51
|
Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in Muscle Damage and Function. Nutrients 2018; 10:nu10050552. [PMID: 29710835 PMCID: PMC5986432 DOI: 10.3390/nu10050552] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Abstract
Nutritional supplementation not only helps in improving and maintaining performance in sports and exercise, but also contributes in reducing exercise fatigue and in recovery from exhaustion. Fish oil contains large amounts of omega-3 fatty acids, eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (DHA; 22:6 n-3). It is widely known that omega-3 fatty acids are effective for improving cardiac function, depression, cognitive function, and blood as well as lowering blood pressure. In the relationship between omega-3 fatty acids and exercise performance, previous studies have been predicted improved endurance performance, antioxidant and anti-inflammatory responses, and effectivity against delayed-onset muscle soreness. However, the optimal dose, duration, and timing remain unclear. This review focuses on the effects of omega-3 fatty acid on muscle damage and function as evaluated by human and animal studies and summarizes its effects on muscle and nerve damage, and muscle mass and strength.
Collapse
|
52
|
Magi F, Dimauro I, Margheritini F, Duranti G, Mercatelli N, Fantini C, Ripani FR, Sabatini S, Caporossi D. Telomere length is independently associated with age, oxidative biomarkers, and sport training in skeletal muscle of healthy adult males. Free Radic Res 2018; 52:639-647. [DOI: 10.1080/10715762.2018.1459043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fiorenza Magi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Fabrizio Margheritini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Guglielmo Duranti
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Francesca Romana Ripani
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University “La Sapienza”, Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
53
|
Penna C, Sorge M, Femminò S, Pagliaro P, Brancaccio M. Redox Aspects of Chaperones in Cardiac Function. Front Physiol 2018; 9:216. [PMID: 29615920 PMCID: PMC5864891 DOI: 10.3389/fphys.2018.00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022] Open
Abstract
Molecular chaperones are stress proteins that allow the correct folding or unfolding as well as the assembly or disassembly of macromolecular cellular components. Changes in expression and post-translational modifications of chaperones have been linked to a number of age- and stress-related diseases including cancer, neurodegeneration, and cardiovascular diseases. Redox sensible post-translational modifications, such as S-nitrosylation, glutathionylation and phosphorylation of chaperone proteins have been reported. Redox-dependent regulation of chaperones is likely to be a phenomenon involved in metabolic processes and may represent an adaptive response to several stress conditions, especially within mitochondria, where it impacts cellular bioenergetics. These post-translational modifications might underlie the mechanisms leading to cardioprotection by conditioning maneuvers as well as to ischemia/reperfusion injury. In this review, we discuss this topic and focus on two important aspects of redox-regulated chaperones, namely redox regulation of mitochondrial chaperone function and cardiac protection against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
54
|
Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Kyparos A, Nikolaidis MG. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability. Acta Physiol (Oxf) 2018; 222. [PMID: 28544643 DOI: 10.1111/apha.12898] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
AIM The aim of this study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents (e.g. a pro-oxidant or antioxidant). METHODS We invented a novel methodological set-up that exploited the large redox interindividual variability in exercise responses. More specifically, we used exercise-induced oxidative stress as the 'classifier' measure (i.e. low, moderate and high) and investigated the physiological and redox adaptations after a 6-week endurance training protocol. RESULTS We demonstrated that the group with the low exercise-induced oxidative stress exhibited the lowest improvements in a battery of classic adaptations to endurance training (VO2 max, time trial and Wingate test) as well as in a set of redox biomarkers (oxidative stress biomarkers and antioxidants), compared to the high and moderate oxidative stress groups. CONCLUSION The findings of this study substantiate, for the first time in a human in vivo physiological context, and in the absence of any exogenous redox manipulation, the vital role of RONS produced during exercise in adaptations. The stratification approach, based on a redox phenotype, implemented in this study could be a useful experimental strategy to reveal the role of RONS and antioxidants in other biological manifestations as well.
