51
|
Ying H, Ebrahimi M, Keivan M, Khoshnam SE, Salahi S, Farzaneh M. miRNAs; a novel strategy for the treatment of COVID-19. Cell Biol Int 2021; 45:2045-2053. [PMID: 34180562 PMCID: PMC8426984 DOI: 10.1002/cbin.11653] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/08/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is the seventh member of the bat severe acute respiratory syndrome family. COVID‐19 can fuse their envelopes with the host cell membranes and deliver their genetic material. COVID‐19 attacks the respiratory system and stimulates the host inflammatory responses, enhances the recruitment of immune cells, and promotes angiotensin‐converting enzyme 2 activities. Patients with confirmed COVID‐19 may have experienced fever, dry cough, headache, dyspnea, acute kidney injury, acute respiratory distress syndrome, and acute heart injury. Several strategies such as oxygen therapy, ventilation, antibiotic or antiviral therapy, and renal replacement therapy are commonly used to decrease COVID‐19‐associated mortality. However, these approaches may not be good treatment options. Therefore, the search for an alternative‐novel therapy is urgently important to prevent the disease progression. Recently, microRNAs (miRNAs) have emerged as a promising strategy for COVID‐19. The design of oligonucleotide against the genetic material of COVID‐19 might suppress virus RNA translation. Several previous studies have shown that host miRNAs play an antiviral role and improve the treatment of patients with COVID‐19. miRNAs by binding to the 3′‐untranslated region (UTR) or 5′‐UTR of viral RNA play an important role in COVID‐19‐host interplay and viral replication. miRNAs interact with multiple pathways and reduce inflammatory biomarkers, thrombi formation, and tissue damage to accelerate the patient outcome. The information in this review provides a summary of the current clinical application of miRNAs for the treatments of patients with COVID‐19.
Collapse
Affiliation(s)
- Hao Ying
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mona Keivan
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sarvenaz Salahi
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
52
|
Xuan Z, Chen C, Tang W, Ye S, Zheng J, Zhao Y, Shi Z, Zhang L, Sun H, Shao C. TKI-Resistant Renal Cancer Secretes Low-Level Exosomal miR-549a to Induce Vascular Permeability and Angiogenesis to Promote Tumor Metastasis. Front Cell Dev Biol 2021; 9:689947. [PMID: 34179017 PMCID: PMC8222687 DOI: 10.3389/fcell.2021.689947] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Tyrosine kinase inhibitors (TKI)-resistant renal cancer is highly susceptible to metastasis, and enhanced vascular permeability promotes the process of metastasis. To evaluate the effect of cancer-derived exosomes on vascular endothelial cells and clarify the mechanism of metastasis in TKI-resistant renal cancer, we studied the crosstalk between clear cell renal cell carcinoma (ccRCC) cells and human umbilical vein endothelial cells (HUVECs). Exosomes from ccRCC cells enhanced the expression of vascular permeability-related proteins. Compared with sensitive strains, exosomes from resistant strains significantly enhanced vascular endothelial permeability, induced tumor angiogenesis and enhanced tumor lung metastasis in nude mice. The expression of miR-549a is lower in TKI-resistant cells and exosomes, which enhanced the expression of HIF1α in endothelial cells. In addition, TKI-resistant RCC cells reduced nuclear output of pre-miR-549a via the VEGFR2-ERK-XPO5 pathway, and reduced enrichment of mature miR-549a in cytoplasm, which in turn promoted HIF1α expression in RCC, leading to increased VEGF secretion and further activated VEGFR2 to form a feedback effect. miR-549a played an important role in the metastasis of renal cancer and might serve as a blood biomarker for ccRCC metastasis and even had the potential of becoming a new drug to inhibit TKI-resistance.
Collapse
Affiliation(s)
- Zuodong Xuan
- Medical College, Xiamen University, Xiamen, China
| | - Chen Chen
- Medical College, Xiamen University, Xiamen, China
| | - Wenbin Tang
- Medical College, Xiamen University, Xiamen, China
| | - Shaopei Ye
- Medical College, Xiamen University, Xiamen, China
| | | | - Yue Zhao
- Medical College, Xiamen University, Xiamen, China
| | - Zhiyuan Shi
- Medical College, Xiamen University, Xiamen, China
| | - Lei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Huimin Sun
- Department of Urology Surgery, Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology Surgery, Xiang'an Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
53
|
Nuclear functions of microRNAs relevant to the cardiovascular system. Transl Res 2021; 230:151-163. [PMID: 33186782 DOI: 10.1016/j.trsl.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
A fraction of the transcriptome is translated into proteins. The rest is classified as non-protein coding RNA (Ribonucleic Acid) but has gained increased attention as functional and regulatory group of transcripts. The gene regulatory role of non-coding RNAs (ncRNAs) has now been widely accepted in diverse biological processes in both physiology and disease. MicroRNAs fall into this latter group and are widely known for their diverse post-transcriptional regulatory role. MicroRNA sequences are embedded in the long ncRNAs, known as primary microRNAs, are processed into precursor microRNAs and are typically transported out of the nucleus for maturation and loading into a protein complex forming RNA-induced silencing complex (RISC) that either drives the degradation of messenger RNA (mRNA) or blocks its translation. A new phenomenon is emerging where microRNAs have active roles within the nucleus. The presence of RISC components including microRNAs in the nucleus supports this notion. They may integrate with chromatin modifiers, microprocessing machinery and mRNA stabilizing transcripts to play a multifunctional role in the nucleus. Although a limited number of studies appreciate this novel activity of microRNAs relevant to the cardiovascular system, they provide proof-of-concept that requires consideration while targeting miRNAs with therapeutic potential.
