51
|
Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med 2021; 164:187-205. [PMID: 33450379 DOI: 10.1016/j.freeradbiomed.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria are the powerhouses of the cell. They produce a significant amount of the energy we need to grow, survive and reproduce. The same system that generates energy in the form of ATP also produces Reactive Oxygen Species (ROS). Mitochondrial Reactive Oxygen Species (mtROS) were considered for many years toxic by-products of metabolism, responsible for ageing and many degenerative diseases. Today, we know that mtROS are essential redox messengers required to determine cell fate and maintain cellular homeostasis. Most mtROS are produced by respiratory complex I (CI) and complex III (CIII). How and when CI and CIII produce ROS is determined by the redox state of the Coenzyme Q (CoQ) pool and the proton motive force (pmf) generated during respiration. During ageing, there is an accumulation of defective mitochondria that generate high levels of mtROS. This causes oxidative stress and disrupts redox signalling. Here, we review how mtROS are generated in young and old mitochondria and how CI and CIII derived ROS control physiological and pathological processes. Finally, we discuss why damaged mitochondria amass during ageing as well as methods to preserve mitochondrial redox signalling with age.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", 80131, Napoli, Italy
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| |
Collapse
|
52
|
Zhang Y, Du J, Duan X, Peng W, Lv L, Chen Z, Zhang Y. RIPK1 contributes to cisplatin-induced apoptosis of esophageal squamous cell carcinoma cells via activation of JNK pathway. Life Sci 2021; 269:119064. [PMID: 33460665 DOI: 10.1016/j.lfs.2021.119064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 12/09/2022]
Abstract
AIMS Previous studies have uncovered the function of receptor-interacting protein kinase 1 (RIPK1) to mediate both cell survival and death. Moreover, RIPK1 modulates apoptosis and necroptosis depending on its activity, phosphorylation or ubiquitylation status. Many studies have explained the role or mechanism of RIPK1 in necroptosis. However, the role of RIPK1 has not been elucidated fully in human esophageal squamous cell carcinoma (ESCC) cells. MATERIALS AND METHODS The protein and mRNA expression levels of RIPK1 in a panel of ESCC cell lines by Western blot and real-time quantitative reverse transcription PCR (qRT-PCR) were analyzed. MTS assay was used to examine cellular proliferation, flow cytometric analysis to detect apoptosis, mitochondrial membrane potential and reactive oxygen species production. ESCC cells with either inhibitor or overexpressed RIPK1were analyzed to determine cell proliferation, colony formation and apoptosis. Flow cytometry and western blotting assays were used to explore the underlying mechanism. KEY FINDINGS In our study, RIPK1 expression was found to contribute significantly to cisplatin-induced apoptosis in the human ESCC cells. The reduced RIPK1 expression promoted cells proliferation and overexpressed RIPK1 facilitated cell apoptosis. Mechanistic investigations have revealed that the inhibition of proliferation for RIPK1 in ESCC cells was regulated via activation of c-Jun NH2-terminal kinase signaling. Additionally, damages were observed in the mitochondrial membrane, depletion of ATP and increased generation in reactive oxygen species. SIGNIFICANCE Our findings verified the evidence that RIPK1 can promote cell death in ESCC cells, with potential implications for activating c-Jun NH2-terminal kinase pathway as a novel approach to the disease.
Collapse
Affiliation(s)
- Yuliu Zhang
- Department of Thoracic Surgery, Dingyuan County General Hospital of Chuzhou City in Anhui, Anhui 233200, China
| | - Jianping Du
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xiaofan Duan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.
| | - Wei Peng
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.
| | - Lei Lv
- Anhui Provincial Cancer Hospital, West Branch of the First Afliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Zhiyu Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - Yumei Zhang
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China. Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
| |
Collapse
|
53
|
Bayliak MM, Sorochynska OM, Kuzniak OV, Gospodaryov DV, Demianchuk OI, Vasylyk YV, Mosiichuk NM, Storey KB, Garaschuk O, Lushchak VI. Middle age as a turning point in mouse cerebral cortex energy and redox metabolism: Modulation by every-other-day fasting. Exp Gerontol 2020; 145:111182. [PMID: 33290862 DOI: 10.1016/j.exger.2020.111182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Normal brain aging is accompanied by intensification of free radical processes and compromised bioenergetics. Caloric restriction is expected to counteract these changes but the underlying protective mechanisms remain poorly understood. The present work aimed to investigate the intensity of oxidative stress and energy metabolism in the cerebral cortex comparing mice of different ages as well as comparing mice given one of two regimens of food availability: ad libitum versus every-other-day fasting (EODF). Levels of oxidative stress markers, ketone bodies, glycolytic intermediates, mitochondrial respiration, and activities of antioxidant and glycolytic enzymes were assessed in cortex from 6-, 12- and 18-month old C57BL/6J mice. The greatest increase in oxidative stress markers and the sharpest decline in key glycolytic enzyme activities was observed in mice upon the transition from young (6 months) to middle (12 months) age, with smaller changes occurring upon transition to old-age (18 months). Brain mitochondrial respiration showed no significant changes with age. A decrease in the activities of key glycolytic enzymes was accompanied by an increase in the activity of glucose-6-phosphate dehydrogenase suggesting that during normal brain aging glucose metabolism is altered to lower glycolytic activity and increase dependence on the pentose-phosphate pathway. Interestingly, levels of ketone bodies and antioxidant capacity showed a greater decrease in the brain cortex of females as compared with males. The EODF regimen further suppressed glycolytic enzyme activities in the cortex of old mice, and partially enhanced oxygen consumption and respiratory control in the cortex of middle aged and old males. Thus, in the mammalian cortex the major aging-induced metabolic changes are already seen in middle age and are slightly alleviated by an intermittent fasting mode of feeding.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, University of Tübingen, 72074 Tübingen, Germany
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
54
|
Esparza-Moltó PB, Cuezva JM. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid Redox Signal 2020; 33:927-945. [PMID: 31910046 DOI: 10.1089/ars.2019.7988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Cancer is a major disease imposing high personal and economic burden draining large part of National Health Care and Research budgets worldwide. In the last decade, research in cancer has underscored the reprogramming of metabolism to an enhanced aerobic glycolysis as a major trait of the cancer phenotype with great potential for targeted therapy. Recent Advances: Mitochondria are essential organelles in metabolic reprogramming for controlling the production of biological energy through oxidative phosphorylation (OXPHOS) and the supply of metabolic precursors that sustain proliferation. In addition, mitochondria are critical hubs that integrate different signaling pathways that control cellular metabolism and cell fate. The mitochondrial ATP synthase plays a fundamental role in OXPHOS and cellular signaling. Critical Issues: This review overviews mitochondrial metabolism and OXPHOS, and the major changes reported in the expression and function of mitochondrial proteins of OXPHOS in oncogenesis and in cellular differentiation. We summarize the prominent role that RNA-binding proteins (RNABPs) play in the sorting and localized translation of nuclear-encoded mRNAs that help define the mitochondrial cell-type-specific phenotype. Moreover, we emphasize the mechanisms that contribute to restrain the activity and expression of the mitochondrial ATP synthase in carcinomas, and illustrate that the dysregulation of proteins that control energy metabolism correlates with patients' survival. Future Directions: Future research should elucidate the mechanisms and RNABPs that promote the specific alterations of the mitochondrial phenotype in carcinomas arising from different tissues with the final aim of developing new therapeutic strategies to treat cancer.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
55
|
Monk CH, Zwezdaryk KJ. Host Mitochondrial Requirements of Cytomegalovirus Replication. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:115-123. [PMID: 33816061 PMCID: PMC8015347 DOI: 10.1007/s40588-020-00153-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Purpose of Review Metabolic rewiring of the host cell is required for optimal viral replication. Human cytomegalovirus (HCMV) has been observed to manipulate numerous mitochondrial functions. In this review, we describe the strategies and targets HCMV uses to control different aspects of mitochondrial function. Recent Findings The mitochondria are instrumental in meeting the biosynthetic and bioenergetic needs of HCMV replication. This is achieved through altered metabolism and signaling pathways. Morphological changes mediated through biogenesis and fission/fusion dynamics contribute to strategies to avoid cell death, overcome oxidative stress, and maximize the biosynthetic and bioenergetic outputs of mitochondria. Summary Emerging data suggests that cytomegalovirus relies on intact, functional host mitochondria for optimal replication. HCMV large size and slow replication kinetics create a dependency on mitochondria during replication. Targeting the host mitochondria is an attractive antiviral target.