Collapse
Affiliation(s)
- N. V. Margaritelis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
- Intensive Care Unit; 424 General Military Hospital of Thessaloniki; Thessaloniki Greece
| | - A. A. Theodorou
- Department of Health Sciences; School of Sciences; European University Cyprus; Nicosia Cyprus
| | - V. Paschalis
- School of Physical Education and Sport Science; National and Kapodistrian University of Athens; Athens Greece
| | - A. S. Veskoukis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - K. Dipla
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - A. Zafeiridis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - G. Panayiotou
- Department of Health Sciences; School of Sciences; European University Cyprus; Nicosia Cyprus
| | - I. S. Vrabas
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - A. Kyparos
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - M. G. Nikolaidis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| |
Collapse
|
55
|
Rusin A, Seymour C, Mothersill C. Chronic fatigue and immune deficiency syndrome (CFIDS), cellular metabolism, and ionizing radiation: a review of contemporary scientific literature and suggested directions for future research. Int J Radiat Biol 2018; 94:212-228. [DOI: 10.1080/09553002.2018.1422871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada
| | | |
Collapse
|
56
|
de Perini A, Dimauro I, Duranti G, Fantini C, Mercatelli N, Ceci R, Di Luigi L, Sabatini S, Caporossi D. The p75 NTR-mediated effect of nerve growth factor in L6C5 myogenic cells. BMC Res Notes 2017; 10:686. [PMID: 29202822 PMCID: PMC5716223 DOI: 10.1186/s13104-017-2994-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/25/2017] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE During muscle development or regeneration, myocytes produce nerve growth factor (NGF) as well as its tyrosine-kinase and p75-neurotrophin (p75NTR) receptors. It has been published that the p75NTR receptor could represent a key regulator of NGF-mediated myoprotective effect on satellite cells, but the precise function of NGF/p75 signaling pathway on myogenic cell proliferation, survival and differentiation remains fragmented and controversial. Here, we verified the role of NGF in the growth, survival and differentiation of p75NTR-expressing L6C5 myogenic cells, specifically inquiring for the putative involvement of the nuclear factor κB (NFκB) and the small heat shock proteins (sHSPs) αB-crystallin and Hsp27 in these processes. RESULTS Although NGF was not effective in modulating myogenic cell growth or survival in both standard or stress conditions, we demonstrated for the first time that, under serum deprivation, NGF sustained the activity of some key enzymes involved in energy metabolism. Moreover, we confirmed that NGF promotes myogenic fusion and expression of the structural protein myosin heavy chain while modulating NFκB activation and the content of sHSPs correlated with the differentiation process. We conclude that p75NTR is sufficient to mediate the modulation of L6C5 myogenic differentiation by NGF in term of structural, metabolic and functional changes.
Collapse
Affiliation(s)
- Alessandra de Perini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Guglielmo Duranti
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Roberta Ceci
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| |
Collapse
|
57
|
Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a Review of Recent Findings. Curr Rheumatol Rep 2017; 19:1. [PMID: 28116577 DOI: 10.1007/s11926-017-0628-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Here, we review potential causes of muscle dysfunction seen in many patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) such as the effects of oxidative and nitrosative stress (O&NS) and mitochondrial impairments together with reduced heat shock protein production and a range of metabolic abnormalities. RECENT FINDINGS Several studies published in the last few years have highlighted the existence of chronic O&NS, inflammation, impaired mitochondrial function and reduced heat shock protein production in many patients with ME/CFS. These studies have also highlighted the detrimental effects of chronically elevated O&NS on muscle functions such as reducing the time to muscle fatigue during exercise and impairing muscle contractility. Mechanisms have also been revealed by which chronic O&NS and or impaired heat shock production may impair muscle repair following exercise and indeed the adaptive responses in the striated muscle to acute and chronic increases in physical activity. The presence of chronic O&NS, low-grade inflammation and impaired heat shock protein production may well explain the objective findings of increased muscle fatigue, impaired contractility and multiple dimensions of exercise intolerance in many patients with ME/CFS.