Collapse
|
54
|
Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM, Nigam M. Micro-RNA: The darkhorse of cancer. Cell Signal 2021; 83:109995. [PMID: 33785398 DOI: 10.1016/j.cellsig.2021.109995] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
The discovery of micro RNAs (miRNA) in cancer has opened up new vistas for researchers in recent years. Micro RNAs area set of small, endogenous, highly conserved, non-coding RNAs that control the expression of about 30% genes at post-transcriptional levels. Typically, microRNAs impede the translation and stability of messenger RNAs (mRNA), control genes associated with cellular processes namely inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Compelling findings revealed that miRNA mutations or disruption correspond to diverse human cancers and suggest that miRNAs can function as tumor suppressors or oncogenes. Here we summarize the literature on these master regulators in clinical settings from last three decades as both abrupt cancer therapeutics and as an approach to sensitize tumors to chemotherapy. This review highlights (I) the prevailing perception of miRNA genomics, biogenesis, as well as function; (II) the significant advancements in regulatory mechanisms in the expression of carcinogenic genes; and (III) explains, how miRNA is utilized as a diagnostic and prognostic biomarker for the disease stage indicating survival as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Mridul Budakoti
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Abhay Shikhar Panwar
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Diksha Molpa
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Rahul Kunwar Singh
- Department of Microbiology, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | | | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| |
Collapse
|
55
|
Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol 2021; 18:152-169. [PMID: 33173198 DOI: 10.1038/s41571-020-00442-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Exportin 1 (XPO1), also known as chromosome region maintenance protein 1, plays a crucial role in maintaining cellular homeostasis via the regulated export of a range of cargoes, including proteins and several classes of RNAs, from the nucleus to the cytoplasm. Dysregulation of this protein plays a pivotal role in the development of various solid and haematological malignancies. Furthermore, XPO1 is associated with resistance to several standard-of-care therapies, including chemotherapies and targeted therapies, making it an attractive target of novel cancer therapies. Over the years, a number of selective inhibitors of nuclear export have been developed. However, only selinexor has been clinically validated. The novel mechanism of action of XPO1 inhibitors implies a different toxicity profile to that of other agents and has proved challenging in certain settings. Nonetheless, data from clinical trials have led to the approval of the XPO1 inhibitor selinexor (plus dexamethasone) as a fifth-line therapy for patients with multiple myeloma and as a monotherapy for patients with relapsed and/or refractory diffuse large B cell lymphoma. In this Review, we summarize the progress and challenges in the development of nuclear export inhibitors and discuss the potential of emerging combination therapies and biomarkers of response.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Dexamethasone/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Humans
- Hydrazines/therapeutic use
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Molecular Targeted Therapy
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Triazoles/therapeutic use
- Exportin 1 Protein
Collapse
Affiliation(s)
- Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mohammed H Uddin
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
56
|
Cai Y, Ruan W, Ding J, Wei N, Wang J, Zhang H, Ma N, Weng G, Su WK, Lin Y, Zhu K. miR‑93‑5p regulates the occurrence and development of esophageal carcinoma epithelial cells by targeting TGFβR2. Int J Mol Med 2021; 47:3. [PMID: 33448310 PMCID: PMC7834964 DOI: 10.3892/ijmm.2020.4836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/27/2020] [Indexed: 01/16/2023] Open
Abstract
Emerging studies have indicated that the dysregulation of microRNAs (miRNAs or miRs) plays a vital role in the development and metastasis of tumors. However, the role of miR-93-5p in esophageal carcinoma (EC) has not been extensively reported. The present study thus focused on the role of miR-93-5p and its downstream target in the occurrence and development of EC. Firstly, miRNA expression profiles associated with EC were accessed from the TCGA_ESCA dataset and analyzed. Subsequently, the expression patterns of miR-93-5p and TGFβR2 were characterized in the human esophageal cell line, Het-1A, and the human EC cell lines, TE-1, Eca-109 and EC9706, by RT-qPCR and western blot analysis. WST-1 assay, flow cytometry, Transwell assay, wound healing assay and bioinformatics analysis were used to explore their functions in EC cells. Finally, a dual-luciferase reporter assay was employed to determine the targeted association between miR-93-5p and TGFβR2. The results revealed that the expression of miR-93-5p was markedly higher in EC cell lines compared with that in the normal cell line. The overexpression of miR-93-5p facilitated cell proliferation, migration and invasion, and inhibited cell apoptosis. Additionally, TGFβR2 was identified as a functional target of miR-93-5p in EC cells, as judged by a series of in vitro experiments. Furthermore, it was found that the simultaneous overexpression of miR-93-5p and TGFβR2 almost had no effect on the biological behaviors of EC cells. On the whole, the present study demonstrates that miR-93-5p promotes the proliferation, migration and invasion, and inhibits the apoptosis of EC cells by targeting TGFβR2.
Collapse
Affiliation(s)
- Yibin Cai
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weizhong Ruan
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jianming Ding
- Department of Radiotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Ning Wei
- Department of Chest Radiotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jianchao Wang
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Hong Zhang
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Ning Ma
- Department of Radiotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Guibin Weng
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Wei Kun Su
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yijin Lin
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Kunshou Zhu
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
57
|
Pan D, Liu G, Li B, Jiang J, Chen W, Li W, Zhang L, Hu Y, Xie S, Yang H. MicroRNA-1246 regulates proliferation, invasion, and differentiation in human vascular smooth muscle cells by targeting cystic fibrosis transmembrane conductance regulator (CFTR). Pflugers Arch 2021; 473:231-240. [PMID: 33420548 DOI: 10.1007/s00424-020-02498-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
MicroRNA (miRNA) plays a key role in the proliferation and invasion of vascular smooth muscle cells (VSMCs). However, the role and underlying mechanism of miRNAs in VSMCs are not fully understood. Therefore, this study was designed to investigate the role and mechanism of microRNA-1246 (miR-1246) in VSMCs. VSMCs were cultured, and the proliferation of VSMCs was stimulated by platelet-derived growth factor (PDGF-BB) or 15% fetal bovine serum (FBS). The quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression levels of miR-1246 and cystic fibrosis transmembrane conductance regulator (CFTR) in VSMCs. The CCK-8 assay and transwell assay were used to detect the proliferation and invasion of VSMCs. Target gene prediction and screening and luciferase reporter assays were used to verify downstream target genes of miR-1246. Western blotting was used to detect the protein expression levels of PCNA, α-SMA, SM-MHC, Collagen-1, and Cyclin D1 in VSMCs. PDGF-BB and FBS treatment induced VSMCs proliferation and the upregulation of miR-1246 expression. Overexpression of miR-1246 promoted VSMCs proliferation, invasion, and differentiation towards synthetic phenotype, while knockdown of miR-1246 had opposite effects. In addition, CFTR was found to be a direct target for miR-1246, and miR-1246 inhibited the expression of CFTR. Moreover, overexpression of CFTR inhibited VSMC proliferation and synthetic differentiation, while overexpression of miR-1246 partly abolished the effects of CFTR overexpression on VSMCs proliferation and differentiation. Our data suggest that MiR-1246 promotes VSMC proliferation, invasion, and differentiation to synthetic phenotype by regulating CFTR. MiR-1246 may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Diguang Pan
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China.