Collapse
Affiliation(s)
- Chandler H Monk
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, 1430 Tulane Ave #8638, New Orleans, LA 70112, USA
| | - Kevin J Zwezdaryk
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, 1430 Tulane Ave #8638, New Orleans, LA 70112, USA
| |
Collapse
|
56
|
Huang M, Yang L, Peng X, Wei S, Fan Q, Yang S, Li X, Li B, Jin H, Wu B, Liu J, Li H. Autonomous glucose metabolic reprogramming of tumour cells under hypoxia: opportunities for targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:185. [PMID: 32928258 PMCID: PMC7491117 DOI: 10.1186/s13046-020-01698-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Molecular oxygen (O2) is a universal electron acceptor that is eventually synthesized into ATP in the mitochondrial respiratory chain of all metazoans. Therefore, hypoxia biology has become an organizational principle of cell evolution, metabolism and pathology. Hypoxia-inducible factor (HIF) mediates tumour cells to produce a series of glucose metabolism adaptations including the regulation of glucose catabolism, glycogen metabolism and the biological oxidation of glucose to hypoxia. Since HIF can regulate the energy metabolism of cancer cells and promote the survival of cancer cells, targeting HIF or HIF mediated metabolic enzymes may become one of the potential treatment methods for cancer. In this review, we summarize the established and recently discovered autonomous molecular mechanisms that can induce cell reprogramming of hypoxic glucose metabolism in tumors and explore opportunities for targeted therapy.
Collapse
Affiliation(s)
- Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
57
|
Wu M, Chen W, Zhang S, Huang S, Zhang A, Zhang Y, Jia Z. Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus. Apoptosis 2020; 24:879-891. [PMID: 31485878 DOI: 10.1007/s10495-019-01566-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is caused by pancreatic β-cell dysfunction and apoptosis, with consequent severe insulin deficiency. Thus, β-cell protection may be a primary target in the treatment of T1DM. Evidence has demonstrated that defective mitochondrial function plays an important role in pancreatic β-cell dysfunction and apoptosis; however, the fundamental effect of mitochondrial complex I action on β-cells and T1DM remains unclear. In the current study, the pancreas protective effect of complex I inhibitor rotenone (ROT) and its potential mechanism were assessed in a streptozotocin (STZ)-induced mouse model of T1DM and in cultured mouse pancreatic β-cell line, Min6. ROT treatment exerted a hypoglycemic effect, restored the insulin level, and decreased inflammation and cell apoptosis in the pancreas. In vitro experiments also showed that ROT decreased STZ- and inflammatory cytokines-induced β-cell apoptosis. These protective effects were accompanied by attenuation of reactive oxygen species, increased mitochondrial membrane potential, and upregulation of transcriptional coactivator PPARα coactivator 1α (PGC-1α)-controlled mitochondrial biogenesis. These findings suggest that mitochondrial complex I inhibition may represent a promising strategy for β-cell protection in T1DM.
Collapse
Affiliation(s)
- Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China.,State Key Laboratory of Kidney Diseases, Fuxing Road #28, Haidian District, Beijing, 100853, China
| | - Weiyi Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China
| | - Shengnan Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China.
| |
Collapse
|
58
|
Gu Z, Li M, Xia S, Mao T, Lu Z, Chen J, Wang H, Qu J, Fang Y, Li F, Li B. Effects of sublethal phoxim exposure and lower food intake on nutrient metabolism in the midguts of Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104593. [PMID: 32527421 DOI: 10.1016/j.pestbp.2020.104593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 04/04/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Silkworm (Bombyx mori) is an economically important insect. However, the survival of silkworms has been significantly affected by the assault of chemical pesticides on mulberry trees through aerial application and water currents. Phoxim is a broad-spectrum organophosphorus insecticide widely used in China. Currently, very little is known about the non-neuronal effects of sublethal exposure to phoxim. The purpose of this study was to investigate the non-neuronal effects of sublethal phoxim exposure in the silkworm midgut, with a focus on nutrient metabolism. After phoxim treatment, lipase activity in the silkworm was shown to be up-regulated at 24 h before a decreasing trend was seen. Meanwhile, α-amylase activity showed the opposite trend. The expression levels of mitochondrial respiratory chain-related genes were all up-regulated at 24 h before falling continuously. To ensure that the effects of phoxim on nutrient metabolism were not simply a consequence of a decrease in mulberry consumption, the silkworms were treated with a reduced-food diet before the digestive enzyme activities and the transcription levels of mitochondrial respiratory chain-related genes were analyzed. Our results showed that the patterns in the reduced-diet and phoxim-exposed silkworm were markedly different, suggesting the alterations in the phoxim-exposed silkworm cannot readily be explained by nutrient deprivation.
Collapse
Affiliation(s)
- Zhiya Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shuixiu Xia
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
59
|
Reina S, Pittalà MGG, Guarino F, Messina A, De Pinto V, Foti S, Saletti R. Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Front Cell Dev Biol 2020; 8:397. [PMID: 32582695 PMCID: PMC7287182 DOI: 10.3389/fcell.2020.00397] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine residues are reactive amino acids that can undergo several modifications driven by redox reagents. Mitochondria are the source of an abundant production of radical species, and it is surprising that such a large availability of highly reactive chemicals is compatible with viable and active organelles, needed for the cell functions. In this work, we review the results highlighting the modifications of cysteines in the most abundant proteins of the outer mitochondrial membrane (OMM), that is, the voltage-dependent anion selective channel (VDAC) isoforms. This interesting protein family carries several cysteines exposed to the oxidative intermembrane space (IMS). Through mass spectrometry (MS) analysis, cysteine posttranslational modifications (PTMs) were precisely determined, and it was discovered that such cysteines can be subject to several oxidization degrees, ranging from the disulfide bridge to the most oxidized, the sulfonic acid, one. The large spectra of VDAC cysteine oxidations, which is unique for OMM proteins, indicate that they have both a regulative function and a buffering capacity able to counteract excess of mitochondrial reactive oxygen species (ROS) load. The consequence of these peculiar cysteine PTMs is discussed.
Collapse
Affiliation(s)
- Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Maria Gaetana Giovanna Pittalà
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca Guarino
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
60
|
Ramzan R, Vogt S, Kadenbach B. Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl) 2020; 98:651-657. [PMID: 32313986 PMCID: PMC7220878 DOI: 10.1007/s00109-020-01905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Psychosocial stress is known to cause an increased incidence of coronary heart disease. In addition, multiple other diseases like cancer and diabetes mellitus have been related to stress and are mainly based on excessive formation of reactive oxygen species (ROS) in mitochondria. The molecular interactions between stress and ROS, however, are still unknown. Here we describe the missing molecular link between stress and an increased cellular ROS, based on the regulation of cytochrome c oxidase (COX). In normal healthy cells, the "allosteric ATP inhibition of COX" decreases the oxygen uptake of mitochondria at high ATP/ADP ratios and keeps the mitochondrial membrane potential (ΔΨm) low. Above ΔΨm values of 140 mV, the production of ROS in mitochondria increases exponentially. Stress signals like hypoxia, stress hormones, and high glutamate or glucose in neurons increase the cytosolic Ca2+ concentration which activates a mitochondrial phosphatase that dephosphorylates COX. This dephosphorylated COX exhibits no allosteric ATP inhibition; consequently, an increase of ΔΨm and ROS formation takes place. The excess production of mitochondrial ROS causes apoptosis or multiple diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany.
