. The ability of heart mitochondria to detoxify H2O2 was substantially greater than the production rate. The H2O2 detoxification was dependent on respiratory substrates and was dramatically decreased following calcium-induced mPT, but was unaffected by uncoupling via increased K+ and H+ conductance. Conclusion It is concluded that respiratory uncoupling is not directly beneficial to rat heart mitochondrial resistance to calcium overload irrespective of whether H+ or K+ conductance is increased. The negative effects of respiratory uncoupling thus probably outweigh the reduction in ROS generation and a potential positive effect by increased matrix volume, resulting in a net sensitization of heart mitochondria to mPT activation.
Collapse
Affiliation(s)
- Saori Morota
- Mitochondrial Pathophysiology Unit, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
68
|
Aguer C, Fiehn O, Seifert EL, Bézaire V, Meissen JK, Daniels A, Scott K, Renaud JM, Padilla M, Bickel DR, Dysart M, Adams SH, Harper ME. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation. FASEB J 2013; 27:4213-25. [PMID: 23825224 DOI: 10.1096/fj.13-234302] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exercise substantially improves metabolic health, making the elicited mechanisms important targets for novel therapeutic strategies. Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein highly selectively expressed in skeletal muscle. Here we report that moderate UCP3 overexpression (roughly 3-fold) in muscles of UCP3 transgenic (UCP3 Tg) mice acts as an exercise mimetic in many ways. UCP3 overexpression increased spontaneous activity (∼40%) and energy expenditure (∼5-10%) and decreased oxidative stress (∼15-20%), similar to exercise training in wild-type (WT) mice. The increase in complete fatty acid oxidation (FAO; ∼30% for WT and ∼70% for UCP3 Tg) and energy expenditure (∼8% for WT and 15% for UCP3 Tg) in response to endurance training was higher in UCP3 Tg than in WT mice, showing an additive effect of UCP3 and endurance training on these two parameters. Moreover, increases in circulating short-chain acylcarnitines in response to acute exercise in untrained WT mice were absent with training or in UCP3 Tg mice. UCP3 overexpression had the same effect as training in decreasing long-chain acylcarnitines. Outcomes coincided with a reduction in muscle carnitine acetyltransferase activity that catalyzes the formation of acylcarnitines. Overall, results are consistent with the conclusions that circulating acylcarnitines could be used as a marker of incomplete muscle FAO and that UCP3 is a potential target for the treatment of prevalent metabolic diseases in which muscle FAO is affected.
Collapse
Affiliation(s)
- Céline Aguer
- 2M.-E.H., Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Miller MW, Knaub LA, Olivera-Fragoso LF, Keller AC, Balasubramaniam V, Watson PA, Reusch JEB. Nitric oxide regulates vascular adaptive mitochondrial dynamics. Am J Physiol Heart Circ Physiol 2013; 304:H1624-33. [PMID: 23585138 PMCID: PMC3680775 DOI: 10.1152/ajpheart.00987.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/11/2013] [Indexed: 01/06/2023]
Abstract
Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover.
Collapse
Affiliation(s)
- Matthew W Miller
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Ross T, Szczepanek K, Bowler E, Hu Y, Larner A, Lesnefsky EJ, Chen Q. Reverse electron flow-mediated ROS generation in ischemia-damaged mitochondria: role of complex I inhibition vs. depolarization of inner mitochondrial membrane. Biochim Biophys Acta Gen Subj 2013; 1830:4537-42. [PMID: 23747300 DOI: 10.1016/j.bbagen.2013.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/17/2013] [Accepted: 05/27/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The reverse electron flow-induced ROS generation (RFIR) is decreased in ischemia-damaged mitochondria. Cardiac ischemia leads to decreased complex I activity and depolarized inner mitochondrial membrane potential (ΔΨ) that are two key factors to affect the RFIR in isolated mitochondria. We asked if a partial inhibition of complex I activity without alteration of the ΔΨ is able to decrease the RFIR. METHODS Cardiac mitochondria were isolated from mouse heart (C57BL/6) with and without ischemia. The rate of H2O2 production from mitochondria was determined using amplex red coupled with horseradish peroxidase. Mitochondria were isolated from the mitochondrial-targeted STAT3 overexpressing mouse (MLS-STAT3E) to clarify the role of partial complex I inhibition in RFIR production. RESULTS The RFIR was decreased in ischemia-damaged mouse heart mitochondria with decreased complex I activity and depolarized ΔΨ. However, the RFIR was not altered in the MLS-STAT3E heart mitochondria with complex I defect but without depolarization of the ΔΨ. A slight depolarization of the ΔΨ in wild type mitochondria completely eliminated the RFIR. CONCLUSIONS The mild uncoupling but not the partially decreased complex I activity contributes to the observed decrease in RFIR in ischemia-damaged mitochondria. GENERAL SIGNIFICANCE The RFIR is less likely to be a key source of cardiac injury during reperfusion.