Collapse
|
58
|
Li SW, Guo Y, He Y, Sun X, Zhao HJ, Wang Y, Wang YJ, Xing MW. Assessment of arsenic trioxide toxicity on cock muscular tissue: alterations of oxidative damage parameters, inflammatory cytokines and heat shock proteins. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1078-1088. [PMID: 28755286 DOI: 10.1007/s10646-017-1835-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
To evaluate the toxicity of arsenic trioxide (As2O3) in the muscular tissues (wing, thigh and pectoral) of birds, 72 one-day-old Hy-line cocks were selected and randomly divided into four groups. They were fed either a commercial diet or an arsenic-supplemented diet containing 7.5, 15 or 30 mg/kg As2O3. The experiment lasted for 90 days and the samples of muscular tissues were collected at 30, 60 and 90 days. The results showed that As2O3 exposure significantly lowered the activities of antioxidant enzymes (catalase (CAT), glutathione peroxidase (GSH-Px)) and inhibition ability of hydroxyl radicals (OH) and increased the malondialdehyde (MDA) contents. Furthermore, the mRNA levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), prostaglandin E synthase (PTGEs)) and heat shock proteins (HSPs) in muscular tissue were significantly upregulated in the As2O3 exposure groups. The results indicated that As2O3 exposure resulted in oxidative damage, induced the inflammatory response, and influenced the mRNA levels of HSPs in muscular tissue of cocks. Additionally, the results suggested that HSPs possibly resisted due to the As2O3 exposure-induced oxidative stress and inflammatory response, which provided a favorable environment and played protective roles in the muscular tissues of cocks. The information presented in this study is helpful to understand the mechanism of As2O3 toxicity in bird muscular tissues.
Collapse
Affiliation(s)
- Si-Wen Li
- College of Wildlife Resources, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China
| | - Ying Guo
- College of Wildlife Resources, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China
| | - Ying He
- College of Wildlife Resources, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China
| | - Xiao Sun
- College of Wildlife Resources, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China
| | - Hong-Jing Zhao
- College of Wildlife Resources, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China
| | - Ya-Jun Wang
- College of Wildlife Resources, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China.
| | - Ming-Wei Xing
- College of Wildlife Resources, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China.
| |
Collapse
|
59
|
Nabatov AA, Troegubova NA, Gilmutdinov RR, Sereda AP, Samoilov AS, Rylova NV. Sport- and sample-specific features of trace elements in adolescent female field hockey players and fencers. J Trace Elem Med Biol 2017; 43:33-37. [PMID: 28153354 DOI: 10.1016/j.jtemb.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 01/29/2023]
Abstract
Active physical exercises and growth are associated with mineral imbalances in young athletes. The purpose of this study was to examine the impact of sport-related factors on tissue mineral status in adolescent female athletes. Saliva and hair samples were used for the analysis of immediate and more permanent tissue mineral status, respectively. Samples taken from a control non-athletic female group and two groups of female athletes (field hockey and fencing) were analyzed for seven essential minerals: calcium, chromium, iron, potassium, magnesium, selenium and zinc. Inductively-coupled plasma mass spectrometry was used for the quantification of elements having very low concentration range in samples (Se, Cr and Zn) whereas inductively coupled plasma optical emission spectrometry was used for quantification of more ubiquitous elements (Mg, К, Са, Fe). The obtained results for athletic groups were compared with control. Female athletes had increased levels of selenium in both saliva and hair as well as chromium in saliva. Field hockey players had the higher level of zinc in hair whereas fencers had the lower levels of salivary calcium. Strong negative correlation between potassium levels in saliva and hair was identified. Iron and magnesium did not differ between the studied groups. In conclusion, novel sport-specific features of chromium tissue levels in female athletes were found. The studied sport disciplines have different impact on the distribution of osteoporosis-related minerals (calcium and zinc). Our finding can help in the development of osteoporosis preventive trainings and in the proper nutrient supplementation to correct mineral imbalances in female athletes.