| |
Collapse
|
61
|
Kanwar P, Samtani H, Sanyal SK, Srivastava AK, Suprasanna P, Pandey GK. VDAC and its interacting partners in plant and animal systems: an overview. Crit Rev Biotechnol 2020; 40:715-732. [PMID: 32338074 DOI: 10.1080/07388551.2020.1756214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular trafficking between different subcellular compartments is the key for normal cellular functioning. Voltage-dependent anion channels (VDACs) are small-sized proteins present in the outer mitochondrial membrane, which mediate molecular trafficking between mitochondria and cytoplasm. The conductivity of VDAC is dependent on the transmembrane voltage, its oligomeric state and membrane lipids. VDAC acts as a convergence point to a diverse variety of mitochondrial functions as well as cell survival. This functional diversity is attained due to their interaction with a plethora of proteins inside the cell. Although, there are hints toward functional conservation/divergence between animals and plants; knowledge about the functional role of the VDACs in plants is still limited. We present here a comparative overview to provide an integrative picture of the interactions of VDAC with different proteins in both animals and plants. Also discussed are their physiological functions from the perspective of cellular movements, signal transduction, cellular fate, disease and development. This in-depth knowledge of the biological importance of VDAC and its interacting partner(s) will assist us to explore their function in the applied context in both plant and animal.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
62
|
Cobley JN, Husi H. Immunological Techniques to Assess Protein Thiol Redox State: Opportunities, Challenges and Solutions. Antioxidants (Basel) 2020; 9:E315. [PMID: 32326525 PMCID: PMC7222201 DOI: 10.3390/antiox9040315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
To understand oxidative stress, antioxidant defense, and redox signaling in health and disease it is essential to assess protein thiol redox state. Protein thiol redox state is seldom assessed immunologically because of the inability to distinguish reduced and reversibly oxidized thiols by Western blotting. An underappreciated opportunity exists to use Click PEGylation to realize the transformative power of simple, time and cost-efficient immunological techniques. Click PEGylation harnesses selective, bio-orthogonal Click chemistry to separate reduced and reversibly oxidized thiols by selectively ligating a low molecular weight polyethylene glycol moiety to the redox state of interest. The resultant ability to disambiguate reduced and reversibly oxidized species by Western blotting enables Click PEGylation to assess protein thiol redox state. In the present review, to enable investigators to effectively harness immunological techniques to assess protein thiol redox state we critique the chemistry, promise and challenges of Click PEGylation.
Collapse
Affiliation(s)
- James Nathan Cobley
- Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK;
| | | |
Collapse
|
63
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2318] [Impact Index Per Article: 579.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
64
|
Wolf C, López del Amo V, Arndt S, Bueno D, Tenzer S, Hanschmann EM, Berndt C, Methner A. Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery. Cells 2020; 9:cells9040815. [PMID: 32230997 PMCID: PMC7226787 DOI: 10.3390/cells9040815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox modifications. We reveal that worms and flies possess only a single mitofusin, which in vertebrates diverged into MFN1 and MFN2. All mitofusins contain four conserved cysteines in addition to cysteine 684 in MFN2, a site involved in mitochondrial hyperfusion. DRP1 and FIS1 are also evolutionarily conserved but only DRP1 contains four conserved cysteine residues besides cysteine 644, a specific site of nitrosylation. MFF and MID49/51 are only present in the vertebrate lineage. GDAP1 is missing in the nematode genome and contains no conserved cysteine residues. Our analysis suggests that the function of the evolutionarily oldest proteins of the mitochondrial fusion and fission machinery, the mitofusins and DRP1 but not FIS1, might be altered by redox modifications.
Collapse
Affiliation(s)
- Christina Wolf
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Víctor López del Amo
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sabine Arndt
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Diones Bueno
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
- Correspondence:
| |
Collapse
|
65
|
Rochford G, Molphy Z, Kavanagh K, McCann M, Devereux M, Kellett A, Howe O. Cu(ii) phenanthroline–phenazine complexes dysregulate mitochondrial function and stimulate apoptosis. Metallomics 2020; 12:65-78. [DOI: 10.1039/c9mt00187e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we report the central role of the mitochondria in the cytotoxicity of four developmental cytotoxic copper(ii) complexes [Cu(phen)2]2+, [Cu(DPQ)(Phen)]2+, [Cu(DPPZ)(Phen)]2+and [Cu(DPPN)(Phen)]2+superior to cisplatin and independent of resistance in a range of cells.
Collapse
Affiliation(s)
- Garret Rochford
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| | - Zara Molphy
- School of Chemical Science and The National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | | | - Malachy McCann
- Department of Chemistry
- Maynooth University
- Maynooth
- Ireland
| | - Michael Devereux
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| | - Andrew Kellett
- School of Chemical Science and The National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Orla Howe
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| |
Collapse
|
66
|
Pohl EE, Jovanovic O. The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress. Molecules 2019; 24:molecules24244545. [PMID: 31842328 PMCID: PMC6943717 DOI: 10.3390/molecules24244545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and their derivatives, reactive aldehydes (RAs), have been implicated in the pathogenesis of many diseases, including metabolic, cardiovascular, and inflammatory disease. Understanding how RAs can modify the function of membrane proteins is critical for the design of therapeutic approaches in the above-mentioned pathologies. Over the last few decades, direct interactions of RA with proteins have been extensively studied. Yet, few studies have been performed on the modifications of membrane lipids arising from the interaction of RAs with the lipid amino group that leads to the formation of adducts. It is even less well understood how various multiple adducts affect the properties of the lipid membrane and those of embedded membrane proteins. In this short review, we discuss a crucial role of phosphatidylethanolamine (PE) and PE-derived adducts as mediators of RA effects on membrane proteins. We propose potential PE-mediated mechanisms that explain the modulation of membrane properties and the functions of membrane transporters, channels, receptors, and enzymes. We aim to highlight this new area of research and to encourage a more nuanced investigation of the complex nature of the new lipid-mediated mechanism in the modification of membrane protein function under oxidative stress.
Collapse
|
67
|
Bottje WG. BOARD INVITED REVIEW: Oxidative stress and efficiency: the tightrope act of mitochondria in health and disease1,2. J Anim Sci 2019; 97:3169-3179. [PMID: 31247079 DOI: 10.1093/jas/skz219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an unavoidable consequence of aerobic metabolism. Whereas high amounts of mitochondrial reactive oxygen species (ROS) can cause oxidation, low levels play important roles in signal transduction. In a Pedigree male (PedM) broiler model of feed efficiency (FE), the low FE phenotype was characterized by increased ROS in isolated mitochondria (muscle, liver, and duodenum) with a pervasive protein oxidation in mitochondria and tissues. Subsequent proteogenomic studies in muscle revealed evidence of enhanced mitoproteome abundance, enhanced mitochondrial phosphocreatine shuttling expression, and enhanced ribosome assembly in the high FE phenotype. Surprisingly, an enhanced infrastructure would foster greater repair of damaged proteins or organelles through the autophagy and proteosome pathways in the high FE phenotype. Although protein and organelle degradation, recycling, and reconstruction would be energetically expensive, it is possible that energy invested into maintaining optimal function of proteins and organelles contributes to cellular efficiency in the high FE phenotype. New findings in mitochondrial physiology have been reported in the last several years. Reverse electron transport (RET), once considered an artifact of in vitro conditions, now is recognized to play significant roles in inflammation, ischemia-reperfusion, muscle differentiation, and energy utilization. A topology of ROS production indicates that ROS derived from Complex I of the respiratory chain primarily causes oxidation, whereas ROS generated from Complex III are primarily involved in cell signaling. It is also apparent that there is a constant fission and fusion process that mitochondria undergo that help maintain optimal mitochondrial function and enables mitochondria to adjust to periods of nutrient limitation and nutrient excess. Understanding the balancing act that mitochondria play in health and disease will continue to be a vital biological component in health-production efficiency and disease in commercial animal agriculture.