Collapse
Affiliation(s)
- Thomas Ross
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
McQuaker SJ, Quinlan CL, Caldwell ST, Brand MD, Hartley RC. A prototypical small-molecule modulator uncouples mitochondria in response to endogenous hydrogen peroxide production. Chembiochem 2013; 14:993-1000. [PMID: 23640856 PMCID: PMC3743171 DOI: 10.1002/cbic.201300115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 12/31/2022]
Abstract
A high membrane potential across the mitochondrial inner membrane leads to the production of the reactive oxygen species (ROS) implicated in aging and age-related diseases. A prototypical drug for the correction of this type of mitochondrial dysfunction is presented. MitoDNP-SUM accumulates in mitochondria in response to the membrane potential due to its mitochondria-targeting alkyltriphenylphosphonium (TPP) cation and is uncaged by endogenous hydrogen peroxide to release the mitochondrial uncoupler, 2,4-dinitrophenol (DNP). DNP is known to reduce the high membrane potential responsible for the production of ROS. The approach potentially represents a general method for the delivery of drugs to the mitochondrial matrix through mitochondria targeting and H(2)O(2)-induced uncaging.
Collapse
Affiliation(s)
- Stephen J McQuaker
- WestChem School of Chemistry, University of GlasgowGlasgow, G12 8QQ (UK) E-mail:
| | - Casey L Quinlan
- Buck Institute for Research on Aging8001 Redwood Boulevard, Novato, California 94945 (USA)
| | - Stuart T Caldwell
- WestChem School of Chemistry, University of GlasgowGlasgow, G12 8QQ (UK) E-mail:
| | - Martin D Brand
- Buck Institute for Research on Aging8001 Redwood Boulevard, Novato, California 94945 (USA)
| | - Richard C Hartley
- WestChem School of Chemistry, University of GlasgowGlasgow, G12 8QQ (UK) E-mail:
| |
Collapse
|
72
|
Kikusato M, Toyomizu M. Crucial role of membrane potential in heat stress-induced overproduction of reactive oxygen species in avian skeletal muscle mitochondria. PLoS One 2013; 8:e64412. [PMID: 23671714 PMCID: PMC3650059 DOI: 10.1371/journal.pone.0064412] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/14/2013] [Indexed: 01/22/2023] Open
Abstract
Heat stress is an environmental factor that causes oxidative stress. We found previously that acute heat stress stimulates the production of reactive oxygen species (ROS) in the skeletal muscle mitochondria of birds, and that this was accompanied by an increase of the mitochondrial membrane potential (ΔΨ) due to increased substrate oxidation by the electron transport chain. We also showed that avian uncoupling protein (avUCP) expression is decreased by the heat exposure. The present study clarifies whether ΔΨ is a major determinant of the overproduction of ROS due to acute heat stress, and if the decrease in avUCP expression is responsible for the elevation in ΔΨ. Control (24°C) and acute heat-stressed (34°C for 12 h) birds exhibited increased succinate-driven mitochondrial ROS production as indicated by an elevation of ΔΨ, with this increase being significantly higher in the heat-stressed group compared with the control group. In glutamate/malate-energized mitochondria, no difference in the ROS production between the groups was observed, though the mitochondrial ΔΨ was significantly higher in the heat-stressed groups compared with the control group. Furthermore, mitochondria energized with either succinate/glutamate or succinate/malate showed increased ROS production and ΔΨ in the heat-stressed group compared with mitochondria from the control group. These results suggest that succinate oxidation could play an important role in the heat stress-induced overproduction of mitochondrial ROS in skeletal muscle. In agreement with the notion of a decrease in avUCP expression in response to heat stress, proton leak, which was likely mediated by UCP (that part which is GDP-inhibited and arachidonic acid-sensitive), was reduced in the heat-exposed group. We suggest that the acute heat stress-induced overproduction of mitochondrial ROS may depend on ΔΨ, which may in turn result not only from increased substrate oxidation but also from a decrease in the mitochondrial avUCP content.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
73
|
Garratt M, Pichaud N, King EDA, Brooks RC. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice. ACTA ACUST UNITED AC 2013; 216:2879-88. [PMID: 23619417 DOI: 10.1242/jeb.082669] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Life history theory suggests that investment in reproduction can trade off against growth, longevity and both reproduction and performance later in life. One possible reason for this trade-off is that reproduction directly causes somatic damage. Oxidative stress, an overproduction of reactive oxygen species in relation to cellular defences, can correlate with reproductive investment and has been implicated as a pathway leading to senescence. This has led to the suggestion that this aspect of physiology could be an important mechanism underlying the trade-off between reproduction and lifespan. We manipulated female reproductive investment to test whether oxidative stress increases with reproduction in mice. Each female's pups were cross-fostered to produce litters of either two or eight, representing low and high levels of reproductive investment for wild mice. No differences were observed between reproductive groups at peak lactation for several markers of oxidative stress in the heart and gastrocnemius muscle. Surprisingly, oxidative damage to proteins was lower in the livers of females with a litter size of eight than in females with two pups or non-reproductive control females. While protein oxidation decreased, activity levels of the antioxidant enzyme superoxide dismutase increased in the liver, suggesting this may be one pathway used to protect against oxidative stress. Our results highlight the need for caution when interpreting correlative relationships and suggest that oxidative stress does not increase with enhanced reproductive effort during lactation.
Collapse
Affiliation(s)
- Michael Garratt
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | |
Collapse
|
74
|
Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 2013; 6:19. [PMID: 23442817 PMCID: PMC3599349 DOI: 10.1186/1756-8722-6-19] [Citation(s) in RCA: 519] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/20/2013] [Indexed: 12/13/2022] Open
Abstract
There are multiple sources of reactive oxygen species (ROS) in the cell. As a major site of ROS production, mitochondria have drawn considerable interest because it was recently discovered that mitochondrial ROS (mtROS) directly stimulate the production of proinflammatory cytokines and pathological conditions as diverse as malignancies, autoimmune diseases, and cardiovascular diseases all share common phenotype of increased mtROS production above basal levels. Several excellent reviews on this topic have been published, but ever-changing new discoveries mandated a more up-to-date and comprehensive review on this topic. Therefore, we update recent understanding of how mitochondria generate and regulate the production of mtROS and the function of mtROS both in physiological and pathological conditions. In addition, we describe newly developed methods to probe or scavenge mtROS and compare these methods in detail. Thorough understanding of this topic and the application of mtROS-targeting drugs in the research is significant towards development of better therapies to combat inflammatory diseases and inflammatory malignancies.
