51
|
Mastenbroek TG, Karel MFA, Nagy M, Chayoua W, Korsten EIJ, Coenen DM, Debets J, Konings J, Brouns AE, Leenders PJA, van Essen H, van Oerle R, Heitmeier S, Spronk HM, Kuijpers MJE, Cosemans JMEM. Vascular protective effect of aspirin and rivaroxaban upon endothelial denudation of the mouse carotid artery. Sci Rep 2020; 10:19360. [PMID: 33168914 PMCID: PMC7653917 DOI: 10.1038/s41598-020-76377-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
While in recent trials the dual pathway inhibition with aspirin plus rivaroxaban has shown to be efficacious in patients with atherosclerotic cardiovascular disease, little is known about the effects of this combination treatment on thrombus formation and vascular remodelling upon vascular damage. The aim of this study was to examine the effects of aspirin and/or rivaroxaban on injury-induced murine arterial thrombus formation in vivo and in vitro, vessel-wall remodelling, and platelet-leukocyte aggregates. Temporary ligation of the carotid artery of C57BL/6 mice, fed a western type diet, led to endothelial denudation and sub-occlusive thrombus formation. At the site of ligation, the vessel wall stiffened and the intima-media thickened. Aspirin treatment antagonized vascular stiffening and rivaroxaban treatment led to a positive trend towards reduced stiffening. Local intima-media thickening was antagonized by both aspirin or rivaroxaban treatment. Platelet-leukocyte aggregates and the number of platelets per leukocyte were reduced in aspirin and/or rivaroxaban treatment groups. Furthermore, rivaroxaban restricted thrombus growth and height in vitro. In sum, this study shows vascular protective effects of aspirin and rivaroxaban, upon vascular injury of the mouse artery.
Collapse
Affiliation(s)
- T G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - M F A Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - W Chayoua
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - E I J Korsten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Debets
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Konings
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A E Brouns
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P J A Leenders
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H van Essen
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R van Oerle
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - S Heitmeier
- Cardiovascular Research Institute, Bayer AG, Wuppertal, Germany
| | - H M Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
52
|
Goswami C, Chawla S, Thakral D, Pant H, Verma P, Malik PS, ▮ J, Gupta R, Ahuja G, Sengupta D. Molecular signature comprising 11 platelet-genes enables accurate blood-based diagnosis of NSCLC. BMC Genomics 2020; 21:744. [PMID: 33287695 PMCID: PMC7590669 DOI: 10.1186/s12864-020-07147-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Early diagnosis is crucial for effective medical management of cancer patients. Tissue biopsy has been widely used for cancer diagnosis, but its invasive nature limits its application, especially when repeated biopsies are needed. Over the past few years, genomic explorations have led to the discovery of various blood-based biomarkers. Tumor Educated Platelets (TEPs) have, of late, generated considerable interest due to their ability to infer tumor existence and subtype accurately. So far, a majority of the studies involving TEPs have offered marker-panels consisting of several hundreds of genes. Profiling large numbers of genes incur a significant cost, impeding its diagnostic adoption. As such, it is important to construct minimalistic molecular signatures comprising a small number of genes. RESULTS To address the aforesaid challenges, we analyzed publicly available TEP expression profiles and identified a panel of 11 platelet-genes that reliably discriminates between cancer and healthy samples. To validate its efficacy, we chose non-small cell lung cancer (NSCLC), the most prevalent type of lung malignancy. When applied to platelet-gene expression data from a published study, our machine learning model could accurately discriminate between non-metastatic NSCLC cases and healthy samples. We further experimentally validated the panel on an in-house cohort of metastatic NSCLC patients and healthy controls via real-time quantitative Polymerase Chain Reaction (RT-qPCR) (AUC = 0.97). Model performance was boosted significantly after artificial data-augmentation using the EigenSample method (AUC = 0.99). Lastly, we demonstrated the cancer-specificity of the proposed gene-panel by benchmarking it on platelet transcriptomes from patients with Myocardial Infarction (MI). CONCLUSION We demonstrated an end-to-end bioinformatic plus experimental workflow for identifying a minimal set of TEP associated marker-genes that are predictive of the existence of cancers. We also discussed a strategy for boosting the predictive model performance by artificial augmentation of gene expression data.
Collapse
Affiliation(s)
- Chitrita Goswami
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India
| | - Smriti Chawla
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Deepshi Thakral
- Laboratory Oncology Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshu Pant
- Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India
| | - Pramod Verma
- Laboratory Oncology Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Jayadeva ▮
- Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Debarka Sengupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
53
|
Patrakka O, Pienimäki JP, Tuomisto S, Ollikainen J, Lehtimäki T, Karhunen PJ, Martiskainen M. Oral Bacterial Signatures in Cerebral Thrombi of Patients With Acute Ischemic Stroke Treated With Thrombectomy. J Am Heart Assoc 2020; 8:e012330. [PMID: 31117858 PMCID: PMC6585368 DOI: 10.1161/jaha.119.012330] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Chronic infections have been reported to be risk factors for both coronary heart disease and ischemic stroke. DNA of oral bacteria, mainly from the viridans streptococci group, has been detected in coronary thrombus aspirates of myocardial infarction and cerebral aneurysms. Viridans streptococci are known to cause infective endocarditis and possess thrombogenic properties. We studied the presence of oral bacterial DNA in thrombus aspirates of patients with acute ischemic stroke treated with mechanical thrombectomy. Methods and Results Thrombus aspirates and arterial blood were taken from 75 patients (69% men; mean age, 67 years) with acute ischemic stroke. The presence of Streptococcus species, mainly the Streptococcus mitis group, belonging to viridans streptococci as well as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in samples were determined using a quantitative polymerase chain reaction with specific primers and probes. The relative amount of bacterial DNA in a sample was determined with the comparative threshold cycle method. Bacterial DNA was detected in 84% (n=63) of aspired thrombi, and 16% (n=12) of samples were considered bacterial DNA negative. DNA of Streptococcus species, mainly the S mitis group, was found in 79% (n=59) of samples. The median relative amount of Streptococcus species DNA was 5.10‐fold higher compared with the control blood samples from the same patients. All thrombi were negative for both P gingivalis and A actinomycetemcomitans. Conclusions This is the first study showing the common presence of bacterial DNA from viridans streptococci in aspired thrombi of patients with acute ischemic stroke. Streptococcal bacteria, mostly of oral origin, may contribute to the progression and thrombotic events of cerebrovascular diseases.
Collapse
Affiliation(s)
- Olli Patrakka
- 1 Department of Forensic Medicine Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Tampere Finland
| | - Juha-Pekka Pienimäki
- 2 Division of Interventional Radiology Department of Radiology Tampere University Hospital Tampere Finland
| | - Sari Tuomisto
- 1 Department of Forensic Medicine Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Tampere Finland
| | - Jyrki Ollikainen
- 3 Department of Neurology Tampere University Hospital Tampere Finland
| | - Terho Lehtimäki
- 4 Department of Clinical Chemistry Faculty of Medicine and Health Technology Tampere University Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere Finland
| | - Pekka J Karhunen
- 1 Department of Forensic Medicine Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Tampere Finland
| | - Mika Martiskainen
- 1 Department of Forensic Medicine Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Tampere Finland.,5 National Institute for Health and Welfare Helsinki Finland
| |
Collapse
|
54
|
Mitoquinone (MitoQ) Inhibits Platelet Activation Steps by Reducing ROS Levels. Int J Mol Sci 2020; 21:ijms21176192. [PMID: 32867213 PMCID: PMC7503844 DOI: 10.3390/ijms21176192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a key role in cardiovascular diseases. The generation of mitochondrial reactive oxygen species (ROS) has been described as a critical step required for platelet activation. For this reason, it is necessary to find new molecules with antiplatelet activity and identify their mechanisms of action. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces mitochondrial overproduction of ROS. In this work, the antiplatelet effect of MitoQ through platelet adhesion and spreading, secretion, and aggregation was evaluated. Thus MitoQ, in a non-toxic effect, decreased platelet adhesion and spreading on collagen surface, and expression of P-selectin and CD63, and inhibited platelet aggregation induced by collagen, convulxin, thrombin receptor activator peptide-6 (TRAP-6), and phorbol 12-myristate 13-acetate (PMA). As an antiplatelet mechanism, we showed that MitoQ produced mitochondrial depolarization and decreased ATP secretion. Additionally, in platelets stimulated with antimycin A and collagen MitoQ significantly decreased ROS production. Our findings showed, for the first time, an antiplatelet effect of MitoQ that is probably associated with its mitochondrial antioxidant effect.