Collapse
Affiliation(s)
- Alexey A Nabatov
- Science Center, Volga Region State Academy of Physical Culture, Sport and Tourism, 33 Universiade Village, Kazan, 420138, Russia; Kazan State Medical University, 49 Butlerova str., Kazan, 420012 Russia
| | | | - Ruslan R Gilmutdinov
- State enterprise "Research Institute Geolnerud", 4 Zinina str., Kazan, 420097, Russia
| | - Andrey P Sereda
- Federal Scientific Clinical Center for Sport Medicine and Rehabilitation, 5 B. Dorogomilovskaya str., Moscow, 123182, Russia
| | - Alexander S Samoilov
- Burnazyan Federal Medical Center of Biophysics, 46/8 Zhivopisnaya str., Moscow, 123182, Russia
| | - Natalya V Rylova
- Kazan State Medical University, 49 Butlerova str., Kazan, 420012 Russia.
| |
Collapse
|
60
|
Dimauro I, Sgura A, Pittaluga M, Magi F, Fantini C, Mancinelli R, Sgadari A, Fulle S, Caporossi D. Regular exercise participation improves genomic stability in diabetic patients: an exploratory study to analyse telomere length and DNA damage. Sci Rep 2017. [PMID: 28646223 PMCID: PMC5482873 DOI: 10.1038/s41598-017-04448-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Physical activity has been demonstrated to be effective in the prevention and treatment of different chronic conditions, including type 2 diabetes (T2D). In particular, several studies highlighted how the beneficial effects of physical activity may be related to the stability of the DNA molecule, such as longer telomeric ends. Here we analyze the effect of exercise training on telomere length, spontaneous and H2O2-induced DNA damage, as well as the apoptosis level in leukocytes from untrained or trained T2D patients vs. age-matched control subjects (CS) (57–66 years). Moreover, expression analysis of selected genes belonging to DNA repair systems, cell cycle control, antioxidant and defence systems was performed. Subjects that participated in a regular exercise program showed a longer telomere sequence than untrained counterparts. Moreover, ex vivo treatment of leukocytes with H2O2 highlighted that: (1) oxidative DNA damage induced similar telomere attrition in all groups; (2) in T2D subjects, physical activity seemed to prevent a significant increase of genomic oxidative DNA damage induced by chronic exposure to pro-oxidant stimulus, and (3) decreased the sensitivity of leukocytes to apoptosis. Finally, the gene expression analysis in T2D subjects suggested an adaptive response to prolonged exercise training that improved the response of specific genes.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | - Monica Pittaluga
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Fiorenza Magi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of Miology (IIM), University "G d'Annunzio", Chieti, Italy
| | - Antonio Sgadari
- Department of Geriatrics, Gerontology and Physiatry, University Hospital Agostino Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of Miology (IIM), University "G d'Annunzio", Chieti, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
61
|
Huber Y, Gehrke N, Biedenbach J, Helmig S, Simon P, Straub BK, Bergheim I, Huber T, Schuppan D, Galle PR, Wörns MA, Schuchmann M, Schattenberg JM. Voluntary distance running prevents TNF-mediated liver injury in mice through alterations of the intrahepatic immune milieu. Cell Death Dis 2017. [PMID: 28640248 PMCID: PMC5520921 DOI: 10.1038/cddis.2017.266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Physical activity confers a broad spectrum of health benefits. Beyond the obvious role in metabolically driven diseases, the role of physical activity in acute liver injury is poorly explored. To study the role of physical activity in acute liver injury, a novel model of voluntary distance running in mice was developed and mice were subjected to acute liver injury induced by N-galactosamine (GalN) and lipopolysaccharide (LPS). Analyses included histological stains, immunoblotting, qRT-PCR and FACS analysis. Voluntary distance running increased to an average of 10.3 km/day after a learning curve. Running lead to a decrease in the absolute numbers of intrahepatic CD4+ T and B lymphocytes and macrophages after 7 weeks. In parallel, hepatic mRNA expression of inflammatory cytokines including IL-6 and IL-1beta, TGF-beta and monocyte chemoattractant protein-1 (MCP-1/CCL2) were suppressed, while TNF-α was not affected by exercise. Likewise, expression of the macrophage-specific antigen F4/80 was downregulated 1.6-fold from exercise. Notably, acute liver injury from GaIN/LPS was significantly blunted following 7 weeks of voluntary exercise as determined by liver histology, a 84.6% reduction of alanine aminotransferase (P<0.01) and a 54.6% reduction of aspartate aminotransferase (P<0.05) compared with sedentary mice. Additionally, proinflammatory cytokines, activation of caspase 3 and JNK were significantly lower, while antiapoptotic protein A20 increased. Voluntary distance running alters the intrahepatic immune phenotype producing an environment that is less susceptible to acute liver injury.
