51
|
Lookin O, Kuznetsov D, Protsenko Y. Omecamtiv mecarbil attenuates length-tension relationship in healthy rat myocardium and preserves it in monocrotaline-induced pulmonary heart failure. Clin Exp Pharmacol Physiol 2021; 49:84-93. [PMID: 34459025 DOI: 10.1111/1440-1681.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
The cardiac-specific myosin activator, omecamtiv mecarbil (OM), is an effective inotrope for treating heart failure but its effects on active force and Ca2+ kinetics in healthy and diseased myocardium remain poorly studied. We tested the effect of two concentrations of OM (0.2 and 1 µmol/L in saline) on isometric contraction and Ca-transient (CaT) in right ventricular trabeculae of healthy rats (CONT, n = 8) and rats with monocrotaline-induced pulmonary heart failure (MCT, n = 8). The contractions were obtained under preload of 75%-100% of optimal length (tension-length relationship). The 0.2 µmol/L OM did not affect the diastolic level, amplitude, or kinetics of isometric contraction and CaT, irrespective of the group of rats or preload. The 1 µmol/L OM significantly suppressed active tension-length relationships in CONT but not in MCT, while leading in both groups to a significantly prolonged relaxation. CaT time-to-peak was unaffected in CONT and MCT, but CaT decay was slightly accelerated in its early phase and considerably prolonged in its late phase to a similar extent in both groups. We conclude that the substantial prolongation of CaT decay is due to enhanced Ca2+ utilisation by troponin C mediated by the direct effect of OM on the cooperative activation of myofilaments. The lack of beneficial effect of OM in the healthy rat myocardium may be due to a relatively high level of activating Ca2+ in cells with normal Ca2+ handling, whereas the preservation of the tension-length relationship in the failing heart may relate to the diminished Ca2+ levels of sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Daniil Kuznetsov
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Yuri Protsenko
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| |
Collapse
|
52
|
Levosimendan increases brain tissue oxygen levels after cardiopulmonary resuscitation independent of cardiac function and cerebral perfusion. Sci Rep 2021; 11:14220. [PMID: 34244561 PMCID: PMC8270955 DOI: 10.1038/s41598-021-93621-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Prompt reperfusion is important to rescue ischemic tissue; however, the process itself presents a key pathomechanism that contributes to a poor outcome following cardiac arrest. Experimental data have suggested the use of levosimendan to limit ischemia–reperfusion injury by improving cerebral microcirculation. However, recent studies have questioned this effect. The present study aimed to investigate the influence on hemodynamic parameters, cerebral perfusion and oxygenation following cardiac arrest by ventricular fibrillation in juvenile male pigs. Following the return of spontaneous circulation (ROSC), animals were randomly assigned to levosimendan (12 µg/kg, followed by 0.3 µg/kg/min) or vehicle treatment for 6 h. Levosimendan-treated animals showed significantly higher brain PbtO2 levels. This effect was not accompanied by changes in cardiac output, preload and afterload, arterial blood pressure, or cerebral microcirculation indicating a local effect. Cerebral oxygenation is key to minimizing damage, and thus, current concepts are aimed at improving impaired cardiac output or cerebral perfusion. In the present study, we showed that NIRS does not reliably detect low PbtO2 levels and that levosimendan increases brain oxygen content. Thus, levosimendan may present a promising therapeutic approach to rescue brain tissue at risk following cardiac arrest or ischemic events such as stroke or traumatic brain injury.
Collapse
|
53
|
Brener MI, Hamid NB, Sunagawa K, Borlaug BA, Shah SJ, Rich S, Burkhoff D. Changes in Stressed Blood Volume with Levosimendan in Pulmonary Hypertension from Heart Failure with Preserved Ejection Fraction: Insights Regarding Mechanism of Action From the HELP Trial. J Card Fail 2021; 27:1023-1026. [PMID: 34144177 DOI: 10.1016/j.cardfail.2021.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Michael I Brener
- Division of Cardiology, Columbia University Medical Center, New York, New York.
| | - Nadira B Hamid
- Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Kenji Sunagawa
- Center for Disruptive Medicine, Kyushu University, Fukuoka, Japan
| | | | - Sanjiv J Shah
- Division of Cardiology, Northwestern University, Chicago, Illinois
| | - Stuart Rich
- Division of Cardiology, Northwestern University, Chicago, Illinois
| | - Daniel Burkhoff
- Division of Cardiology, Columbia University Medical Center, New York, New York; Cardiovascular Research Foundation, New York, New York
| |
Collapse
|
54
|
Long YX, Cui DY, Kuang X, Hu S, Hu Y, Liu ZZ. Effect of Levosimendan on Ventricular Systolic and Diastolic Functions in Heart Failure Patients: A Meta-Analysis of Randomized Controlled Trials. J Cardiovasc Pharmacol 2021; 77:805-813. [PMID: 34001722 DOI: 10.1097/fjc.0000000000001010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT Levosimendan, a calcium sensitizer, exerts inotropic action through improving left ventricular ejection fraction. We noticed that only few clinical studies are published in which the effects of levosimendan on cardiac function are studied by echocardiography. When screening the literature (PubMed, Embase, and CENTRAL, from inception to August 2020), we found 29 randomized controlled trials on levosimendan containing echocardiographic data. We included those studies, describing a total of 574 heart failure patients, in our meta-analysis and extracted 14 ultrasonic parameters, pooling the effect estimates using a random-effect model. Our analysis of the diastolic parameters of the left ventricle shows that levosimendan reduce the early/late transmitral diastolic peak flow velocity ratio [standardized mean difference (SMD) -0.45 to 95% confidence interval (CI) (-0.87 to -0.03), P = 0.037] and E/e' (e': mitral annulus peak early diastolic wave velocity using tissue-doppler imaging) [SMD -0.59, 95% CI (-0.8 to -0.39), P < 0.001]. As it regards the systolic parameters of the right ventricle, levosimendan increased tricuspid annular plane systolic excursion [SMD 0.62, 95% CI (0.28 to 0.95), P < 0.001] and tricuspid annular peak systolic velocity [SMD 0.75, 95% CI (0.35 to 1.16), P < 0.001], and reduced systolic pulmonary artery pressure [SMD -1.02, 95% CI (-1.32, -0.73), P < 0.001]. As it regards the diastolic parameters of the right ventricle, levosimendan was associated with the decrease of Aa (peak late diastolic tricuspid annular velocity using tissue-doppler imaging) [SMD -0.38, 95% CI (-0.76 to 0), P = 0.047] and increase of Ea (peak early diastolic tricuspid annular velocity using tissue-doppler imaging) [SMD 1.03, 95% CI (0.63 to 1.42), P < 0.001] and Ea/Aa [SMD 0.86, 95% CI (0.18 to 1.54), P = 0.013]. We show that levosimendan is associated with an amelioration in the diastolic and systolic functions of both ventricles in heart failure patients.
Collapse
Affiliation(s)
- Yu-Xiang Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
55
|
Mondal B, Maiti R, Yang X, Xu J, Tian W, Yan JL, Li X, Chi YR. Carbene-catalyzed enantioselective annulation of dinucleophilic hydrazones and bromoenals for access to aryl-dihydropyridazinones and related drugs. Chem Sci 2021; 12:8778-8783. [PMID: 34257877 PMCID: PMC8246082 DOI: 10.1039/d1sc01891d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
4,5-Dihydropyridazinones bearing an aryl substituent at the C6-position are important motifs in drug molecules. Herein, we developed an efficient protocol to access aryl-dihydropyridazinone molecules via carbene-catalyzed asymmetric annulation between dinucleophilic arylidene hydrazones and bromoenals. Key steps in this reaction include polarity-inversion of aryl aldehyde-derived hydrazones followed by chemo-selective reaction with enal-derived α,β-unsaturated acyl azolium intermediates. The aryl-dihydropyridazinone products accessed by our protocol can be readily transformed into drugs and bioactive molecules. Polarity inversion of arylidene hydrazones to react with bromoenals via carbene organic catalysis is disclosed. The reaction enantioselectively affords 6-aryl-4,5-dihydropyridazinones and related drugs with proven commercial applications.![]()
Collapse
Affiliation(s)
- Bivas Mondal
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Rakesh Maiti
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China .,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Jia-Lei Yan
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China .,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
56
|
Torregroza C, Yueksel B, Ruske R, Stroethoff M, Raupach A, Heinen A, Hollmann MW, Huhn R, Feige K. Combination of Cyclosporine A and Levosimendan Induces Cardioprotection under Acute Hyperglycemia. Int J Mol Sci 2021; 22:ijms22094517. [PMID: 33926009 PMCID: PMC8123582 DOI: 10.3390/ijms22094517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Prognosis of patients with myocardial infarction is detrimentally affected by comorbidities like diabetes mellitus. In the experimental setting, not only diabetes mellitus but also acute hyperglycemia is shown to hamper cardioprotective properties by multiple pharmacological agents. For Levosimendan-induced postconditioning, a strong infarct size reducing effect is demonstrated in healthy myocardium. However, acute hyperglycemia is suggested to block this protective effect. In the present study, we investigated whether (1) Levosimendan-induced postconditioning exerts a concentration-dependent effect under hyperglycemic conditions and (2) whether a combination with the mitochondrial permeability transition pore (mPTP) blocker cyclosporine A (CsA) restores the cardioprotective properties of Levosimendan under hyperglycemia. For this experimental investigation, hearts of male Wistar rats were randomized and mounted onto a Langendorff system, perfused with Krebs-Henseleit buffer with a constant pressure of 80 mmHg. All isolated hearts were subjected to 33 min of global ischemia and 60 min of reperfusion under hyperglycemic conditions. (1) Hearts were perfused with various concentrations of Levosimendan (Lev) (0.3–10 μM) for 10 min at the onset of reperfusion, in order to investigate a concentration–response relationship. In the second set of experiments (2), 0.3 μM Levosimendan was administered in combination with the mPTP blocker CsA, to elucidate the underlying mechanism of blocked cardioprotection under hyperglycemia. Infarct size was determined by tetrazolium chloride (TTC) staining. (1) Control (Con) hearts showed an infarct size of 52 ± 12%. None of the administered Levosimendan concentrations reduced the infarct size (Lev0.3: 49 ± 9%; Lev1: 57 ± 9%; Lev3: 47 ± 11%; Lev10: 50 ± 7%; all ns vs. Con). (2) Infarct size of Con and Lev0.3 hearts were 53 ± 4% and 56 ± 2%, respectively. CsA alone had no effect on infarct size (CsA: 50 ± 10%; ns vs. Con). The combination of Lev0.3 and CsA (Lev0.3 ± CsA) induced a significant infarct size reduction compared to Lev0.3 (Lev0.3+CsA: 35 ± 4%; p < 0.05 vs. Lev0.3). We demonstrated that (1) hyperglycemia blocks the infarct size reducing effects of Levosimendan-induced postconditioning and cannot be overcome by an increased concentration. (2) Furthermore, cardioprotection under hyperglycemia can be restored by combining Levosimendan and the mPTP blocker CsA.