| | - Guiyong Liu
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Bin Li
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Jingbo Jiang
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Wei Chen
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Wei Li
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Lin Zhang
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Yubao Hu
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Shuyun Xie
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Huayun Yang
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| |
Collapse
|
58
|
Alteration of protein expression and spliceosome pathway activity during Barrett's carcinogenesis. J Gastroenterol 2021; 56:791-807. [PMID: 34227026 PMCID: PMC8370908 DOI: 10.1007/s00535-021-01802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/18/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Barrett's esophagus (BE) is a known precursor lesion and the strongest risk factor for esophageal adenocarcinoma (EAC), a common and lethal type of cancer. Prediction of risk, the basis for efficient intervention, is commonly solely based on histologic examination. This approach is challenged by problems such as inter-observer variability in the face of the high heterogeneity of dysplastic tissue. Molecular markers might offer an additional way to understand the carcinogenesis and improve the diagnosis-and eventually treatment. In this study, we probed significant proteomic changes during dysplastic progression from BE into EAC. METHODS During endoscopic mucosa resection, epithelial and stromal tissue samples were collected by laser capture microdissection from 10 patients with normal BE and 13 patients with high-grade dysplastic/EAC. Samples were analyzed by mass spectrometry-based proteomic analysis. Expressed proteins were determined by label-free quantitation, and gene set enrichment was used to find differentially expressed pathways. The results were validated by immunohistochemistry for two selected key proteins (MSH6 and XPO5). RESULTS Comparing dysplastic/EAC to non-dysplastic BE, we found in equal volumes of epithelial tissue an overall up-regulation in terms of protein abundance and diversity, and determined a set of 226 differentially expressed proteins. Significantly higher expressions of MSH6 and XPO5 were validated orthogonally and confirmed by immunohistochemistry. CONCLUSIONS Our results demonstrate that disease-related proteomic alterations can be determined by analyzing minute amounts of cell-type-specific collected tissue. Further analysis indicated that alterations of certain pathways associated with carcinogenesis, such as micro-RNA trafficking, DNA damage repair, and spliceosome activity, exist in dysplastic/EAC.
Collapse
|
59
|
Jiang S. Perspectives on MicroRNA Study in Oncogenesis: Where Are We? Neoplasia 2021; 23:99-101. [PMID: 33260033 PMCID: PMC7708938 DOI: 10.1016/j.neo.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
60
|
Fortunato O, Iorio MV. The Therapeutic Potential of MicroRNAs in Cancer: Illusion or Opportunity? Pharmaceuticals (Basel) 2020; 13:E438. [PMID: 33271894 PMCID: PMC7761241 DOI: 10.3390/ph13120438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The functional involvement of microRNAs in human neoplasia has raised in the last years an increasing interest in the scientific community toward the potential application in clinics as therapeutic tools. Indeed, the possibility to modulate their expression to re-establish a lost equilibrium and counteract tumor growth and dissemination, and/or to improve responsiveness to standard therapies, is promising and fascinating. However, several issues need to be taken into account such as factors related to miRNA stability in the blood, tissue penetration and potential off-target effects, which might affect safety, tolerability and efficacy of an miRNA-based therapy. Here we describe the most relevant challenges related to miRNA-based therapy, review the delivery strategies exploited to date and the on-going clinical trials.
Collapse
Affiliation(s)
- Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy
| | - Marilena V. Iorio
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
61
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
62
|
Ahn YH, Ko YH. Diagnostic and Therapeutic Implications of microRNAs in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:E8782. [PMID: 33233641 PMCID: PMC7699705 DOI: 10.3390/ijms21228782] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs), endogenous suppressors of target mRNAs, are deeply involved in every step of non-small cell lung cancer (NSCLC) development, from tumor initiation to progression and metastasis. They play roles in cell proliferation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, migration, invasion, and metastatic colonization, as well as immunosuppression. Due to their versatility, numerous attempts have been made to use miRNAs for clinical applications. miRNAs can be used as cancer subtype classifiers, diagnostic markers, drug-response predictors, prognostic markers, and therapeutic targets in NSCLC. Many challenges remain ahead of their actual clinical application; however, when achieved, the use of miRNAs in the clinic is expected to enable great progress in the diagnosis and treatment of patients with NSCLC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Pharmacological/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphatic Metastasis
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neovascularization, Pathologic/diagnosis
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Escape/genetics
Collapse
Affiliation(s)
- Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
63
|
Parizi PK, Yarahmadi F, Tabar HM, Hosseini Z, Sarli A, Kia N, Tafazoli A, Esmaeili SA. MicroRNAs and target molecules in bladder cancer. Med Oncol 2020; 37:118. [PMID: 33216248 DOI: 10.1007/s12032-020-01435-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Bladder cancer (BC) is considered as one of the most common malignant tumors in humans with complex pathogenesis including gene expression variation, protein degradation, and changes in signaling pathways. Many studies on involved miRNAs in BC have demonstrated that they could be used as potential biomarkers in the prognosis, response to treatment, and screening before the cancerous phenotype onset. MicroRNAs (miRNAs) regulate many cellular processes through their different effects on special targets along with modifying signaling pathways, apoptosis, cell growth, and differentiation. The diverse expression of miRNAs in cancerous tissues could mediate procedures leading to the oncogenic or suppressor behavior of certain genes in cancer cells. Since a specific miRNA may have multiple targets, an mRNA could also be regulated by multiple miRNAs which further demonstrates the actual role of miRNAs in cancer. In addition, miRNAs can be utilized as biomarkers in some cancers that cannot be screened in the early stages. Hence, finding blood, urine, or tissue miRNA biomarkers by novel or routine gene expression method could be an essential step in the prognosis and control of cancer. In the present review, we have thoroughly evaluated the recent findings on different miRNAs in BC which can provide comprehensive information on better understanding the role of diverse miRNAs and better decision making regarding the new approaches in the diagnosis, prognosis, prevention, and treatment of BC.