Collapse
|
55
|
Abe Y, Toyama K, Kazurayama M, Tanaka S, Yamaizumi M, Ueno M, Spin JM, Hato N, Mogi M. Low-Normal Platelets and Decreasing Platelets Are Risk Factors for Hearing Impairment Development. Laryngoscope 2020; 131:E1287-E1295. [PMID: 32835430 DOI: 10.1002/lary.28970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Identification of undefined risk factors will be crucial for the development of therapeutic strategies in hearing impairment. Platelets are likely to affect the development of sudden sensorineural hearing loss, which is a primary risk factor for permanent hearing impairment. This implies that abnormal platelets might contribute to long-term hearing loss. This study investigated the role of platelets in the development of hearing impairment over a 5-year period. METHODS This study was a retrospective cohort study and consisted of a population-based survey, which was performed for 1,897 participants in 2014 to 2019. To evaluate the effect of platelet level on hearing ability, the subjects were divided into two groups: a high-normal platelet group (25 ∼ 40 × 104 cells/μL) and a low-normal platelet group (15 ∼ 25 × 104 cells/μL). Subjects were defined as having hearing impairment when pure tone audiometry was over 25 dB HL in either ear (tested in 2017 and 2019). Incidence of hearing impairment was analyzed. RESULTS Incidence of hearing impairment at low frequencies was significantly higher in the low-normal platelet group than in the high-normal group year over year. Low-normal platelet count associated with low-frequency hearing impairment (LFHI) incidence (odds ratio [OR], 2.34; 95% confidence interval [CI], 1.15-4.76). In the low-normal platelet group, subjects whose counts declined from baseline developed more LFHI than those whose counts increased over time. Further, decreasing platelets appeared to be an independent risk factor contributing to the incidence of LFHI (OR, 2.10; 95%CI, 1.09-4.06) in the low-normal platelet group. CONCLUSION Both a low-normal platelet and a declining platelet count were independently associated with the incidence of LFHI. LEVEL OF EVIDENCE 3 Laryngoscope, 131:E1287-E1295, 2021.
Collapse
Affiliation(s)
- Yasunori Abe
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan.,Depertment of Otolaryngology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan.,JA Ehime Kouseiren Checkup Center, Ehime, Japan
| | | | | | | | - Megumi Ueno
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Joshua M Spin
- VA Palo Alto Health Care System, Palo Alto, California, U.S.A.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Naohito Hato
- Depertment of Otolaryngology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
56
|
Mendes BB, Gómez-Florit M, Araújo AC, Prada J, Babo PS, Domingues RMA, Reis RL, Gomes ME. Intrinsically Bioactive Cryogels Based on Platelet Lysate Nanocomposites for Hemostasis Applications. Biomacromolecules 2020; 21:3678-3692. [PMID: 32786530 DOI: 10.1021/acs.biomac.0c00787] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The currently used hemostatic agents are highly effective in stopping hemorrhages but have a limited role in the modulation of the wound-healing environment. Herein, we propose an intrinsically bioactive hemostatic cryogel based on platelet lysate (PL) and aldehyde-functionalized cellulose nanocrystals (a-CNCs). PL has attracted great attention as an inexpensive milieu of therapeutically relevant proteins; however, its application as a hemostatic agent exhibits serious constraints (e.g., structural integrity and short shelf-life). The incorporation of a-CNCs reinforced the low-strength PL matrix by covalent cross-linking its amine groups that exhibit an elastic interconnected porous network after full cryogelation. Upon blood immersion, the PL-CNC cryogels absorbed higher volumes of blood at a faster rate than commercial hemostatic porcine gelatin sponges. Simultaneously, the cryogels released biomolecules that increased stem cell proliferation, metabolic activity, and migration as well as downregulated the expression of markers of the fibrinolytic process. In an in vivo liver defect model, PL-CNC cryogels showed similar hemostatic performance in comparison with gelatin sponges and normal material-induced tissue response upon subcutaneous implantation. Overall, owing to their structure and bioactive composition, the proposed PL-CNC cryogels provide an alternative off-the-shelf hemostatic and antibacterial biomaterial with the potential to deliver therapeutically relevant proteins in situ.
Collapse
Affiliation(s)
- Bárbara B Mendes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Ana C Araújo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Justina Prada
- UTAD, CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| |
Collapse
|
57
|
The Platelet Concentrates Therapy: From the Biased Past to the Anticipated Future. Bioengineering (Basel) 2020; 7:bioengineering7030082. [PMID: 32751638 PMCID: PMC7552713 DOI: 10.3390/bioengineering7030082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
The ultimate goal of research on platelet concentrates (PCs) is to develop a more predictable PC therapy. Because platelet-rich plasma (PRP), a representative PC, was identified as a possible therapeutic agent for bone augmentation in the field of oral surgery, PRP and its derivative, platelet-rich fibrin (PRF), have been increasingly applied in a regenerative medicine. However, a rise in the rate of recurrence (e.g., in tendon and ligament injuries) and adverse (or nonsignificant) clinical outcomes associated with PC therapy have raised fundamental questions regarding the validity of the therapy. Thus, rigorous evidence obtained from large, high-quality randomized controlled trials must be presented to the concerned regulatory authorities of individual countries or regions. For the approval of the regulatory authorities, clinicians and research investigators should understand the real nature of PCs and PC therapy (i.e., adjuvant therapy), standardize protocols of preparation (e.g., choice of centrifuges and tubes) and clinical application (e.g., evaluation of recipient conditions), design bias-minimized randomized clinical trials, and recognize superfluous brand competitions that delay sound progress. In this review, we retrospect the recent past of PC research, reconfirm our ultimate goals, and discuss what will need to be done in future.
Collapse
|
58
|
Millar D, Hayes C, Jones J, Klapper E, Kniep JN, Luu HS, Noland DK, Petitti L, Poisson JL, Spaepen E, Ye Z, Maurer-Spurej E. Comparison of the platelet activation status of single-donor platelets obtained with two different cell separator technologies. Transfusion 2020; 60:2067-2078. [PMID: 32729161 DOI: 10.1111/trf.15934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The microparticle content (MP%) of apheresis platelets-a marker of platelet activation-is influenced by donor factors and by external stressors during collection and storage. This study assessed the impact of apheresis technology and other factors on the activation status (MP%) of single-donor apheresis platelets. STUDY DESIGN AND METHODS Data from six US hospitals that screened platelets by measuring MP% through dynamic light scattering (ThromboLUX) were retrospectively analyzed. Relative risks (RRs) were derived from univariate and multivariable regression models, with activation rate (MP% ≥15% for plasma-stored platelets; ≥10% for platelet additive solution [PAS]-stored platelets) and MP% as outcomes. Apheresis platform (Trima Accel vs Amicus), storage medium (plasma vs PAS), pathogen reduction, storage time, and testing location were used as predictors. RESULTS Data were obtained from 7511 platelet units collected using Trima (from 16 suppliers, all stored in plasma, 20.0% were pathogen-reduced) and 2456 collected using Amicus (from four different collection facilities of one supplier, 65.0% plasma-stored, 35.0% PAS-stored, none pathogen-reduced). Overall, 30.0% of Trima platelets were activated compared to 45.6% of Amicus platelets (P < .0001). Multivariable analysis identified apheresis platform as significantly associated with platelet activation, with a lower activation rate for Trima than Amicus (RR: 0.641, 95% confidence interval [CI]: 0.578; 0.711, P < .0001) and a 6.901% (95% CI: 5.926; 7.876, P < .0001) absolute reduction in MP%, when adjusting for the other variables. CONCLUSION Trima-collected platelets were significantly less likely to be activated than Amicus-collected platelets, irrespective of the storage medium, the use of pathogen reduction, storage time, and testing site.
