51
|
Oxidized lipids in the metabolic profiling of neuroendocrine tumors - Analytical challenges and biological implications. J Chromatogr A 2020; 1625:461233. [PMID: 32709312 DOI: 10.1016/j.chroma.2020.461233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/08/2023]
Abstract
Untargeted metabolomics can be a great tool for exploring new scientific areas; however, wrong metabolite annotation questions the credibility and puts the success of the entire research at risk. Therefore, an effort should be made to improve the quality and robustness of the annotation despite of the challenges, especially when final identification with standards is not possible. Through non-targeted analysis of human plasma samples, from a large cancer cohort study using RP-LC-ESI-QTOF-MS/MS, we have resolved MS/MS annotation through spectral matching, directed to hydroxyeicosatetraenoic acids (HETEs) and, MS/MS structural elucidation for newly annotated oxidized lyso-phosphatidylcholines (oxLPCs). The annotation of unknowns is supported with structural information from fragmentation spectra as well as the fragmentation mechanisms involved, necessarily including data from both polarity modes and different collision energies. In this work, we present evidences that various oxidation products show significant differences between cancer patients and control individuals and we establish a workflow to help identify such modifications. We report here the upregulation of HETEs and oxLPCs in patients with neuroendocrine tumors (NETs). To our knowledge, this is the first attempt to determine HETEs in NETs and one of very few studies where oxLPCs are annotated. The obtained results provide an important insight regarding lipid oxidation in NETs, although their physiological functions still have to be established and require further research.
Collapse
|
52
|
Michel M, Dubowy KO, Zlamy M, Karall D, Adam MG, Entenmann A, Keller MA, Koch J, Odri Komazec I, Geiger R, Salvador C, Niederwanger C, Müller U, Scholl-Bürgi S, Laser KT. Targeted metabolomic analysis of serum phospholipid and acylcarnitine in the adult Fontan patient with a dominant left ventricle. Ther Adv Chronic Dis 2020; 11:2040622320916031. [PMID: 32426103 PMCID: PMC7222265 DOI: 10.1177/2040622320916031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with a Fontan circulation have altered cholesterol and lipoprotein values. We analysed small organic molecules in extended phopsholipid and acylcarnitine metabolic pathways ('metabolomes') in adult Fontan patients with a dominant left ventricle, seeking differences between profiles in baseline and Fontan circulations. METHODS In an observational matched cross-sectional study, we compared phosphatidylcholine (PC), sphingomyelin (SM), and acylcarnitine metabolomes (105 analytes; AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) in 20 adult Fontan patients having a dominant left ventricle with those in 20 age- and sex-matched healthy controls. RESULTS Serum levels of total PC (q-value 0.01), total SM (q-value 0.0002) were significantly lower, and total acylcarnitines (q-value 0.02) were significantly higher in patients than in controls. After normalisation of data, serum levels of 12 PC and 1 SM Fontan patients were significantly lower (q-values <0.05), and concentrations of 3 acylcarnitines were significantly higher than those in controls (q-values <0.05). CONCLUSION Metabolomic profiling can use small specimens to identify biomarker patterns that track derangement in multiple metabolic pathways. The striking alterations in the phospholipid and acylcarnitine metabolome that we found in Fontan patients may reflect altered cell signalling and metabolism as found in heart failure in biventricular patients, chronic low-level inflammation, and alteration of functional or structural properties of lymphatic or blood vessels. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Identifier NCT03886935.
Collapse
Affiliation(s)
- Miriam Michel
- Department of Pediatrics III, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße, Bad Oeynhausen, Germany
| | - Karl-Otto Dubowy
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße, Bad Oeynhausen, Germany
| | - Manuela Zlamy
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Andreas Entenmann
- Department of Pediatrics I, Division of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Irena Odri Komazec
- Department of Pediatrics III, Division of Pediatric Cardiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ralf Geiger
- Department of Pediatrics III, Division of Pediatric Cardiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Salvador
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Niederwanger
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Udo Müller
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai Thorsten Laser
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße, Bad Oeynhausen, Germany
| |
Collapse
|
53
|
Karki P, Birukov KG. Oxidized Phospholipids in Healthy and Diseased Lung Endothelium. Cells 2020; 9:cells9040981. [PMID: 32326516 PMCID: PMC7226969 DOI: 10.3390/cells9040981] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating and cell membrane phospholipids undergo oxidation caused by enzymatic and non-enzymatic mechanisms. As a result, a diverse group of bioactive oxidized phospholipids generated in these conditions have both beneficial and harmful effects on the human body. Increased production of oxidized phospholipid products with deleterious effects is linked to the pathogenesis of various cardiopulmonary disorders such as atherosclerosis, thrombosis, acute lung injury (ALI), and inflammation. It has been determined that the contrasting biological effects of lipid oxidation products are governed by their structural variations. For example, full-length products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) have prominent endothelial barrier protective and anti-inflammatory activities while most of the truncated oxidized phospholipids induce vascular leak and exacerbate inflammation. The extensive studies from our group and other groups have demonstrated a strong potential of OxPAPC in mitigating a wide range of agonist-induced lung injuries and inflammation in pulmonary endothelial cell culture and rodent models of ALI. Concurrently, elevated levels of truncated oxidized phospholipids are present in aged mice lungs that potentiate the inflammatory agents-induced lung injury. On the other hand, increased levels of full length OxPAPC products accelerate ALI recovery by facilitating production of anti-inflammatory lipid mediator, lipoxin A4, and other molecules with anti-inflammatory properties. These findings suggest that OxPAPC-assisted lipid program switch may be a promising therapeutic strategy for treatment of acute inflammatory syndromes. In this review, we will summarize the vascular-protective and deleterious aspects of oxidized phospholipids and discuss their therapeutic potential including engineering of stable analogs of oxidized phospholipids with improved anti-inflammatory and barrier-protective properties.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-(410)-706-2578; Fax: +1-(410)-706-6952
| |
Collapse
|
54
|
Oskolkova OV, Bochkov VN. Gain of function mechanisms triggering biological effects of oxidized phospholipids. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
55
|
Oehler B, Brack A, Blum R, Rittner HL. Pain Control by Targeting Oxidized Phospholipids: Functions, Mechanisms, Perspectives. Front Endocrinol (Lausanne) 2020; 11:613868. [PMID: 33569042 PMCID: PMC7868524 DOI: 10.3389/fendo.2020.613868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Within the lipidome oxidized phospholipids (OxPL) form a class of chemically highly reactive metabolites. OxPL are acutely produced in inflamed tissue and act as endogenous, proalgesic (pain-inducing) metabolites. They excite sensory, nociceptive neurons by activating transient receptor potential ion channels, specifically TRPA1 and TRPV1. Under inflammatory conditions, OxPL-mediated receptor potentials even potentiate the action potential firing rate of nociceptors. Targeting OxPL with D-4F, an apolipoprotein A-I mimetic peptide or antibodies like E06, specifically binding oxidized headgroups of phospholipids, can be used to control acute, inflammatory pain syndromes, at least in rodents. With a focus on proalgesic specificities of OxPL, this article discusses, how targeting defined substances of the epilipidome can contribute to mechanism-based therapies against primary and secondary chronic inflammatory or possibly also neuropathic pain.