Collapse
Affiliation(s)
- Payam Kheirmand Parizi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Genome Medical Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Zohreh Hosseini
- Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Abdolazim Sarli
- Department of Medical Genetic, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Nadia Kia
- Agostino Gemelli University Hospital, Torvergata University of Medical Sciences, Rome, Italy
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland.,Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
64
|
Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020; 21:ijms21186603. [PMID: 32917057 PMCID: PMC7555309 DOI: 10.3390/ijms21186603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.
Collapse
Affiliation(s)
| | | | - Guangming Zhou
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| | - Wentao Hu
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| |
Collapse
|
65
|
Modulation of telomerase expression and function by miRNAs: Anti-cancer potential. Life Sci 2020; 259:118387. [PMID: 32890603 DOI: 10.1016/j.lfs.2020.118387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022]
Abstract
Telomerase is a nucleoprotein reverse transcriptase that maintains the telomere, a protective structure at the ends of the chromosome, and is active in cancer cells, stem cells, and fetal cells. Telomerase immortalizes cancer cells and induces unlimited cell division by preventing telomere shortening. Immortalized cancer cells have unlimited proliferative potential due to telomerase activity that causes tumorigenesis and malignancy. Therefore, telomerase can be a lucrative anti-cancer target. The regulation of catalytic subunit of telomerase (TERT) determines the extent of telomerase activity. miRNAs, as an endogenous regulator of gene expression, can control telomerase activity by targeting TERT mRNA. miRNAs that have a decreasing effect on TERT translation mediate modulation of telomerase activity in cancer cells by binding to TERT mRNA and regulating TERT translation. In this review, we provide an update on miRNAs that influence telomerase activity by regulation of TERT translation.
Collapse
|
66
|
Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol 2020; 36:101607. [PMID: 32593128 PMCID: PMC7322687 DOI: 10.1016/j.redox.2020.101607] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that do not encode for proteins and play key roles in the regulation of gene expression. miRNAs are involved in a comprehensive range of biological processes such as cell cycle control, apoptosis, and several developmental and physiological processes. Oxidative stress can affect the expression levels of multiple miRNAs and, conversely, miRNAs may regulate the expression of redox sensors, alter critical components of the cellular antioxidants, interact with the proteasome, and affect DNA repair systems. The number of publications identifying redox-sensitive miRNAs has increased significantly over the last few years, and some miRNA targets such as Nrf2, SIRT1 and NF-κB have been identified. The complex interplay between miRNAs and ROS is discussed together with their role in myocardial ischemia-reperfusion injury and the potential use of circulating miRNAs as biomarkers of myocardial infarction. Detailed knowledge of redox-sensitive miRNAs is needed to be able to effectively use individual compounds or sets of miRNA-modulating compounds to improve the health-related outcomes associated with different diseases.
Collapse
Affiliation(s)
- Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Avda Diagonal 643, 08028, Barcelona, Spain.
| | - Aldrin V Gomes
- Department of Physiology and Membrane Biology, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA; Department of Physiology, Neurobiology and Behavior, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
67
|
Najminejad H, Farhadihosseinabadi B, Dabaghian M, Dezhkam A, Rigi Yousofabadi E, Najminejad R, Abdollahpour-Alitappeh M, Karimi MH, Bagheri N, Mahi-Birjand M, Ghasemi N, Mazaheri M, Kalantar SM, Seifalian A, Sheikhha MH. Key Regulatory miRNAs and their Interplay with Mechanosensing and Mechanotransduction Signaling Pathways in Breast Cancer Progression. Mol Cancer Res 2020; 18:1113-1128. [PMID: 32430354 DOI: 10.1158/1541-7786.mcr-19-1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
According to the WHO, breast cancer is the most common cancer in women worldwide. Identification of underlying mechanisms in breast cancer progression is the main concerns of researches. The mechanical forces within the tumor microenvironment, in addition to biochemical stimuli such as different growth factors and cytokines, activate signaling cascades, resulting in various changes in cancer cell physiology. Cancer cell proliferation, invasiveness, migration, and, even, resistance to cancer therapeutic agents are changed due to activation of mechanotransduction signaling. The mechanotransduction signaling is frequently dysregulated in breast cancer, indicating its important role in cancer cell features. So far, a variety of experimental investigations have been conducted to determine the main regulators of the mechanotransduction signaling. Currently, the role of miRNAs has been well-defined in the cancer process through advances in molecular-based approaches. miRNAs are small groups of RNAs (∼22 nucleotides) that contribute to various biological events in cells. The central role of miRNAs in the regulation of various mediators involved in the mechanotransduction signaling has been well clarified over the last decade. Unbalanced expression of miRNAs is associated with different pathologic conditions. Overexpression and downregulation of certain miRNAs were found to be along with dysregulation of mechanotransduction signaling effectors. This study aimed to critically review the role of miRNAs in the regulation of mediators involved in the mechanosensing pathways and clarify how the cross-talk between miRNAs and their targets affect the cell behavior and physiology of breast cancer cells.