Collapse
Affiliation(s)
- Daniel Millar
- Department of Integrated Engineering, University of British Columbia and MistyWest Research and Engineering Lab, Vancouver, British Columbia, Canada
| | - Chelsea Hayes
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jessica Jones
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ellen Klapper
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joel N Kniep
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hung S Luu
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas, USA
| | - Daniel K Noland
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas, USA
| | | | | | | | - Zhan Ye
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Elisabeth Maurer-Spurej
- Department of Pathology and Laboratory Medicine and Centre for Blood Research and Canadian Blood Services, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
59
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
60
|
Zhang F, Qiao S, Li C, Wu B, Reischl S, Neumann PA. The immunologic changes during different phases of intestinal anastomotic healing. J Clin Lab Anal 2020; 34:e23493. [PMID: 32692419 PMCID: PMC7676198 DOI: 10.1002/jcla.23493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023] Open
Abstract
Intestinal anatomosis is a complex and multicellular process that involving three overlapped phases: exudative phase, proliferative phase, and reparative phase. Undisturbed anastomotic healings are crucial for the recovery of patients after operations but unsuccessful healings are linked with a considerable mortality. This time, we concentrate on the immunologic changes during different phases of intestinal anastomotic healing and select several major immune cells and cytokines of each phase to get a better understanding of these immunologic changes in different phases, which will be significant for more precise therapy strategies in anastomoses.
Collapse
Affiliation(s)
- Feng Zhang
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China.,Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Song Qiao
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China
| | - Chunqiao Li
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Bo Wu
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China
| | - Stefan Reischl
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Philipp-Alexander Neumann
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| |
Collapse
|
61
|
Tian LQ, Guo ZH, Meng WZ, Li L, Zhang Y, Yin XH, Lai F, Li YY, Feng LL, Shen FF, Sun ZZ, Yao SQ, Wu WD, Weng XG, Ren WJ. The abnormalities of coagulation and fibrinolysis in acute lung injury caused by gas explosion. Kaohsiung J Med Sci 2020; 36:929-936. [PMID: 32643870 DOI: 10.1002/kjm2.12262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/06/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) caused by gas explosion is common, and warrants research on the underlying mechanisms. Specifically, the role of abnormalities of coagulation and fibrinolysis in this process has not been defined. It was hypothesized that the abnormal coagulation and fibrinolysis promoted ALI caused by gas explosion. Based on the presence of ALI, 74 cases of gas explosion injury were divided into the ALI and non-ALI groups. The results of prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and platelet count (PLT) were collected within 24 hours and compared between the groups. ALI models caused by gas explosion were established in Sprague Dawley rats, and injuries were evaluated using hematoxylin and eosin (HE) staining and histopathological scoring. Moreover, the bronchoalveolar lavage fluid (BALF) was collected to examine thrombin-antithrombin complex (TAT), tissue factor (TF), tissue factor pathway inhibitor (TFPI), and plasminogen activator inhibitor-1 (PAI-1) levels by enzyme-linked immunosorbent assay (ELISA). The patients in ALI group had shorter PT and longer APTT, raised concentration of FIB and decreased number of PLT, as compared to the non-ALI group. In ALI rats, the HE staining revealed red blood cells in alveoli and interstitial thickening within 2 hours which peaked at 72 hours. The levels of TAT/TF in the BALF increased continually until the seventh day, while the PAI-1 was raised after 24 hours and 7 days. The TFPI was elevated after 2 hours and 24 hours, and then decreased after 72 hours. Abnormalities in coagulation and fibrinolysis in lung tissues play a role in ALI caused by gas explosion.
Collapse
Affiliation(s)
- Lin-Qiang Tian
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Hao Guo
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Wei-Zheng Meng
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Long Li
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Yue Zhang
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Hang Yin
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Feng Lai
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Yan-Yan Li
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Li-Li Feng
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Fang-Fang Shen
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Zhen-Zhou Sun
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - San-Qiao Yao
- Public Health College, Xinxiang Medical University, Xinxiang, China
| | - Wei-Dong Wu
- Public Health College, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Gang Weng
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Wen-Jie Ren
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
62
|
Foster H, Wilson C, Philippou H, Foster R. Progress toward a Glycoprotein VI Modulator for the Treatment of Thrombosis. J Med Chem 2020; 63:12213-12242. [PMID: 32463237 DOI: 10.1021/acs.jmedchem.0c00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic thrombus formation accounts for the etiology of many serious conditions including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Despite the development of numerous anticoagulants and antiplatelet agents, the mortality rate associated with these diseases remains high. In recent years, however, significant epidemiological evidence and clinical models have emerged to suggest that modulation of the glycoprotein VI (GPVI) platelet receptor could be harnessed as a novel antiplatelet strategy. As such, many peptidic agents have been described in the past decade, while more recent efforts have focused on the development of small molecule modulators. Herein the rationale for targeting GPVI is summarized and the published GPVI modulators are reviewed, with particular focus on small molecules. A qualitative pharmacophore hypothesis for small molecule ligands at GPVI is also presented.
Collapse
Affiliation(s)
- Holly Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Clare Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
63
|
Abstract
Acute coronary syndromes (ACS) are a global cause of mortality and morbidity that affect millions of lives worldwide. Following atherosclerotic plaque rupture, platelet activation and aggregation are the two major elements that initiate thrombus formation inside a coronary artery, which can obstruct blood flow and cause myocardial ischemia; ergo, antiplatelet therapy forms a major part of the treatment strategy for ACS. Patients with ACS routinely receive dual antiplatelet therapy (DAPT), which consists of aspirin and a platelet P2Y12 inhibitor to both treat and prevent atherothrombosis. Use of platelet glycoprotein (GP) IIb/IIIa inhibitors is now limited due to the risk of severe bleeding and thrombocytopenia. Thus, administration of GPIIb/IIIa inhibitors is generally restricted to bail out thrombotic events associated with PCI. Furthermore, current antiplatelet medications mainly rely on thromboxane A2 and P2Y12 inhibition, which have broad-acting effects on platelets and are known to cause bleeding, which especially limits the long-term use of these agents. In addition, not all ACS patients treated with current antiplatelet treatments are protected from recurrence of arterial thrombosis, since many platelet mechanisms and activation pathways remain uninhibited by current antiplatelet therapy. Pharmacological antagonism of novel targets involved in platelet function could shape future antiplatelet therapies that could ultimately lead to more effective or safer therapeutic approaches. In this article, we focus on inhibitors of promising targets that have not yet been introduced into clinical practice, including inhibitors of GPVI, protease-activated receptor (PAR)-4, GPIb, 5-hydroxytryptamine receptor subtype 2A (5-HT2A), protein disulfide isomerase, P-selectin and phosphoinositide 3-kinase β.
Collapse
Affiliation(s)
- Fawaz O Alenazy
- Institute of Cardiovascular Sciences, University of Birmingham , Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, University of Birmingham , Birmingham, UK.,UHB and SWBH NHS Trusts , Birmingham, UK
| |
Collapse
|
64
|
Jankowska KI, Sauna ZE, Atreya CD. Role of microRNAs in Hemophilia and Thrombosis in Humans. Int J Mol Sci 2020; 21:ijms21103598. [PMID: 32443696 PMCID: PMC7279366 DOI: 10.3390/ijms21103598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) play an important role in gene expression at the posttranscriptional level by targeting the untranslated regions of messenger RNA (mRNAs). These small RNAs have been shown to control cellular physiological processes including cell differentiation and proliferation. Dysregulation of miRNAs have been associated with numerous diseases. In the past few years miRNAs have emerged as potential biopharmaceuticals and the first miRNA-based therapies have entered clinical trials. Our recent studies suggest that miRNAs may also play an important role in the pathology of genetic diseases that are currently considered to be solely due to mutations in the coding sequence. For instance, among hemophilia A patients there exist a small subset, with normal wildtype genes; i.e., lacking in mutations in the coding and non-coding regions of the F8 gene. Similarly, in many patients with missense mutations in the F8 gene, the genetic defect does not fully explain the severity of the disease. Dysregulation of miRNAs that target mRNAs encoding coagulation factors have been shown to disturb gene expression. Alterations in protein levels involved in the coagulation cascade mediated by miRNAs could lead to bleeding disorders or thrombosis. This review summarizes current knowledge on the role of miRNAs in hemophilia and thrombosis. Recognizing and understanding the functions of miRNAs by identifying their targets is important in identifying their roles in health and diseases. Successful basic research may result in the development and improvement of tools for diagnosis, risk evaluation or even new treatment strategies.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
65
|
Choi E, Oh J, Sung GH. Antithrombotic and Antiplatelet Effects of Cordyceps militaris. MYCOBIOLOGY 2020; 48:228-232. [PMID: 37970560 PMCID: PMC10635111 DOI: 10.1080/12298093.2020.1763115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2023]
Abstract
Cordyceps is a genus of ascomycete fungi and is well known as one of the important medical fungi in Chinese, Korea, and other Asian countries, because of its various beneficial effects on human health. The pharmacological activities of Cordyceps extract are mainly focused on anti-cancer, anti-metastatic, and immune modulating effects. In the present study, we investigated whether the antiplatelet effect of ethanol extract of cultured Cordyceps militaris (CMEE) with FeCl3-induced arterial thrombosis model. We observed that CMEE exhibited a significant inhibitory effect against ADP and collagen-induced platelet aggregation. However, there were no significant differences in prothrombin time (PT) and activated partial thromboplastin time (aPTT). These results suggest that antithrombotic activity of CMEE is related to antiplatelet effect rather than anticoagulation effect, and CMEE may be a positive effect on improving blood circulation against vessel injury and occlusion.