Collapse
Affiliation(s)
- Walter G Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR
| |
Collapse
|
68
|
Hu J, Li M, Lu Z, Mao T, Chen J, Wang H, Qu J, Fang Y, Cheng X, Li J, Li F, Li B. The mechanism of damage in the midgut of Bombyx mori after chlorantraniliprole exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:903-912. [PMID: 31392633 DOI: 10.1007/s10646-019-02089-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Silkworm (Bombyx mori) is an economic insect of the Lepidoptera. Chlorantraniliprole (CAP) exposure results in reduced growth and development of B. mori and failure in cocooning, seriously affecting the development of sericulture. To study the mechanisms underlying the damage to silkworm caused by sublethal doses of CAP, we examined the oxidative damage, the activities of digestive enzymes in midgut, and the expressions of midgut-related genes at the mRNA level. We found that CAP exposure inhibited the growth of silkworm, decreased the body mass and caused the accumulation of reactive oxygen species (ROS) [the levels of O2-, H2O2 and lipid peroxidation (MDA) were increased by 1.62-, 1.87- and 1.46-fold, respectively]. Moreover, we also found that the midgut cells were disintegrated, microvilli disappeared, the stroma became thinner, and the chromatin of nucleus became aggregated after CAP exposure by the analysis of transmission electron microscopy (TEM). In addition, the activities of digestive enzymes were dysregulated in midgut (the activities of α-amylase and trypsin were decreased 0.69- and 0.20-fold, respectively). Furthermore, digital gene expression (DGE) profiling analysis revealed that the expressions of oxidative phosphorylation pathway and antioxidant defense system related genes in midgut were decreased, indicating that it was the oxidative damage in midgut caused by CAP that mainly affected the growth of silkworm, rather than the toxicological effects of CAP. Collectively, this study provided valuable insights into the toxic effects of CAP on insects.
Collapse
Affiliation(s)
- Jiahuan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Xiaoyu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Jinxin Li
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China.
- Sericulture Institute of Soochow University, 215123, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
69
|
Bottje W. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria. Poult Sci 2019; 98:4223-4230. [DOI: 10.3382/ps/pey405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
70
|
Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells. Cells 2019; 8:cells8101159. [PMID: 31569690 PMCID: PMC6829349 DOI: 10.3390/cells8101159] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Sulforaphane (SFN), an activator of transcription factor Nrf2 (NFE2-related factor), modulates antioxidant defense by Nrf2-mediated regulation of antioxidant genes like Peroxiredoxin 6 (Prdx6) and affects cellular homeostasis. We previously observed that dose levels of SFN are crucial in determining life or death of lens epithelial cells (LECs). Herein, we demonstrated that higher doses of SFN (>6 μM) activated death signaling by overstimulation of Nrf2/ARE (antioxidant response element)-mediated Kruppel-like factor (Klf9) repression of Prdx6 expression, which increased reactive oxygen species (ROS) load and cell death. Mechanistically, Klf9 bound to its repressive Klf9 binding elements (RKBE; 5-CA/GCCC-3) in the Prdx6 promoter, and repressed Prdx6 transcription. Under the condition of higher dose of SFN, excessive Nrf2 abundance caused death signaling by enforcing Klf9 activation through ARE (5-RTGAYnnnGC-3) in Klf9 promoter that suppress antioxidant genes such as Prdx6 via a Klf9-dependent fashion. Klf9-depletion showed that Klf9 independently caused ROS reduction and subsequent cell survival, demonstrating that Klf9 upregulation caused cell death. Our work revealed the molecular mechanism of dose-dependent altered activity of SFN in LECs, and demonstrated that SFN activity was linked to levels of Nrf2/Klf9/Prdx6 axis. We proposed that in the development of therapeutic interventions for aging/oxidative disorders, combinations of Klf9-ShRNA and Nrf2 inducers may prove to be a promising strategy.
Collapse
|
71
|
Cobley JN, Noble A, Jimenez-Fernandez E, Valdivia Moya MT, Guille M, Husi H. Catalyst-free Click PEGylation reveals substantial mitochondrial ATP synthase sub-unit alpha oxidation before and after fertilisation. Redox Biol 2019; 26:101258. [PMID: 31234016 PMCID: PMC6597785 DOI: 10.1016/j.redox.2019.101258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022] Open
Abstract
Using non-reducing Western blotting to assess protein thiol redox state is challenging because most reduced and oxidised forms migrate at the same molecular weight and are, therefore, indistinguishable. While copper catalysed Click chemistry can be used to ligate a polyethylene glycol (PEG) moiety termed Click PEGylation to mass shift the reduced or oxidised form as desired, the potential for copper catalysed auto-oxidation is problematic. Here we define a catalyst-free trans-cyclooctene-methyltetrazine (TCO-Tz) inverse electron demand Diels Alder chemistry approach that affords rapid (k ~2000 M-1 s-1), selective and bio-orthogonal Click PEGylation. We used TCO-Tz Click PEGylation to investigate how fertilisation impacts reversible mitochondrial ATP synthase F1-Fo sub-unit alpha (ATP-α-F1) oxidation-an established molecular correlate of impaired enzyme activity-in Xenopus laevis. TCO-Tz Click PEGylation studies reveal substantial (~65%) reversible ATP-α-F1 oxidation at evolutionary conserved cysteine residues (i.e., C244 and C294) before and after fertilisation. A single thiol is, however, preferentially oxidised likely due to greater solvent exposure during the catalytic cycle. Selective reduction experiments show that: S-glutathionylation accounts for ~50-60% of the reversible oxidation observed, making it the dominant oxidative modification type. Intermolecular disulphide bonds may also contribute due to their relative stability. Substantial reversible ATP-α-F1 oxidation before and after fertilisation is biologically meaningful because it implies low mitochondrial F1-Fo ATP synthase activity. Catalyst-free TCO-Tz Click PEGylation is a valuable new tool to interrogate protein thiol redox state in health and disease.
Collapse
Affiliation(s)
- James N Cobley
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK.
| | - Anna Noble
- European Xenopus Resource Centre, University of Portsmouth, School of Biological Sciences, King Henry Building, Portsmouth, PO1 2DY, UK
| | - Eduardo Jimenez-Fernandez
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Manuel-Thomas Valdivia Moya
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Matthew Guille
- European Xenopus Resource Centre, University of Portsmouth, School of Biological Sciences, King Henry Building, Portsmouth, PO1 2DY, UK
| | - Holger Husi
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| |
Collapse
|
72
|
Li G, Qin Y. Mitochondrial translation factor EF4 regulates oxidative phosphorylation complexes and the production of ROS. Free Radic Res 2019; 52:1250-1255. [PMID: 30693836 DOI: 10.1080/10715762.2018.1479063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondrial translation system executes the biosynthesis of mitochondrial DNA encoded polypeptides that are the core subunits of oxidative phosphorylation complexes. Recently, we reported that elongation factor 4 (EF4) is a key quality control factor in bacterial and mitochondrial translation regulating tRNA translocation and modulating cellular responses via a direct cross-talk with cytoplasmic translation machinery. Here, we made a brief review on mtEF4-regulated mitochondrial translation, respiratory chain biogenesis and the production of reactive oxygen species (ROS). We will discuss the influence of mtEF4 on the electron transport chain, especially at respiratory chain complex IV, which could result in cytochrome c peroxidase formation, electron leakage from electron transport chain and ROS increase.