Collapse
Affiliation(s)
- Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Farhadihosseinabadi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Asiyeh Dezhkam
- Department of Midwifery, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Reza Najminejad
- Department of Internal Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mohammad Hasan Sheikhha
- Genetics and Biotechnology Lab, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
68
|
Das S, Mohamed IN, Teoh SL, Thevaraj T, Ku Ahmad Nasir KN, Zawawi A, Salim HH, Zhou DK. Micro-RNA and the Features of Metabolic Syndrome: A Narrative Review. Mini Rev Med Chem 2020; 20:626-635. [DOI: 10.2174/1389557520666200122124445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
The incidence of Metabolic Syndrome (MetS) has risen globally. MetS includes a combination
of features, i.e. blood glucose impairment, excess abdominal/body fat dyslipidemia and elevated
blood pressure. Other than conventional treatment with drugs, the main preventive approaches include
lifestyle changes, weight loss, diet control and adequate exercise also proves to be beneficial. MicroRNAs
(miRNAs) are small non-coding RNAs that play critical regulatory roles in most biological
and pathological processes. In the present review, we discuss various miRNAs which are related to
MetS by targeting various organs, including the pancreas, liver, skeletal muscles and adipose tissues.
These miRNAs have the effect on insulin production and secretion (miR-9, miR-124a, miR-130a,b,
miR152, miR-335, miR-375), insulin resistance (miR-29), adipogenesis (miR-143, miR148a) and lipid
metabolism (miR-192). We also discuss the miRNAs as potential biomarkers and future therapeutic
targets. This review may be beneficial for molecular biologists and clinicians dealing with MetS.
Collapse
Affiliation(s)
- Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Tarrsini Thevaraj
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | | | - Azwani Zawawi
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hazwan Hazrin Salim
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Dennis Kheng Zhou
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
69
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
70
|
Yong Huang, Xiong J, Brown PB, Sun X. Identification and Characteristics of Batrachuperus karlschmidti miRNA Using Illumina Deep Sequencing. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
71
|
Gao C, Wang Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol Rev 2020; 100:673-694. [PMID: 31751167 PMCID: PMC7327233 DOI: 10.1152/physrev.00007.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.
Collapse
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
72
|
Pu W, Zheng Y, Peng Y. Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Front Cell Dev Biol 2020; 8:168. [PMID: 32296699 PMCID: PMC7136398 DOI: 10.3389/fcell.2020.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an evolutionally conserved and unique enzyme that specifically catalyzes the cis-trans isomerization of phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif and, subsequently, induces the conformational change of its substrates. Mounting evidence has demonstrated that Pin1 is widely overexpressed and/or overactivated in cancer, exerting a critical influence on tumor initiation and progression via regulation of the biological activity, protein degradation, or nucleus-cytoplasmic distribution of its substrates. Moreover, Pin1 participates in the cancer hallmarks through activating some oncogenes and growth enhancers, or inactivating some tumor suppressors and growth inhibitors, suggesting that Pin1 could be an attractive target for cancer therapy. In this review, we summarize the findings on the dysregulation, mechanisms, and biological functions of Pin1 in cancer cells, and also discuss the significance and potential applications of Pin1 dysregulation in human cancer.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Zheng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
73
|
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sci 2020; 21:E1723. [PMID: 32138313 PMCID: PMC7084905 DOI: 10.3390/ijms21051723] [Citation(s) in RCA: 567] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Altered gene expression is the primary molecular mechanism responsible for the pathological processes of human diseases, including cancer. MicroRNAs (miRNAs) are virtually involved at the post-transcriptional level and bind to 3' UTR of their target messenger RNA (mRNA) to suppress expression. Dysfunction of miRNAs disturbs expression of oncogenic or tumor-suppressive target genes, which is implicated in cancer pathogenesis. As such, a large number of miRNAs have been found to be downregulated or upregulated in human cancers and to function as oncomiRs or oncosuppressor miRs. Notably, the molecular mechanism underlying the dysregulation of miRNA expression in cancer has been recently uncovered. The genetic deletion or amplification and epigenetic methylation of miRNA genomic loci and the transcription factor-mediated regulation of primary miRNA often alter the landscape of miRNA expression in cancer. Dysregulation of the multiple processing steps in mature miRNA biogenesis can also cause alterations in miRNA expression in cancer. Detailed knowledge of the regulatory mechanism of miRNAs in cancer is essential for understanding its physiological role and the implications of cancer-associated dysfunction and dysregulation. In this review, we elucidate how miRNA expression is deregulated in cancer, paying particular attention to the cancer-associated transcriptional and post-transcriptional factors that execute miRNA programs.
Collapse
Affiliation(s)
- Zainab Ali Syeda
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Siu Semar Saratu’ Langden
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
74
|
Liu S, Liu H, Deng M, Wang H. MiR-182 promotes glioma progression by targeting FBXW7. J Neurol Sci 2020; 411:116689. [PMID: 32032908 DOI: 10.1016/j.jns.2020.116689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are widely considered to play an important role in the tumor progression. In this study, we aimed to investigate the potential biological effects of miR-182 and its target FBXW7 on glioma development. METHODS Expression data of glioma were procured from TCGA database. Differential analysis was performed to identify the potential differentially expressed miRNA (DEmiRNA), and bioinformatics databases were utilized for target genes prediction. qRT-PCR was conducted to detect miR-182 and western blot was performed to test FBXW7 in protein level. Then the cells were processed for proliferation determination by CCK-8, migration test through wound healing assay, invasion detection via Transwell and apoptosis measurement by flow cytometry. In addition, dual-luciferase reporter gene assay was carried out for evaluation of the targeted relationship between the miR-182 and FBXW7. RESULTS MiR-182 was found to be up-regulated in glioma cells while FBXW7 was down-regulated. Besides, miR-182 was predicted to targeted bind with FBXW7 on 3'UTR via bioinformatics methods, and their targeted relationship was further validated by dual-luciferase assay. MiR-182 mimic could significantly promote cell proliferation, migration, invasion and inhibit cell apoptosis, while miR-182 inhibitor had the negative effect. Moreover, FBXW7 knockdown could reverse the inhibitory effect of miR-182 inhibitor on glioma cells. CONCLUSION MiR-182 promotes cell proliferation, migration, invasion and inhibits cell apoptosis in glioma by targeting FBXW7.