Collapse
Affiliation(s)
- Eunhyun Choi
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Junsang Oh
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Gi-Ho Sung
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
- Department of Microbiology, College of Medicine, Catholic Kwandong University, Gangneung-si, Republic of Korea
| |
Collapse
|
66
|
Jiang L, Yao H, Luo X, Zou D, Dai S, Liu L, Yang P, Zhao A, Huang N. Polydopamine-Modified Copper-Doped Titanium Dioxide Nanotube Arrays for Copper-Catalyzed Controlled Endogenous Nitric Oxide Release and Improved Re-Endothelialization. ACS APPLIED BIO MATERIALS 2020; 3:3123-3136. [PMID: 35025356 DOI: 10.1021/acsabm.0c00157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The controllable release is necessary for ideal drug delivery technologies. Because of their high specific surface area and high porosity, titanium dioxide nanotubes (TNTs) have been widely used as drug carriers in medical devices. By loading copper as the catalyst, nitric oxide (NO) generation was facilitated by catalyzing the decomposition of renewable endogenous NO donors in vivo. Herein, the long-term controllable release profile of NO is highlighted owing to the multilayer polydopamine (PDA) cap structure. Different layers of PDA are used to adjust the NO release behavior, and the results show that three layers of PDA can not only effectively prevent the burst release of NO but also maintain long-term stable release of copper ion and NO. The bioactivity of the NO generated from three-layer PDA-modified copper-loaded TNTs (PDA-3L-NTCu2) and unmodified copper-loaded TNTs (NTCu2) are verified by our work, indicating effective inhibition of platelet activation, thrombosis, inflammation, and intimal hyperplasia. Importantly, the PDA-3L-NTCu2 show selectively promote the growth of endothelial cells in vitro and outstanding re-endothelialization for 4 weeks in vivo, as compared to NTCu2, TNTs, and 316L stain steel. This study suggests that copper-loaded with PDA modification helps us achieve controlled long-term stable local NO release with well-retained bioactivity and enhanced re-endothelialization.
Collapse
Affiliation(s)
- Lang Jiang
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Hang Yao
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Xiao Luo
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Dan Zou
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Shen Dai
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Luying Liu
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Ping Yang
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Ansha Zhao
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| |
Collapse
|
67
|
Wang Z, Zhou J, Li J, Lv W, Zou J, Fan L. A new insight into the intestine of Pacific white shrimp: Regulation of intestinal homeostasis and regeneration in Litopenaeus vannamei during temperature fluctuation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100687. [PMID: 32388341 DOI: 10.1016/j.cbd.2020.100687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/20/2023]
Abstract
Litopenaeus vannamei (L. vannamei) is an essential aquaculture shrimp throughout the world, but its aquaculture industry is threatened by temperature fluctuation. In this study, our histological results indicated that the shrimp intestine has a self-repairing ability during temperature fluctuation; however the potential mechanisms were still unknown. Therefore, transcriptome profiles of the intestine were collected from shrimp at 28 °C (C28), 13 °C (T13) and 28 °C after their temperature rose back (R28) and were analyzed. A total of 2229 differentially expressed genes (DEGs) (986 up- and 1243 downregulated) were identified in the C28 group, and 1790 DEGs (933 up- and 857 downregulated) were identified in the R28 group when compared to their expression levels in the T13 group. According to the functional annotation using KEGG, we found that the immune system was the most enriched section of organismal systems and that the shrimp can mobilize the body's immune response to regulate organism homeostasis during temperature fluctuation, although cold stress decreased the immunity. Additionally, metabolic inhibition is a strategy to cope with cold stress, and the regulation of lipid metabolism was especially important for shrimp during temperature fluctuation. Remarkably, the Hippo signaling pathway might help the repair of intestinal structure. Our research provides the first histological analysis and transcriptome profiling for the L. vannamei intestine during the temperature fluctuation stage. These results enrich our understanding of the mechanism of intestinal self-repair and homeostasis and could provide guidance for shrimp farming.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Junyi Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
68
|
Hydroxy-octadecenoic acids instead of phorbol esters are responsible for the Jatropha curcas kernel cake's toxicity. Commun Biol 2020; 3:228. [PMID: 32385384 PMCID: PMC7210109 DOI: 10.1038/s42003-020-0919-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/25/2020] [Indexed: 11/25/2022] Open
Abstract
The toxic kernel cake of Jatropha curcas (KCakeJ) is an emerging health and environmental concern. Although phorbol esters are widely recognized as the major toxin of KCakeJ, convincing evidence is absent. Here, we show that rather than phorbol esters an isomeric mixture of 11-hydroxy-9E-octadecenoic acid, 12-hydroxy-10E-octadecenoic acid and 12-hydroxy-10Z-octadecenoic acid (hydroxy-octadecenoic acids, molecular formula C18H34O3) is the major toxic component. The toxicities of hydroxy-octadecenoic acids on experimental animals, e.g. acute lethality, causing inflammation, pulmonary hemorrhage and thrombi, allergies, diarrhea and abortion, are consistent with those on human/animals caused by Jatropha seed and/or KCakeJ. The hydroxyl group and the double bond are essential for hydroxy-octadecenoic acids’ toxicity. The main pathway of the toxicity mechanism includes down-regulating UCP3 gene expression, promoting ROS production, thus activating CD62P expression (platelet activation) and mast cell degranulation. The identification of the major toxin of KCakeJ lays a foundation for establishing an environmentally friendly Jatropha biofuel industry. Wang et al. report that an isomeric mixture of 3 hydroxy-octadecenoic acids, instead of widely recognised phorbol esters, are the major toxic component of Jatropha curcas kernel cake. They test its effects on animal models and also attempt to elucidate the mechanism behind the toxicity, with a goal to help establish an environmentally friendly Jatropha biofuel industry.
Collapse
|
69
|
Shahgheibi S, Mardani R, Babaei E, Mardani P, Rezaie M, Farhadifar F, Roshani D, Naqshbandi M, Jalili A. Platelet Indices and CXCL12 Levels in Patients with Intrauterine Growth Restriction. Int J Womens Health 2020; 12:307-312. [PMID: 32368159 PMCID: PMC7183349 DOI: 10.2147/ijwh.s233860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
Background Intrauterine growth restriction (IUGR) is a multifactorial condition, and the precise mechanism is still unknown. In the current study, we aimed to determine the relationship between the platelet (PLT) indices and CXC12 levels in patients with IUGR. Patients and Materials In this study, 36 patients with IUGR and 36 healthy pregnant mothers were enrolled as the case and control groups, respectively. Gestational age for both groups was between 24 and 40 years. Blood samples were taken, and platelet indices were examined by a full-diff cell counter. Serum levels of CXCL12 were measured by ELISA, and the data were analyzed using an independent Student's t-test. Results In this study, we observed that the mean value of PLT count (154.3 ± 50 vs 236 ± 36) and plateletcrit (0.124 ± 0.038 vs 0.178 ± 0.021) were significantly lower in the case than the control group. In contrast, the mean platelet volume (7.94 ± 0.55 vs 7.62 ± 0.53) and platelet distribution width (17.57 ± 0.7 vs 16.96 ± 0.59) were significantly higher in the case than the control group. More importantly, we found that the serum levels of CXCL12 were significantly higher (5.3 ng/mL± 3.1 vs 2.8 ± 1.6) in the patients compared to the pregnancy controls. Conclusion Our data show that platelet indices are changed in IUGR, and the levels of circulating CXCL12 are increased in patients with IUGR. These findings provide a base for further studies to better defining the pathophysiology of IUGR.