Collapse
Affiliation(s)
- Beatrice Oehler
- Wolfson Center of Age-Related Diseases, IoPPN, Health and Life Science, King’s College London, London, United Kingdom
- Department of Anesthesiology, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
- *Correspondence: Heike L. Rittner,
| |
Collapse
|
56
|
Spickett CM. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front Endocrinol (Lausanne) 2020; 11:602771. [PMID: 33408694 PMCID: PMC7779974 DOI: 10.3389/fendo.2020.602771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
While often regarded as a subset of metabolomics, lipidomics can better be considered as a field in its own right. While the total number of lipid species in biology may not exceed the number of metabolites, they can be modified chemically and biochemically leading to an enormous diversity of derivatives, many of which retain the lipophilic properties of lipids and thus expand the lipidome greatly. Oxidative modification by radical oxygen species, either enzymatically or chemically, is one of the major mechanisms involved, although attack by non-radical oxidants also occurs. The modified lipids typically contain more oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a succinct overview of the types of species formed, the reactive compounds involved and the specific molecular sites that they react with, and the biochemical or chemical mechanisms involved. In many cases, these modifications reduce the stability of the lipid, and breakdown products are formed, which themselves have interesting properties such as the ability to react with other biomolecules. Publications on the biological effects of modified lipids are growing rapidly, supporting the concept that some of these biomolecules have potential signaling and regulatory effects. The question therefore arises whether modified lipids represent an "epilipidome", analogous to the epigenetic modifications that can control gene expression.
Collapse
|
57
|
Gruber F, Marchetti-Deschmann M, Kremslehner C, Schosserer M. The Skin Epilipidome in Stress, Aging, and Inflammation. Front Endocrinol (Lausanne) 2020; 11:607076. [PMID: 33551998 PMCID: PMC7859619 DOI: 10.3389/fendo.2020.607076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids are highly diverse biomolecules crucial for the formation and function of cellular membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids additionally serve for the formation of the epidermal barrier and as surface lipids, together regulating permeability, physical properties, acidification and the antimicrobial defense. Recent advances in accuracy and specificity of mass spectrometry have allowed studying enzymatic and non-enzymatic modifications of lipids-the epilipidome-multiplying the known diversity of molecules in this class. As the skin is an organ that is frequently exposed to oxidative-, chemical- and thermal stress, and to injury and inflammation, it is an ideal organ to study epilipidome dynamics, their causes, and their biological consequences. Recent studies uncover loss or gain in biological function resulting from either specific modifications or the sum of the modifications of lipids. These studies suggest an important role for the epilipidome in stress responses and immune regulation in the skin. In this minireview we provide a short survey of the recent developments on causes and consequences of epilipidomic changes in the skin or in cell types that reside in the skin.
Collapse
Affiliation(s)
- Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Florian Gruber,
| | - Martina Marchetti-Deschmann
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
58
|
Forty Years Since the Structural Elucidation of Platelet-Activating Factor (PAF): Historical, Current, and Future Research Perspectives. Molecules 2019; 24:molecules24234414. [PMID: 31816871 PMCID: PMC6930554 DOI: 10.3390/molecules24234414] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
In the late 1960s, Barbaro and Zvaifler described a substance that caused antigen induced histamine release from rabbit platelets producing antibodies in passive cutaneous anaphylaxis. Henson described a ‘soluble factor’ released from leukocytes that induced vasoactive amine release in platelets. Later observations by Siraganuan and Osler observed the existence of a diluted substance that had the capacity to cause platelet activation. In 1972, the term platelet-activating factor (PAF) was coined by Benveniste, Henson, and Cochrane. The structure of PAF was later elucidated by Demopoulos, Pinckard, and Hanahan in 1979. These studies introduced the research world to PAF, which is now recognised as a potent phospholipid mediator. Since its introduction to the literature, research on PAF has grown due to interest in its vital cell signalling functions and more sinisterly its role as a pro-inflammatory molecule in several chronic diseases including cardiovascular disease and cancer. As it is forty years since the structural elucidation of PAF, the aim of this review is to provide a historical account of the discovery of PAF and to provide a general overview of current and future perspectives on PAF research in physiology and pathophysiology.
Collapse
|
59
|
Gruber F, Kremslehner C, Eckhart L, Tschachler E. Cell aging and cellular senescence in skin aging - Recent advances in fibroblast and keratinocyte biology. Exp Gerontol 2019; 130:110780. [PMID: 31794850 DOI: 10.1016/j.exger.2019.110780] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022]
Abstract
The aging of the skin is the most visible and obvious manifestation of organismal aging and may serve as a predictor of life expectancy and health. It is, however, also the human desire for long-lasting beauty that further raises interests in the topic, and thus considerable means and efforts are put into studying the mechanisms of skin aging in basic and applied research. Both medical und non-medical interests are of benefit for skin research in general because the results from these studies help to deepen our understanding of the complex molecular, biological, cell signaling, developmental and immunological processes in this organ. In fact, the skin is an ideal organ to observe and analyze the impact of extrinsic and intrinsic drivers of aging. Within the past five years technological advances like lineage tracing of cells in model organisms, intra-vital microscopy, nucleic acid sequencing at the single cell level, and high resolution mass spectrometry have allowed to study aging and senescence of individual skin cells within the tissue context, their signaling and communication, and to derive new hypotheses for experimental studies in vitro. In this short review we will discuss very recent developments that promise to extend the existing knowledge on cell aging and senescence of dermal fibroblasts and epidermal keratinocytes in skin aging.