Collapse
Affiliation(s)
- Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Birce Yueksel
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Raphael Ruske
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Martin Stroethoff
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Annika Raupach
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - André Heinen
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
- Correspondence:
| | - Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| |
Collapse
|
57
|
Elsherbini H, Soliman O, Zijderhand C, Lenzen M, Hoeks SE, Kaddoura R, Izham M, Alkhulaifi A, Omar AS, Caliskan K. Intermittent levosimendan infusion in ambulatory patients with end-stage heart failure: a systematic review and meta-analysis of 984 patients. Heart Fail Rev 2021; 27:493-505. [PMID: 33839989 PMCID: PMC8898255 DOI: 10.1007/s10741-021-10101-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
We sought to synthesize the available evidence regarding safety and efficacy of intermittent levosimendan (LEVO) infusions in ambulatory patients with end-stage heart failure (HF). Safety and efficacy of ambulatory intermittent LEVO infusion in patients with end-stage HF are yet not established. We systematically searched MEDLINE, EMBASE, SCOPUS, Web of Science, and Cochrane databases, from inception to January 30, 2021 for studies reporting outcome of adult ambulatory patients with end-stage HF treated with intermittent LEVO infusion. Fifteen studies (8 randomized and 7 observational) comprised 984 patients (LEVO [N = 727] and controls [N = 257]) met the inclusion criteria. LEVO was associated with improved New York Heart Association (NYHA) functional class (weighted mean difference [WMD] −1.04, 95%CI: −1.70 to −0.38, p < 0.001, 5 studies, I2 = 93%), improved left ventricular (LV) ejection fraction (WMD 4.0%, 95%CI: 2.8% to 5.3%, p < 0.001, 6 studies, I2 = 9%), and reduced BNP levels (WMD −549 pg/mL, 95%CI −866 to −233, p < 0001, 3 studies, I2 = 66%). All-cause death was not different (RR 0.65, 95%CI: 0.38 to 1.093, p = 0.10, 6 studies, I2 = 0), but cardiovascular death was lower on LEVO (RR 0.34, 95%CI: 0.13 to 0.87, p = 0.02, 3 studies, I2 = 0) compared to controls. Furthermore, health-related quality of life (HRQoL) was improved alongside with reduced LV size following LEVO infusions. Major adverse events were not different between LEVO and placebo. In conclusion, intermittent LEVO infusions in ambulatory patients with end-stage HF is associated with less frequent cardiovascular death alongside with improved NYHA class, quality of life, BNP levels, and LV function. However, the current evidence is limited by heterogeneous and relatively small studies.
Collapse
Affiliation(s)
- Hagar Elsherbini
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands.,Utrecht University of Applied Sciences, Utrecht, Netherlands
| | - Osama Soliman
- Department of Cardiology, National University of Ireland, Galway, Ireland.
| | - Casper Zijderhand
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Mattie Lenzen
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Sanne E Hoeks
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Rasha Kaddoura
- Department of Clinical Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed Izham
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Abdulaziz Alkhulaifi
- Department of Cardiothoracic Surgery/Cardiac Anaesthesia & ICU, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Amr S Omar
- Department of Cardiothoracic Surgery/Cardiac Anaesthesia & ICU, Heart Hospital, Hamad Medical Corporation, Doha, Qatar.,Department of Critical Care Medicine, Beni Suef University, Beni Suef, Egypt.,Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Kadir Caliskan
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands.
| |
Collapse
|
58
|
Novel Ring Systems: Spiro[Cycloalkane] Derivatives of Triazolo- and Tetrazolo-Pyridazines. Molecules 2021; 26:molecules26082140. [PMID: 33917797 PMCID: PMC8068119 DOI: 10.3390/molecules26082140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
In orderto synthesize new pyridazine derivatives anellated with different nitrogen heterocyclic moieties, spiro[cycloalkane]pyridazinones were transformed into the corresponding thioxo derivatives via a reaction with phosphorus pentasulfide. The reaction of the formed 2,3-diazaspiro[5.5]undec-3-ene-1-thiones with hydrazine provided the corresponding 1-hydrazono-2,3-diazaspiro[5.5]undec-3-ene, whose diazotization led to the desired spiro[cyclohexane-1,8′-tetrazolo[1,5-b]pyridazines. The reaction of dihydropyridazinethiones with benzhydrazide afforded the corresponding 7H-spiro[[1,2,4]triazolo[4,3-b]pyridazin-8,1′-cyclohexanes]. As a result of our work, seven new pyridazinethione intermediates were prepared, which served as starting materials for the synthesis of two kinds of new ring systems: tetrazolo-pyridazines and triazolo-pyridazines. The six new annulated derivatives were characterized by physicochemical parameters. The new N-heterocycles are valuable members of the large family of pyridazines.
Collapse
|
59
|
Levosimendan Improves Hemodynamics and Exercise Tolerance in PH-HFpEF: Results of the Randomized Placebo-Controlled HELP Trial. JACC-HEART FAILURE 2021; 9:360-370. [PMID: 33839076 DOI: 10.1016/j.jchf.2021.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the effects of intravenous levosimendan on hemodynamics and 6-min walk distance (6MWD) in patients with pulmonary hypertension and heart failure with preserved ejection fraction (PH-HFpEF). BACKGROUND There are no proven effective treatments for patients with PH-HFpEF. METHODS Patients with mean pulmonary artery pressure (mPAP) ≥35 mm Hg, pulmonary capillary wedge pressure (PCWP) ≥20 mm Hg, and LVEF ≥40% underwent 6MWD and hemodynamic measurements at rest, during passive leg raise, and supine cycle exercise at baseline and after an open-label 24-h levosimendan infusion (0.1 μg/kg/min). Hemodynamic responders (those with ≥4 mm Hg reduction of exercise-PCWP) were randomized (double blind) to weekly levosimendan infusion (0.075 to 0.1 ug/kg/min for 24 h) or placebo for 5 additional weeks. The primary end point was exercise-PCWP, and key secondary end points included 6MWD and PCWP measured across all exercise stages. RESULTS Thirty-seven of 44 patients (84%) met responder criteria and were randomized to levosimendan (n = 18) or placebo (n = 19). Participants were 69 ± 9 years of age, 61% female, and with resting mPAP 41.0 ± 9.3 mm Hg and exercise-PCWP 36.8 ± 11.3 mm Hg. Compared with placebo, levosimendan did not significantly reduce the primary end point of exercise-PCWP at 6 weeks (-1.4 mm Hg; 95% confidence interval [CI]: -7.8 to 4.8; p = 0.65). However, levosimendan reduced PCWP measured across all exercise stages (-3.9 ± 2.0 mm Hg; p = 0.047). Levosimendan treatment resulted in a 29.3 m (95% CI: 2.5 to 56.1; p = 0.033) improvement in 6MWD compared with placebo. CONCLUSIONS Six weeks of once-weekly levosimendan infusion did not affect exercise-PCWP but did reduce PCWP incorporating data from rest and exercise, in tandem with increased 6MWD. Further study of levosimendan is warranted as a therapeutic option for PH-HFpEF. (Hemodynamic Evaluation of Levosimendan in Patients With PH-HFpEF [HELP]; NCT03541603).
Collapse
|
60
|
Heringlake M, Alvarez J, Bettex D, Bouchez S, Fruhwald S, Girardis M, Grossini E, Guarracino F, Herpain A, Toller W, Tritapepe L, Pollesello P. An update on levosimendan in acute cardiac care: applications and recommendations for optimal efficacy and safety. Expert Rev Cardiovasc Ther 2021; 19:325-335. [PMID: 33739204 DOI: 10.1080/14779072.2021.1905520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: In the 20 years since its introduction to the palette of intravenous hemodynamic therapies, the inodilator levosimendan has established itself as a valuable asset for the management of acute decompensated heart failure. Its pharmacology is notable for delivering inotropy via calcium sensitization without an increase in myocardial oxygen consumption.Areas covered: Experience with levosimendan has led to its applications expanding into perioperative hemodynamic support and various critical care settings, as well as an array of situations associated with acutely decompensated heart failure, such as right ventricular failure, cardiogenic shock with multi-organ dysfunction, and cardio-renal syndrome. Evidence suggests that levosimendan may be preferable to milrinone for patients in cardiogenic shock after cardiac surgery or for weaning from extracorporeal life support and may be superior to dobutamine in terms of short-term survival, especially in patients on beta-blockers. Positive effects on kidney function have been noted, further differentiating levosimendan from catecholamines and phosphodiesterase inhibitors.Expert opinion:Levosimendan can be a valuable resource in the treatment of acute cardiac dysfunction, especially in the presence of beta-blockers or ischemic cardiomyopathy. When attention is given to avoiding or correcting hypovolemia and hypokalemia, an early use of the drug in the treatment algorithm is preferred.