Collapse
Affiliation(s)
- Shole Shahgheibi
- Deparment of Obstetrics and Gynecology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roya Mardani
- Deparment of Obstetrics and Gynecology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Erfan Babaei
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Parastoo Mardani
- Department of Biology, Faculty of Sciences, Payame Noor University, Sanandaj, Iran
| | - Masomeh Rezaie
- Deparment of Obstetrics and Gynecology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fariba Farhadifar
- Deparment of Obstetrics and Gynecology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Daem Roshani
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Naqshbandi
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Jalili
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
70
|
Nasser NJ, Fox J, Agbarya A. Potential Mechanisms of Cancer-Related Hypercoagulability. Cancers (Basel) 2020; 12:cancers12030566. [PMID: 32121387 PMCID: PMC7139427 DOI: 10.3390/cancers12030566] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
The association between cancer and thrombosis has been known for over a century and a half. However, the mechanisms that underlie this correlation are not fully characterized. Hypercoagulability in cancer patients can be classified into two main categories: Type I and Type II. Type I occurs when the balance of endogenous heparin production and degradation is disturbed, with increased degradation of endogenous heparin by tumor-secreted heparanase. Type II hypercoagulability includes all the other etiologies, with factors related to the patient, the tumor, and/or the treatment. Patients with poor performance status are at higher risk of venous thromboembolism (VTE). Tumors can result in VTE through direct pressure on blood vessels, resulting in stasis. Several medications for cancer are correlated with a high risk of thrombosis. These include hormonal therapy (e.g., tamoxifen), chemotherapy (e.g., cisplatin, thalidomide and asparaginase), molecular targeted therapy (e.g., lenvatinib, osimertinib), and anti-angiogenesis monoclonal antibodies (e.g., bevacizumab and ramucirumab).
Collapse
Affiliation(s)
- Nicola J. Nasser
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10467, USA;
- Correspondence:
| | - Jana Fox
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10467, USA;
| | - Abed Agbarya
- Institute of Oncology, Bnai Zion Medical Center, Haifa 31048, Israel;
| |
Collapse
|
71
|
Rizwan M, Yao Y, Gorbet MB, Tse J, Anderson DEJ, Hinds MT, Yim EKF. One-Pot Covalent Grafting of Gelatin on Poly(Vinyl Alcohol) Hydrogel to Enhance Endothelialization and Hemocompatibility for Synthetic Vascular Graft Applications. ACS APPLIED BIO MATERIALS 2020; 3:693-703. [PMID: 32656504 PMCID: PMC7351135 DOI: 10.1021/acsabm.9b01026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide. Patency rates of clinically-utilized small diameter synthetic vascular grafts such as Dacron® and expanded polytetrafluoroethylene (ePTFE) to treat cardiovascular disease are inadequate due to lack of endothelialization. Sodium trimetaphosphate (STMP) crosslinked PVA could be potentially employed as blood-compatible small diameter vascular graft for the treatment of cardiovascular disease. However, PVA severely lacks cell adhesion properties, and the efforts to endothelialize STMP-PVA have been insufficient to produce a functioning endothelium. To this end, we developed a one-pot method to conjugate cell-adhesive protein via hydroxyl-to-amine coupling using carbonyldiimidazole by targeting residual hydroxyl groups on crosslinked STMP-PVA hydrogel. Primary human umbilical vascular endothelial cells (HUVECs) demonstrated significantly improved cells adhesion, viability and spreading on modified PVA. Cells formed a confluent endothelial monolayer, and expressed vinculin focal adhesions, cell-cell junction protein zonula occludens 1 (ZO1), and vascular endothelial cadherin (VE-Cadherin). Extensive characterization of the blood-compatibility was performed on modified PVA hydrogel by examining platelet activation, platelet microparticle formation, platelet CD61 and CD62P expression, and thrombin generation, which showed that the modified PVA was blood-compatible. Additionally, grafts were tested under whole, flowing blood without any anticoagulants in a non-human primate, arteriovenous shunt model. No differences were seen in platelet or fibrin accumulation between the modified-PVA, unmodified PVA or clinical, ePTFE controls. This study presents a significant step in the modification of PVA for the development of next generation in situ endothelialized synthetic vascular grafts.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Maud B. Gorbet
- Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Centre for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - John Tse
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Deirdre E. J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Evelyn K. F. Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
72
|
Riley DRJ, Khalil JS, Pieters J, Naseem KM, Rivero F. Coronin 1 Is Required for Integrin β2 Translocation in Platelets. Int J Mol Sci 2020; 21:ijms21010356. [PMID: 31948107 PMCID: PMC6982036 DOI: 10.3390/ijms21010356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023] Open
Abstract
Remodeling of the actin cytoskeleton is one of the critical events that allows platelets to undergo morphological and functional changes in response to receptor-mediated signaling cascades. Coronins are a family of evolutionarily conserved proteins implicated in the regulation of the actin cytoskeleton, represented by the abundant coronins 1, 2, and 3 and the less abundant coronin 7 in platelets, but their functions in these cells are poorly understood. A recent report revealed impaired agonist-induced actin polymerization and cofilin phosphoregulation and altered thrombus formation in vivo as salient phenotypes in the absence of an overt hemostasis defect in vivo in a knockout mouse model of coronin 1. Here we show that the absence of coronin 1 is associated with impaired translocation of integrin β2 to the platelet surface upon stimulation with thrombin while morphological and functional alterations, including defects in Arp2/3 complex localization and cAMP-dependent signaling, are absent. Our results suggest a large extent of functional overlap among coronins 1, 2, and 3 in platelets, while aspects like integrin β2 translocation are specifically or predominantly dependent on coronin 1.
Collapse
Affiliation(s)
- David R. J. Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK; (D.R.J.R.); (J.S.K.)
| | - Jawad S. Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK; (D.R.J.R.); (J.S.K.)
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Jean Pieters
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland;
| | - Khalid M. Naseem
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9NL, UK;
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK; (D.R.J.R.); (J.S.K.)
- Correspondence: ; Tel.: +44-1482-644-633
| |
Collapse
|
73
|
Bulboacă AE, Boarescu PM, Melincovici CS, Mihu CM. Microfluidic endothelium-on-a-chip development, from in vivo to in vitro experimental models. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:15-23. [PMID: 32747891 PMCID: PMC7728109 DOI: 10.47162/rjme.61.1.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/14/2020] [Indexed: 01/10/2023]
Abstract
In the last years, animal testing in medical research has been a controversial topic because of various reasons, such as ethical considerations and species differences. Therefore, more attention has been given to develop new technologies that can replace animal experiments and create in vitro models. Organ-on-a-chip (OOC) technology is a new and advanced technology based on microfluidic devices that can mimic the structure and function of entire organs and tissues as in vitro models. OOC models are miniature tissues and organs that assign characteristics for three-dimensional (3D) cell culture representation that resemble the original organs, together with their specific microenvironment microfluidic systems and specific biophysical processes, in order to mimic the normal physiological conditions and functionalities of the organs. Existing OOC models, such as liver, pancreas, heart, skin, brain, kidney, vessels, have been developed and designed for a specific function study. This review focuses on the main knowledge concerning OOC research and especially vascular endothelium-on-a-chip (EOC) model, developed in order to offer specific tools for studying vascular functions in physiological and pathological conditions. The field of OOC devices is still at the beginning, but in the future, this technology may have important roles in developing novel therapeutic approaches, offering new therapeutic molecules and providing the first step towards personalized medicine.