Collapse
Affiliation(s)
- Xinyuan Li
- Cardiovascular Research Center, Department of Pharmacology and Thrombosis Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
75
|
Shi Y, Pulliam DA, Liu Y, Hamilton RT, Jernigan AL, Bhattacharya A, Sloane LB, Qi W, Chaudhuri A, Buffenstein R, Ungvari Z, Austad SN, Van Remmen H. Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus. Am J Physiol Regul Integr Comp Physiol 2013; 304:R343-55. [PMID: 23325454 DOI: 10.1152/ajpregu.00139.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparing biological processes in closely related species with divergent life spans is a powerful approach to study mechanisms of aging. The oxidative stress hypothesis of aging predicts that longer-lived species would have lower reactive oxygen species (ROS) generation and/or an increased antioxidant capacity, resulting in reduced oxidative damage with age than in shorter-lived species. In this study, we measured ROS generation in the young adult animals of the long-lived white-footed mouse, Peromyscus leucopus (maximal life span potential, MLSP = 8 yr) and the common laboratory mouse, Mus musculus (C57BL/6J strain; MLSP = 3.5 yr). Consistent with the hypothesis, our results show that skeletal muscle mitochondria from adult P. leucopus produce less ROS (superoxide and hydrogen peroxide) compared with M. musculus. Additionally, P. leucopus has an increase in the activity of antioxidant enzymes superoxide dismutase 1, catalase, and glutathione peroxidase 1 at young age. P. leucopus compared with M. musculus display low levels of lipid peroxidation (isoprostanes) throughout life; however, P. leucopus although having elevated protein carbonyls at a young age, the accrual of protein oxidation with age is minimal in contrast to the linear increase in M. musculus. Altogether, the results from young animals are in agreement with the predictions of the oxidative stress hypothesis of aging with the exception of protein carbonyls. Nonetheless, the age-dependent increase in protein carbonyls is more pronounced in short-lived M. musculus, which supports enhanced protein homeostasis in long-lived P. leucopus.
Collapse
Affiliation(s)
- Yun Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis. Mitochondrion 2012. [PMID: 23178790 DOI: 10.1016/j.mito.2012.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨ(m)). A mechanism is described which is suggested to keep ΔΨ(m) at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨ(m) and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨ(m) and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that 'oxidative stress' occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.
Collapse
|
77
|
Larsen FJ, Schiffer TA, Weitzberg E, Lundberg JO. Regulation of mitochondrial function and energetics by reactive nitrogen oxides. Free Radic Biol Med 2012; 53:1919-28. [PMID: 22989554 DOI: 10.1016/j.freeradbiomed.2012.08.580] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 01/14/2023]
Abstract
Endogenous nitric oxide (NO) generated from L-arginine by NO synthase regulates mitochondrial function by binding to cytochrome c oxidase in competition with oxygen. This interaction can elicit a variety of intracellular signaling events of both physiological and pathophysiological significance. Recent lines of research demonstrate that inorganic nitrate and nitrite, derived from oxidized NO or from the diet, are metabolized in vivo to form NO and other bioactive nitrogen oxides with intriguing effects on cellular energetics and cytoprotection. Here we discuss the latest advances in our understanding of the roles of nitrate, nitrite, and NO in the modulation of mitochondrial function, with a particular focus on dietary nitrate and exercise.
Collapse
Affiliation(s)
- Filip J Larsen
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
78
|
Suski JM, Schönfeld P, Bonora M, Shabalina I, Pinton P, Więckowski MR. Guanosine diphosphate exerts a lower effect on superoxide release from mitochondrial matrix in the brains of uncoupling protein-2 knockout mice: new evidence for a putative novel function of uncoupling proteins as superoxide anion transporters. Biochem Biophys Res Commun 2012; 428:234-8. [PMID: 23068098 DOI: 10.1016/j.bbrc.2012.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 12/18/2022]
Abstract
In this report, we show new experimental evidence that, in mouse brain mitochondria, uncoupling protein-2 (UCP2) can be involved in superoxide (O(2)(·-)) removal from the mitochondrial matrix. We found that the effect of guanosine 5'-diphosphate (GDP) on the rate of reactive oxygen species (ROS) release from brain mitochondria of UCP2 knockout mice was less pronounced compared to the wild type animals. This putative novel UCP2 activity, evaluated by the use of UCP2-knockout transgenic animals, along with the known antioxidant defence systems, may provide additional protection from ROS in brain mitochondria.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
79
|
Siegel MP, Wilbur T, Mathis M, Shankland EG, Trieu A, Harper ME, Marcinek DJ. Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle. Mech Ageing Dev 2012; 133:620-8. [PMID: 22935551 DOI: 10.1016/j.mad.2012.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/17/2012] [Accepted: 08/04/2012] [Indexed: 12/20/2022]
Abstract
Periods of elevated reactive oxygen species (ROS) production are a normal part of mitochondrial physiology. However, little is known about age-related changes in the mitochondrial response to elevated ROS in vivo. Significantly, ROS-induced uncoupling of oxidative phosphorylation has received attention as a negative feedback mechanism to reduce mitochondrial superoxide production. Here we use a novel in vivo spectroscopy system to test the hypothesis that ROS-induced uncoupling is diminished in aged mitochondria. This system simultaneously acquires (31)P magnetic resonance and near-infrared optical spectra to non-invasively measure phosphometabolite and O(2) concentrations in mouse skeletal muscle. Using low dose paraquat to elevate intracellular ROS we assess in vivo mitochondrial function in young, middle aged, and old mice. Oxidative phosphorylation was uncoupled to the same degree in response to ROS at each age, but this uncoupling was associated with loss of phosphorylation capacity and total ATP in old mice only. Using mice lacking UCP3 we demonstrate that this in vivo uncoupling is independent of this putative uncoupler of skeletal muscle mitochondria. These data indicate that ROS-induced uncoupling persists throughout life, but that oxidative stress leads to mitochondrial deficits and loss of ATP in aged organisms that may contribute to impaired function and degeneration.