Collapse
Affiliation(s)
- Guichen Li
- a Key Laboratory of RNA Biology , Institute of Biophysics, Chinese Academy of Sciences , Chaoyang District , Beijing , China
| | - Yan Qin
- a Key Laboratory of RNA Biology , Institute of Biophysics, Chinese Academy of Sciences , Chaoyang District , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
73
|
TLR2-Dependent Reversible Oxidation of Connexin 43 at Cys260 Modifies Electrical Coupling After Experimental Myocardial Ischemia/Reperfusion. J Cardiovasc Transl Res 2019; 12:478-487. [DOI: 10.1007/s12265-019-09887-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/27/2019] [Indexed: 12/27/2022]
|
74
|
Alternative NAD(P)H dehydrogenase and alternative oxidase: Proposed physiological roles in animals. Mitochondrion 2019; 45:7-17. [DOI: 10.1016/j.mito.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/01/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
|
75
|
Lassiter K, Kong BC, Piekarski-Welsher A, Dridi S, Bottje WG. Gene Expression Essential for Myostatin Signaling and Skeletal Muscle Development Is Associated With Divergent Feed Efficiency in Pedigree Male Broilers. Front Physiol 2019; 10:126. [PMID: 30873041 PMCID: PMC6401619 DOI: 10.3389/fphys.2019.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Feed efficiency (FE, gain to feed) is an important genetic trait as 70% of the cost of raising animals is due to feed costs. The objective of this study was to determine mRNA expression of genes involved in muscle development and hypertrophy, and the insulin receptor-signaling pathway in breast muscle associated with the phenotypic expression of FE. Methods: Breast muscle samples were obtained from Pedigree Male (PedM) broilers (8 to 10 week old) that had been individually phenotyped for FE between 6 and 7 week of age. The high FE group gained more weight but consumed the same amount of feed compared to the low FE group. Total RNA was extracted from breast muscle (n = 6 per group) and mRNA expression of target genes was determined by real-time quantitative PCR. Results: Targeted gene expression analysis in breast muscle of the high FE phenotype revealed that muscle development may be fostered in the high FE PedM phenotype by down-regulation several components of the myostatin signaling pathway genes combined with upregulation of genes that enhance muscle formation and growth. There was also evidence of genetic architecture that would foster muscle protein synthesis in the high FE phenotype. A clear indication of differences in insulin signaling between high and low FE phenotypes was not apparent in this study. Conclusion: These findings indicate that a gene expression architecture is present in breast muscle of PedM broilers exhibiting high FE that would support enhanced muscle development-differentiation as well as protein synthesis compared to PedM broilers exhibiting low FE.
Collapse
Affiliation(s)
- Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Caleb Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter Gay Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
76
|
Fuhrmann DC, Wittig I, Brüne B. TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression. Redox Biol 2019; 20:204-216. [PMID: 30368040 PMCID: PMC6202876 DOI: 10.1016/j.redox.2018.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial derived reactive oxygen species (mtROS) are known for their signaling qualities in both physiology and pathology. To elucidate mitochondrial complex I-dependent ROS-signaling after lipopolysaccharide (LPS)-stimulation THP-1 macrophages with a knockdown of the transmembrane protein TMEM126B were generated. TMEM knockdown cells (sh126B) showed a reduced assembly of complex I and attenuated mtROS production. In these cells we identified protein oxidization by mtROS upon LPS-treatment using the BIAM switch assay coupled to liquid chromatography and mass spectrometry. One of the identified targets of mtROS was succinate dehydrogenase (SDH) flavoprotein subunit A (SDHA). Oxidation of SDHA decreased its enzymatic activity and pharmacological inhibition of SDH in turn stabilized hypoxia inducible factor (HIF)-1α and caused the subsequent, sustained expression of interleukin-1β (IL-1β). Oxidation of SDHA in sh126B cells was attenuated, while pharmacological inhibition of SDH by atpenin A5 restored IL-1β expression in sh126B cells upon LPS-treatment. Conclusively, oxidation of SDH by mtROS links an altered metabolism, i.e. succinate accumulation to HIF-1-driven, inflammatory changes in macrophages.
Collapse
Affiliation(s)
- Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe-University Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany.
| |
Collapse
|
77
|
Young A, Gill R, Mailloux RJ. Protein S-glutathionylation: The linchpin for the transmission of regulatory information on redox buffering capacity in mitochondria. Chem Biol Interact 2018; 299:151-162. [PMID: 30537466 DOI: 10.1016/j.cbi.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/08/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
Protein S-glutathionylation reactions are a ubiquitous oxidative modification required to control protein function in response to changes in redox buffering capacity. These reactions are rapid and reversible and are, for the most part, enzymatically mediated by glutaredoxins (GRX) and glutathione S-transferases (GST). Protein S-glutathionylation has been found to control a range of cell functions in response to different physiological cues. Although these reactions occur throughout the cell, mitochondrial proteins seem to be highly susceptible to reversible S-glutathionylation, a feature attributed to the unique physical properties of this organelle. Indeed, mitochondria contain a number of S-glutathionylation targets which includes proteins involved in energy metabolism, solute transport, reactive oxygen species (ROS) production, proton leaks, apoptosis, antioxidant defense, and mitochondrial fission and fusion. Moreover, it has been found that conjugation and removal of glutathione from proteins in mitochondria fulfills a number of important physiological roles and defects in these reactions can have some dire pathological consequences. Here, we provide an updated overview on mitochondrial protein S-glutathionylation reactions and their importance in cell functions and physiology.
Collapse
Affiliation(s)
- Adrian Young
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert Gill
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
78
|
Larosa V, Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep 2018; 38:BSR20171492. [PMID: 30201689 PMCID: PMC6167499 DOI: 10.1042/bsr20171492] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive reduced oxygen molecules that result from aerobic metabolism. The common forms are the superoxide anion (O2∙-) and hydrogen peroxide (H2O2) and their derived forms, hydroxyl radical (HO∙) and hydroperoxyl radical (HOO∙). Their production sites in mitochondria are reviewed. Even though being highly toxic products, ROS seem important in transducing information from dysfunctional mitochondria. Evidences of signal transduction mediated by ROS in mitochondrial deficiency contexts are then presented in different organisms such as yeast, mammals or photosynthetic organisms.
Collapse
Affiliation(s)
- Véronique Larosa
- Genetics and Physiology of Microalgae, UR InBios/Phytosystems, Chemin de la Vallée, 4, University of Liège, Liège 4000, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, UR InBios/Phytosystems, Chemin de la Vallée, 4, University of Liège, Liège 4000, Belgium
| |
Collapse
|
79
|
Urea Memory: Transient Cell Exposure to Urea Causes Persistent Mitochondrial ROS Production and Endothelial Dysfunction. Toxins (Basel) 2018; 10:toxins10100410. [PMID: 30314315 PMCID: PMC6215169 DOI: 10.3390/toxins10100410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
Urea at post-dialysis levels induces increased ROS in a number of cell types. The aim of this study was to determine whether urea-induced production of ROS remains elevated after urea is no longer present, and, if it does, to characterize its origin and effects. Human arterial endothelial cells were incubated with 20 mM urea for two days, and then cells were incubated for an additional two days in medium alone. Maximal ROS levels induced by initial urea continued at the same level despite urea being absent. These effects were prevented by either MnSOD expression or by Nox1/4 inhibition with GKT13781. Sustained urea-induced ROS caused a persistent reduction in mtDNA copy number and electron transport chain transcripts, a reduction in transcription of mitochondrial fusion proteins, an increase in mitochondrial fission proteins, and persistent expression of endothelial inflammatory markers. The SOD-catalase mimetic MnTBAP reversed each of these. These results suggest that persistent increases in ROS after cells are no long exposed to urea may play a major role in continued kidney damage and functional decline despite reduction of urea levels after dialysis.