Collapse
Affiliation(s)
- Adriana Elena Bulboacă
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | |
Collapse
|
74
|
Haidar A, Ali AA, Veziroglu S, Fiutowski J, Eichler H, Müller I, Kiefer K, Faupel F, Bischoff M, Veith M, Aktas OC, Abdul-Khaliq H. PTFEP-Al 2O 3 hybrid nanowires reducing thrombosis and biofouling. NANOSCALE ADVANCES 2019; 1:4659-4664. [PMID: 36133130 PMCID: PMC9419761 DOI: 10.1039/c9na00436j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2019] [Indexed: 06/12/2023]
Abstract
Thrombosis and bacterial infection are major problems in cardiovascular implants. Here we demonstrated that a superhydrophobic surface composed of poly(bis(2,2,2-trifluoroethoxy)phosphazene) (PTFEP)-Al2O3 hybrid nanowires (NWs) is effective to reduce both platelet adhesion/activation and bacterial adherence/colonization. The proposed approach allows surface modification of cardiovascular implants which have 3D complex geometries.
Collapse
Affiliation(s)
- Ayman Haidar
- Department of Paediatric Cardiology, Saarland University Building 9 66421 Homburg Germany
| | - Awadelkareem A Ali
- Department of Paediatric Cardiology, Saarland University Building 9 66421 Homburg Germany
| | - Salih Veziroglu
- Chair for Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel Kaiserstr. 2 24143 Kiel Germany
| | - Jacek Fiutowski
- Mads Clausen Institute, NanoSYD, University of Southern Denmark Alsion 2 6400 Sønderborg Denmark
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Building 1, Ringstr. 52 66421 Homburg Germany
| | - Isabelle Müller
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Building 1, Ringstr. 52 66421 Homburg Germany
| | - Karin Kiefer
- Department of Paediatric Cardiology, Saarland University Building 9 66421 Homburg Germany
| | - Franz Faupel
- Chair for Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel Kaiserstr. 2 24143 Kiel Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University Homburg/Saar 66421 Germany
| | - Michael Veith
- INM-Leibniz Institute for New Materials, Campus D2 2 Saarbrücken 66123 Germany
| | - Oral Cenk Aktas
- Department of Paediatric Cardiology, Saarland University Building 9 66421 Homburg Germany
- Chair for Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel Kaiserstr. 2 24143 Kiel Germany
| | - Hashim Abdul-Khaliq
- Department of Paediatric Cardiology, Saarland University Building 9 66421 Homburg Germany
| |
Collapse
|
75
|
Washington AV, Esponda O, Gibson A. Platelet biology of the rapidly failing lung. Br J Haematol 2019; 188:641-651. [PMID: 31696941 DOI: 10.1111/bjh.16315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by a rapid-onset respiratory failure with a mortality rate of approximately 40%. This physiologic inflammatory process is mediated by disruption of the alveolar-vascular interface, leading to pulmonary oedema and impaired oxygen exchange, which often warrants mechanical ventilation to increase survival in the acute setting. One of the least understood aspects of ARDS is the role of the platelets in this process. Platelets, which protect vascular integrity, play a pivotal role in the progression and resolution of ARDS. The recent substantiation of the age-old theory that megakaryocytes are found in the lungs has rejuvenated interest in and raised new questions about the importance of platelets for pulmonary function. In addition to primary haemostasis, platelets provide a myriad of inflammatory functions that are poised to aid the innate immune system. This review focuses on the evidence for regulatory roles of platelets in pulmonary inflammation, with an emphasis on two receptors, CLEC-2 and TLT-1. Studies of these receptors identify novel pathways through which platelets may regulate vascular integrity and inflammation in the lungs, thereby influencing the development of ARDS.
Collapse
Affiliation(s)
- A Valance Washington
- Department of Biology, Molecular Science Research Center, University of Puerto Rico-Rio Piedras, San Juan, PR, USA
| | | | | |
Collapse
|
76
|
Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Adv 2019; 2:2848-2861. [PMID: 30381401 DOI: 10.1182/bloodadvances.2018025411] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Dyslipidemia is a risk factor for clinically significant thrombotic events. In this condition, scavenger receptor CD36 potentiates platelet reactivity through recognition of circulating oxidized lipids. CD36 promotes thrombosis by activating redox-sensitive signaling molecules, such as the MAPK extracellular signal-regulated kinase 5 (ERK5). However, the events downstream of platelet ERK5 are not clear. In this study, we report that oxidized low-density lipoprotein (oxLDL) promotes exposure of procoagulant phosphatidylserine (PSer) on platelet surfaces. Studies using pharmacologic inhibitors indicate that oxLDL-CD36 interaction-induced PSer exposure requires apoptotic caspases in addition to the downstream CD36-signaling molecules Src kinases, hydrogen peroxide, and ERK5. Caspases promote PSer exposure and, subsequently, recruitment of the prothrombinase complex, resulting in the generation of fibrin from the activation of thrombin. Caspase activity was observed when platelets were stimulated with oxLDL. This was prevented by inhibiting CD36 and ERK5. Furthermore, oxLDL potentiates convulxin/glycoprotein VI-mediated fibrin formation by platelets, which was prevented when CD36, ERK5, and caspases were inhibited. Using 2 in vivo arterial thrombosis models in apoE-null hyperlipidemic mice demonstrated enhanced arterial fibrin accumulation upon vessel injury. Importantly, absence of ERK5 in platelets or mice lacking CD36 displayed decreased fibrin accumulation in high-fat diet-fed conditions comparable to that seen in chow diet-fed animals. These findings suggest that platelet signaling through CD36 and ERK5 induces a procoagulant phenotype in the hyperlipidemic environment by enhancing caspase-mediated PSer exposure.
Collapse
|
77
|
Ghalloussi D, Dhenge A, Bergmeier W. New insights into cytoskeletal remodeling during platelet production. J Thromb Haemost 2019; 17:1430-1439. [PMID: 31220402 PMCID: PMC6760864 DOI: 10.1111/jth.14544] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
The past decade has brought unprecedented advances in our understanding of megakaryocyte (MK) biology and platelet production, processes that are strongly dependent on the cytoskeleton. Facilitated by technological innovations, such as new high-resolution imaging techniques (in vitro and in vivo) and lineage-specific gene knockout and reporter mouse strains, we are now able to visualize and characterize the molecular machinery required for MK development and proplatelet formation in live mice. Whole genome and RNA sequencing analysis of patients with rare platelet disorders, combined with targeted genetic interventions in mice, has led to the identification and characterization of numerous new genes important for MK development. Many of the genes important for proplatelet formation code for proteins that control cytoskeletal dynamics in cells, such as Rho GTPases and their downstream targets. In this review, we discuss how the final stages of MK development are controlled by the cellular cytoskeletons, and we compare changes in MK biology observed in patients and mice with mutations in cytoskeleton regulatory genes.
Collapse
Affiliation(s)
- Dorsaf Ghalloussi
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ankita Dhenge
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wolfgang Bergmeier
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
78
|
Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcón M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front Aging Neurosci 2019; 11:151. [PMID: 31312134 PMCID: PMC6614495 DOI: 10.3389/fnagi.2019.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Platelets are anucleate cells that circulate in blood and are essential components of the hemostatic system. During aging, platelet numbers decrease and their aggregation capacity is reduced. Platelet dysfunctions associated with aging can be linked to molecular alterations affecting several cellular systems that include cytoskeleton rearrangements, signal transduction, vesicular trafficking, and protein degradation. Age platelets may adopt a phenotype characterized by robust secretion of extracellular vesicles that could in turn account for about 70-90% of blood circulating vesicles. Interestingly these extracellular vesicles are loaded with messenger RNAs and microRNAs that may have a profound impact on protein physiology at the systems level. Age platelet dysfunction is also associated with accumulation of reactive oxygen species. Thereby understanding the mechanisms of aging in platelets as well as their age-dependent dysfunctions may be of interest when evaluating the contribution of aging to the onset of age-dependent pathologies, such as those affecting the nervous system. In this review we summarize the findings that link platelet dysfunctions to neurodegenerative diseases including Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, Huntington's Disease, and Amyotrophic Lateral Sclerosis. We discuss the role of platelets as drivers of protein dysfunctions observed in these pathologies, their association with aging and the potential clinical significance of platelets, and related miRNAs, as peripheral biomarkers for diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Espinosa-Parrilla
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
- Laboratory of Molecular Medicine-LMM, Center for Education, Healthcare and Investigation-CADI, Universidad de Magallanes, Punta Arenas, Chile
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
| | - Christian Gonzalez-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism GERO, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, United States
| | - Eduardo Fuentes
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Ivan Palomo
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| |
Collapse
|
79
|
Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ Res 2019; 122:337-351. [PMID: 29348254 DOI: 10.1161/circresaha.117.310795] [Citation(s) in RCA: 573] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelets, non-nucleated blood components first described over 130 years ago, are recognized as the primary cell regulating hemostasis and thrombosis. The vascular importance of platelets has been attributed to their essential role in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism. Increasing knowledge on the platelets' role in the vasculature has led to many advances in understanding not only how platelets interact with the vessel wall but also how they convey changes in the environment to other circulating cells. In addition to their well-described hemostatic function, platelets are active participants in the immune response to microbial organisms and foreign substances. Although incompletely understood, the immune role of platelets is a delicate balance between its pathogenic response and its regulation of thrombotic and hemostatic functions. Platelets mediate complex vascular homeostasis via specific receptors and granule release, RNA transfer, and mitochondrial secretion that subsequently regulates hemostasis and thrombosis, infection, and innate and adaptive immunity.