Collapse
Affiliation(s)
- Florian Gruber
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria.
| | - Christopher Kremslehner
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria
| | - Leopold Eckhart
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
60
|
Nakashima Y, Sakai Y, Mizuno Y, Furuno K, Hirono K, Takatsuki S, Suzuki H, Onouchi Y, Kobayashi T, Tanabe K, Hamase K, Miyamoto T, Aoyagi R, Arita M, Yamamura K, Tanaka T, Nishio H, Takada H, Ohga S, Hara T. Lipidomics links oxidized phosphatidylcholines and coronary arteritis in Kawasaki disease. Cardiovasc Res 2019; 117:96-108. [PMID: 31782770 DOI: 10.1093/cvr/cvz305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/13/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS Coronary arteritis is a life-threatening complication that may arise in the acute stage of Kawasaki disease (KD), the leading cause of systemic vasculitis in childhood. Various microorganisms and molecular pathogens have been reported to cause KD. However, little is known about the key molecules that contribute to the development of coronary arteritis in KD. METHODS AND RESULTS To identify causative molecules for coronary arteritis in KD, we prospectively recruited 105 patients with KD and 65 disease controls in four different parts of Japan from 2015 to 2018. During this period, we conducted lipidomics analyses of their sera using liquid chromatography-mass spectrometry (LC-MS). The comprehensive LC-MS system detected a total of 27 776 molecules harbouring the unique retention time and m/z values. In the first cohort of 57 KD patients, we found that a fraction of these molecules showed enrichment patterns that varied with the sampling region and season. Among them, 28 molecules were recurrently identified in KD patients but not in controls. The second and third cohorts of 48 more patients with KD revealed that these molecules were correlated with inflammatory markers (leucocyte counts and C-reactive proteins) in the acute stage. Notably, two of these molecules (m/z values: 822.55 and 834.59) were significantly associated with the development of coronary arteritis in the acute stage of KD. Their fragmentation patterns in the tandem MS/MS analysis were consistent with those of oxidized phosphatidylcholines (PCs). Further LC-MS/MS analysis supported the concept that reactive oxygen species caused the non-selective oxidization of PCs in KD patients. In addition, the concentrations of LOX-1 ligand containing apolipoprotein B in the plasma of KD patients were significantly higher than in controls. CONCLUSION These data suggest that inflammatory signals activated by oxidized phospholipids are involved in the pathogenesis of coronary arteritis in KD. Because the present study recruited only Japanese patients, further examinations are required to determine whether oxidized PCs might be useful biomarkers for the development of coronary arteritis in broad populations of KD.
Collapse
Affiliation(s)
- Yasutaka Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yumi Mizuno
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Kenji Furuno
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Keiichi Hirono
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama 930-194, Japan
| | - Shinichi Takatsuki
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo 143-8540, Japan
| | - Hiroyuki Suzuki
- Department of Pediatrics, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yoshihiro Onouchi
- Department of Public Health, Chiba University Graduate School of Medicine, Chiba 260-0856, Japan
| | - Tohru Kobayashi
- Department of Management and Strategy, Clinical Research Center, National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Kazuhiro Tanabe
- Medical Solution Promotion Department, LSI Medience Corporation, Tokyo 101-8517, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomofumi Miyamoto
- Department of Pharmaceutical Health Care and Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryohei Aoyagi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-0011, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-0011, Japan
| | - Kenichiro Yamamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamami Tanaka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hisanori Nishio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidetoshi Takada
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshiro Hara
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| |
Collapse
|
61
|
Li L, Zhong S, Shen X, Li Q, Xu W, Tao Y, Yin H. Recent development on liquid chromatography-mass spectrometry analysis of oxidized lipids. Free Radic Biol Med 2019; 144:16-34. [PMID: 31202785 DOI: 10.1016/j.freeradbiomed.2019.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) in the cellular membrane can be oxidized by various enzymes or reactive oxygen species (ROS) to form many oxidized lipids. These metabolites are highly bioactive, participating in a variety of physiological and pathophysiological processes. Mass spectrometry (MS), coupled with Liquid Chromatography, has been increasingly recognized as an indispensable tool for the analysis of oxidized lipids due to its excellent sensitivity and selectivity. We will give an update on the understanding of the molecular mechanisms related to generation of various oxidized lipids and recent progress on the development of LC-MS in the detection of these bioactive lipids derived from fatty acids, cholesterol esters, and phospholipids. The purpose of this review is to provide an overview of the formation mechanisms and technological advances in LC-MS for the study of oxidized lipids in human diseases, and to shed new light on the potential of using oxidized lipids as biomarkers and mechanistic clues of pathogenesis related to lipid metabolism. The key technical problems associated with analysis of oxidized lipids and challenges in the field will also discussed.
Collapse
Affiliation(s)
- Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Xia Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Qiujing Li
- Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Wenxin Xu
- Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100000, China.
| |
Collapse
|
62
|
Philippova M, Oskolkova OV, Bicker W, Schoenenberger AW, Resink TJ, Erne P, Bochkov VN. Analysis of fragmented oxidized phosphatidylcholines in human plasma using mass spectrometry: Comparison with immune assays. Free Radic Biol Med 2019; 144:167-175. [PMID: 31141712 DOI: 10.1016/j.freeradbiomed.2019.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Circulating oxidized phospholipids are increasingly recognized as biomarkers of atherosclerosis. Clinical association studies have been mainly performed using an immune assay based on monoclonal antibody E06, which recognizes a variety of molecular species of oxidized phosphatidylcholine (OxPC) in lipoproteins, cell membranes or covalently bound to plasma proteins. Accumulating evidence shows that individual molecular species of OxPC demonstrate different biological activities and have different half-life times. Therefore, it is likely that certain molecular species can be associated with pathology more strongly than others. This hypothesis can only be tested using LC-MS/MS allowing quantification of individual molecular species of OxPCs. In order to ensure that laborious LC-MS/MS methods do not simply replicate the results of a technically simpler E06-OxPCs assay, we have performed relative quantification of 8 truncated molecular species of OxPCs in plasma of 132 probands and compared the data with the results of the E06-OxPCs and OxLDL assays. We have found a strong correlation between individual molecular species of OxPCs but only a weak correlation of LC-MS/MS-OxPCs data with the E06-OxPCs assay and no correlation with the OxLDL assay. Furthermore, in contrast to the results of E06-OxPCs or OxLDL assays, 7 out of 8 OxPC species were associated with hypertension. The data suggest that the results of the LC-MS/MS-OxPCs assay do not replicate the results of two ELISA-based lipid oxidation tests and therefore may produce additional diagnostic information. These findings necessitate development of simplified mass spectrometric procedures for high-throughput and affordable analysis of selected molecular species of OxPCs.