Collapse
Affiliation(s)
- Michael P Siegel
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Gonçalves RLS, Oliveira JHM, Oliveira GA, Andersen JF, Oliveira MF, Oliveira PL, Barillas-Mury C. Mitochondrial reactive oxygen species modulate mosquito susceptibility to Plasmodium infection. PLoS One 2012; 7:e41083. [PMID: 22815925 PMCID: PMC3399787 DOI: 10.1371/journal.pone.0041083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. CONCLUSION We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.
Collapse
Affiliation(s)
- Renata L. S. Gonçalves
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Henrique M. Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle A. Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Marcus F. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
81
|
Nagy A, Steinbrück A, Gao J, Doggett N, Hollingsworth JA, Iyer R. Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. ACS NANO 2012; 6:4748-62. [PMID: 22587339 DOI: 10.1021/nn204886b] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The growing potential of quantum dots (QDs) in applications as diverse as biomedicine and energy has provoked much dialogue about their conceivable impact on human health and the environment at large. Consequently, there has been an urgent need to understand their interaction with biological systems. Parameters such as size, composition, surface charge, and functionalization can be modified in ways to either enhance biocompatibility or reduce their deleterious effects. In the current study, we simultaneously compared the impact of size, charge, and functionalization alone or in combination on biological responses using primary normal human bronchial epithelial cells. Using a suite of cellular end points and gene expression analysis, we determined the biological impact of each of these properties. Our results suggest that positively charged QDs are significantly more cytotoxic compared to negative QDs. Furthermore, while QDs functionalized with long ligands were found to be more cytotoxic than those functionalized with short ligands, negative QDs functionalized with long ligands also demonstrated size-dependent cytotoxicity. We conclude that QD-elicited cytotoxicity is not a function of a single property but a combination of factors. The mechanism of toxicity was found to be independent of reactive oxygen species formation, as cellular viability could not be rescued in the presence of the antioxidant n-acetyl cysteine. Further exploring these responses at the molecular level, we found that the relatively benign negative QDs increased gene expression of proinflammatory cytokines and those associated with DNA damage, while the highly toxic positive QDs induced changes in genes associated with mitochondrial function. In an attempt to tentatively "rank" the contribution of each property in the observed QD-induced responses, we concluded that QD charge and ligand length, and to a lesser extent, size, are key factors that should be considered when engineering nanomaterials with minimal bioimpact (charge > functionalization > size).
Collapse
Affiliation(s)
- Amber Nagy
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
Understanding the role of oxidative injury will allow for therapy with agents that scavenge ROS (reactive oxygen species) and antioxidants in the management of several diseases related to free radical damage. The majority of free radicals are generated by mitochondria as a consequence of the mitochondrial cycle, whereas free radical accumulation is limited by the action of a variety of antioxidant processes that reside in every cell. In the present review, we provide an overview of the mitochondrial generation of ROS and discuss the role of ROS in the regulation of endothelial and adipocyte function. Moreover, we also discuss recent findings on the role of ROS in sepsis, cerebral ataxia and stroke. These results provide avenues for the therapeutic potential of antioxidants in a variety of diseases.