Collapse
Affiliation(s)
- Milka Koupenova
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester.
| | - Lauren Clancy
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Heather A Corkrey
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Jane E Freedman
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
80
|
Modeling sensitivity and uncertainties in platelet activation models applied on centrifugal pumps for extracorporeal life support. Sci Rep 2019; 9:8809. [PMID: 31217491 PMCID: PMC6584555 DOI: 10.1038/s41598-019-45121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
Two platelet activation models were studied with respect to uncertainties of model parameters and variables. The sensitivity was assessed using two direct/deterministic approaches as well as the statistical Monte Carlo method. The first two, are linear in character whereas the latter is non-linear. The platelet activation models were applied on platelets moving within an extracorporeal centrifugal blood pump. The phenomenological, Lagrangian stress- and time-based power law-based models under consideration, have experimentally calibrated parameters and the stress expressed in a scalar form. The sensitivity of the model with respect to model parameters and the expression of the scalar stress was examined focusing on a smaller group of platelets associated with an elevated risk of activation. The results showed a high disparity between the models in terms of platelet activation state, found to depend on the platelets’ trajectory in the pump and the expression used for the scalar stress. Monte Carlo statistics was applied to the platelets at risk for activation and not to the entire platelet population. The method reveals the non-linear sensitivity of the activation models. The results imply that power-law based models have a restricted range of validity. The conclusions of this study apply to both platelet activation and hemolysis models.
Collapse
|
81
|
Lee H, Na W, Lee BK, Lim CS, Shin S. Recent advances in microfluidic platelet function assays: Moving microfluidics into clinical applications. Clin Hemorheol Microcirc 2019; 71:249-266. [PMID: 30584134 DOI: 10.3233/ch-189416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The analysis of platelet aggregation and thrombosis kinetics has significantly advanced with progress in microfluidic technology. However, the results of platelet aggregation tests do not fully reflect the observed clinical outcomes. To address the present unmet clinical needs, the basic but essential biology of platelets should be reconsidered in relation to the characteristics of microfluidic systems employed for platelet tests. To this end, the present article provides an overview of commercially available point of care devices and focuses on recent microfluidic studies, describing their measurement principles. We critically discuss the characteristics of the microfluidics systems used to evaluate the complex processes underlying platelet aggregation, and that are specifically designed to mimic the pathophysiological environment of blood vessels, including hemodynamic factors as well as blood vessel injury. To this end, we summarize unsolved issues related to the application of platelet function tests based on microfluidics. Overall, we confirm that platelet function tests based on microfluidics provide a versatile platform that encompasses a variety of basic research, as well as clinical diagnostic applications.
Collapse
Affiliation(s)
- Hoyoon Lee
- Department of Mechanical Engineering, Korea University, Seoul, Korea
| | - Wonwhi Na
- Engineering Research Center for Biofluid Biopsy, Korea University, Seoul, Korea
| | - Byoung-Kwon Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Chae-Seung Lim
- Department of Laboratory Medicine, Guro Hospital, Korea University, Seoul, Korea
| | - Sehyun Shin
- Department of Mechanical Engineering, Korea University, Seoul, Korea.,Engineering Research Center for Biofluid Biopsy, Korea University, Seoul, Korea
| |
Collapse
|
82
|
Contractile forces in platelet aggregates under microfluidic shear gradients reflect platelet inhibition and bleeding risk. Nat Commun 2019; 10:1204. [PMID: 30867419 PMCID: PMC6416331 DOI: 10.1038/s41467-019-09150-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
Platelets contract forcefully after their activation, contributing to the strength and stability of platelet aggregates and fibrin clots during blood coagulation. Viscoelastic approaches can be used to assess platelet-induced clot strengthening, but they require thrombin and fibrin generation and are unable to measure platelet forces directly. Here, we report a rapid, microfluidic approach for measuring the contractile force of platelet aggregates for the detection of platelet dysfunction. We find that platelet forces are significantly reduced when blood samples are treated with inhibitors of myosin, GPIb-IX-V, integrin αIIbβ3, P2Y12, or thromboxane generation. Clinically, we find that platelet forces are measurably lower in cardiology patients taking aspirin. We also find that measuring platelet forces can identify Emergency Department trauma patients who subsequently require blood transfusions. Together, these findings indicate that microfluidic quantification of platelet forces may be a rapid and useful approach for monitoring both antiplatelet therapy and traumatic bleeding risk. Platelet aggregates generate contractile forces that contribute to their cohesion and adhesion. Here, Ting et al. develop a microfluidic device to measure contractile forces generated by platelet aggregates, and find it can detect the response of platelets to pharmacological agents and predict bleeding risk in trauma patients.
Collapse
|
83
|
Novakowski S, Jiang K, Prakash G, Kastrup C. Delivery of mRNA to platelets using lipid nanoparticles. Sci Rep 2019; 9:552. [PMID: 30679556 PMCID: PMC6345896 DOI: 10.1038/s41598-018-36910-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/27/2018] [Indexed: 01/04/2023] Open
Abstract
Platelets are natural delivery vehicles within the blood, carrying and releasing their contents at sites of vasculature damage. Investigating the biology of platelets, and modifying them for new therapeutic uses, is limited by a lack of methods for efficiently transfecting these cells. The ability of four different classes of lipid nanoparticles (LNPs) to deliver mRNA to platelets was compared using confocal microscopy, flow cytometry and quantitative PCR. The amount of mRNA delivered, mechanism of uptake, and extent of platelet activation depended on the LNP formulation and platelet storage conditions. Cationic LNPs (cLNPs) delivered mRNA to the largest percentage of platelets but induced platelet activation. Ionizable cationic LNPs (icLNPs) delivered mRNA to fewer platelets and did not induce activation. Furthermore, mRNA delivered using icLNPs and cLNPs was stable in resting platelets and was released in platelet microparticles under specific conditions. The results demonstrate that mRNA can be delivered to platelets using cLNPs and icLNPs without impairing platelet aggregation or spreading. Optimizing the LNP formulations used here may lead to a transfection agent for platelets that allows for de novo synthesis of exogenous proteins in the future.