Collapse
Affiliation(s)
- Yvonne Huber
- I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nadine Gehrke
- I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jana Biedenbach
- I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Helmig
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg University, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg University, Mainz, Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna A-1090, Austria
| | - Tobias Huber
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marcus A Wörns
- I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Jörn M Schattenberg
- I. Department of Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
62
|
Theilen NT, Kunkel GH, Tyagi SC. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J Cell Physiol 2017; 232:2348-2358. [PMID: 27966783 DOI: 10.1002/jcp.25737] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
Skeletal muscle atrophy is the consequence of protein degradation exceeding protein synthesis. This arises for a multitude of reasons including the unloading of muscle during microgravity, post-surgery bedrest, immobilization of a limb after injury, and overall disuse of the musculature. The development of therapies prior to skeletal muscle atrophy settings to diminish protein degradation is scarce. Mitochondrial dysfunction is associated with skeletal muscle atrophy and contributes to the induction of protein degradation and cell apoptosis through increased levels of ROS observed with the loss of organelle function. ROS binds mtDNA, leading to its degradation and decreasing functionality. Mitochondrial transcription factor A (TFAM) will bind and coat mtDNA, protecting it from ROS and degradation while increasing mitochondrial function. Exercise stimulates cell signaling pathways that converge on and increase PGC-1α, a well-known activator of the transcription of TFAM and mitochondrial biogenesis. Therefore, in the present review we are proposing, separately, exercise and TFAM treatments prior to atrophic settings (muscle unloading or disuse) alleviate skeletal muscle atrophy through enhanced mitochondrial adaptations and function. Additionally, we hypothesize the combination of exercise and TFAM leads to a synergistic effect in targeting mitochondrial function to prevent skeletal muscle atrophy. J. Cell. Physiol. 232: 2348-2358, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas T Theilen
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - George H Kunkel
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
63
|
Lenasi H, Klonizakis M. Assessing the evidence: Exploring the effects of exercise on diabetic microcirculation. Clin Hemorheol Microcirc 2017; 64:663-678. [PMID: 27767975 DOI: 10.3233/ch-168022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) is associated with cardiovascular complications. Impairment of glycemic control induces noxious glycations, an increase in oxydative stress and dearangement of various metabolic pathways. DM leads to dysfunction of micro- and macrovessels, connected to metabolic, endothelial and autonomic nervous system. Thus, assessing vascular reactivity might be one of the clinical tools to evaluate the impact of harmful effects of DM and potential benefit of treatment; skin and skeletal muscle microcirculation have usually been tested. Physical exercise improves vascular dysfunction through various mechanisms, and is regarded as an additional effective treatment strategy of DM as it positively impacts glycemic control, improves insulin sensitivity and glucose uptake in the target tissues, thus affecting glucose and lipid metabolism, and increases the endothelium dependent vasodilation. Yet, not all patients respond in the same way so titrating the exercise type individualy would be desirable. Resistance training has, apart from aerobic one, been shown to positively correlate to glycemic control, and improve vascular reactivity. It has been prescribed in various forms or in combination with aerobic training. This review would assess the impact of different modes of exercise, the mechanisms involved, and its potential positive and negative effects on treating patients with Type I and Type II DM, focusing on the recent literature.