Collapse
Affiliation(s)
- Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, ZLF 318 Hebelstrasse 20, 4031, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Wolfgang Bicker
- FTC-Forensic-Toxicological Laboratory Ltd., Gaudenzdorfer Gürtel 43-45, 1120, Vienna, Austria
| | - Andreas W Schoenenberger
- Department of Geriatrics, Inselspital, Bern University Hospital, University of Bern, Tiefenaustrasse 112, 3004, Bern, Switzerland
| | - Therese J Resink
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, ZLF 318 Hebelstrasse 20, 4031, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, ZLF 318 Hebelstrasse 20, 4031, Basel, Switzerland
| | - Valery N Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.
| |
Collapse
|
63
|
Ni Z, Sousa BC, Colombo S, Afonso CB, Melo T, Pitt AR, Spickett CM, Domingues P, Domingues MR, Fedorova M, Criscuolo A. Evaluation of air oxidized PAPC: A multi laboratory study by LC-MS/MS. Free Radic Biol Med 2019; 144:156-166. [PMID: 31212065 DOI: 10.1016/j.freeradbiomed.2019.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023]
Abstract
Oxidized LDL (oxLDL) has been shown to play a crucial role in the onset and development of cardiovascular disorders. The study of oxLDL, as an initiator of inflammatory cascades, led to the discovery of a variety of oxidized phospholipids (oxPLs) responsible for pro-inflammatory actions. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) is frequently used by the scientific community as a representative oxPL mixture to study the biological effects of oxidized lipids, due to the high abundance of PAPC in human tissues and the biological activities of oxidized arachidonic acids derivatives. Most studies focusing on oxPAPC effects rely on in-house prepared mixtures of oxidized species obtained by exposing PAPC to air oxidation. Here, we described a multi-laboratory evaluation of the compounds in oxPAPC by LC-MS/MS, focusing on the identification and relative quantification of the lipid peroxidation products (LPPs) formed. PAPC was air-oxidized in four laboratories using the same protocol for 0, 48, and 72 h. It was possible to identify 55 different LPPs with unique elemental composition and characterize different structural isomeric species within these. The study showed good intra-sample reproducibility and similar qualitative patterns of oxidation, as the most abundant LPPs were essentially the same between the four laboratories. However, there were substantial differences in the extent of oxidation, i.e. the amount of LPPs relative to unmodified PAPC, at specific time points. This shows the importance of characterizing air-oxidized PAPC preparations before using them for testing biological effects of oxidized lipids, and may explain some variability of effects reported in the literature.
Collapse
Affiliation(s)
- Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Germany
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Tania Melo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Chemistry & CESAM & ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Germany
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Germany; Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath-Str. 11, 28199, Bremen, Germany.
| |
Collapse
|
64
|
Zhong S, Li L, Shen X, Li Q, Xu W, Wang X, Tao Y, Yin H. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic Biol Med 2019; 144:266-278. [PMID: 30946962 DOI: 10.1016/j.freeradbiomed.2019.03.036] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVD), including ischemic heart diseases and cerebrovascular diseases, are the leading causes of morbidity and mortality worldwide. Atherosclerosis is the major underlying factor for most CVD. It is well-established that oxidative stress and inflammation are two major mechanisms leading to atherosclerosis. Under oxidative stress, polyunsaturated fatty acids (PUFA)-containing phospholipids and cholesterol esters in cellular membrane and lipoproteins can be readily oxidized through a free radical-induced lipid peroxidation (LPO) process to form a complex mixture of oxidation products. Overwhelming evidence demonstrates that these oxidized lipids are actively involved in the inflammatory responses in atherosclerosis by interacting with immune cells (such as macrophages) and endothelial cells. In addition to lipid lowering in the prevention and treatment of atherosclerotic CVD, targeting chronic inflammation has been entering the medical realm. Clinical trials are under way to lower the lipoprotein (a) (Lp(a)) and its associated oxidized phospholipids, which will provide clinical evidence that targeting inflammation caused by oxidized lipids is a viable approach for CVD. In this review, we aim to give an update on our understanding of the free radical oxidation of LPO, analytical technique to analyze the oxidation products, especially the oxidized phospholipids and cholesterol esters in low density lipoproteins (LDL), and focusing on the experimental and clinical evidence on the role of lipid oxidation in the inflammatory responses associated with CVD, including myocardial infarction and calcific aortic valve stenosis. The challenges and future directions in understanding the role of LPO in CVD will also be discussed.
Collapse
Affiliation(s)
- Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Qiujing Li
- Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Wenxin Xu
- Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Xiaoping Wang
- Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100000, China.
| |
Collapse
|
65
|
Ni Z, Goracci L, Cruciani G, Fedorova M. Computational solutions in redox lipidomics - Current strategies and future perspectives. Free Radic Biol Med 2019; 144:110-123. [PMID: 31035005 DOI: 10.1016/j.freeradbiomed.2019.04.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
The high chemical diversity of lipids allows them to perform multiple biological functions ranging from serving as structural building blocks of biological membranes to regulation of metabolism and signal transduction. In addition to the native lipidome, lipid species derived from enzymatic and non-enzymatic modifications (the epilipidome) make the overall picture even more complex, as their functions are still largely unknown. Oxidized lipids represent the fraction of epilipidome which has attracted high scientific attention due to their apparent involvement in the onset and development of numerous human disorders. Development of high-throughput analytical methods such as liquid chromatography coupled on-line to mass spectrometry provides the possibility to address epilipidome diversity in complex biological samples. However, the main bottleneck of redox lipidomics, the branch of lipidomics dealing with the characterization of oxidized lipids, remains the lack of optimal computational tools for robust, accurate and specific identification of already discovered and yet unknown modified lipids. Here we discuss the main principles of high-throughput identification of lipids and their modified forms and review the main software tools currently available in redox lipidomics. Different levels of confidence for software assisted identification of redox lipidome are defined and necessary steps toward optimal computational solutions are proposed.
Collapse
Affiliation(s)
- Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig, Germany
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy; Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy; Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig, Germany.