Collapse
Affiliation(s)
- Matthias Heringlake
- Klinik Für Anästhesie Und Intensivmedizin, Herz- Und Diabeteszentrum Mecklenburg Vorpommern, Karlsburg, Germany
| | - Julian Alvarez
- Department of Anesthesia and Surgical ICU, University of Santiago De Compostela, Santiago De Compostela, Spain
| | - Dominique Bettex
- Institute for Anaesthesiology, University Zürich and University Hospital Zürich, Zürich, Switzerland
| | - Stefaan Bouchez
- Department of Anesthesiology, University Hospital, Ghent, Belgium
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Massimo Girardis
- Struttura Complessa Di Anestesia 1, Policlinico Di Modena, Modena, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università Piemonte Orientale, Novara, Italy
| | - Fabio Guarracino
- Dipartimento Di Anestesia E Rianimazione, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antoine Herpain
- Department of Intensive Care, Erasme University Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Luigi Tritapepe
- UOC Anestesia E Rianimazione, Azienda Ospedaliera San Camillo-Forlanini, Rome, Italy; and
| | | |
Collapse
|
61
|
Comprehensive Comparisons among Inotropic Agents on Mortality and Risk of Renal Dysfunction in Patients Who Underwent Cardiac Surgery: A Network Meta-Analysis of Randomized Controlled Trials. J Clin Med 2021; 10:jcm10051032. [PMID: 33802296 PMCID: PMC7959132 DOI: 10.3390/jcm10051032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Several kinds of inotropes have been used in critically ill patients to improve hemodynamics and renal dysfunction after cardiac surgery; however, the treatment strategies for reducing mortality and increasing renal protection in patients who underwent cardiac surgery remain controversial. Therefore, we performed a comprehensive network meta-analysis to overcome the lack of head-to-head comparisons. A systematic database was searched up to 31 December 2020, for randomized controlled trials that compared different inotropes on mortality outcomes and renal protective effects after cardiac surgery. A total of 29 trials were included and a frequentist network meta-analysis was performed. Inconsistency analyses, publication bias, and subgroup analyses were also conducted. Compared with placebo, use of levosimendan significantly decreased the risks of mortality (odds ratio (OR): 0.74; 95% confidence interval (CI): 0.56–0.97) and risk of acute renal injury (OR: 0.61; 95% CI: 0.45–0.82), especially in low systolic function patients. Use of levosimendan also ranked the best treatment based on the P-score (90.1%), followed by placebo (64.5%), milrinone (49.6%), dopamine (49.5%), dobutamine (29.1%), and fenoldopam (17.0%). Taking all the available data into consideration, levosimendan was a safe renal-protective choice for the treatment of patients undergoing cardiac surgery, especially for those with low systolic function.
Collapse
|
62
|
Alonso‐Fernandez‐Gatta M, Merchan‐Gomez S, Gonzalez‐Cebrian M, Diego‐Nieto A, Alzola E, Toranzo‐Nieto I, Barrio A, Martin‐Herrero F, Sanchez PL. Levosimendan in veno‐arterial extracorporeal membrane oxygenator supported patients: Impact on the success of weaning and survival. Artif Organs 2021; 45:717-725. [DOI: 10.1111/aor.13899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
| | - Soraya Merchan‐Gomez
- Cardiology Department University Hospital of Salamanca – IBSAL, CIBER‐CV Salamanca Spain
| | | | - Alejandro Diego‐Nieto
- Cardiology Department University Hospital of Salamanca – IBSAL, CIBER‐CV Salamanca Spain
| | - Elisabete Alzola
- Cardiology Department University Hospital of Salamanca – IBSAL, CIBER‐CV Salamanca Spain
| | - Ines Toranzo‐Nieto
- Cardiology Department University Hospital of Salamanca – IBSAL, CIBER‐CV Salamanca Spain
| | - Alfredo Barrio
- Cardiology Department University Hospital of Salamanca – IBSAL, CIBER‐CV Salamanca Spain
| | | | - Pedro L. Sanchez
- Cardiology Department University Hospital of Salamanca – IBSAL, CIBER‐CV Salamanca Spain
| |
Collapse
|
63
|
Chan CC, Lee KT, Ho WJ, Chan YH, Chu PH. Levosimendan use in patients with acute heart failure and reduced ejection fraction with or without severe renal dysfunction in critical cardiac care units: a multi-institution database study. Ann Intensive Care 2021; 11:27. [PMID: 33555483 PMCID: PMC7869075 DOI: 10.1186/s13613-021-00810-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background Acute heart failure is a life-threatening clinical condition. Levosimendan is an effective inotropic agent used to maintain cardiac output, but its usage is limited by the lack of evidence in patients with severely abnormal renal function. Therefore, we analyzed data of patients with acute heart failure with and without abnormal renal function to examine the effects of levosimendan. Methods We performed this retrospective cohort study using data from the Chang Gung Research Database (CGRD) of Chang Gung Memorial Hospital (CGMH). Patients admitted for heart failure with LVEF ≤ 40% between January 2013 and December 2018 who received levosimendan or dobutamine in the critical cardiac care units (CCU) were identified. Patients with extracorporeal membrane oxygenation (ECMO) were excluded. Outcomes of interest were mortality at 30, 90, and 180 days after the cohort entry date. Results There were no significant differences in mortality rate at 30, 90, and 180 days after the cohort entry date between the levosimendan and dobutamine groups, or between subgroups of patients with an estimated glomerular filtration rate (eGFR) ≥ 30 mL/min/1.73 m2 and eGFR < 30 mL/min/1.73 m2 or on dialysis. The results were consistent before and after propensity score matching. Conclusions Levosimendan did not increase short- or long-term mortality rates in critical patients with acute heart failure and reduced ejection fraction compared to dobutamine, regardless of their renal function. An eGFR less than 30 mL/min/1.73 m2 was not necessarily considered a contraindication for levosimendan in these patients.
Collapse
Affiliation(s)
- Cze-Ci Chan
- Department of Cardiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuang-Tso Lee
- Department of Cardiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Jing Ho
- Department of Cardiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Chan
- Department of Cardiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
64
|
|
65
|
Glinka L, Mayzner-Zawadzka E, Onichimowski D, Jalali R, Glinka M. Levosimendan in the modern treatment of patients with acute heart failure of various aetiologies. Arch Med Sci 2021; 17:296-303. [PMID: 33747264 PMCID: PMC7959091 DOI: 10.5114/aoms.2018.77055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022] Open
Abstract
Acute decompensated heart failure (ADHF) is a common clinical problem associated with a high mortality rate. Because ADHF has various aetiologies, there are a range of therapeutic options, among others, positive inotropes (inotropic drugs). As an inotropic agent whose mechanism is different than that of "classical" medicines, levosimendan (LSM) is one of the most common therapeutic options. Despite many publications on LSM, some issues related to its application remain unclear. The authors of this paper have attempted to summarise expert recommendations and reports available in the literature.
Collapse
Affiliation(s)
- Lidia Glinka
- 2 Anaesthesiology and Intensive Care Clinical Ward, Clinical University Hospital, Department of Anaesthesiology and Intensive Care, University of Warmia and Mazury, Olsztyn, Poland
| | - Ewa Mayzner-Zawadzka
- 2 Anaesthesiology and Intensive Care Clinical Ward, Clinical University Hospital, Department of Anaesthesiology and Intensive Care, University of Warmia and Mazury, Olsztyn, Poland
| | - Dariusz Onichimowski
- 1 Clinical Department of Anaesthesiology and Intensive Care, Regional Specialist Hospital, Olsztyn, Poland
| | - Rakesh Jalali
- Emergency Department, Regional Specialist Hospital, Olsztyn, Poland
| | - Maciej Glinka
- Department of Cardiology, Regional Specialist Hospital, Olsztyn, Poland
| |
Collapse
|
66
|
Cui D, Liao Y, Li G, Chen Y. Levosimendan Can Improve the Level of B-Type Natriuretic Peptide and the Left Ventricular Ejection Fraction of Patients with Advanced Heart Failure: A Meta-analysis of Randomized Controlled Trials. Am J Cardiovasc Drugs 2021; 21:73-81. [PMID: 32462455 DOI: 10.1007/s40256-020-00416-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Levosimendan, a calcium (Ca2+)-sensitizing cardiotonic agent, is mainly used in patients with advanced heart failure. However, no research could explain how levosimendan reduces the mortality in advanced heart failure patients. We aim to illustrate the efficacy of levosimendan through clinical indexes. METHODS We searched PubMed, Embase, and CENTRAL from 1994 to August 2019 to compare the efficacy of levosimendan infusion for the treatment of advanced heart failure with that of other agents (placebo, dobutamine, furosemide, and prostaglandin E1). Levels of B-type natriuretic peptide (BNP) and N-terminal pro BNP (NT-proBNP), and left ventricular ejection fraction (LVEF) and heart rate (HR) were analyzed. The count data were analyzed by the standardized mean difference (SMD) and its 95% confidence interval (CI) to determine the effect size. We chose the random effect model or the fixed effect model according to the heterogeneity. RESULTS Nine randomized controlled trials with 413 patients were ultimately enrolled. Compared with other agents (placebo, dobutamine, furosemide, and prostaglandin E1), levosimendan significantly reduced the BNP level (SMD - 0.91; 95% CI - 1.44 to - 0.39; p = 0.001; I2 = 74.3%) and improved the LVEF (SMD 0.74; 95% CI 0.22-1.25; p = 0.005; I2 = 79.7%). However, levosimendan did not significantly change the HR (SMD 0.09; 95% CI - 0.24 to 0.42; p = 0.592; I2 = 51.5%). Meanwhile, we found that the main source of heterogeneity was the use of loaded or unloaded levosimendan. CONCLUSION Our meta-analysis suggests that intravenous levosimendan can reduce BNP level and increase LVEF in patients with advanced heart failure to reduce the mortality at the shortest follow-up available.