Collapse
|
83
|
Rodrigues M, Turner O, Stolz D, Griffith LG, Wells A. Production of reactive oxygen species by multipotent stromal cells/mesenchymal stem cells upon exposure to fas ligand. Cell Transplant 2012; 21:2171-87. [PMID: 22526333 DOI: 10.3727/096368912x639035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multipotent stromal cells (MSCs) can be differentiated into osteoblasts and chondrocytes, making these cells candidates to regenerate cranio-facial injuries and lesions in long bones. A major problem with cell replacement therapy, however, is the loss of transplanted MSCs at the site of graft. Reactive oxygen species (ROS) and nonspecific inflammation generated at the ischemic site have been hypothesized to lead to MSCs loss; studies in vitro show MSCs dying both in the presence of ROS or cytokines like FasL. We questioned whether MSCs themselves may be the source of these death inducers, specifically whether MSCs produce ROS under cytokine challenge. On treating MSCs with FasL, we observed increased ROS production within 2 h, leading to apoptotic death after 6 h of exposure to the cytokine. N-acetyl cysteine, an antioxidant, is able to protect MSCs from FasL-induced ROS production and subsequent ROS-dependent apoptosis, though the MSCs eventually succumb to ROS-independent death signaling. Epidermal growth factor (EGF), a cell survival factor, is able to protect cells from FasL-induced ROS production initially; however, the protective effect wanes with continued FasL exposure. In parallel, FasL induces upregulation of the uncoupling protein UCP2, the main uncoupling protein in MSCs, which is not abrogated by EGF; however, the production of ROS is followed by a delayed apoptotic cell death despite moderation by UCP2. FasL-induced ROS activates the stress-induced MAPK pathways JNK and p38MAPK as well as ERK, along with the activation of Bad, a proapoptotic protein, and suppression of survivin, an antiapoptotic protein; the latter two key modulators of the mitochondrial death pathway. FasL by itself also activates its canonical extrinsic death pathway noted by a time-dependent degradation of c-FLIP and activation of caspase 8. These data suggest that MSCs participate in their own demise due to nonspecific inflammation, holding implications for replacement therapies.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
84
|
Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate–aspartate shuttle. Biochem J 2012; 443:747-55. [DOI: 10.1042/bj20110765] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The glutamate-dependent respiration of isolated BM (brain mitochondria) is regulated by Ca2+cyt (cytosolic Ca2+) (S0.5=225±22 nM) through its effects on aralar. We now also demonstrate that the α-glycerophosphate-dependent respiration is controlled by Ca2+cyt (S0.5=60±10 nM). At higher Ca2+cyt (>600 nM), BM accumulate Ca2+ which enhances the rate of intramitochondrial dehydrogenases. The Ca2+-induced increments of state 3 respiration decrease with substrate in the order glutamate>α-oxoglutarate>isocitrate>α-glycerophosphate>pyruvate. Whereas the oxidation of pyruvate is only slightly influenced by Ca2+cyt, we show that the formation of pyruvate is tightly controlled by Ca2+cyt. Through its common substrate couple NADH/NAD+, the formation of pyruvate by LDH (lactate dehydrogenase) is linked to the MAS (malate–aspartate shuttle) with aralar as a central component. A rise in Ca2+cyt in a reconstituted system consisting of BM, cytosolic enzymes of MAS and LDH causes an up to 5-fold enhancement of OXPHOS (oxidative phosphorylation) rates that is due to an increased substrate supply, acting in a manner similar to a ‘gas pedal’. In contrast, Ca2+mit (intramitochondrial Ca2+) regulates the oxidation rates of substrates which are present within the mitochondrial matrix. We postulate that Ca2+cyt is a key factor in adjusting the mitochondrial energization to the requirements of intact neurons.
Collapse
|
85
|
|
86
|
Lam PY, Wong HS, Chen J, Ko KM. A Hypothetical Anti-Aging Mechanism of “Yang-Invigorating” Chinese Tonic Herbs. Chin Med 2012. [DOI: 10.4236/cm.2012.31012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
87
|
Schönfeld P, Wojtczak L. Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:410-8. [PMID: 22226918 DOI: 10.1016/j.bbabio.2011.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/18/2011] [Indexed: 12/23/2022]
Abstract
Mitochondria from brown adipose tissue (BATM) have a high enzymatic capacity for fatty acid oxidation and therefore are an ideal model to examine the sites of reactive oxygen species (ROS) generation during fatty acid oxidation. ROS generation by BATM (isolated from 3-week-old rats) was measured during acylcarnitine oxidation as release of H(2)O(2) into the medium and as inactivation of the matrix enzyme aconitase. The following results were obtained: (1) BATM release large amounts of H(2)O(2) in the coupled as well as in the uncoupled states, several times more than skeletal muscle mitochondria. (2) H(2)O(2) release is especially large with acylcarnitines of medium-chain fatty acids (e.g. octanoylcarnitine). (3) Reverse electron transport does not contribute in a significant extent to the overall ROS generation. (4) Despite the large release of H(2)O(2), the ROS-sensitive matrix enzyme aconitase is not inactivated during acylcarnitine oxidation. (5) In contrast to acylcarnitines, oxidation of α-glycerophosphate by BATM is characterized by large H(2)O(2) release and a pronounced aconitase inactivation. We hypothesize that acylcarnitine-supported ROS generation in BATM may be mainly associated with acyl-CoA dehydrogenase and electron transferring flavoprotein-ubiquinone reductase rather than with complexes of the respiratory chain.