| |
Collapse
|
66
|
Mitran MI, Nicolae I, Tampa M, Mitran CI, Caruntu C, Sarbu MI, Ene CD, Matei C, Georgescu SR, Popa MI. Reactive Carbonyl Species as Potential Pro-Oxidant Factors Involved in Lichen Planus Pathogenesis. Metabolites 2019; 9:E213. [PMID: 31623383 PMCID: PMC6836031 DOI: 10.3390/metabo9100213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The constant generation of reactive carbonyl species (RCSs) by lipid peroxidation during aerobic metabolism denotes their involvement in cell homeostasis. Skin represents the largest organ of the body that is exposed to lipid peroxidation. Previous studies have suggested the involvement of oxidative stress in the development of lichen planus (LP), a chronic inflammatory skin condition with a complex pathogenesis. The aim of our study is to investigate a panel of pro-oxidants (4-hydroxy-nonenal (4-HNE), thiobarbituric acid reactive substances (TBARS), and malondialdehyde (MDA)), the total antioxidant status (TAS), and thiol-disulfide homeostasis parameters (TDHP), including total thiol (TT), native thiol (NT), disulfides (DS), DS/NT ratio, DS/TT ratio, and NT/TT ratio. The comparative determinations of serum levels of 4-HNE, TBARS, and MDA in patients with LP (n = 31) and controls (n = 26) show significant differences between the two groups (4-HNE: 7.81 ± 1.96 µg/mL vs. 6.15 ± 1.17 µg/mL, p < 0.05, TBARS: 4.23 ± 0.59 µmol/L vs. 1.99 ± 0.23 µmol/L, p < 0.05, MDA: 32.3 ± 6.26 ng/mL vs. 21.26 ± 2.36 ng/mL). The serum levels of TAS are lower in LP patients compared to the control group (269.83 ± 42.63 µmol/L vs. 316.46 ± 28.76 µmol/L, p < 0.05). The serum levels of TDHP are altered in LP patients compared to controls (NT: 388.10 ± 11.32 µmol/L vs. 406.85 ± 9.32., TT: 430.23 ± 9.93 µmol/L vs. 445.88 ± 9.01 µmol/L, DS: 21.06 ± 1.76 µmol/L vs. 19.52 ± 0.77µmol/L). Furthermore, a negative association between pro-oxidants and TAS is identified (4-HNE - rho = -0.83, p < 0.01, TBARS - rho = -0.63, p < 0.01, and MDA - rho = -0.69, p < 0.01). Understanding the mechanisms by which bioactive aldehydes exert their biological effects on the skin could help define effective therapeutical strategies to counteract the cytotoxic effects of these reactive metabolic intermediates.
Collapse
Affiliation(s)
- Madalina Irina Mitran
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Ilinca Nicolae
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Iulia Mitran
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania.
| | - Maria Isabela Sarbu
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | | | - Clara Matei
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Simona Roxana Georgescu
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Mircea Ioan Popa
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| |
Collapse
|
67
|
Parchem K, Sasson S, Ferreri C, Bartoszek A. Qualitative analysis of phospholipids and their oxidised derivatives - used techniques and examples of their applications related to lipidomic research and food analysis. Free Radic Res 2019; 53:1068-1100. [PMID: 31419920 DOI: 10.1080/10715762.2019.1657573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterised by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics that targets both the analysis of membrane lipid distribution as well as correlates composition of lipids with their effects on functioning of cells, tissues and organs. Lipidomic assessments follow-up the changes occurring in living organisms, such as free radical attack and oxidative modifications of the polyunsaturated fatty acids (PUFAs) build in PL structures. Oxidised PLs (oxPLs) can be generated exogenously and supplied to organisms with processed food or formed endogenously as a result of oxidative stress. Cellular and tissue oxPLs can be a biomarker predictive of the development of numerous diseases such as atherosclerosis or neuroinflammation. Therefore, suitable high-throughput analytical techniques, which enable comprehensive analysis of PL molecules in terms of the structure of hydrophilic group, fatty acid (FA) composition and oxidative modifications of FAs, have been currently developed. This review addresses all aspects of PL analysis, including lipid isolation, chromatographic separation of PL classes and species, as well as their detection. The bioinformatic tools that enable handling of a large amount of data generated during lipidomic analysis are also discussed. In addition, imaging techniques such as confocal microscopy and mass spectrometry imaging for analysis of cellular lipid maps, including membrane PLs, are presented.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
68
|
Philippova M, Oskolkova OV, Bochkov VN. OxPLs‐Masking/Degradation Immune Assay: An “All‐Included” Analysis of Mechanisms Detoxifying Oxidized Phospholipids. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Maria Philippova
- Signaling LaboratoryDepartment of BiomedicineBasel University HospitalZLF 318 Hebelstrasse 204031 BaselSwitzerland
| | - Olga V. Oskolkova
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical ChemistryUniversity of GrazHumboldtstraße 46/III8020 GrazAustria
| | - Valery N. Bochkov
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical ChemistryUniversity of GrazHumboldtstraße 46/III8020 GrazAustria
| |
Collapse
|
69
|
Maciel E, Neves BM, Martins J, Colombo S, Cruz MT, Domingues P, Domingues MRM. Oxidized phosphatidylserine mitigates LPS-triggered macrophage inflammatory status through modulation of JNK and NF-kB signaling cascades. Cell Signal 2019; 61:30-38. [DOI: 10.1016/j.cellsig.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023]
|
70
|
Birukov KG, Oskolkova OV. The Good and Bad Faces of Oxidized Phospholipids: Friends or Foes of Vascular Endothelium? EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Konstantin G. Birukov
- Department of AnesthesiologyUMSOM Lung Biology ProgramUniversity of MarylandSchool of Medicine20 Penn Street, HSF‐2, Room S145Baltimore, MD21201USA
| | - Olga V. Oskolkova
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical ChemistryUniversity of Graz8020 GrazAustria
| |
Collapse
|
71
|
Godzien J, Kalaska B, Adamska-Patruno E, Siroka J, Ciborowski M, Kretowski A, Barbas C. Oxidized glycerophosphatidylcholines in diabetes through non-targeted metabolomics: Their annotation and biological meaning. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:62-70. [DOI: 10.1016/j.jchromb.2019.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
|
72
|
Tyurina YY, St Croix CM, Watkins SC, Watson AM, Epperly MW, Anthonymuthu TS, Kisin ER, Vlasova II, Krysko O, Krysko DV, Kapralov AA, Dar HH, Tyurin VA, Amoscato AA, Popova EN, Bolevich SB, Timashev PS, Kellum JA, Wenzel SE, Mallampalli RK, Greenberger JS, Bayir H, Shvedova AA, Kagan VE. Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. J Leukoc Biol 2019; 106:57-81. [PMID: 31071242 PMCID: PMC6626990 DOI: 10.1002/jlb.3mir0119-004rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA3 and LTB4, by an iPLA2 γ inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claudette M St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tamil S Anthonymuthu
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena R Kisin
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena N Popova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Sergey B Bolevich
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Peter S Timashev
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
73
|
Poston RN. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab 2019; 8:51-61. [PMID: 31588428 PMCID: PMC6738649 DOI: 10.1097/xce.0000000000000172] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022]
Abstract
This review proposes that the development of the atherosclerotic plaque is critically dependent on its inflammatory components forming a self-perpetuating and propagating positive feedback loop. The components involved are: (1) LDL oxidation, (2) activation of the endothelium, (3) recruitment of inflammatory monocytes, (4) macrophage accumulation, which induces LDL oxidation, and (5) macrophage generation of inflammatory mediators, which also activate the endothelium. Through these stages, the positive feedback loop is formed, which generates and promotes expansion of the atherosclerotic process. To illustrate this dynamic of lesion development, the author previously produced a computer simulation, which allowed realistic modelling. This hypothesis on atherogenesis can explain the existence and characteristic focal morphology of the atherosclerotic plaque. Each of the components contributing to the feedback loop is discussed. Many of these components also contain subsidiary positive feedback loops, which could exacerbate the overall process.