Collapse
|
67
|
Alsulami K, Marston S. Small Molecules acting on Myofilaments as Treatments for Heart and Skeletal Muscle Diseases. Int J Mol Sci 2020; 21:E9599. [PMID: 33339418 PMCID: PMC7767104 DOI: 10.3390/ijms21249599] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most prevalent forms of the chronic and progressive pathological condition known as cardiomyopathy. These diseases have different aetiologies; however, they share the feature of haemodynamic abnormalities, which is mainly due to dysfunction in the contractile proteins that make up the contractile unit known as the sarcomere. To date, pharmacological treatment options are not disease-specific and rather focus on managing the symptoms, without addressing the disease mechanism. Earliest attempts at improving cardiac contractility by modulating the sarcomere indirectly (inotropes) resulted in unwanted effects. In contrast, targeting the sarcomere directly, aided by high-throughput screening systems, could identify small molecules with a superior therapeutic value in cardiac muscle disorders. Herein, an extensive literature review of 21 small molecules directed to five different targets was conducted. A simple scoring system was created to assess the suitability of small molecules for therapy by evaluating them in eight different criteria. Most of the compounds failed due to lack of target specificity or poor physicochemical properties. Six compounds stood out, showing a potential therapeutic value in HCM, DCM or heart failure (HF). Omecamtiv Mecarbil and Danicamtiv (myosin activators), Mavacamten, CK-274 and MYK-581 (myosin inhibitors) and AMG 594 (Ca2+-sensitiser) are all small molecules that allosterically modulate troponin or myosin. Omecamtiv Mecarbil showed limited efficacy in phase III GALACTIC-HF trial, while, results from phase III EXPLORER-HCM trial were recently published, indicating that Mavacamten reduced left ventricular outflow tract (LVOT) obstruction and diastolic dysfunction and improved the health status of patients with HCM. A novel category of small molecules known as "recouplers" was reported to target a phenomenon termed uncoupling commonly found in familial cardiomyopathies but has not progressed beyond preclinical work. In conclusion, the contractile apparatus is a promising target for new drug development.
Collapse
Affiliation(s)
- Khulud Alsulami
- Imperial Centre for Translational and Experimental Medicine, Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh 11461, Saudi Arabia
| | - Steven Marston
- Imperial Centre for Translational and Experimental Medicine, Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
68
|
Cotinet PA, Bizouarn P, Roux F, Rozec B. Management of cardiogenic shock by circulatory support during reverse Tako-Tsubo following amphetamine exposure: A report of two cases. Heart Lung 2020; 50:465-469. [PMID: 33243478 DOI: 10.1016/j.hrtlng.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 01/27/2023]
Abstract
Stress-induced cardiomyopathy, also known by various names such as Tako-Tsubo cardiomyopathy (TTC), is a cardiomyopathy that presents different types of transient left ventricular dysfunction. We present two cases of reverse TTC occurring in two young men after amphetamine use and complicated by cardiogenic shock necessitating venoarterial extra-corporeal membrane oxygenation (VA-ECMO). Levosimendan was used in one case to prevent subsequent aggravation of left ventricular function provoked by the use of catecholamine in this context. In both cases, myocardial function recovered rapidly. Amphetamine use can lead to reverse TTC requiring transient mechanical assistance and inotropic support.
Collapse
Affiliation(s)
- Pierre-Antoine Cotinet
- Anesthésie et Réanimation Chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Philippe Bizouarn
- Anesthésie et Réanimation Chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - François Roux
- Anesthésie et Réanimation Chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Bertrand Rozec
- Anesthésie et Réanimation Chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire de Nantes, Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France.
| |
Collapse
|
69
|
Beitzke D, Gremmel F, Senn D, Laggner R, Kammerlander A, Wielandner A, Nolz R, Hülsmann M, Loewe C. Effects of Levosimendan on cardiac function, size and strain in heart failure patients. Int J Cardiovasc Imaging 2020; 37:1063-1071. [PMID: 33103224 PMCID: PMC7969546 DOI: 10.1007/s10554-020-02077-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 01/23/2023]
Abstract
Levosimendan improves cardiac function in heart failure populations; however, its exact mechanism is not well defined. We analysed the short-term impact of levosimendan in heart failure patients with ischemic and non-ischemic cardiomyopathy (CMP) using multiparametric cardiac magnetic resonance (CMR). We identified 33 patients with ischemic or non-ischemic CMP who received two consecutive CMR scans prior to and within one week after levosimendan administration. Changes in LV ejection fraction (LVEF) and LV volumes, as well as changes in strain rates, were measured prior to and within one week after levosimendan infusion. LV scarring, based on late gadolinium enhancement (LGE), was correlated to changes in LV size and strain rates. Both LV endiastolic (EDV) and endsystolic volumes (ESV) significantly decreased (EDV: p=0,001; ESV: p=0,002) after levosimendan administration, with no significant impact on LVEF (p=0.41), cardiac output (p=0.61), and strain rates. Subgroup analyses of ischemic or non-ischemic CMP showed no significant differences between the groups in terms of short-term LV reverse remodeling. The presence and extent of scarring in LGE did not correlate with changes in LV size and strain rates. CMR is able to monitor cardiac effects of levosimendan infusion. Short-term follow-up of a single levosimendan infusion using CMR shows a significant decrease in LV size, but no impact on LVEF or strain measurements. There was no difference between patients with ischemic or non-ischemic CMP. Quantification of LV scarring in CMR is not able to predict changes in LV size and strain rates in response to levosimendan.
Collapse
Affiliation(s)
- D Beitzke
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - F Gremmel
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - D Senn
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - R Laggner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - A Kammerlander
- Department of Internal Medicine II / Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - A Wielandner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - R Nolz
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - M Hülsmann
- Department of Internal Medicine II / Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - C Loewe
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
70
|
Zalewska-Adamiec M, Chlabicz M, Kuźma Ł, Bachorzewska-Gajewska H, Dobrzycki S. Effectiveness of Levosimendan in an 84-Year-Old Patient with Takotsubo Syndrome Complicated by Acute Heart Failure. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e927081. [PMID: 33077703 PMCID: PMC7585457 DOI: 10.12659/ajcr.927081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although takotsubo syndrome (TTS) is usually mild, severe complications such as acute heart failure may occur in the acute phase. Because of the etiology of TTS, typical catecholamines are not recommended; the use of inotropic drugs with a different mechanism of action is recommended, mainly levosimendan. CASE REPORT An 84-year-old patient with cardiovascular risk factors, hospitalized in a city hospital because of exacerbation of chronic obstructive pulmonary disease (COPD), was transferred to the clinic with suspected myocardial infarction. At the time of admission, the patient was hemodynamically stable. The coronarography indicated insignificant atherosclerotic lesions in the coronary arteries. The echocardiography revealed apical akinesis and hypokinesis of the apical and middle left ventricular segments (LV). The ejection fraction (EF) was 40%. TTS was diagnosed. After 12 h of hospitalization, the patient developed symptoms of acute heart failure, with deterioration of the LV systolic function (EF 30%). Levosimendan was included in the treatment, which led to an increased blood pressure and clinical improvement after several hours. Over the next few days, the patient's condition improved and he was transferred to the referral center, from which he was discharged to home. CONCLUSIONS In patients with COPD, exacerbation of the disease may be a trigger for TTS. In acute heart failure complicating TTS, administration of levosimendan improves the clinical condition of patients.
Collapse
Affiliation(s)
| | - Małgorzata Chlabicz
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland.,Department of Population Medicine and Civilization Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Łukasz Kuźma
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Bachorzewska-Gajewska
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland.,Department of Clinical Medicine, Medical University of Białystok, Białystok, Poland
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
71
|
Efentakis P, Varela A, Chavdoula E, Sigala F, Sanoudou D, Tenta R, Gioti K, Kostomitsopoulos N, Papapetropoulos A, Tasouli A, Farmakis D, Davos CH, Klinakis A, Suter T, Cokkinos DV, Iliodromitis EK, Wenzel P, Andreadou I. Levosimendan prevents doxorubicin-induced cardiotoxicity in time- and dose-dependent manner: implications for inotropy. Cardiovasc Res 2020; 116:576-591. [PMID: 31228183 DOI: 10.1093/cvr/cvz163] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
AIMS Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. METHODS AND RESULTS Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 μg/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 μg/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxide synthase (eNOS), and protein kinase-A and G (PKA/PKG) pathways emerged as contributors to the cardioprotection, converging onto phospholamban (PLN). To verify the contribution of PLN, phospholamban knockout (PLN-/-) mice were assigned to PLN-/-/Control (N/S-0.9%), PLN-/-/DXR (18 mg/kg), and PLN-/-/DXR+LEVO (ac) for 14 days. Furthermore, female breast cancer-bearing (BC) mice were divided into: Control (normal saline 0.9%, N/S 0.9%), DXR (18 mg/kg), LEVO, and DXR+LEVO (LEVO, 24 μg/kg-bolus) for 28 days. Echocardiography was performed in all protocols. To elucidate levosimendan's cardioprotective mechanism, primary cardiomyocytes were treated with doxorubicin or/and levosimendan and with N omega-nitro-L-arginine methyl ester (L-NAME), DT-2, and H-89 (eNOS, PKG, and PKA inhibitors, respectively); cardiomyocyte-toxicity was assessed. Single bolus administration of levosimendan abrogated DXR-induced cardiotoxicity and activated Akt/eNOS and cAMP-PKA/cGMP-PKG/PLN pathways but failed to exert cardioprotection in PLN-/- mice. Levosimendan's cardioprotection was also evident in the BC model. Finally, in vitro PKA inhibition abrogated levosimendan-mediated cardioprotection, indicating that its cardioprotection is cAMP-PKA dependent, while levosimendan preponderated over milrinone and dobutamine, by ameliorating calcium overload. CONCLUSION Single dose levosimendan prevented doxorubicin cardiotoxicity through a cAMP-PKA-PLN pathway, highlighting the role of inotropy in doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece.,Center of Cardiology, Cardiology 2, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.,Center of Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Aimilia Varela
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Evangelia Chavdoula
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Fragiska Sigala
- First Department of Surgery, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roxane Tenta
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Katerina Gioti
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Andreas Papapetropoulos
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece.,Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | | | - Dimitrios Farmakis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Athens University Hospital "Attikon", Athens, Greece.,School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Costantinos H Davos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Apostolos Klinakis
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Thomas Suter
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Dennis V Cokkinos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Efstathios K Iliodromitis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Athens University Hospital "Attikon", Athens, Greece
| | - Philip Wenzel
- Center of Cardiology, Cardiology 2, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.,Center of Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Ioanna Andreadou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece
| |
Collapse
|
72
|
Yao YT, He LX, Zhao YY. The effect of levosimendan on postoperative bleeding and blood transfusion in cardiac surgical patients: a PRISMA-compliant systematic review and meta-analysis. Perfusion 2020; 36:694-703. [PMID: 33070760 DOI: 10.1177/0267659120963909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Levosimendan (LEVO), is an inotropic agent which has been shown to be associated with better myocardial performance, and higher survival rate in cardiac surgical patients. However, preliminary clinical evidence suggested that LEVO increased the risk of post-operative bleeding in patients undergoing valve surgery. Currently, there has been no randomized controlled trials (RCTs) designed specifically on this issue. Therefore, we performed present systemic review and meta-analysis. METHODS Electronic databases were searched to identify all RCTs comparing LEVO with Control (placebo, blank, dobutamine, milrinone, etc). Primary outcomes include post-operative blood loss and re-operation for bleeding. Secondary outcomes included post-operative transfusion of red blood cells (RBC), fresh frozen plasma (FFP) and platelet concentrates (PC). For continuous variables, treatment effects were calculated as weighted mean difference (WMD) and 95% confidential interval (CI). For dichotomous data, treatment effects were calculated as odds ratio (OR) and 95% CI. RESULTS Search yielded 15 studies including 1,528 patients. Meta-analysis suggested that, LEVO administration was not associated with increased risk of reoperation for bleeding post-operatively (OR = 1.01; 95%CI: 0.57 to 1.79; p = 0.97) and more blood loss volume (WMD = 28.25; 95%CI: -19.21 to 75.72; p = 0.24). Meta-analysis also demonstrated that, LEVO administration did not increase post-operative transfusion requirement for RBC (rate: OR = 0.97; 95%CI: 0.72 to 1.30; p = 0.83 and volume: WMD = 0.34; 95%CI: -0.55 to 1.22; p = 0.46), FFP (volume: WMD = 0.00; 95%CI: -0.10 to 0.10; p = 1.00) and PC (rate: OR = 1.01; 95%CI: 0.41 to 2.50; p = 0.98 and volume: WMD = 0.00; 95%CI: -0.05 to 0.04; p = 0.95). CONCLUSION This meta-analysis suggested that, peri-operative administration of LEVO was not associated with increased risks of post-operative bleeding and blood transfusion requirement in cardiac surgical patients.