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | |
Collapse
|
88
|
Siegel MP, Kruse SE, Knowels G, Salmon A, Beyer R, Xie H, Van Remmen H, Smith SR, Marcinek DJ. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice. PLoS One 2011; 6:e26963. [PMID: 22132085 PMCID: PMC3222658 DOI: 10.1371/journal.pone.0026963] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 10/07/2011] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/-))) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Michael P. Siegel
- Department of Bioengineering, University of Washington Medical School, Seattle, Washington, United States of America
| | - Shane E. Kruse
- Department of Radiology, University of Washington Medical School, Seattle, Washington, United States of America
| | - Gary Knowels
- Department of Radiology, University of Washington Medical School, Seattle, Washington, United States of America
| | - Adam Salmon
- Department of Cellular and Structural Biology, University of Texas Health Sciences Center, San Antonio, Texas, United States of America
| | - Richard Beyer
- Department of Environmental and Occupational Health Sciences, University of Washington Medical School, Seattle, Washington, United States of America
| | - Hui Xie
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida, United States of America
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Sciences Center, San Antonio, Texas, United States of America
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida, United States of America
| | - David J. Marcinek
- Department of Bioengineering, University of Washington Medical School, Seattle, Washington, United States of America
- Department of Radiology, University of Washington Medical School, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
89
|
Hirasaka K, Lago CU, Kenaston MA, Fathe K, Nowinski SM, Nikawa T, Mills EM. Identification of a redox-modulatory interaction between uncoupling protein 3 and thioredoxin 2 in the mitochondrial intermembrane space. Antioxid Redox Signal 2011; 15:2645-61. [PMID: 21619484 PMCID: PMC3183655 DOI: 10.1089/ars.2011.3888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Uncoupling protein 3 (UCP3) is a member of the mitochondrial solute carrier superfamily that is enriched in skeletal muscle and controls mitochondrial reactive oxygen species (ROS) production, but the mechanisms underlying this function are unclear. AIMS The goal of this work focused on the identification of mechanisms underlying UCP3 functions. RESULTS Here we report that the N-terminal, intermembrane space (IMS)-localized hydrophilic domain of mouse UCP3 interacts with the N-terminal mitochondrial targeting signal of thioredoxin 2 (Trx2), a mitochondrial thiol reductase. Cellular immunoprecipitation and in vitro pull-down assays show that the UCP3-Trx2 complex forms directly, and that the Trx2 N-terminus is both necessary and sufficient to confer UCP3 binding. Mutation studies show that neither a catalytically inactivated Trx2 mutant, nor a mutant Trx2 bearing the N-terminal targeting sequence of cytochrome c oxidase (COXMTS-Trx2) bind UCP3. Biochemical analyses using permeabilized mitochondria, and live cell experiments using bimolecular fluorescence complementation show that the UCP3-Trx2 complex forms specifically in the IMS. Finally, studies in C2C12 myocytes stably overexpressing UCP3 (2.5-fold) and subjected to Trx2 knockdown show that Trx2 is required for the UCP3-dependent mitigation of complex III-driven mitochondrial ROS generation. UCP3 expression was increased in mice fed a high fat diet, leading to increased localization of Trx2 to the IMS. UCP3 overexpression also increased expression of the glucose transporter GLUT4 in a Trx2-dependent fashion. INNOVATION This is the first report of a mitochondrial protein-protein interaction with UCP3 and the first demonstration that UCP3 binds directly, and in cells and tissues with mitochondrial thioredoxin 2. CONCLUSION These studies identify a novel UCP3-Trx2 complex, a novel submitochondrial localization of Trx2, and a mechanism underlying UCP3-regulated mitochondrial ROS production.
Collapse
Affiliation(s)
- Katsuya Hirasaka
- Division of Pharmacology/Toxicology, University of Texas at Austin, Austin, Texas 78714, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 2011; 26:192-205. [PMID: 21670165 DOI: 10.1152/physiol.00046.2010] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitochondria couple respiration to ATP synthesis through an electrochemical proton gradient. Proton leak across the inner membrane allows adjustment of the coupling efficiency. The aim of this review is threefold: 1) introduce the unfamiliar reader to proton leak and its physiological significance, 2) review the role and regulation of uncoupling proteins, and 3) outline the prospects of proton leak as an avenue to treat obesity, diabetes, and age-related disease.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, United Kingdom
| | | |
Collapse
|
91
|
De Marchi U, Castelbou C, Demaurex N. Uncoupling protein 3 (UCP3) modulates the activity of Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) by decreasing mitochondrial ATP production. J Biol Chem 2011; 286:32533-41. [PMID: 21775425 PMCID: PMC3173197 DOI: 10.1074/jbc.m110.216044] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/17/2011] [Indexed: 12/17/2022] Open
Abstract
The uncoupling proteins UCP2 and UCP3 have been postulated to catalyze Ca(2+) entry across the inner membrane of mitochondria, but this proposal is disputed, and other, unrelated proteins have since been identified as the mitochondrial Ca(2+) uniporter. To clarify the role of UCPs in mitochondrial Ca(2+) handling, we down-regulated the expression of the only uncoupling protein of HeLa cells, UCP3, and measured Ca(2+) and ATP levels in the cytosol and in organelles with genetically encoded probes. UCP3 silencing did not alter mitochondrial Ca(2+) uptake in permeabilized cells. In intact cells, however, UCP3 depletion increased mitochondrial ATP production and strongly reduced the cytosolic and mitochondrial Ca(2+) elevations evoked by histamine. The reduced Ca(2+) elevations were due to inhibition of store-operated Ca(2+) entry and reduced depletion of endoplasmic reticulum (ER) Ca(2+) stores. UCP3 depletion accelerated the ER Ca(2+) refilling kinetics, indicating that the activity of sarco/endoplasmic reticulum Ca(2+) (SERCA) pumps was increased. Accordingly, SERCA inhibitors reversed the effects of UCP3 depletion on cytosolic, ER, and mitochondrial Ca(2+) responses. Our results indicate that UCP3 is not a mitochondrial Ca(2+) uniporter and that it instead negatively modulates the activity of SERCA by limiting mitochondrial ATP production. The effects of UCP3 on mitochondrial Ca(2+) thus reflect metabolic alterations that impact on cellular Ca(2+) homeostasis. The sensitivity of SERCA to mitochondrial ATP production suggests that mitochondria control the local ATP availability at ER Ca(2+) uptake and release sites.