Collapse
|
80
|
Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, Cerutti JM, de Souza EB. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106:1537-1556. [DOI: 10.1016/j.biopha.2018.06.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
|
81
|
Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol 2018; 176:514-531. [PMID: 30129023 DOI: 10.1111/bph.14480] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The intermembrane space (IMS) is a very small mitochondrial sub-compartment with critical relevance for many cellular processes. IMS proteins fulfil important functions in transport of proteins, lipids, metabolites and metal ions, in signalling, in metabolism and in defining the mitochondrial ultrastructure. Our understanding of the IMS proteome has become increasingly refined although we still lack information on the identity and function of many of its proteins. One characteristic of many IMS proteins are conserved cysteines. Different post-translational modifications of these cysteine residues can have critical roles in protein function, localization and/or stability. The close localization to different ROS-producing enzyme systems, a dedicated machinery for oxidative protein folding, and a unique equipment with antioxidative systems, render the careful balancing of the redox and modification states of the cysteine residues, a major challenge in the IMS. In this review, we discuss different functions of human IMS proteins, the involvement of cysteine residues in these functions, the consequences of cysteine modifications and the consequences of cysteine mutations or defects in the machinery for disulfide bond formation in terms of human health. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Markus Habich
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Silja Lucia Salscheider
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
82
|
Cuello F, Wittig I, Lorenz K, Eaton P. Oxidation of cardiac myofilament proteins: Priming for dysfunction? Mol Aspects Med 2018; 63:47-58. [PMID: 30130564 DOI: 10.1016/j.mam.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Oxidants are produced endogenously and can react with and thereby post-translationally modify target proteins. They have been implicated in the redox regulation of signal transduction pathways conferring protection, but also in mediating oxidative stress and causing damage. The difference is that in scenarios of injury the amount of oxidants generated is higher and/or the duration of oxidant exposure sustained. In the cardiovascular system, oxidants are important for blood pressure homeostasis, for unperturbed cardiac function and also contribute to the observed protection during ischemic preconditioning. In contrast, oxidative stress accompanies all major cardiovascular pathologies and has been attributed to mediate contractile dysfunction in part by inducing oxidative modifications in myofilament proteins. However, the proportion to which oxidative modifications of contractile proteins are beneficial or causatively mediate disease progression needs to be carefully reconsidered. These antithetical aspects will be discussed in this review with special focus on direct oxidative post-translational modifications of myofilament proteins that have been described to occur in vivo and to regulate actin-myosin interactions in the cardiac myocyte sarcomere, the methodologies for detection of oxidative post-translational modifications in target proteins and the feasibility of antioxidant therapy strategies as a potential treatment for cardiac disorders.
Collapse
Affiliation(s)
- Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Germany
| | - Kristina Lorenz
- Comprehensive Heart Failure Center, Würzburg, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. Dortmund, West German Heart and Vascular Center, Essen, Germany
| | - Philip Eaton
- King's British Heart Foundation Centre, King's College London, UK
| |
Collapse
|
83
|
Synapse Pruning: Mitochondrial ROS with Their Hands on the Shears. Bioessays 2018; 40:e1800031. [DOI: 10.1002/bies.201800031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/27/2018] [Indexed: 12/27/2022]
|
84
|
Tang W, Xiao Y, Li G, Zheng X, Yin Y, Wang L, Zhu Y. Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under fluoride stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:127-134. [PMID: 29425843 DOI: 10.1016/j.ecoenv.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Fluorine is an essential element, but excessive fluoride can cause serious effects on the respiratory, digestive, and reproductive systems. Fluorine has been suggested to cause reproductive toxicity in vertebrates, but its potential to reproductively affect invertebrates remains unknown. In the present study, the lepidopteran model insect Bombyx mori was used to assess the reproductive toxicity of NaF. The underlying molecular mechanisms were explored by RNA sequencing, and we investigated the testes transcriptomic profile of B. mori treated with NaF via a digital gene expression (DGE) analysis. Among 520 candidate genes, 297 and 223 were identified as significantly upregulated or downregulated, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out on all genes to determine their biological functions and associated processes. The results indicated that numerous differentially expressed genes are involved in the stress response, detoxification, antibacterial, transport, oxidative phosphorylation, and ribosome. The reliability of the data was confirmed by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The changed Glutathione S-transferase (GST) activity and glutathione (GSH) content in the NaF-treated groups were increased and reduced respectively. This study reveals that using RNA-sequencing for the transcriptome profiling of B. mori testes can lead to better comprehension of the male reproductive toxicity effects of NaF. Furthermore, we expect that these results will aid future molecular studies on the reproductive toxicity of NaF in other species.
Collapse
Affiliation(s)
- Wenchao Tang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yuanyuan Xiao
- School of Life Sciences, Southwest University, Chongqing 400716, China
| | - Guannan Li
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xi Zheng
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yaru Yin
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Lingyan Wang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yong Zhu
- School of Biotechnology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
85
|
Beyrath J, Pellegrini M, Renkema H, Houben L, Pecheritsyna S, van Zandvoort P, van den Broek P, Bekel A, Eftekhari P, Smeitink JAM. KH176 Safeguards Mitochondrial Diseased Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery. Sci Rep 2018; 8:6577. [PMID: 29700325 PMCID: PMC5920042 DOI: 10.1038/s41598-018-24900-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023] Open
Abstract
A deficient activity of one or more of the mitochondrial oxidative phosphorylation (OXPHOS) enzyme complexes leads to devastating diseases, with high unmet medical needs. Mitochondria, and more specifically the OXPHOS system, are the main cellular production sites of Reactive Oxygen Species (ROS). Increased ROS production, ultimately leading to irreversible oxidative damage of macromolecules or to more selective and reversible redox modulation of cell signalling, is a causative hallmark of mitochondrial diseases. Here we report on the development of a new clinical-stage drug KH176 acting as a ROS-Redox modulator. Patient-derived primary skin fibroblasts were used to assess the potency of a new library of chromanyl-based compounds to reduce ROS levels and protect cells against redox-stress. The lead compound KH176 was studied in cell-based and enzymatic assays and in silico. Additionally, the metabolism, pharmacokinetics and toxicokinetics of KH176 were assessed in vivo in different animal species. We demonstrate that KH176 can effectively reduce increased cellular ROS levels and protect OXPHOS deficient primary cells against redox perturbation by targeting the Thioredoxin/Peroxiredoxin system. Due to its dual activity as antioxidant and redox modulator, KH176 offers a novel approach to the treatment of mitochondrial (-related) diseases. KH176 efficacy and safety are currently being evaluated in a Phase 2 clinical trial.
Collapse
Affiliation(s)
- Julien Beyrath
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands.
| | - Mina Pellegrini
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Herma Renkema
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Lisanne Houben
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | | | | | - Petra van den Broek
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Akkiz Bekel
- Inoviem Scientific SAS, Bioparc 3, 850 Boulevard Sébastien Brant, 67400, Illkirch-Graffenstaden, France
| | - Pierre Eftekhari
- Inoviem Scientific SAS, Bioparc 3, 850 Boulevard Sébastien Brant, 67400, Illkirch-Graffenstaden, France
| | - Jan A M Smeitink
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
86
|
Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:241-260. [PMID: 29047090 DOI: 10.1007/978-3-319-63245-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension is a complex disease of the pulmonary vasculature, which in severe cases terminates in right heart failure. Complex remodeling of pulmonary arteries comprises the central issue of its pathology. This includes extensive proliferation, apoptotic resistance and inflammation. As such, the molecular and cellular features of pulmonary hypertension resemble hallmark characteristics of cancer cell behavior. The vascular remodeling derives from significant metabolic changes in resident cells, which we describe in detail. It affects not only cells of pulmonary artery wall, but also its immediate microenvironment involving cells of immune system (i.e., macrophages). Thus aberrant metabolism constitutes principle component of the cancer-like theory of pulmonary hypertension. The metabolic changes in pulmonary artery cells resemble the cancer associated Warburg effect, involving incomplete glucose oxidation through aerobic glycolysis with depressed mitochondrial catabolism enabling the fueling of anabolic reactions with amino acids, nucleotides and lipids to sustain proliferation. Macrophages also undergo overlapping but distinct metabolic reprogramming inducing specific activation or polarization states that enable their participation in the vascular remodeling process. Such metabolic synergy drives chronic inflammation further contributing to remodeling. Enhanced glycolytic flux together with suppressed mitochondrial bioenergetics promotes the accumulation of reducing equivalents, NAD(P)H. We discuss the enzymes and reactions involved. The reducing equivalents modulate the regulation of proteins using NAD(P)H as the transcriptional co-repressor C-terminal binding protein 1 cofactor and significantly impact redox status (through GSH, NAD(P)H oxidases, etc.), which together act to control the phenotype of the cells of pulmonary arteries. The altered mitochondrial metabolism changes its redox poise, which together with enhanced NAD(P)H oxidase activity and reduced enzymatic antioxidant activity promotes a pro-oxidative cellular status. Herein we discuss all described metabolic changes along with resultant alterations in redox status, which result in excessive proliferation, apoptotic resistance, and inflammation, further leading to pulmonary arterial wall remodeling and thus establishing pulmonary artery hypertension pathology.