Collapse
Affiliation(s)
- Yun-Tai Yao
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Li-Xian He
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan-Yuan Zhao
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
73
|
Abstract
The large originator pharmaceutical companies need more and more new compounds for their molecule banks, because high throughput screening (HTS) is still a widely used method to find new hits in the course of the lead discovery. In the design and synthesis of a new compound library, important points are in focus nowadays: Lipinski’s rule of five (RO5); the high Fsp3 character; the use of bioisosteric heterocycles instead of aromatic rings. With said aim in mind, we have synthesized a small compound library of new spiro[cycloalkane-pyridazinones] with 36 members. The compounds with this new scaffold may be useful in various drug discovery projects.
Collapse
|
74
|
Aimo A, Rapezzi C, Arzilli C, Vergaro G, Emdin M. Safety and efficacy of levosimendan in patients with cardiac amyloidosis. Eur J Intern Med 2020; 80:114-116. [PMID: 32631802 DOI: 10.1016/j.ejim.2020.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; University Hospital of Pisa, Italy.
| | - Claudio Rapezzi
- Centro Cardiologico Universitario di Ferrara, University of Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | | | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
75
|
[Individualized use of levosimendan in cardiac surgery]. Anaesthesist 2020; 70:204-212. [PMID: 33001236 DOI: 10.1007/s00101-020-00860-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Levosimendan is a cardiac inotrope that augments myocardial contractility without increasing myocyte oxygen consumption. Additionally, levosimendan has been shown to exhibit anti-inflammatory, antioxidative, and other cardioprotective properties and is approved for treatment of heart failure. Recent studies indicated that these beneficial effects can be achieved with doses lower than the standard dose of 12.5 mg. Patients with preoperatively diagnosed left ventricular ejection fraction (LVEF) ≤40% received 1.25 mg levosimendan after induction of anesthesia. After surgery, administration of low-dose levosimendan was repeated until cardiovascular stability was achieved. OBJECTIVE This study aimed to evaluate if pharmacological preconditioning with 1.25 mg levosimendan in patients with LVEF ≤40% altered the postoperative need for inotropic agents, the incidence of newly occurring atrial fibrillation, renal replacement therapy, mechanical circulatory support and 30-day mortality. The cumulative dosage of levosimendan was recorded to assess the required dosage in the context of individualized treatment. MATERIAL AND METHODS This retrospective study included patients with preoperatively diagnosed LVEF ≤40% who underwent cardiac surgery at this institution between January 2015 and December 2018 and who received 1.25 mg levosimendan after induction of anesthesia to prevent postoperative low cardiac output syndrome. Based on echocardiography results, invasive hemodynamic monitoring, and central venous or mixed venous oxygen saturation and lactate clearance, repetitive doses of levosimendan in 1.25 mg increments could be postoperatively administered until cardiovascular stability was achieved. The results were compared to the current literature. RESULTS We identified 183 patients with LVEF <40% who received pharmacological preconditioning with 1.25 mg levosimendan. Maximum doses of epinephrine, incidence of atrial fibrillation, need for renal replacement therapy and 30-day mortality were found to be below the published rates of comparable patient collectives. In 73.2% of patients, a cumulative dosage of 5 mg levosimendan or less was considered sufficient. CONCLUSION The presented concept of pharmacological preconditioning with 1.25 mg levosimendan followed by individualized additional dosing in cardiac surgery patients with preoperative LVEF ≤40% suggests that this concept is safe, with possible advantages regarding the need of inotropic agents, renal replacement therapy, and 30-day mortality, compared to the current literature. Individualized treatment with levosimendan to support hemodynamics and a timely reduction of inotropic agents needs further confirmation in randomized trials.
Collapse
|
76
|
Hemodynamic effects of ivabradine use in combination with intravenous inotropic therapy in advanced heart failure. Heart Fail Rev 2020; 26:355-361. [PMID: 32997214 DOI: 10.1007/s10741-020-10029-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
Intravenous inotropic therapy can be used in patients with advanced heart failure, as palliative therapy or as a bridge to cardiac transplantation or mechanical circulatory support, as well as in cardiogenic shock. Their use is limited to increasing cardiac output in low cardiac output states and reducing ventricular filling pressures to alleviate patient symptoms and improve functional class. Many advanced heart failure patients have sinus tachycardia as a compensatory mechanism to maintain cardiac output. However, excessive sinus tachycardia caused by intravenous inotropes can increase myocardial oxygen consumption, decrease coronary perfusion, and at extreme heart rates decrease ventricular filling and stroke volume. The limited available hemodynamic studies support the hypothesis that adding ivabradine, a rate control agent without negative inotropic effect, may blunt inotrope-induced tachycardia and its associated deleterious effects, while optimizing cardiac output by increasing stroke volume. This review analyzes the intriguing pathophysiology of combined intravenous inotropes and ivabradine to optimize the hemodynamic profile of patients in advanced heart failure. Graphical abstract Illustration of the beneficial and deleterious hemodynamic effects of intravenous inotropes in advanced heart failure, and the positive effects of adding ivabradine.
Collapse
|
77
|
Potential of the Cardiovascular Drug Levosimendan in the Management of Amyotrophic Lateral Sclerosis: An Overview of a Working Hypothesis. J Cardiovasc Pharmacol 2020; 74:389-399. [PMID: 31730560 DOI: 10.1097/fjc.0000000000000728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Levosimendan is a calcium sensitizer that promotes myocyte contractility through its calcium-dependent interaction with cardiac troponin C. Administered intravenously, it has been used for nearly 2 decades to treat acute and advanced heart failure and to support the heart function in various therapy settings characterized by low cardiac output. Effects of levosimendan on noncardiac muscle suggest a possible new application in the treatment of people with amyotrophic lateral sclerosis (ALS), a neuromuscular disorder characterized by progressive weakness, and eventual paralysis. Previous attempts to improve the muscle response in ALS patients and thereby maintain respiratory function and delay progression of disability have produced some mixed results. Continuing this line of investigation, levosimendan has been shown to enhance in vitro the contractility of the diaphragm muscle fibers of non-ALS patients and to improve in vivo diaphragm neuromuscular efficiency in healthy subjects. Possible positive effects on respiratory function in people with ALS were seen in an exploratory phase 2 study, and a phase 3 clinical trial is now underway to evaluate the potential benefit of an oral form of levosimendan on both respiratory and overall functions in patients with ALS. Here, we will review the various known pharmacologic effects of levosimendan, considering their relevance to people living with ALS.