Collapse
Affiliation(s)
- Umberto De Marchi
- From the Department of Cell Physiology and Metabolism, University of Geneva, rue Michel-Servet, 1, CH-1211 Genève, Switzerland
| | - Cyril Castelbou
- From the Department of Cell Physiology and Metabolism, University of Geneva, rue Michel-Servet, 1, CH-1211 Genève, Switzerland
| | - Nicolas Demaurex
- From the Department of Cell Physiology and Metabolism, University of Geneva, rue Michel-Servet, 1, CH-1211 Genève, Switzerland
| |
Collapse
|
92
|
Mailloux RJ, Harper ME. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 2011; 51:1106-15. [PMID: 21762777 DOI: 10.1016/j.freeradbiomed.2011.06.022] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada K1G8M5
| | | |
Collapse
|
93
|
Abstract
This review begins with the premise that an organism's life span is determined by the balance between two countervailing forces: (i) the sum of destabilizing effects and (ii) the sum of protective longevity-assurance processes. Against this backdrop, the role of electrophiles is discussed, both as destabilizing factors and as signals that induce protective responses. Because most biological macromolecules contain nucleophilic centers, electrophiles are particularly reactive and toxic in a biological context. The majority of cellular electrophiles are generated from polyunsaturated fatty acids by a peroxidation chain reaction that is readily triggered by oxygen-centered radicals, but propagates without further input of reactive oxygen species (ROS). Thus, the formation of lipid-derived electrophiles such as 4-hydroxynon-2-enal (4-HNE) is proposed to be relatively insensitive to the level of initiating ROS, but to depend mainly on the availability of peroxidation-susceptible fatty acids. This is consistent with numerous observations that life span is inversely correlated to membrane peroxidizability, and with the hypothesis that 4-HNE may constitute the mechanistic link between high susceptibility of membrane lipids to peroxidation and shortened life span. Experimental interventions that directly alter membrane composition (and thus their peroxidizability) or modulate 4-HNE levels have the expected effects on life span, establishing that the connection is not only correlative but causal. Specific molecular mechanisms are considered, by which 4-HNE could (i) destabilize biological systems via nontargeted reactions with cellular macromolecules and (ii) modulate signaling pathways that control longevity-assurance mechanisms.
Collapse
Affiliation(s)
- Piotr Zimniak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
94
|
Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem J 2011; 437:301-11. [PMID: 21554247 DOI: 10.1042/bj20110571] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UCP3 (uncoupling protein-3) mitigates mitochondrial ROS (reactive oxygen species) production, but the mechanisms are poorly understood. Previous studies have also examined UCP3 effects, including decreased ROS production, during metabolic states when fatty acid oxidation is high (e.g. a fasting state). However, the role of UCP3 when carbohydrate oxidation is high (e.g. fed state) has remained largely unexplored. In the present study, we show that mitochondrial-bound HK (hexokinase) II curtails oxidative stress and enhances aerobic metabolism of glucose in the fed state in a UCP3-dependent manner. Genetic knockout or inhibition of UCP3 significantly decreased mitochondrial-bound HKII. Furthermore, UCP3 was required for the HKII-mediated decrease in mitochondrial ROS emission. Intriguingly, the UCP3-mediated modulation of mitochondria-associated HKII was only observed in cells cultured under high-glucose conditions. UCP3 was required to maintain high rates of aerobic metabolism in high-glucose-treated cells and in muscle of fed mice. Deficiency in UCP3 resulted in a metabolic shift that favoured anaerobic glycolytic metabolism, increased glucose uptake and increased sensitivity to oxidative challenge. PET (positron emission tomography) of [18F]fluoro-deoxyglucose uptake confirmed these findings in UCP3-knockout and wild-type mice. Collectively, our findings link the anti-oxidative and metabolic functions of UCP3 through a surprising molecular connection with mitochondrial-bound HKII.
Collapse
|
95
|
Murray AJ, Knight NS, Little SE, Cochlin LE, Clements M, Clarke K. Dietary long-chain, but not medium-chain, triglycerides impair exercise performance and uncouple cardiac mitochondria in rats. Nutr Metab (Lond) 2011; 8:55. [PMID: 21806803 PMCID: PMC3168416 DOI: 10.1186/1743-7075-8-55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/01/2011] [Indexed: 02/03/2023] Open
Abstract
Short-term consumption of a high-fat diet impairs exercise capacity in both rats and humans, and increases expression of the mitochondrial uncoupling protein, UCP3, in rodent cardiac and skeletal muscle via activation of the transcription factor, peroxisome proliferator-activated receptor α (PPARα). Unlike long-chain fatty acids however, medium-chain fatty acids do not activate PPARα and do not increase muscle UCP3 expression. We therefore investigated exercise performance and cardiac mitochondrial function in rats fed a chow diet (7.5% kcal from fat), a long-chain triglyceride (LCT) rich diet (46% kcal from LCTs) or a medium-chain triglyceride (MCT) rich diet (46% kcal from MCTs). Rats fed the LCT-rich diet for 15 days ran 55% less far than they did at baseline, whereas rats fed the chow or MCT-rich diets neither improved nor worsened in their exercise capacities. Moreover, consumption of an LCT-rich diet increased cardiac UCP3 expression by 35% and decreased oxidative phosphorylation efficiency, whereas consumption of the MCT-rich diet altered neither UCP3 expression nor oxidative phosphorylation efficiency. Our results suggest that the negative effects of short-term high-fat feeding on exercise performance are predominantly mediated by long-chain rather than medium-chain fatty acids, possibly via PPARα-dependent upregulation of UCP3.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Anatomy & Genetics, University of Oxford, Parks Rd, Oxford, OX1 3PT, UK.