Collapse
Affiliation(s)
- Robin N. Poston
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
74
|
Huang YJ, Nan GX. Oxidative stress-induced angiogenesis. J Clin Neurosci 2019; 63:13-16. [DOI: 10.1016/j.jocn.2019.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/25/2019] [Accepted: 02/20/2019] [Indexed: 01/16/2023]
|
75
|
Solati Z, Ravandi A. Lipidomics of Bioactive Lipids in Acute Coronary Syndromes. Int J Mol Sci 2019; 20:ijms20051051. [PMID: 30823404 PMCID: PMC6429306 DOI: 10.3390/ijms20051051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 02/07/2023] Open
Abstract
Acute coronary syndrome (ACS) refers to ischemic conditions that occur as a result of atherosclerotic plaque rupture and thrombus formation. It has been shown that lipid peroxidation may cause plaque instability by inducing inflammation, apoptosis, and neovascularization. There is some evidence showing that these oxidized lipids may have a prognostic value in ACS. For instance, higher levels of oxidized phospholipids on apo B-100 lipoproteins (OxPL/apoB) predicted cardiovascular events independent of traditional risk factors, C-reactive protein (hsCRP), and the Framingham Risk Score (FRS). A recent cross-sectional study showed that levels of oxylipins, namely 8,9-DiHETrE and 16-HETE, were significantly associated with cardiovascular and cerebrovascular events, respectively. They found that with every 1 nmol/L increase in the concentrations of 8,9-DiHETrE, the odds of ACS increased by 454-fold. As lipid peroxidation makes heterogonous pools of secondary products, therefore, rapid multi-analyte quantification methods are needed for their assessment. Conventional lipid assessment methods such as chemical reagents or immunoassays lack specificity and sensitivity. Lipidomics may provide another layer of a detailed molecular level to lipid assessment, which may eventually lead to exploring novel biomarkers and/or new treatment options. Here, we will briefly review the lipidomics of bioactive lipids in ACS.
Collapse
Affiliation(s)
- Zahra Solati
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada.
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada.
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, 409 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
76
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
77
|
Different pro-angiogenic potential of γ-irradiated PBMC-derived secretome and its subfractions. Sci Rep 2018; 8:18016. [PMID: 30573762 PMCID: PMC6301954 DOI: 10.1038/s41598-018-36928-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Secretomes from various cell sources exert strong regenerative activities on numerous organs, including the skin. Although secretomes consist of many diverse components, a growing body of evidence suggests that small extracellular vesicles (EVs) account for their regenerative capacity. We previously demonstrated that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCs) exhibits wound healing capacity. Therefore, we sought to dissect the molecular composition of EVs present in the secretome and compared wound healing-related activities of these EVs to other subfractions of the secretome and the fully supplemented secretome (MNCaposec). Compared to EVs derived from non-irradiated PBMCs, γ-irradiation significantly increased the size and number and changed the composition of released EVs. Detailed characterization of the molecular components of EVs, i.e. miRNA, proteins, and lipids, derived from irradiated PBMCs revealed a strong association with regenerative processes. Reporter gene assays and aortic ring sprouting assays revealed diminished activity of the subfractions compared to MNCaposec. In addition, we showed that MNCaposec accelerated wound closure in a diabetic mouse model. Taken together, our results suggest that secretome-based wound healing represents a promising new therapeutic avenue, and strongly recommend using the complete secretome instead of purified subfractions, such as EVs, to exploit its full regenerative capacity.
Collapse
|
78
|
Sfyri PP, Yuldasheva NY, Tzimou A, Giallourou N, Crispi V, Aburima A, Beltran-Alvarez P, Patel K, Mougios V, Swann JR, Kearney MT, Matsakas A. Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of Nox2 activity. Free Radic Biol Med 2018; 129:504-519. [PMID: 30342191 DOI: 10.1016/j.freeradbiomed.2018.10.422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/12/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Obesity leading to hyperlipidaemia and atherosclerosis is recognised to induce morphological and metabolic changes in many tissues. However, hyperlipidaemia can occur in the absence of obesity. The impact of the latter scenario on skeletal muscle and liver is not understood sufficiently. In this regard, we used the Apolipoprotein E-deficient (ApoE-/-) mouse model, an established model of hyperlipidaemia and atherosclerosis, that does not become obese when subjected to a high-fat diet, to determine the impact of Western-type diet (WD) and ApoE deficiency on skeletal muscle morphological, metabolic and biochemical properties. To establish the potential of therapeutic targets, we further examined the impact of Nox2 pharmacological inhibition on skeletal muscle redox biology. We found ectopic lipid accumulation in skeletal muscle and the liver, and altered skeletal muscle morphology and intramuscular triacylglycerol fatty acid composition. WD and ApoE deficiency had a detrimental impact in muscle metabolome, followed by perturbed gene expression for fatty acid uptake and oxidation. Importantly, there was enhanced oxidative stress in the skeletal muscle and development of liver steatosis, inflammation and oxidative protein modifications. Pharmacological inhibition of Nox2 decreased reactive oxygen species production and protein oxidative modifications in the muscle of ApoE-/- mice subjected to a Western-type diet. This study provides key evidence to better understand the pathophysiology of skeletal muscle in the context of hyperlipidaemia and atherosclerosis and identifies Nox2 as a potential target for attenuating oxidative stress in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia.