Collapse
|
87
|
Brini M, Leanza L, Szabo I. Lipid-Mediated Modulation of Intracellular Ion Channels and Redox State: Physiopathological Implications. Antioxid Redox Signal 2018; 28:949-972. [PMID: 28679281 DOI: 10.1089/ars.2017.7215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Ion channels play an important role in the regulation of organelle function within the cell, as proven by increasing evidence pointing to a link between altered function of intracellular ion channels and different pathologies ranging from cancer to neurodegenerative diseases, ischemic damage, and lysosomal storage diseases. Recent Advances: A link between these pathologies and redox state as well as lipid homeostasis and ion channel function is in the focus of current research. Critical Issues: Ion channels are target of modulation by lipids and lipid messengers, although in most cases the mechanistic details have not been clarified yet. Ion channel function importantly impacts production of reactive oxygen species (ROS), especially in the case of mitochondria and lysosomes. ROS, in turn, may modulate the function of intracellular channels triggering thereby a feedback control under physiological conditions. If produced in excess, ROS can be harmful to lipids and may produce oxidized forms of these membrane constituents that ultimately affect ion channel function by triggering a "circulus vitiosus." Future Directions: The present review summarizes our current knowledge about the contribution of intracellular channels to oxidative stress and gives examples of how these channels are modulated by lipids and how this modulation may affect ROS production in ROS-related diseases. Future studies need to address the importance of the regulation of intracellular ion channels and related oxidative stress by lipids in various physiological and pathological contexts. Antioxid. Redox Signal. 28, 949-972.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
88
|
Reactive oxygen species participate in liver function recovery during compensatory growth in zebrafish (Danio rerio). Biochem Biophys Res Commun 2018; 499:285-290. [PMID: 29574160 DOI: 10.1016/j.bbrc.2018.03.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 01/02/2023]
Abstract
Compensatory growth (CG) is defined as a phase of accelerated growth when the disadvantageous environment is improved, accompanied by metabolic adjustment. Here, we report that hepatic oxidative phosphorylation (OXPHOS) activity was enhanced during compensatory growth in zebrafish. Mitochondrial metabolism enabled the generation of reactive oxygen species (ROS), which activated the nrf2 (nuclear factor-erythroid 2-related factor 2) signaling pathway, as well as the mTOR signaling pathway. Tempol (a superoxide dismutase mimetic) treatment blocked ROS signaling in the liver as well as CG in zebrafish. These results demonstrated that mitochondrial ROS signaling are essential for the occurrence of compensatory growth in zebrafish.
Collapse
|
89
|
B Valdez L, S Bombicino S, E Iglesias D, Rukavina Mikusic A I, Boveris A. Mitochondrial peroxynitrite generation is mainly driven by superoxide steady-state concentration rather than by nitric oxide steady-state concentration. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/ijmboa.2018.03.00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
90
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|
91
|
Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep 2017; 7:14130. [PMID: 29074861 PMCID: PMC5658327 DOI: 10.1038/s41598-017-14520-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Upon oxidative stress and aging, Nrf2 (NFE2-related factor2) triggers antioxidant defense genes to defends against homeostatic failure. Using human(h) or rat(r) lens epithelial cells (LECs) and aging human lenses, we showed that a progressive increase in oxidative load during aging was linked to a decline in Prdx6 expression. DNA binding experiments using gel-shift and ChIP assays demonstrated a progressive reduction in Nrf2/ARE binding (-357/-349) of Prdx6 promoter. The promoter (-918) with ARE showed a marked reduction in young vs aged hLECs, which was directly correlated to decreased Nrf2/ARE binding. A Nrf2 activator, Sulforaphane (SFN), augmented Prdx6, catalase and GSTπ expression in dose-dependent fashion, and halted Nrf2 dysregulation of these antioxidants. SFN reinforced Nrf2/DNA binding and increased promoter activities by enhancing expression and facilitating Nrf2 translocalization in nucleus. Conversely, promoter mutated at ARE site did not respond to SFN, validating the SFN-mediated restoration of Nrf2/ARE signaling. Furthermore, SFN rescued cells from UVB-induced toxicity in dose-dependent fashion, which was consistent with SFN's dose-dependent activation of Nrf2/ARE interaction. Importantly, knockdown of Prdx6 revealed that Prdx6 expression was prerequisite for SFN-mediated cytoprotection. Collectively, our results suggest that loss of Prdx6 caused by dysregulation of ARE/Nrf2 can be attenuated through a SFN, to combat diseases associated with aging.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan.
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA
| | - Prerna Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA.
| |
Collapse
|
92
|
Kron P, Schlegel A, Mancina L, Clavien PA, Dutkowski P. Hypothermic oxygenated perfusion (HOPE) for fatty liver grafts in rats and humans. J Hepatol 2017; 68:S0168-8278(17)32268-7. [PMID: 28870676 DOI: 10.1016/j.jhep.2017.08.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Pretreatment of marginal organs by perfusion is a promising opportunity to make more organs available for transplantation. Protection of human donation after cardiac death (DCD) livers by a novel machine perfusion technique, hypothermic oxygenated perfusion (HOPE), was recently established. Herein, we tested whether HOPE is also useful for fatty liver grafts, using a rodent transplant model. METHODS Rats were fed over three weeks with a special methionine-choline-deficient diet (MCDD) to induce severe hepatic macrosteatosis (≥60%). Afterwards, livers were transplanted with either minimal or 12h cold storage. Additional liver grafts were treated after 12h cold storage with 1h HOPE before transplantation. Graft injury after orthotopic liver transplantation (OLT) was assessed in terms of oxidative stress, damage-associated molecular patterns release, toll-like receptor-4 activation, cytokine release, endothelial activation, and the development of necrosis and fibrosis. RESULTS Implantation of cold stored macrosteatotic liver grafts induced massive reperfusion injury after OLT, compared to controls (non-fatty livers). HOPE treatment after cold storage failed to change the degree of steatosis itself, but markedly decreased reperfusion injury after OLT, as detected by less oxidative stress, less nuclear injury, less Kupffer- and endothelial cell activation, as well as less fibrosis within one week after OLT. Protective effects were lost in the absence of oxygen in the HOPE perfusate. CONCLUSION HOPE after cold storage of fatty livers prevents significant reperfusion injury and improves graft function, comparable to the effects of HOPE in DCD livers and DCD kidneys. HOPE treatment is easy and may become a universal concept to further expand the donor pool. LAY SUMMARY An increasing number of donor livers contain fat. It is important to harness marginal livers, which may contain fat, as the stock of donor livers is limited. Hypothermic oxygenated perfusion (HOPE) prevents reperfusion injury and improves liver graft function. HOPE offers a simple and low-cost option for treating liver grafts in transplant centers, even after cold storage, instead of transporting machines to the place of procurement. HOPE could be used globally to expand the donor pool.
Collapse
Affiliation(s)
- Philipp Kron
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Leandro Mancina
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland.
| |
Collapse
|
93
|
Angerer H, Schönborn S, Gorka J, Bahr U, Karas M, Wittig I, Heidler J, Hoffmann J, Morgner N, Zickermann V. Acyl modification and binding of mitochondrial ACP to multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1913-1920. [PMID: 28802701 DOI: 10.1016/j.bbamcr.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023]
Abstract
The mitochondrial acyl carrier protein (ACPM/NDUFAB1) is a central element of the mitochondrial fatty acid synthesis type II machinery. Originally ACPM was detected as a subunit of respiratory complex I but the reason for the association with the large enzyme complex remained elusive. Complex I from the aerobic yeast Yarrowia lipolytica comprises two different ACPMs, ACPM1 and ACPM2. They are anchored to the protein complex by LYR (leucine-tyrosine-arginine) motif containing protein (LYRM) subunits LYRM3 (NDUFB9) and LYRM6 (NDUFA6). The ACPM1-LYRM6 and ACPM2-LYRM3 modules are essential for complex I activity and assembly/stability, respectively. We show that in addition to the complex I bound fraction, ACPM1 is present as a free matrix protein and in complex with the soluble LYRM4(ISD11)/NFS1 complex implicated in Fe-S cluster biogenesis. We show that the presence of a long acyl chain bound to the phosphopantetheine cofactor is important for docking ACPMs to protein complexes and we propose that association of ACPMs and LYRMs is universally based on a new protein-protein interaction motif.