Collapse
Affiliation(s)
- Shiming Liu
- Department of Interventional Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, PR China
| | - Hanbo Liu
- Department of Interventional Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, PR China
| | - Min Deng
- Department of Interventional Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, PR China
| | - Haowen Wang
- Department of Interventional Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, PR China.
| |
Collapse
|
75
|
Kalinina EV, Ivanova-Radkevich VI, Chernov NN. Role of MicroRNAs in the Regulation of Redox-Dependent Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:1233-1246. [DOI: 10.1134/s0006297919110026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
76
|
Loo TH, Ye X, Chai RJ, Ito M, Bonne G, Ferguson-Smith AC, Stewart CL. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. eLife 2019; 8:e49485. [PMID: 31686651 PMCID: PMC6853637 DOI: 10.7554/elife.49485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/27/2019] [Indexed: 01/13/2023] Open
Abstract
Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.
Collapse
Affiliation(s)
- Tsui Han Loo
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Xiaoqian Ye
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Ruth Jinfen Chai
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Mitsuteru Ito
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Gisèle Bonne
- Center of Research in Myology, Institut de MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, CNRS FRE 3617ParisFrance
| | | | - Colin L Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| |
Collapse
|
77
|
da Silva RA, Ferreira MR, Gomes AM, Zambuzzi WF. LncRNA HOTAIR is a novel endothelial mechanosensitive gene. J Cell Physiol 2019; 235:4631-4642. [PMID: 31637716 DOI: 10.1002/jcp.29340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
To better address whether the long noncoding RNAs (lncRNAs) HOTAIR and HOTTIP are mechanosensitive genes, they were investigated in differentially challenged endothelial cells with respect to a circuit of tensional forces, considering the performance of both arterial and venous endothelial cells. We subjected arterial- and venous-obtained endothelial cells to a circuit of tensional forces within a shear stress model in vitro. Real-time quantitative polymerase chain reaction analysis indicated that microRNA (miRNA)-related processing machinery is significantly required in shear stressed arterial endothelial cell metabolism, which orchestrates miRNA (small noncoding RNA) involvement, and their involvement suggests lncRNA involvement. Of lncRNAs HOTAIR and HOTTIP, only HOTAIR was mechanosensitive considering both arterial and venous endothelial cells, presenting a positive correlation between methylation signature and gene expression. Thereafter, using bioinformatics tools, lncRNA HOTAIR was predicted to modulate miRNA185, miRNA-21, and miRNA23b downregulation. We compared the values of gene expression with a Pearson's correlation test, and expected correlations were observed for miRNA185 (r = 0.8664), miRNA-21 (r = 0.8605), and miRNA23b (0.9128). Taken together, these findings clearly show that lncRNA HOTAIR responds to the shear stress and emerges as a novel mechanosensitive gene in endothelial cells. Altogether, this understanding of mechanosensitive transcriptional and posttranscriptional control involving HOTAIR can also lead to new forms of therapeutic intervention for various diseases, as well as new strategies for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Rodrigo A da Silva
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil.,Division of Dental Biology, Department of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Anderson Moreira Gomes
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Willian F Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
78
|
Sexton R, Mahdi Z, Chaudhury R, Beydoun R, Aboukameel A, Khan HY, Baloglu E, Senapedis W, Landesman Y, Tesfaye A, Kim S, Philip PA, Azmi AS. Targeting Nuclear Exporter Protein XPO1/CRM1 in Gastric Cancer. Int J Mol Sci 2019; 20:E4826. [PMID: 31569391 PMCID: PMC6801932 DOI: 10.3390/ijms20194826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
Gastric cancer remains an unmet clinical problem in urgent need of newer and effective treatments. Here we show that the nuclear export protein, Exportin 1 (XPO1, chromosome region maintenance 1 or CRM1), is a promising molecular target in gastric cancer. We demonstrate significant overexpression of XPO1 in a cohort of histologically diverse gastric cancer patients with primary and metastatic disease. XPO1 RNA interference suppressed gastric cancer cell growth. Anti-tumor activity was observed with specific inhibitor of nuclear export (SINE) compounds (selinexor/XPOVIO), second-generation compound KPT-8602/eltanexor, KPT-185 and +ve control Leptomycin B in three distinct gastric cancer cell lines. SINE compounds inhibited gastric cancer cell proliferation, disrupted spheroid formation, induced apoptosis and halted cell cycle progression at the G1/S phase. Anti-tumor activity was concurrent with nuclear retention of tumor suppressor proteins and inhibition of colony formation. In combination studies, SINE compounds enhanced the efficacy of nab-paclitaxel in vitro and in vivo. More significantly, using non-coding RNA sequencing studies, we demonstrate for the first time that SINE compounds can alter the expression of non-coding RNAs (microRNAs and piwiRNAs). SINE treatment caused statistically significant downregulation of oncogenic miR-33b-3p in two distinct cell lines. These studies demonstrate the therapeutic significance of XPO1 in gastric cancer that warrants further clinical investigation.