| | | | | | | | | | | |
Collapse
|
96
|
Pamplona R, Barja G. An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms. Biogerontology 2011; 12:409-35. [PMID: 21755337 DOI: 10.1007/s10522-011-9348-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/29/2011] [Indexed: 01/09/2023]
Abstract
Key mechanisms relating oxidative stress to longevity from an interespecies comparative approach are reviewed. Long-lived animal species show low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. Comparative physiology also shows that the specific compositional pattern of tissue macromolecules (proteins, lipids and nucleic acids) in long-lived animal species gives them an intrinsically high resistance to modification that likely contributes to their superior longevity. This is obtained in the case of lipids by decreasing the degree of fatty acid unsaturation, and in the case of proteins by lowering their methionine content. These findings are also substantiated from a phylogenomic approach. Nutritional or/and pharmacological interventions focused to modify some of these molecular traits were translated with modifications in animal longevity. It is proposed that natural selection tends to decrease the mitochondrial ROS generation and to increase the molecular resistance to the oxidative damage in long-lived species.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, 25008, Spain.
| | | |
Collapse
|
97
|
Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1095-105. [PMID: 21565164 DOI: 10.1016/j.bbabio.2011.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
The function of uncoupling protein 3 (UCP3) is still not established. Mitochondrial uncoupling, control of ROS production, protection against lipotoxicity and protection against oxidative stress are functions classically discussed. To establish a role for UCP3 in these functions, we have here used UCP3 (-/-) mice, backcrossed for 10 generations on a C57Bl/6 background. In isolated skeletal muscle mitochondria, we examined uncoupled respiration, both unstimulated and in the presence of fatty acids. We did not observe any difference between mitochondria from wildtype and UCP3 (-/-) mice. We measured H(2)O(2) production rate and respiration rate under reactive oxygen species-generating conditions (succinate without rotenone) but found no effect of UCP3. We tested two models of acute lipotoxicity-fatty acid-induced oxidative inhibition and fatty acid-induced swelling-but did not observe any protective effect of UCP3. We examined oxidative stress by quantifying 4-hydroxynonenal protein adducts and protein carbonyls in the mitochondria-but did not observe any protective effect of UCP3. We conclude that under the experimental conditions tested here, we find no evidence for the function of UCP3 being basal or induced uncoupling, regulation of ROS production, protection against acute lipotoxicity or protection against oxidative damage.
Collapse
|
98
|
Wojtczak L, Lebiedzińska M, Suski JM, Więckowski MR, Schönfeld P. Inhibition by purine nucleotides of the release of reactive oxygen species from muscle mitochondria: indication for a function of uncoupling proteins as superoxide anion transporters. Biochem Biophys Res Commun 2011; 407:772-6. [PMID: 21439941 DOI: 10.1016/j.bbrc.2011.03.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 02/07/2023]
Abstract
Release of reactive oxygen species (ROS), measured as the sum of hydrogen peroxide (H₂O₂) and superoxide anion radical (O₂·⁻), from respiring rat heart and skeletal muscle mitochondria was significantly decreased by millimolar concentrations of GTP or GDP. Attempts to differentiate between the two forms of ROS showed that the release of O₂·⁻ rather than that of H₂O₂ was affected. Meanwhile, intramitochondrial ROS accumulation, measured by inactivation of aconitase, increased. These results suggest that guanine nucleotides inhibit the release of O₂·⁻ from mitochondria. As these nucleotides are known inhibitors of uncoupling proteins (UCPs), it is proposed that UCPs may function as carriers of O₂·⁻, thus enabling its removal from the matrix compartment.
Collapse
Affiliation(s)
- Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
99
|
Cole MA, Murray AJ, Cochlin LE, Heather LC, McAleese S, Knight NS, Sutton E, Jamil AA, Parassol N, Clarke K. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 2011; 106:447-57. [PMID: 21318295 PMCID: PMC3071466 DOI: 10.1007/s00395-011-0156-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/12/2010] [Accepted: 12/23/2010] [Indexed: 12/03/2022]
Abstract
Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels.
Collapse
Affiliation(s)
- Mark A Cole
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Schiff M, Bénit P, Coulibaly A, Loublier S, El-Khoury R, Rustin P. Mitochondrial response to controlled nutrition in health and disease. Nutr Rev 2011; 69:65-75. [PMID: 21294740 DOI: 10.1111/j.1753-4887.2010.00363.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria exert crucial physiological functions that create complex links among nutrition, health, and disease. While mitochondrial dysfunction with subsequent impairment of oxidative phosphorylation (OXPHOS) is the hallmark of the rare inherited OXPHOS diseases, OXPHOS dysfunction also plays a central role in the pathophysiology of common conditions such as type 2 diabetes and various neurodegenerative disorders. Dietary interventions, especially calorie restriction, have been shown to improve the course of these diseases and to extend the lifespan. Few data are available on the impact of nutraceuticals (macronutrients, vitamins, and cofactors) on primary inherited OXPHOS diseases. This review presents recent knowledge about the impact of nutritional modulation on mitochondria and lifespan regulation and about the development of potential treatments for mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Manuel Schiff
- Centre de référence Maladies Métaboliques, Hôpital Robert Debré, APHP, Université Paris 7, Faculté de médecine Denis Diderot, IFR02, INSERM, U676, Paris, France.
| | | | | | | | | | | |
Collapse
|