Collapse
Affiliation(s)
- Pagona Panagiota Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Anastasia Tzimou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sports Science at Thessaloniki, Aristotle University of Thessaloniki, Greece
| | - Natasa Giallourou
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Vassili Crispi
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | - Ahmed Aburima
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, United Kingdom
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sports Science at Thessaloniki, Aristotle University of Thessaloniki, Greece
| | - Jonathan R Swann
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom.
| |
Collapse
|
79
|
Narzt MS, Nagelreiter IM, Oskolkova O, Bochkov VN, Latreille J, Fedorova M, Ni Z, Sialana FJ, Lubec G, Filzwieser M, Laggner M, Bilban M, Mildner M, Tschachler E, Grillari J, Gruber F. A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids. Redox Biol 2018; 20:467-482. [PMID: 30466060 PMCID: PMC6243031 DOI: 10.1016/j.redox.2018.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Mass spectrometric analysis immediately or 24 h post UV stress revealed significant changes in abundance of 173 and 84 lipid species, respectively. We identified known and novel lipid species including known bioactive and also potentially reactive carbonyl containing species. We found indication for selective metabolism and degradation of selected reactive lipids. Exposure to both UVA and to in vitro UVA - oxidized phospholipids activated, on transcriptome and proteome level, NRF2/antioxidant response signaling, lipid metabolizing enzyme expression and unfolded protein response (UPR) signaling. We identified NUPR1 as an upstream regulator of UVA/OxPL transcriptional stress responses and found this protein to be expressed in the epidermis. Silencing of NUPR1 resulted in augmented expression of antioxidant and lipid detoxification genes and disturbed the cell cycle, making it a potential key factor in skin reactive oxygen species (ROS) responses intimately involved in aging and pathology.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Valery N Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Julie Latreille
- Department of Biology & Women's Beauty, Chanel, Pantin, France
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Universität Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Universität Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Manuel Filzwieser
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Maria Laggner
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria; Department of Biotechnology, BOKU, University of Natural Resources and Life Sciences Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria.
| |
Collapse
|
80
|
Modulation of the inflammatory response of immune cells in human peripheral blood by oxidized arachidonoyl aminophospholipids. Arch Biochem Biophys 2018; 660:64-71. [PMID: 30315768 DOI: 10.1016/j.abb.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 01/06/2023]
Abstract
Aminophospholipids (APL), phosphatidylethanolamine (PE) and phosphatidylserine (PS), can be oxidized upon oxidative stress. Oxidized PE and PS have been detected in clinical samples of different pathologies and may act as modulators of the inflammatory response. However, few studies have focused on the effects of oxidized APL (ox-APL) esterified with arachidonic acid, even though a considerable number of studies have assessed the modulation of the immune system by oxidized 1-palmitoyl-2-arachidonoyl-sn-3-glycerophosphocholine (OxPAPC). In the present study, we have used flow cytometry to evaluate the ability of oxidized PAPE (OxPAPE) and PAPS (OxPAPS) to promote or suppress an inflammatory phenotype on monocytes subsets and myeloid dendritic cells (mDCs). The results indicate that OxPAPE increases the frequency of all monocyte subpopulations expressing TNF-α, which promotes an inflammatory response. However, immune cell stimulation with OxPAPE in the presence of LPS results in a decrease of TNF-α expressed by classical monocytes. Incubation with OxPAPS and LPS induces a decrease in TNF-α produced by monocytes, and a significant decrease in IL-1β expressed by monocytes and mDCs, indicating that OxPAPS reduces the LPS-induced pro-inflammatory expression in these populations. These results show the importance of OxPAPE and OxPAPS as modulators of the inflammatory response and demonstrate their possible contribution to the onset and resolution of human diseases related to oxidative stress and inflammation.
Collapse
|
81
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
82
|
Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V. Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:1-31. [PMID: 30360778 DOI: 10.1016/bs.ctm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids, first described in the brain in 1884, are important structural components of biological membranes of all eukaryotic cells. In recent years, several lines of evidence support the critical role of sphingolipids such as sphingosine, sphingosine-1-phosphate (S1P), and ceramide as anti- or pro-inflammatory bioactive lipid mediators in a variety of human pathologies including pulmonary and vascular disorders. Among the sphingolipids, S1P is a naturally occurring agonist that exhibits potent barrier enhancing property in the endothelium by signaling via G protein-coupled S1P1 receptor. S1P, S1P analogs, and other barrier enhancing agents such as HGF, oxidized phospholipids, and statins also utilize the S1P/S1P1 signaling pathway to generate membrane protrusions or lamellipodia, which have been implicated in resealing of endothelial gaps and maintenance of barrier integrity. A better understanding of sphingolipids mediated regulation of lamellipodia formation and barrier enhancement of the endothelium will be critical for the development of sphingolipid-based therapies to alleviate pulmonary disorders such as sepsis-, radiation-, and mechanical ventilation-induced acute lung injury.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
83
|
Gesslbauer B, Kuerzl D, Valpatic N, Bochkov VN. Unbiased Identification of Proteins Covalently Modified by Complex Mixtures of Peroxidized Lipids Using a Combination of Electrophoretic Mobility Band Shift with Mass Spectrometry. Antioxidants (Basel) 2018; 7:antiox7090116. [PMID: 30200198 PMCID: PMC6162613 DOI: 10.3390/antiox7090116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Covalent modification of functionally important cell proteins by lipid oxidation products (LOPs) is a known mechanism initiating pathological consequences of oxidative stress. Identification of new proteins covalently modified by electrophilic lipids can be performed by a combination of chemical, immunological, and mass spectrometry-based methods, but requires prior knowledge either on the exact molecular structure of LOPs (e.g., 4-hydroxynonenal) or candidate protein targets. However, under the conditions of oxidative stress in vivo, a complex mixture of proteins (e.g., cytosolic proteome) reacts with a complex mixture of LOPs. Here we describe a method for detection of lipid-modified proteins that does not require an a priori knowledge on the chemical structure of LOPs or identity of target proteins. The method is based on the change of electrophoretic mobility of lipid-modified proteins, which is induced by conformational changes and cross-linking with other proteins. Abnormally migrating proteins are detected by mass spectrometry-based protein peptide sequencing. We applied this method to study effects of oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) on endothelial cells. Several known, but also many new, OxPAPC-binding proteins were identified. We expect that this technically relatively simple method can be widely applied for label-free analysis of lipid-protein interactions in complex protein samples treated with different LOPs.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria.
| | - David Kuerzl
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria.
| | - Niko Valpatic
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria.
| | - Valery N Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria.
| |
Collapse
|
84
|
OLR1 scavenger receptor knockdown affects mitotic gene expression but is dispensable for oxidized phospholipid- mediated stress signaling in SZ 95 sebocytes. Mech Ageing Dev 2018; 172:35-44. [DOI: 10.1016/j.mad.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022]
|
85
|
Afonyushkin T, Oskolkova OV, Bochkov VN. Oxidized phospholipids stimulate production of stem cell factor via NRF2-dependent mechanisms. Angiogenesis 2018; 21:229-236. [PMID: 29330760 PMCID: PMC5878191 DOI: 10.1007/s10456-017-9590-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/16/2017] [Indexed: 01/01/2023]
Abstract
Receptor tyrosine kinase c-Kit and its ligand stem cell factor (SCF) regulate resident vascular wall cells and recruit circulating progenitors. We tested whether SCF may be induced by oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) known to accumulate in atherosclerotic vessels. Gene expression analysis demonstrated OxPAPC-induced upregulation of SCF mRNA and protein in different types of endothelial cells (ECs). Elevated levels of SCF mRNA were observed in aortas of ApoE-/- knockout mice. ECs produced biologically active SCF because conditioned medium from OxPAPC-treated cells stimulated activation (phosphorylation) of c-Kit in naïve ECs. Induction of SCF by OxPAPC was inhibited by knocking down transcription factor NRF2. Inhibition or stimulation of NRF2 by pharmacological or molecular tools induced corresponding changes in SCF expression. Finally, we observed decreased levels of SCF mRNA in aortas of NRF2 knockout mice. We characterize OxPLs as a novel pathology-associated stimulus inducing expression of SCF in endothelial cells. Furthermore, our data point to transcription factor NRF2 as a major mediator of OxPL-induced upregulation of SCF. This mechanism may represent one of the facets of pleiotropic action of NRF2 in vascular wall.