Collapse
Affiliation(s)
- Rachel Sexton
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Zaid Mahdi
- Emory Winship Cancer Institute, Atlanta, GA 30322, USA.
| | - Rahman Chaudhury
- Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.
| | - Rafic Beydoun
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Husain Y Khan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Erkan Baloglu
- Karyopharm Therapeutics Inc., Newton, MA 02459, USA.
| | | | | | - Anteneh Tesfaye
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Steve Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Philip A Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
79
|
Holmes TR, Dindu S, Hansen LA. Aberrant localization of signaling proteins in skin cancer: Implications for treatment. Mol Carcinog 2019; 58:1631-1639. [PMID: 31062427 DOI: 10.1002/mc.23036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Aberrant subcellular localization of signaling proteins can provide cancer cells with advantages such as resistance to apoptotic cell death, increased invasiveness and more rapid proliferation. Nuclear to cytoplasmic shifts in tumor-promoting proteins can lead to worse patient outcomes, providing opportunities to target cancer-specific processes. Herein, we review the significance of dysregulated protein localization with a focus on skin cancer. Altered localization of signaling proteins controlling cell cycle progression or cell death is a common feature of cancer. In some instances, aberrant subcellular localization results in an acquired prosurvival function. Taking advantage of this knowledge reveals novel targets useful in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Thomas R Holmes
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Shravya Dindu
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Laura A Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| |
Collapse
|
80
|
Chen L, Huang Y, Zhou L, Lian Y, Wang J, Chen D, Wei H, Huang M, Huang Y. Prognostic roles of the transcriptional expression of exportins in hepatocellular carcinoma. Biosci Rep 2019; 39:BSR20190827. [PMID: 31371628 PMCID: PMC6702357 DOI: 10.1042/bsr20190827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Aims: A large number of studies have suggested that exportins (XPOs) play a pivotal role in human cancers. In the present study, we analyzed XPO mRNA expression in cancer tissues and explored their prognostic value in hepatocellular carcinoma (HCC).Methods: Transcriptional and survival data related to XPO expression in HCC patients were obtained through the ONCOMINE and UALCAN databases. Survival analysis plots were drawn with Gene Expression Profiling Interactive Analysis (GEPIA). Sequence alteration data for XPOs were obtained from The Cancer Genome Atlas (TCGA) database and c-BioPortal. Gene functional enrichment analyses were performed with Database for Annotation, Visualization and Integrated Discovery (DAVID).Results: Compared with normal liver tissues, significant XPO mRNA overexpression was observed in HCC cancer tissues. There was a trend of higher XPO expression in more advanced clinical stages and lower differentiated pathological grades of HCC. In HCC patients, high expression of XPO1, CSE1L, XPOT, XPO4/5/6 was related to poor overall survival (OS), and XPO1, CSE1L and XPO5/6 were correlated with poor disease-free survival (DFS). The main genetic alterations in XPOs involved mRNA up-regulation, DNA amplification and deletion. General XPO mutations were remarkably associated with worse OS and mostly affected the pathways of RNA transport and oocyte meiosis.Conclusion: High expression of XPOs was associated with a poor prognosis in HCC patients. XPOs may be exploited as good prognostic biomarkers for survival in HCC patients.
Collapse
Affiliation(s)
- Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanlin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongmei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Wei
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingsheng Huang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
81
|
Colamatteo A, Micillo T, Bruzzaniti S, Fusco C, Garavelli S, De Rosa V, Galgani M, Spagnuolo MI, Di Rella F, Puca AA, de Candia P, Matarese G. Metabolism and Autoimmune Responses: The microRNA Connection. Front Immunol 2019; 10:1969. [PMID: 31555261 PMCID: PMC6722206 DOI: 10.3389/fimmu.2019.01969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Distinct metabolic pathways are known to regulate growth, differentiation, survival, and activation of immune cells by providing energy and specific biosynthetic precursors. Compelling experimental evidence demonstrates that effector T cell functions are coupled with profound changes in cellular metabolism. Importantly, the effector T cell-dependent “anti-self” response characterizing the autoimmune diseases is accompanied by significant metabolic alterations. MicroRNAs (miRNAs), evolutionary conserved small non-coding RNA molecules that affect gene expression by binding to target messenger RNAs, are now known to regulate multiple functions of effector T cells, including the strength of their activation, thus contributing to immune homeostasis. In this review, we will examine the most recent studies that describe miRNA direct involvement in the metabolic reprogramming that marks effector T cell functions. In particular, we will focus on the work showing a connection between miRNA regulatory function and the molecular network dysregulation that leads to metabolic pathway derangement in autoimmunity. Finally, we will also speculate on the possibility that the interplay between miRNAs and metabolism in T cells may help identify novel miRNA-based therapeutic strategies to treat effector T cell immunometabolic alterations in pathological conditions such as autoimmunity and chronic inflammation.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy
| | - Teresa Micillo
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy
| | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Maria Immacolata Spagnuolo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesca Di Rella
- Dipartimento di Senologia, Oncologia Medica, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Annibale A Puca
- Department of Cardiovascular Diseases, IRCCS MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Paola de Candia
- Department of Cardiovascular Diseases, IRCCS MultiMedica, Milan, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy.,Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| |
Collapse
|
82
|
Antitumor Effect of Pyrogallol via miR-134 Mediated S Phase Arrest and Inhibition of PI3K/AKT/Skp2/cMyc Signaling in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20163985. [PMID: 31426282 PMCID: PMC6720540 DOI: 10.3390/ijms20163985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Though Pyrogallol, one of the natural polyphenols, was known to have anti-inflammatory and antitumor effects in breast and colon cancers, the underlying antitumor mechanisms of Pyrogallol, still remain unclear so far. Here, the antitumor mechanisms of Pyrogallol were elucidated in Hep3B and Huh7 hepatocellular carcinoma cells (HCCs). Pyrogallol showed significant cytotoxicity and reduced the number of colonies in Hep3B and Huh7 cells. Interestingly, Pyrogallol induced S-phase arrest and attenuated the protein expression of CyclinD1, Cyclin E, Cyclin A, c-Myc, S-phase kinase-associated protein 2 (Skp2), p-AKT, PI3K, increased the protein expression of p27, and also reduced the fluorescent expression of Cyclin E in Hep3B and Huh7 cells. Furthermore, Pyrogallol disturbed the interaction between Skp2, p27, and c-Myc in Huh7 cells. Notably, Pyrogallol upregulated miRNA levels of miR-134, and conversely, miR-134 inhibition rescued the decreased expression levels of c-Myc, Cyclin E, and Cyclin D1 and increased the expression of p27 by Pyrogallol in Huh7 cells. Taken together, our findings provide insight that Pyrogallol exerts antitumor effects in HCCs via miR-134 activation-mediated S-phase arrest and inhibition of PI3K/AKT/Skp2/cMyc signaling as a potent anticancer candidate.