Collapse
Affiliation(s)
- S Novakowski
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - K Jiang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - G Prakash
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - C Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
84
|
Hu M, Liu P, Liu Y, Yue M, Wang Y, Wang S, Chen X, Zhou Y, Zhou J, Hu X, Ke Y, Hu H. Platelet Shp2 negatively regulates thrombus stability under high shear stress. J Thromb Haemost 2019; 17:220-231. [PMID: 30444570 DOI: 10.1111/jth.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/30/2022]
Abstract
Essentials Shp2 negatively regulates thrombus stability under pathological shear rate. Shp2 suppresses TXA2 receptor-mediated platelet dense granule secretion. Through αIIbβ3 outside-in signaling, Shp2 targets calmodulin-dependent activation of Akt. Shp2 may serve to prevent the formation of unwanted occlusive thrombi. SUMMARY: Background Perpetuation is the final phase of thrombus formation; however, its mechanisms and regulation are poorly understood. Objective To investigate the mechanism of Shp2 in platelet function and thrombosis. Methods and results We demonstrate that the platelet-expressed Src homology region 2 domain-containing protein tyrosine phosphatase Shp2 is a negative regulator of thrombus stability under high shear stress. In a ferric chloride-induced mesenteric arteriole thrombosis model, megakaryocyte/platelet-specific Shp2-deficient mice showed less thrombi shedding than wild-type mice, although their occlusion times were comparable. In accordance with this in vivo phenotype, a microfluidic whole-blood perfusion assay revealed that the thrombi formed on collagen surfaces by Shp2-deficient platelets were more stable under high shear rates than those produced by wild-type platelets. Whereas Shp2 deficiency did not alter platelet responsiveness towards thrombin, ADP and collagen stimulation, Shp2-deficient platelets showed increased dense granule secretion when stimulated by the thromboxane A2 analog U46619. Shp2 appears to act downstream of integrin αIIb β3 outside-in signaling, inhibiting the phosphorylation of Akt (Ser473 and Thr308) and dense granule secretion. Calmodulin was also shown to bind both Shp2 and Akt, linking Shp2 to Akt activation. Conclusions Platelet Shp2 negatively regulates thrombus perpetuation under high shear stress. This signaling pathway may constitute an important mechanism for the prevention of unwanted occlusive thrombus formation, without dramatically interfering with hemostasis.
Collapse
Affiliation(s)
- M Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - P Liu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Liu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - M Yue
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Y Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - S Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - X Chen
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Y Zhou
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - J Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - X Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - H Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| |
Collapse
|
85
|
Yeung J, Li W, Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev 2018; 70:526-548. [PMID: 29925522 PMCID: PMC6013590 DOI: 10.1124/pr.117.014530] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelets are essential for clotting in the blood and maintenance of normal hemostasis. Under pathologic conditions such as atherosclerosis, vascular injury often results in hyperactive platelet activation, resulting in occlusive thrombus formation, myocardial infarction, and stroke. Recent work in the field has elucidated a number of platelet functions unique from that of maintaining hemostasis, including regulation of tumor growth and metastasis, inflammation, infection, and immune response. Traditional therapeutic targets for inhibiting platelet activation have primarily been limited to cyclooxygenase-1, integrin αIIbβ3, and the P2Y12 receptor. Recently identified signaling pathways regulating platelet function have made it possible to develop novel approaches for pharmacological intervention in the blood to limit platelet reactivity. In this review, we cover the newly discovered roles for platelets as well as their role in hemostasis and thrombosis. These new roles for platelets lend importance to the development of new therapies targeted to the platelet. Additionally, we highlight the promising receptor and enzymatic targets that may further decrease platelet activation and help to address the myriad of pathologic conditions now known to involve platelets without significant effects on hemostasis.
Collapse
Affiliation(s)
- Jennifer Yeung
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Wenjie Li
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Michael Holinstat
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
86
|
Kalaska B, Kamiński K, Miklosz J, Nakai K, Yusa SI, Pawlak D, Nowakowska M, Mogielnicki A, Szczubiałka K. Anticoagulant Properties of Poly(sodium 2-(acrylamido)-2-methylpropanesulfonate)-Based Di- and Triblock Polymers. Biomacromolecules 2018; 19:3104-3118. [DOI: 10.1021/acs.biomac.8b00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Kamil Kamiński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Keita Nakai
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Krzysztof Szczubiałka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
87
|
Abstract
Platelets play an important role in the vessel. Following their formation from megakaryocytes, platelets exist in circulation for 5-7 days and primarily function as regulators of hemostasis and thrombosis. Following vascular insult or injury, platelets become activated in the blood resulting in adhesion to the exposed extracellular matrix underlying the endothelium, formation of a platelet plug, and finally formation and consolidation of a thrombus consisting of both a core and shell. In pathological conditions, platelets are essential for formation of occlusive thrombus formation and as a result are the primary target for prevention of arterial thrombus formation. In addition to regulation of hemostasis in the vessel, platelets have also been shown to play an important role in innate immunity as well as regulation of tumor growth and extravasations in the vessel. These primary functions of the platelet represent its normal function and versatility in circulation.
Collapse
Affiliation(s)
- Michael Holinstat
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2220D MSRB III, Ann Arbor, MI, 48109-5632, USA. .,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
88
|
Gardiner EE. Proteolytic processing of platelet receptors. Res Pract Thromb Haemost 2018; 2:240-250. [PMID: 30046726 PMCID: PMC6055504 DOI: 10.1002/rth2.12096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Platelets have a major role in hemostasis and an emerging role in biological processes including inflammation and immunity. Many of these processes require platelet adhesion and localization at sites of tissue damage or infection and regulated platelet activation, mediated by platelet adheso-signalling receptors, glycoprotein (GP) Ib-IX-V and GPVI. Work from a number of laboratories has demonstrated that levels of these receptors are closely regulated by metalloproteinases of the A Disintegrin And Metalloproteinase (ADAM) family, primarily ADAM17 and ADAM10. It is becoming increasingly evident that platelets have important roles in innate immunity, inflammation, and in combating infection that extends beyond processes of hemostasis. This overview will examine the molecular events that regulate levels of platelet receptors and then assess ramifications for these events in settings where hemostasis, inflammation, and infection processes are triggered.
Collapse
Affiliation(s)
- Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
89
|
Koupenova M, Ravid K. Biology of Platelet Purinergic Receptors and Implications for Platelet Heterogeneity. Front Pharmacol 2018; 9:37. [PMID: 29441021 PMCID: PMC5797577 DOI: 10.3389/fphar.2018.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
Platelets are small anucleated cells present only in mammals. Platelets mediate intravascular hemostatic balance, prevent interstitial bleeding, and have a major role in thrombosis. Activation of platelet purinergic receptors is instrumental in initiation of hemostasis and formation of the hemostatic plug, although this activation process becomes problematic in pathological settings of thrombosis. This review briefly outlines the roles and function of currently known platelet purinergic receptors (P1 and P2) in the setting of hemostasis and thrombosis. Additionally, we discuss recent novel studies on purinergic receptor distribution according to heterogeneous platelet size, and the possible implication of this distribution on hemostatic function.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Katya Ravid
- Departments of Medicine and Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
90
|
Wei Z, Zuo F, Wang W, Wang L, Tong D, Zeng Y, Wang P, Meng X, Zhang Y. Protective Effects of Total Flavones of Elaeagnus rhamnoides (L.) A. Nelson against Vascular Endothelial Injury in Blood Stasis Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8142562. [PMID: 29234431 PMCID: PMC5684578 DOI: 10.1155/2017/8142562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 12/02/2022]
Abstract
The aim was to evaluate the protective effects of total flavones of Elaeagnus rhamnoides (L.) A. Nelson (TFE) against vascular endothelial injury in blood stasis model rats and explore the potential mechanisms preliminarily. The model of blood stasis rat model with vascular endothelial injury was induced by subcutaneous injection of adrenaline combined with ice-water bath. Whole blood viscosity (WBV), histological examination, and prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen (FIB) were measured. Meanwhile, the levels of Thromboxane B2 (TXB2), 6-keto-PGF1α , von Willebrand factor (vWF), and thrombomodulin (TM) were detected. In addition, Quantitative Real-Time PCR (qPCR) was performed to identify PI3K, Erk2, Bcl-2, and caspase-3 gene expression. The results showed that TFE can relieve WBV, increase PT and APTT, and decrease FIB content obviously. Moreover, TFE might significantly downregulate the levels of TXB2, vWF, and TM in plasma and upregulate the level of 6-keto-PGF1α in plasma. Expressions of PI3K and Bcl-2 were increased and the expression of caspase-3 was decreased by TFE pretreatment in the rat model. Consequently, the study suggested that TFE may have the potential against vascular endothelial injury in blood stasis model rats induced by a high dose of adrenaline with ice-water bath.
Collapse
Affiliation(s)
- Zhicheng Wei
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Zuo
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenqian Wang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Wang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Tong
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Wang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| |
Collapse
|