Collapse
Affiliation(s)
- Taras Afonyushkin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25-3, 1090, Vienna, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Olga V Oskolkova
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Valery N Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
86
|
Regulated Cell Death. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123501 DOI: 10.1007/978-3-319-78655-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this chapter, the various subroutines of regulated cell death are neatly described by highlighting apoptosis and subforms of regulated necrosis such as necroptosis, ferroptosis, pyroptosis, and NETosis. Typically, all forms of regulated necrosis are defined by finite rupture of the plasma cell membrane. Apoptosis is characterized by an enzymatic machinery that consists of caspases which cause the morphologic features of this type of cell death. Mechanistically, apoptosis can be instigated by two major cellular signalling pathways: an intrinsic pathway that is initiated inside cells by mitochondrial release of pro-apoptotic factors or an extrinsic pathway that is initiated at the cell surface by various death receptors. In necroptosis, the biochemical processes are distinct from those found in apoptosis; in particular, there is no caspase activation. As such, necroptosis is a kinase-mediated cell death that relies on “receptor-interacting protein kinase 3” which mediates phosphorylation of the pseudokinase “mixed lineage kinase domain-like protein.” While ferroptosis is an iron-dependent, oxidative form of regulated necrosis that is biochemically characterized by accumulation of ROS from iron metabolism, oxidase activity, and lipid peroxidation products, pyroptosis is defined as a form of cell death (predominantly of phagocytes) that develops during inflammasome activation and is executed by caspase-mediated cleavage of the pore-forming protein gasdermin D. Finally, NETosis refers to a regulated death of neutrophils that is characterized by the release of chromatin-derived weblike structures released into the extracellular space. The chapter ends up with a discussion on the characteristic feature of regulated necrosis: the passive release of large amounts of constitutive DAMPs as a consequence of final plasma membrane rupture as well as the active secretion of inducible DAMPs earlier during the dying process. Notably, per cell death subroutine, the active secretion of inducible DAMPs varies, thereby determining different immunogenicity of dying cells.
Collapse
|
87
|
Lordan R, Tsoupras A, Zabetakis I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017; 22:E1964. [PMID: 29135918 PMCID: PMC6150200 DOI: 10.3390/molecules22111964] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 12/29/2022] Open
Abstract
In this review paper, the latest literature on the functional properties of phospholipids in relation to inflammation and inflammation-related disorders has been critically appraised and evaluated. The paper is divided into three sections: Section 1 presents an overview of the relationship between structures and biological activities (pro-inflammatory or anti-inflammatory) of several phospholipids with respect to inflammation. Section 2 and Section 3 are dedicated to the structures, functions, compositions and anti-inflammatory properties of dietary phospholipids from animal and marine sources. Most of the dietary phospholipids of animal origin come from meat, egg and dairy products. To date, there is very limited work published on meat phospholipids, undoubtedly due to the negative perception that meat consumption is an unhealthy option because of its putative associations with several chronic diseases. These assumptions are addressed with respect to the phospholipid composition of meat products. Recent research trends indicate that dairy phospholipids possess anti-inflammatory properties, which has led to an increased interest into their molecular structures and reputed health benefits. Finally, the structural composition of phospholipids of marine origin is discussed. Extensive research has been published in relation to ω-3 polyunsaturated fatty acids (PUFAs) and inflammation, however this research has recently come under scrutiny and has proved to be unreliable and controversial in terms of the therapeutic effects of ω-3 PUFA, which are generally in the form of triglycerides and esters. Therefore, this review focuses on recent publications concerning marine phospholipids and their structural composition and related health benefits. Finally, the strong nutritional value of dietary phospholipids are highlighted with respect to marine and animal origin and avenues for future research are discussed.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
88
|
Abstract
Lipid mediators play a critical role in the development and resolution of vascular endothelial barrier dysfunction caused by various pathologic interventions. The accumulation of excess lipids directly impairs endothelial cell (EC) barrier function that is known to contribute to the development of atherosclerosis and metabolic disorders such as obesity and diabetes as well as chronic inflammation in the vascular endothelium. Certain products of phospholipid oxidation (OxPL) such as fragmented phospholipids generated during oxidative and nitrosative stress show pro-inflammatory potential and cause endothelial barrier dysfunction. In turn, other OxPL products enhance basal EC barrier and exhibit potent barrier-protective effects in pathologic settings of acute vascular leak caused by pro-inflammatory mediators, barrier disruptive agonists and pathologic mechanical stimulation. These beneficial effects were further confirmed in rodent models of lung injury and inflammation. The bioactive oxidized lipid molecules may serve as important therapeutic prototype molecules for future treatment of acute lung injury syndromes associated with endothelial barrier dysfunction and inflammation. This review will summarize recent studies of biological effects exhibited by various groups of lipid mediators with a focus on the role of oxidized phospholipids in control of vascular endothelial barrier, agonist induced EC permeability, inflammation, and barrier recovery related to clinical settings of acute lung injury and inflammatory vascular leak.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA,CONTACT Konstantin G. Birukov, MD, PhD Department of Anesthesiology, University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145, Baltimore, MD 21201, USA
| |
Collapse
|
89
|
Poli G, Zarkovic N. Editorial Introduction to the Special Issue on 4-Hydroxynonenal and Related Lipid Oxidation Products. Free Radic Biol Med 2017; 111:2-5. [PMID: 28576671 DOI: 10.1016/j.freeradbiomed.2017.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giuseppe Poli
- Department of Clinical and Biological Sciences, School of Medicine, University of Torino, Italy
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Rudjer Boskovic Institute, Bijenicka 54, HR-1000 Zagreb, Croatia.
| |
Collapse
|