Collapse
|
78
|
Chioncel O, Parissis J, Mebazaa A, Thiele H, Desch S, Bauersachs J, Harjola V, Antohi E, Arrigo M, Gal TB, Celutkiene J, Collins SP, DeBacker D, Iliescu VA, Jankowska E, Jaarsma T, Keramida K, Lainscak M, Lund LH, Lyon AR, Masip J, Metra M, Miro O, Mortara A, Mueller C, Mullens W, Nikolaou M, Piepoli M, Price S, Rosano G, Vieillard‐Baron A, Weinstein JM, Anker SD, Filippatos G, Ruschitzka F, Coats AJ, Seferovic P. Epidemiology, pathophysiology and contemporary management of cardiogenic shock – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2020; 22:1315-1341. [DOI: 10.1002/ejhf.1922] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’ Bucharest Romania
- University of Medicine Carol Davila Bucharest Romania
| | - John Parissis
- Heart Failure Unit, Department of Cardiology Attikon University Hospital Athens Greece
- National Kapodistrian University of Athens Medical School Athens Greece
| | - Alexandre Mebazaa
- University of Paris Diderot, Hôpitaux Universitaires Saint Louis Lariboisière, APHP Paris France
| | - Holger Thiele
- Department of Internal Medicine/Cardiology Heart Center Leipzig at University of Leipzig Leipzig Germany
- Heart Institute Leipzig Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology Heart Center Leipzig at University of Leipzig Leipzig Germany
- Heart Institute Leipzig Germany
| | - Johann Bauersachs
- Department of Cardiology & Angiology, Hannover Medical School Hannover Germany
| | - Veli‐Pekka Harjola
- Emergency Medicine University of Helsinki, Helsinki University Hospital Helsinki Finland
| | - Elena‐Laura Antohi
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’ Bucharest Romania
- University of Medicine Carol Davila Bucharest Romania
| | - Mattia Arrigo
- Department of Cardiology University Hospital Zurich Zurich Switzerland
| | - Tuvia B. Gal
- Department of Cardiology, Rabin Medical Center Petah Tiqwa Israel
- Sackler Faculty of Medicine, Tel Aviv University Tel Aviv Israel
| | - Jelena Celutkiene
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Medical Faculty of Vilnius University Vilnius Lithuania
| | - Sean P. Collins
- Department of Emergency Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Daniel DeBacker
- Department of Intensive Care CHIREC Hospitals, Université Libre de Bruxelles Brussels Belgium
| | - Vlad A. Iliescu
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’ Bucharest Romania
- University of Medicine Carol Davila Bucharest Romania
| | - Ewa Jankowska
- Department of Heart Disease Wroclaw Medical University, University Hospital, Center for Heart Disease Wroclaw Poland
| | - Tiny Jaarsma
- Department of Health, Medicine and Health Sciences Linköping University Linköping Sweden
- Julius Center University Medical Center Utrecht Utrecht The Netherlands
| | - Kalliopi Keramida
- National Kapodistrian University of Athens Medical School Athens Greece
- Department of Cardiology Attikon University Hospital Athens Greece
| | - Mitja Lainscak
- Division of Cardiology, General Hospital Murska Sobota Murska Sobota Slovenia
- Faculty of Medicine, University of Ljubljana Ljubljana Slovenia
| | - Lars H Lund
- Heart and Vascular Theme, Karolinska University Hospital Stockholm Sweden
- Department of Medicine Karolinska Institutet Stockholm Sweden
| | - Alexander R. Lyon
- Imperial College London National Heart & Lung Institute London UK
- Royal Brompton Hospital London UK
| | - Josep Masip
- Consorci Sanitari Integral, University of Barcelona Barcelona Spain
- Hospital Sanitas CIMA Barcelona Spain
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - Oscar Miro
- Emergency Department Hospital Clinic, Institut d'Investigació Biomèdica August Pi iSunyer (IDIBAPS) Barcelona Spain
- University of Barcelona Barcelona Spain
| | - Andrea Mortara
- Department of Cardiology Policlinico di Monza Monza Italy
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB) University Hospital Basel Basel Switzerland
| | - Wilfried Mullens
- Department of Cardiology Ziekenhuis Oost Genk Belgium
- Biomedical Research Institute Faculty of Medicine and Life Sciences, Hasselt University Diepenbeek Belgium
| | - Maria Nikolaou
- Heart Failure Unit, Department of Cardiology Attikon University Hospital Athens Greece
| | - Massimo Piepoli
- Heart Failure Unit, Cardiology, Emergency Department Guglielmo da Saliceto Hospital, Piacenza, University of Parma; Institute of Life Sciences, Sant'Anna School of Advanced Studies Pisa Italy
| | - Susana Price
- Royal Brompton Hospital & Harefield NHS Foundation Trust London UK
| | - Giuseppe Rosano
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana Rome Italy
| | - Antoine Vieillard‐Baron
- INSERM U‐1018, CESP, Team 5 (EpReC, Renal and Cardiovascular Epidemiology), UVSQ Villejuif France
- University Hospital Ambroise Paré, AP‐, HP Boulogne‐Billancourt France
| | - Jean M. Weinstein
- Cardiology Department Soroka University Medical Centre Beer Sheva Israel
| | - Stefan D. Anker
- Department of Cardiology (CVK) Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site Berlin Berlin Germany
- Charité Universitätsmedizin Berlin Germany
| | - Gerasimos Filippatos
- University of Athens, Heart Failure Unit, Attikon University Hospital Athens Greece
- School of Medicine, University of Cyprus Nicosia Cyprus
| | - Frank Ruschitzka
- Department of Cardiology University Hospital Zurich Zurich Switzerland
| | - Andrew J.S. Coats
- Pharmacology, Centre of Clinical and Experimental Medicine IRCCS San Raffaele Pisana Rome Italy
| | - Petar Seferovic
- Faculty of Medicine University of Belgrade Belgrade, Serbia
- Serbian Academy of Sciences and Arts Belgrade Serbia
| |
Collapse
|
79
|
Poveda-Jaramillo R. Heart Dysfunction in Sepsis. J Cardiothorac Vasc Anesth 2020; 35:298-309. [PMID: 32807603 DOI: 10.1053/j.jvca.2020.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/11/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Cardiac involvement during sepsis frequently occurs. A series of molecules induces a set of changes at the cellular level that result in the malfunction of the myocardium. The understanding of these molecular alterations has simultaneously promoted the implementation of diagnostic strategies that are much more precise and allowed the advance of the therapeutics. The heart is a vital organ for survival. Its well-being ensures the adequate supply of essential elements for organs and tissues.
Collapse
|
80
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LM, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RH, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 years of SIMDAX in Clinical Use. Card Fail Rev 2020; 6:e19. [PMID: 32714567 PMCID: PMC7374352 DOI: 10.15420/cfr.2020.03] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Levosimendan was first approved for clinic use in 2000, when authorisation was granted by Swedish regulatory authorities for the haemodynamic stabilisation of patients with acutely decompensated chronic heart failure. In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitisation and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced heart failure, right ventricular failure and pulmonary hypertension, cardiac surgery, critical care and emergency medicine. Levosimendan is currently in active clinical evaluation in the US. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and non-cardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, UK and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute heart failure arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge Barcelona, Spain
| | - Marisa G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC) La Coruña, Spain
| | - Juan F Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre Madrid, Spain
| | - Istvan Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Alexander A Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme Brussels, Belgium
| | - Leo Ma Heunks
- Department of Intensive Care Medicine, Amsterdam UMC Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service Leeds, UK
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital Milan, Italy
| | - Julius-Gyula Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Hynek Riha
- Cardiothoracic Anaesthesiology and Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Institute for Clinical and Experimental Medicine Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal Schlieren, Switzerland
| | | | - Robert Hg Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité - University Medicine Berlin Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz Graz, Austria
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Centre, Department of Cardiology, University Clinical Centre Ljubljana, Slovenia
| | | |
Collapse
|
81
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LMA, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RHG, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 Years of SIMDAX in Clinical Use. J Cardiovasc Pharmacol 2020; 76:4-22. [PMID: 32639325 PMCID: PMC7340234 DOI: 10.1097/fjc.0000000000000859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Levosimendan was first approved for clinical use in 2000, when authorization was granted by Swedish regulatory authorities for the hemodynamic stabilization of patients with acutely decompensated chronic heart failure (HF). In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitization and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced HF, right ventricular failure, pulmonary hypertension, cardiac surgery, critical care, and emergency medicine. Levosimendan is currently in active clinical evaluation in the United States. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and noncardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom, and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute HF arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital, Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University, Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Marisa G. Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC), La Coruña, Spain
| | - Juan F. Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre, Madrid, Spain
| | - István Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alexander A. Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University, Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome, Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO, Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena, Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki, Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme, Brussels, Belgium
| | - Leo M. A. Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre, Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service, Leeds, United Kingdom
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma, Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital, Milan, Italy
| | - Julius G. Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology, Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hynek Riha
- Department of Anaesthesiology and Intensive Care Medicine, Cardiothoracic Anaesthesiology and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal, Schlieren, Switzerland
| | | | - Robert H. G. Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg, Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital, Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité—University Medicine Berlin, Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz, Graz, Austria
| | - Bojan Vrtovec
- Department of Cardiology, Advanced Heart Failure and Transplantation Centre, University Clinical Centre, Ljubljana, Slovenia
| | - Piero Pollesello
- Critical Care Proprietary Products, Orion Pharma, Espoo, Finland.
| |
Collapse
|
82
|
Für CS, Riszter G, Gerencsér J, Szigetvári Á, Dékány M, Hazai L, Keglevich G, Bölcskei H. Synthesis of Spiro[cycloalkane-pyridazinones] with High Fsp3 Character. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190710130119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
owadays, in course of the drug design and discovery much attention is
paid to the physicochemical parameters of a drug candidate, in addition to their biological activity.
Disadvantageous physicochemical parameters can hinder the success of a drug candidate.
Objective:
Lovering et al. introduced the Fsp3 character as a measure of carbon bond saturation,
which is related to the physicochemical paramethers of the drug. The pharmaceutical research focuses
on the synthesis of compounds with high Fsp3 character.
Methods:
To improve the physicochemical properties (clogP, solubility, more advantageous ADME
profile, etc.) of drug-candidate molecules one possibility is the replacement of all-carbon aromatic
systems with bioisoster heteroaromatic moieties, e.g. with one or two nitrogen atom containing systems,
such as pyridines and pyridazines, etc. The other option is to increase the Fsp3 character of the
drug candidates. Both of these aspects were considered in the design the new spiro[cycloalkanepyridazinones],
the synthesis of which is described in the present study.
Results:
Starting from 2-oxaspiro[4.5]decane-1,3-dione or 2-oxaspiro[4.4]nonane-1,3-dione, the
corresponding ketocarboxylic acids were obtained by Friedel-Crafts reaction with anisole or veratrole.
The ketocarboxylic acids were treated by hydrazine, methylhydrazine or phenylhydrazine to form
the pyridazinone ring. N-Alkylation reaction of the pyridazinones resulted in the formation of further
derivatives with high Fsp3 character.
Conclusion:
A small compound library was obtained incorporating compounds with high Fsp3 characters,
which predicts advantageous physico-chemical parameters (LogP, ClogP and TPSA) for potential
applications in medicinal chemistry.