Collapse
Affiliation(s)
- Heike Angerer
- Goethe University Frankfurt, Medical School, Institute of Biochemistry II, Structural Bioenergetics Group, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Stefan Schönborn
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jan Gorka
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Ute Bahr
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Michael Karas
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 core unit, Goethe-University Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Juliana Heidler
- Functional Proteomics, SFB 815 core unit, Goethe-University Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Jan Hoffmann
- Goethe University Frankfurt, Institute of Physical and Theoretical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Nina Morgner
- Goethe University Frankfurt, Institute of Physical and Theoretical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Zickermann
- Goethe University Frankfurt, Medical School, Institute of Biochemistry II, Structural Bioenergetics Group, Max-von-Laue Str. 9, 60438 Frankfurt, Germany; Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Germany.
| |
Collapse
|
94
|
Cobley JN, Close GL, Bailey DM, Davison GW. Exercise redox biochemistry: Conceptual, methodological and technical recommendations. Redox Biol 2017; 12:540-548. [PMID: 28371751 PMCID: PMC5377294 DOI: 10.1016/j.redox.2017.03.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling.
Collapse
Affiliation(s)
- James N Cobley
- Department for Sport and Exercise Sciences, Abertay University, 40 Bell Street, Dundee, Scotland DD1 1HG, UK.
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Liverpool, England L3 3AF, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, CF37 4AT, UK; Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Gareth W Davison
- Sport and Exercise Science Research Institute, Ulster University, Belfast, BT37 OQB, UK
| |
Collapse
|
95
|
Role of Mitochondria and Endoplasmic Reticulum in Taurine-Deficiency-Mediated Apoptosis. Nutrients 2017; 9:nu9080795. [PMID: 28757580 PMCID: PMC5579589 DOI: 10.3390/nu9080795] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/31/2023] Open
Abstract
Taurine is a ubiquitous sulfur-containing amino acid found in high concentration in most tissues. Because of its involvement in fundamental physiological functions, such as regulating respiratory chain activity, modulating cation transport, controlling inflammation, altering protein phosphorylation and prolonging lifespan, taurine is an important nutrient whose deficiency leads to severe pathology and cell death. However, the mechanism by which taurine deficiency causes cell death is inadequately understood. Therefore, the present study examined the hypothesis that overproduction of reactive oxygen species (ROS) by complex I of the respiratory chain triggers mitochondria-dependent apoptosis in hearts of taurine transporter knockout (TauTKO) mice. In support of the hypothesis, a 60% decrease in mitochondrial taurine content of 3-month-old TauTKO hearts was observed, which was associated with diminished complex I activity and the onset of mitochondrial oxidative stress. Oxidative damage to stressed mitochondria led to activation of a caspase cascade, with stimulation of caspases 9 and 3 prevented by treatment of 3-month-old TauTKO mice with the mitochondria specific antioxidant, MitoTempo. In 12 month-old, but not 3-month-old, TauTKO hearts, caspase 12 activation contributes to cell death, revealing a pathological role for endoplasmic reticulum (ER) stress in taurine deficient, aging mice. Thus, taurine is a cytoprotective nutrient that ensures normal mitochondrial and ER function, which is important for the reduction of risk for apoptosis and premature death.
Collapse
|
96
|
Scialò F, Fernández-Ayala DJ, Sanz A. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Front Physiol 2017; 8:428. [PMID: 28701960 PMCID: PMC5486155 DOI: 10.3389/fphys.2017.00428] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Reactive Oxygen Species (ROS) can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress. Based on this model the amount of ROS should determine the physiological effect. However, recent data suggests that the site at which ROS are generated is also instrumental in determining effects on cellular homeostasis. The best example of site-specific ROS signaling is reverse electron transport (RET). RET is produced when electrons from ubiquinol are transferred back to respiratory complex I, reducing NAD+ to NADH. This process generates a significant amount of ROS. RET has been shown to be instrumental for the activation of macrophages in response to bacterial infection, re-organization of the electron transport chain in response to changes in energy supply and adaptation of the carotid body to changes in oxygen levels. In Drosophila melanogaster, stimulating RET extends lifespan. Here, we review what is known about RET, as an example of site-specific ROS signaling, and its implications for the field of redox biology.
Collapse
Affiliation(s)
- Filippo Scialò
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Daniel J Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and CIBERER-ISCIIISeville, Spain
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| |
Collapse
|
97
|
Tetsi L, Charles AL, Paradis S, Lejay A, Talha S, Geny B, Lugnier C. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions. Cell Mol Life Sci 2017; 74:1883-1893. [PMID: 28039524 PMCID: PMC11107545 DOI: 10.1007/s00018-016-2446-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria play a critical role in skeletal muscle metabolism and function, notably at the level of tissue respiration, which conduct muscle strength as well as muscle survival. Pathological conditions induce mitochondria dysfunctions notably characterized by free oxygen radical production disturbing intracellular signaling. In that way, the second messengers, cyclic AMP and cyclic GMP, control intracellular signaling at the physiological and transcription levels by governing phosphorylation cascades. Both nucleotides are specifically and selectively hydrolyzed in their respective 5'-nucleotide by cyclic nucleotide phosphodiesterases (PDEs), which constitute a multi-genic family differently tissue distributed and subcellularly compartmentalized. These PDEs are presently recognized as therapeutic targets for cardiovascular, pulmonary, and neurologic diseases. However, very few data concerning cyclic nucleotides and PDEs in skeletal muscle, specifically in mitochondria, are reported in the literature. The knowledge of PDE implication in mitochondrial signaling would be helpful for resolving critical mitochondrial dysfunctions in skeletal muscle.
Collapse
Affiliation(s)
- Liliane Tetsi
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Anne-Laure Charles
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Stéphanie Paradis
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Anne Lejay
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Samy Talha
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Bernard Geny
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Claire Lugnier
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France.
| |
Collapse
|
98
|
Abstract
Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University, Düsseldorf, University, D-40225, Düsseldorf, Germany; .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich Heine University, D-40225, Düsseldorf, Germany;
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia 30322;
| |
Collapse
|
99
|
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol 2017; 11:613-619. [PMID: 28110218 PMCID: PMC5256672 DOI: 10.1016/j.redox.2016.12.035] [Citation(s) in RCA: 1450] [Impact Index Per Article: 207.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 11/29/2022] Open
Abstract
Hydrogen peroxide emerged as major redox metabolite operative in redox sensing, signaling and redox regulation. Generation, transport and capture of H2O2 in biological settings as well as their biological consequences can now be addressed. The present overview focuses on recent progress on metabolic sources and sinks of H2O2 and on the role of H2O2 in redox signaling under physiological conditions (1-10nM), denoted as oxidative eustress. Higher concentrations lead to adaptive stress responses via master switches such as Nrf2/Keap1 or NF-κB. Supraphysiological concentrations of H2O2 (>100nM) lead to damage of biomolecules, denoted as oxidative distress. Three questions are addressed: How can H2O2 be assayed in the biological setting? What are the metabolic sources and sinks of H2O2? What is the role of H2O2 in redox signaling and oxidative stress?
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Institute for Research in Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
100
|
Wang Y, Zhao Y, Zhao Y, Luo X, Guo Z, Zhang R. Cancer risk associated single nucleotide polymorphisms of mitochondrial D-loop and 8-hydroxy-2'-deoxyguanosine levels in gastric cancer. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2016.1270173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yingnan Wang
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yufei Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yue Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Xiaoxu Luo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ruixing Zhang
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|