Collapse
Affiliation(s)
- Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Markos Klonizakis
- Centre for Sport and Exercise Science, Sheffield Hallam University, UK
| |
Collapse
|
64
|
Leite JSM, Cruzat VF, Krause M, Homem de Bittencourt PI. Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
65
|
Melkani GC. Huntington's Disease-Induced Cardiac Disorders Affect Multiple Cellular Pathways. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:325-338. [PMID: 29963642 PMCID: PMC6022757 DOI: 10.20455/ros.2016.859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a rare, inherited, progressive, and fatal neurological disorder resulting from expanded polyglutamine repeats in the huntingtin protein. While HD is predominately characterized as a disease of the central nervous system, mortality surveys and epidemiological studies reveal heart disease as one of the leading causes of death in HD patients. Emerging evidence supports a link between HD and cardiovascular disease, such as cardiac amyloidosis (accumulation of aggregates in the heart). Experimental animal and clinical studies have attempted to explain the mechanisms of HD-induced cardiac pathology in the association of protein misfolding, autophagic defects, oxidative stress, mitochondrial dysfunction, and cell death. HD is increasingly understood as a complex disease with peripheral components of cardiac and skeletal muscle pathophysiology. While the discovery of these linkages and apparent pathological markers is promising, the mechanism of HD-induced cardiac pathology and the nature of its cell autonomy remain elusive. Further study of the wide-ranging cardiac function in HD patients is needed. This review highlights published literature on the pathological factors associated with HD-induced cardiac amyloidosis and other cardiovascular diseases, and addresses gaps in this expanding area of study. Through comprehensive experimental and clinical studies, potential drugs can be tested to attenuate and/or ameliorate HD-induced cardiac pathology and mortality.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
66
|
Jee H. Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil 2016; 12:255-9. [PMID: 27656620 PMCID: PMC5031383 DOI: 10.12965/jer.1632642.321] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/23/2016] [Indexed: 12/18/2022] Open
Abstract
Molecular chaperones are ubiquitous and abundant within cellular environments, functioning as a defense mechanism against outer environment. The range of molecular chaperones varies from 10 to over 100 kDa. Depending on the size, the specific locations and physiological roles of molecular chaperones vary within the cell. Multifunctionality of heat shock proteins (HSPs) expressed via various cyto-stress including heat shock have been spotlighted as a reliable prognostic target biomarker for therapeutic purpose in neuromuscular disease or cancer related studies. HSP also plays a critical role in the maintenance of proteins and cellular homeostasis in exercise-induced adaptation. Such various functions of HSPs give scientists insights into intracellular protective mechanisms in the living body thus HSPs can be target molecules to know the defense mechanism in cellular environment. Based on experimental results regarding small to large scaled HSPs, this review aims to provide updated important information regarding the modality of responses of intracellular HSPs towards extracellular stimulations. Further, the expressive mechanisms of HSPs data from tremendous in vivo and in vitro studies underlying the enhancement of the functionality of living body will be discussed.
Collapse
Affiliation(s)
- Hyunseok Jee
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
67
|
Modulation of rat monocyte/macrophage innate functions by increasing intensities of swimming exercise is associated with heat shock protein status. Mol Cell Biochem 2016; 421:111-25. [DOI: 10.1007/s11010-016-2791-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/06/2016] [Indexed: 12/16/2022]
|