Collapse
Affiliation(s)
- Csilla Sepsey Für
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Gergő Riszter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - János Gerencsér
- BioBlocks Hungary, Ltd. Budapest1045 Budapest, Berlini ut 47-49, Hungary
| | - Áron Szigetvári
- Gedeon Richter Plc. Budapest X., Gyomroi ut 19-21, Budapest 10. Pf.27. H-1475, Hungary
| | - Miklós Dékány
- Gedeon Richter Plc. Budapest X., Gyömrői út 19-21., Budapest 10. Pf.27. H-1475, Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Hedvig Bölcskei
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| |
Collapse
|
83
|
The Novel Inodilator ORM-3819 Relaxes Isolated Porcine Coronary Arteries: Role of Voltage-Gated Potassium Channel Activation. J Cardiovasc Pharmacol 2020; 74:218-224. [PMID: 31356552 DOI: 10.1097/fjc.0000000000000700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Relaxation and changes in the transmembrane potential of vascular smooth muscle induced by ORM-3819, a novel inodilating compound, were investigated in isolated porcine coronary arteries. Isometric tone was studied on arterial rings precontracted by KCl (30 mM), and resting membrane potential was investigated by a conventional microelectrode technique. ORM-3819 in the concentration range 0.38-230.6 µM evoked concentration-dependent relaxation with a maximum value of 58.1% and an effective concentration of the relaxing substance that caused 50% of maximum relaxation of 72.2 µM. The maximum hyperpolarization produced by ORM-3819 at a concentration of 120 µM (-2.6 ± 0.81 mV, N = 10) did not differ significantly from that induced by C-type natriuretic peptide (CNP), an endogenous hyperpolarizing mediator, at a concentration of 1.4 µM (-3.6 ± 0.38 mV, N = 17). The same effect elicited by the known inodilator levosimendan was less pronounced at a concentration of 3.7 µM: -1.82 ± 0.44 mV, N = 22 (P < 0.05 vs. CNP). The voltage-gated potassium channel inhibitor 4-aminopyridine, at a concentration of 5 mM, attenuated the relaxation induced by ORM-3819 at concentrations of 41.6 or 117.2 µM. These results suggest that ORM-3819 is a potent vasodilating agent able to relieve coronary artery vasospasm by causing hyperpolarization of vascular smooth muscle cells through processes involving activation of voltage-gated potassium channels.
Collapse
|
84
|
Cranley J, Hardiman A, Freeman LJ. Pulsed Levosimendan in advanced heart failure due to congenital heart disease: a case series. Eur Heart J Case Rep 2020; 4:1-6. [PMID: 32617515 PMCID: PMC7319860 DOI: 10.1093/ehjcr/ytaa080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 03/17/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Levosimendan is a non-adrenergic calcium-sensitizing agent with positive inotropic and vasodilatory effects. Its use in acute decompensation of heart failure is established. Good evidence now exists for repetitive infusions of Levosimendan to improve symptoms and reduce hospitalization in advanced heart failure (AdHF) populations. Its use in heart failure resulting from congenital heart disease is not yet commonplace. CASE SUMMARY We present three cases in which pulsed Levosimendan was used in the management of AdHF secondary to underlying congenital heart disease. There was symptomatic and biomarker evidence of improvement. DISCUSSION Intermittent Levosimendan may represent a valuable therapy to reduce hospitalization and improve quality of life in adults with congenital heart conditions.
Collapse
Affiliation(s)
- James Cranley
- Cardiology Department, Norfolk and Norwich University Hospital, Colney Lane, Norwich NR4 7UY, UK
| | - Antonia Hardiman
- Cardiology Department, Norfolk and Norwich University Hospital, Colney Lane, Norwich NR4 7UY, UK
| | - Leisa J Freeman
- Cardiology Department, Norfolk and Norwich University Hospital, Colney Lane, Norwich NR4 7UY, UK
| |
Collapse
|
85
|
Ge Z, Li A, McNamara J, Dos Remedios C, Lal S. Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: translation to human studies. Heart Fail Rev 2020; 24:743-758. [PMID: 31209771 DOI: 10.1007/s10741-019-09806-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart failure represents the end result of different pathophysiologic processes, which culminate in functional impairment. Regardless of its aetiology, the presentation of heart failure usually involves symptoms of pump failure and congestion, which forms the basis for clinical diagnosis. Pathophysiologic descriptions of heart failure with reduced ejection fraction (HFrEF) are being established. Most commonly, HFrEF is centred on a reactive model where a significant initial insult leads to reduced cardiac output, further triggering a cascade of maladaptive processes. Predisposing factors include myocardial injury of any cause, chronically abnormal loading due to hypertension, valvular disease, or tachyarrhythmias. The pathophysiologic processes behind remodelling in heart failure are complex and reflect systemic neurohormonal activation, peripheral vascular effects and localised changes affecting the cardiac substrate. These abnormalities have been the subject of intense research. Much of the translational successes in HFrEF have come from targeting neurohormonal responses to reduced cardiac output, with blockade of the renin-angiotensin-aldosterone system (RAAS) and beta-adrenergic blockade being particularly fruitful. However, mortality and morbidity associated with heart failure remains high. Although systemic neurohormonal blockade slows disease progression, localised ventricular remodelling still adversely affects contractile function. Novel therapy targeted at improving cardiac contractile mechanics in HFrEF hold the promise of alleviating heart failure at its source, yet so far none has found success. Nevertheless, there are increasing calls for a proximal, 'cardiocentric' approach to therapy. In this review, we examine HFrEF therapy aimed at improving cardiac function with a focus on recent trials and emerging targets.
Collapse
Affiliation(s)
- Zijun Ge
- Sydney Medical School, University of Sydney, Camperdown, Australia
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Amy Li
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
- Department of Pharmacy and Biomedical Science, La Trobe University, Melbourne, Australia
| | - James McNamara
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Cris Dos Remedios
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Sean Lal
- Sydney Medical School, University of Sydney, Camperdown, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
- Cardiac Research Laboratory, Discipline of Anatomy and Histology, University of Sydney, Anderson Stuart Building (F13), Camperdown, NSW, 2006, Australia.
| |
Collapse
|
86
|
Sala V, Della Sala A, Hirsch E, Ghigo A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxid Redox Signal 2020; 32:1098-1114. [PMID: 31989842 DOI: 10.1089/ars.2020.8019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: The cardiac side effects of hematological treatments are a major issue of the growing population of cancer survivors, often affecting patient survival even more than the tumor for which the treatment was initially prescribed. Among the most cardiotoxic drugs are anthracyclines (ANTs), highly potent antitumor agents, which still represent a mainstay in the treatment of hematological and solid tumors. Unfortunately, diagnosis, prevention, and treatment of cardiotoxicity are still unmet clinical needs, which call for a better understanding of the molecular mechanism behind the pathology. Recent Advances: This review article will discuss recent findings on the pathomechanisms underlying the cardiotoxicity of ANTs, spanning from DNA and mitochondrial damage to calcium homeostasis, autophagy, and apoptosis. Special emphasis will be given to the role of reactive oxygen species and their interplay with major signaling pathways. Critical Issues: Although new promising therapeutic targets and new drugs have started to be identified, their efficacy has been mainly proven in preclinical studies and requires clinical validation. Future Directions: Future studies are awaited to confirm the relevance of recently uncovered targets, as well as to identify new druggable pathways, in more clinically relevant models, including, for example, human induced pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
87
|
Abstract
PURPOSE Small and big conductance Ca2+-sensitive potassium (KCa) channels are involved in cardioprotective measures aiming at reducing myocardial reperfusion injury. For levosimendan, infarct size-reducing effects were shown. Whether activation of these channels is involved in levosimendan-induced postconditioning is unknown. We hypothesized that levosimendan exerts a concentration-dependent cardioprotective effect and that both types of Ca2+-sensitive potassium channels are involved. METHODS In a prospective blinded experimental laboratory investigation, hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. At the onset of reperfusion, hearts were perfused with various concentrations of levosimendan (0.03-1 μM) in order to determine a concentration-response relationship. To elucidate the involvement of KCa-channels for the observed cardioprotection, in the second set of experiments, 0.3 μM levosimendan was administered in combination with the subtype-specific KCa-channel inhibitors paxilline (1 μM, big KCa-channel) and NS8593 (0.1 μM, small KCa-channel) respectively. Infarct size was determined by tetrazolium chloride (TTC) staining. RESULTS Infarct size in controls was 60 ± 7% and 59 ± 6% respectively. Levosimendan at a concentration of 0.3 μM reduced infarct size to 30 ± 5% (P < 0.0001 vs. control). Higher concentrations of levosimendan did not induce a stronger effect. Paxilline but not NS8593 completely abolished levosimendan-induced cardioprotection while both substances alone had no effect on infarct size. CONCLUSIONS Cardioprotection by levosimendan-induced postconditioning shows a binary phenomenon, either ineffective or with maximal effect. The cardioprotective effect requires activation of big but not small KCa channels.
Collapse
|
88
|
Guarracino F, Zima E, Pollesello P, Masip J. Short-term treatments for acute cardiac care: inotropes and inodilators. Eur Heart J Suppl 2020; 22:D3-D11. [PMID: 32431568 PMCID: PMC7225903 DOI: 10.1093/eurheartj/suaa090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute heart failure (AHF) continues to be a substantial cause of illness and death, with in-hospital and 3-month mortality rates of 5% and 10%, respectively, and 6-month re-admission rates in excess of 50% in a range of clinical trials and registry studies; the European Society of Cardiology (ESC) Heart Failure Long-Term Registry recorded a 1-year death or rehospitalization rate of 36%. As regards the short-term treatment of AHF patients, evidence was collected in the ESC Heart Failure Long-Term Registry that intravenous (i.v.) treatments are administered heterogeneously in the critical phase, with limited reference to guideline recommendations. Moreover, recent decades have been characterized by a prolonged lack of successful innovation in this field, with a plethora of clinical trials generating neutral or inconclusive findings on long-term mortality effects from a multiplicity of short-term interventions in AHF. One of the few exceptions has been the calcium sensitizer and inodilator levosimendan, introduced 20 years ago for the treatment of acutely decompensated chronic heart failure. In the present review, we will focus on the utility of this agent in the wider context of i.v. inotropic and inodilating therapies for AHF and related pathologies.