Collapse
|
83
|
Fan X, He H, Li J, Luo G, Zheng Y, Zhou JK, He J, Pu W, Zhao Y. Discovery of 4,6-bis(benzyloxy)-3-phenylbenzofuran as a novel Pin1 inhibitor to suppress hepatocellular carcinoma via upregulating microRNA biogenesis. Bioorg Med Chem 2019; 27:2235-2244. [PMID: 31027708 DOI: 10.1016/j.bmc.2019.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 02/05/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in diverse cancer-associated signaling pathways, playing an oncogenic role in multiple human cancers, including hepatocellular carcinoma (HCC). Our recent works clarify that Pin1 modulates miRNAs biogenesis by interacting with ERK-phosphorylated exportin-5 (XPO5) and changing XPO5 conformation, giving a potential target for HCC treatment. Herein, we discover 4,6-bis(benzyloxy)-3-phenylbenzofuran (TAB29) as a novel Pin1 inhibitor that targets Pin1 PPIase domain. TAB29 potently inhibits Pin1 activity with the IC50 value of 874 nM and displays an excellent selectivity toward Pin1 in vitro. Cell-based biological evaluation reveals that TAB29 significantly suppresses cell proliferation of HCC cells through restoring the nucleus-to-cytoplasm export of XPO5 and upregulating mature miRNAs expression. Collectively, this work provides a promising small molecule lead compound for Pin1 inhibition, highlighting the therapeutic potential of miRNA-based treatment for human cancers.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huaiyu He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guoyong Luo
- Guiyang College of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yuanyuan Zheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Kang Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchen Pu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
84
|
Valipour B, Velaei K, Abedelahi A, Karimipour M, Darabi M, Charoudeh HN. NK cells: An attractive candidate for cancer therapy. J Cell Physiol 2019; 234:19352-19365. [DOI: 10.1002/jcp.28657] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Behnaz Valipour
- Stem Cell Research Centre Tabriz University of Medical Sciences Tabriz Iran
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Darabi
- Biochemistry Department, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
85
|
Shcherbata HR. miRNA functions in stem cells and their niches: lessons from the Drosophila ovary. CURRENT OPINION IN INSECT SCIENCE 2019; 31:29-36. [PMID: 31109670 DOI: 10.1016/j.cois.2018.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
From the very beginning of the miRNA era, Drosophila has served as an excellent model for explanation of miRNA biogenesis. Now Drosophila continues to be used in numerous studies aiming to decipher biological roles of individual miRNAs in a living organism. MiRNAs have emerged as an important regulatory class that adjusts gene expression in response to stress; therefore, it is particularly important to elucidate miRNA-based regulatory networks that appear in response to fluctuations in intrinsic and extrinsic environments. This review explores the major advances in understanding condition-dependent roles of miRNAs in adult stem cell biology using the Drosophila ovarian germline stem cell niche community as a model system.
Collapse
Affiliation(s)
- Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany; Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
86
|
Delsin LEA, Salomao KB, Pezuk JA, Brassesco MS. Expression profiles and prognostic value of miRNAs in retinoblastoma. J Cancer Res Clin Oncol 2018; 145:1-10. [PMID: 30350021 DOI: 10.1007/s00432-018-2773-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Current cure rates for retinoblastoma (RB) are very high in developed countries. Nonetheless, in less privileged places worldwide, delayed diagnosis and refusal to adhere to treatment still endure an obstacle to improve overall patient survival. Thus, the access to consistent biomarkers for diagnosis at an earlier stage may facilitate treatment and improve outcomes. Over recent years, much attention has been focused on miRNAs, key post-transcriptional regulators that when altered, largely contribute to carcinogenesis and tumor progression. Many of the ~ 2500 microRNAs described in humans have shown differential expression profiles in tumors. In this review, we summarize current data about the roles of miRNAs in RB along with their value as diagnostic/prognostic factors using electronic databases such as PubMed. We reviewed the importance of miRNA in RB biology and discussed their implications in clinic intervention. Several miRNAs have pointed out reliable diagnostic and prognostic molecular biomarkers. The emergence of targeted therapies has significantly improved cancer treatment. In the near future, the modulation of miRNAs will represent a good treatment strategy.
Collapse
Affiliation(s)
| | | | - Julia Alejandra Pezuk
- Anhanguera University of Sao Paulo, UNIAN, Av. Raimundo Pereira de Magalhaes 3305, Sao Paulo, SP, CEP 05145-200, Brazil.
| | - Maria Sol Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
87
|
Involving the microRNA Targetome in Esophageal-Cancer Development and Behavior. Cancers (Basel) 2018; 10:cancers10100381. [PMID: 30322005 PMCID: PMC6210990 DOI: 10.3390/cancers10100381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common and sixth leading cause of cancer-related mortality in the world. Despite breakthroughs in EC diagnosis and treatment, patients with complete pathologic response after being submitted to chemoradiotherapy are still submitted to surgery, despite its high morbidity. Single-nucleotide polymorphisms (SNPs) in miRNA, miRNA-binding sites, and in its biogenesis pathway genes can alter miRNA expression patterns, thereby influencing cancer risk and prognosis. In this review, we systematized the information available regarding the impact of these miR-SNPs in EC development and prognosis. We found 34 miR-SNPs that were associated with EC risk. Despite the promising applicability of these miR-SNPs as disease biomarkers, they still lack validation in non-Asian populations. Moreover, there should be more pathway-based approaches to evaluate the cumulative effect of multiple unfavorable genotypes and, consequently, identify miR-SNPs signatures capable of predicting EC therapy response and prognosis.
Collapse
|