Collapse
Affiliation(s)
- Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Endre Zima
- Cardiac Intensive Care, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Piero Pollesello
- Critical Care Proprietary Products, CO, Orion Pharma, PO Box 65, FIN-02101 Espoo, Finland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Barcelona, Spain
| |
Collapse
|
89
|
Rysz S, Lundberg J, Nordberg P, Eriksson H, Wieslander B, Lundin M, Fyrdahl A, Pernow J, Ugander M, Djärv T, Jonsson Fagerlund M. The effect of levosimendan on survival and cardiac performance in an ischemic cardiac arrest model - A blinded randomized placebo-controlled study in swine. Resuscitation 2020; 150:113-120. [PMID: 32234367 DOI: 10.1016/j.resuscitation.2020.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Survival after out-of-hospital cardiac arrest remains poor. Levosimendan could be a new intervention in this setting. Therefore, we conducted a blinded, placebo controlled randomized study investigating the effects of levosimendan on survival and cardiac performance in an ischemic cardiac arrest model in swine. METHODS Twenty-four anesthetised swines underwent experimentally-induced acute myocardial infarction and ventricular fibrillation. At the start of CPR, a bolus dose of levosimendan (12 μg kg-1) or placebo was given followed by a 24-h infusion (0.2 μg kg-1 min-1) after return of spontaneously circulation. Animals were evaluated by risk of death, post-resuscitation hemodynamics and infarction size by magnetic resonance imaging (MRI) up to 32 h post arrest. RESULTS Spontaneous circulation was restored in all (12/12) animals in the levosimendan group compared to two thirds (8/12) in the placebo group (P = 0.09). Protocol survival was higher for the levosimendan group (P = 0.02) with an estimated 88% lower risk of death compared to placebo (hazard ratio [95% confidence interval] 0.12 [0.01-0.96], P = 0.046). Cardiac output (CO) recovered 40% faster during the first hour of the intensive care period for the levosimendan group (difference 0.13 [0.01-0.26] L min-1P = 0.04). The placebo group required higher inotropic support during the intensive care period which masked an even bigger recovery in CO in the levosimendan group (58%). The MRI showed no difference in myocardial scar size or in myocardial area at risk. CONCLUSIONS Levosimendan given intra-arrest and during the first 24-h of post-resuscitation care improved survival and cardiac performance in this ischemic cardiac arrest model. Institutional Protocol Number; KERIC 5.2.18-14933.
Collapse
Affiliation(s)
- Susanne Rysz
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Nordberg
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helen Eriksson
- Stockholm University Demography Unit, Department of Sociology, Stockholm University, Sweden
| | - Björn Wieslander
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Magnus Lundin
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Alexander Fyrdahl
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Theme, Karolinska University Hospital, Sweden
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden; Kolling Institute, Royal North Shore Hospital, and Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Therese Djärv
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Function Emergency Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| |
Collapse
|
90
|
Yan SB, Wang XY, Shang GK, Wang ZH, Deng QM, Song JW, Sai WW, Song M, Zhong M, Zhang W. Impact of Perioperative Levosimendan Administration on Risk of Bleeding After Cardiac Surgery: A Meta-analysis of Randomized Controlled Trials. Am J Cardiovasc Drugs 2020; 20:149-160. [PMID: 31523760 DOI: 10.1007/s40256-019-00372-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Levosimendan, a calcium sensitizer and potassium channel opener, has been demonstrated to improve myocardial function without increasing oxygen consumption and to show protective effects in other organs. Recently, a prospective, randomized controlled trial (RCT) revealed an association between levosimendan use and a possible increased risk of bleeding postoperatively. Levosimendan's anti-platelet effects have been shown in in vitro studies. Current studies do not provide sufficient data to support a relation between perioperative levosimendan administration and increased bleeding risk. PURPOSE Our goal was to investigate the relation between perioperative levosimendan administration and increased bleeding risk using a meta-analysis study design. METHODS The PubMed, Ovid, EMBASE and Cochrane Library databases were searched for relevant RCTs before July 1, 2019. The outcome parameters included reoperation secondary to increased bleeding in the postoperative period, the amount of postoperative recorded blood loss, and the need for transfusion of packed red blood cells (RBCs) and other blood products. RESULTS A total of 1160 patients in nine RCTs (576 in the levosimendan group and 584 in the control group) were included according to our inclusion criteria. Analysis showed that perioperative levosimendan administration neither increased the rate of reoperation secondary to bleeding nor increased the amount of postoperative chest tube drainage when compared with the control group. In terms of blood product transfusion, levosimendan did not influence the requirement for RBC transfusion, platelet transfusion nor fresh frozen plasma (FFP) transfusion. Levosimendan also did not shorten or prolong the aortic cross-clamp time or the cardiopulmonary bypass time. CONCLUSION The analyzed parameters, including reoperations due to bleeding, postoperative chest drainage and the requirement for blood products, revealed that levosimendan did not increase postoperative bleeding risk. More studies with a larger sample size are needed to address a more reliable conclusion due to study limitations.
Collapse
Affiliation(s)
- Sen-Bo Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China
| | - Xiao-Yan Wang
- Department of Pharmacy, Qilu Children's Hospital of Shandong University, Children's Hospital of Jinan, Jinan, Shandong, China
| | - Guo-Kai Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China
| | - Zhi-Hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, Shandong, China
| | - Qi-Ming Deng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China
| | - Wen-Wen Sai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012, China.
| |
Collapse
|
91
|
Sparrow AJ, Sievert K, Patel S, Chang YF, Broyles CN, Brook FA, Watkins H, Geeves MA, Redwood CS, Robinson P, Daniels MJ. Measurement of Myofilament-Localized Calcium Dynamics in Adult Cardiomyocytes and the Effect of Hypertrophic Cardiomyopathy Mutations. Circ Res 2020; 124:1228-1239. [PMID: 30732532 PMCID: PMC6485313 DOI: 10.1161/circresaha.118.314600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Subcellular Ca2+ indicators have yet to be developed for the myofilament where disease mutation or small molecules may alter contractility through myofilament Ca2+ sensitivity. Here, we develop and characterize genetically encoded Ca2+ indicators restricted to the myofilament to directly visualize Ca2+ changes in the sarcomere. Objective: To produce and validate myofilament-restricted Ca2+ imaging probes in an adenoviral transduction adult cardiomyocyte model using drugs that alter myofilament function (MYK-461, omecamtiv mecarbil, and levosimendan) or following cotransduction of 2 established hypertrophic cardiomyopathy disease-causing mutants (cTnT [Troponin T] R92Q and cTnI [Troponin I] R145G) that alter myofilament Ca2+ handling. Methods and Results: When expressed in adult ventricular cardiomyocytes RGECO-TnT (Troponin T)/TnI (Troponin I) sensors localize correctly to the sarcomere without contractile impairment. Both sensors report cyclical changes in fluorescence in paced cardiomyocytes with reduced Ca2+ on and increased Ca2+ off rates compared with unconjugated RGECO. RGECO-TnT/TnI revealed changes to localized Ca2+ handling conferred by MYK-461 and levosimendan, including an increase in Ca2+ binding rates with both levosimendan and MYK-461 not detected by an unrestricted protein sensor. Coadenoviral transduction of RGECO-TnT/TnI with hypertrophic cardiomyopathy causing thin filament mutants showed that the mutations increase myofilament [Ca2+] in systole, lengthen time to peak systolic [Ca2+], and delay [Ca2+] release. This contrasts with the effect of the same mutations on cytoplasmic Ca2+, when measured using unrestricted RGECO where changes to peak systolic Ca2+ are inconsistent between the 2 mutations. These data contrast with previous findings using chemical dyes that show no alteration of [Ca2+] transient amplitude or time to peak Ca2+. Conclusions: RGECO-TnT/TnI are functionally equivalent. They visualize Ca2+ within the myofilament and reveal unrecognized aspects of small molecule and disease-associated mutations in living cells.
Collapse
Affiliation(s)
- Alexander J Sparrow
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Kolja Sievert
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Suketu Patel
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Yu-Fen Chang
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Connor N Broyles
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Frances A Brook
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Hugh Watkins
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,Department of Cardiology, Oxford University NHS Hospitals Trust, United Kingdom (H.W., M.J.D.)
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, United Kingdom (M.A.G.)
| | - Charles S Redwood
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Paul Robinson
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Matthew J Daniels
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Regenerative Medicine (M.J.D.), University of Oxford, United Kingdom.,Department of Cardiology, Oxford University NHS Hospitals Trust, United Kingdom (H.W., M.J.D.).,Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan (M.J.D.)
| |
Collapse
|
92
|
Abstract
Levosimendan is an inodilator that promotes cardiac contractility primarily through calcium sensitization of cardiac troponin C and vasodilatation via opening of adenosine triphosphate–sensitive potassium (KATP) channels in vascular smooth muscle cells; the drug also exerts organ-protective effects through a similar effect on mitochondrial KATP channels. This pharmacological profile identifies levosimendan as a drug that may have applications in a wide range of critical illness situations encountered in intensive care unit medicine: hemodynamic support in cardiogenic or septic shock; weaning from mechanical ventilation or from extracorporeal membrane oxygenation; and in the context of cardiorenal syndrome. This review, authored by experts from 9 European countries (Austria, Belgium, Czech republic, Finland, France, Germany, Italy, Sweden, and Switzerland), examines the clinical and experimental data for levosimendan in these situations and concludes that, in most instances, the evidence is encouraging, which is not the case with other cardioactive and vasoactive drugs routinely used in the intensive care unit. The size of the available studies is, however, limited and the data are in need of verification in larger controlled trials. Some proposals are offered for the aims and designs of these additional studies.
Collapse
|
93
|
Cardiac adaptation in hibernating, free-ranging Scandinavian Brown Bears (Ursus arctos). Sci Rep 2020; 10:247. [PMID: 31937799 PMCID: PMC6959366 DOI: 10.1038/s41598-019-57126-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 11/23/2022] Open
Abstract
During six months of annual hibernation, the brown bear undergoes unique physiological changes to adapt to decreased metabolic rate. We compared cardiac structural and functional measures of hibernating and active bears using comprehensive echocardiography. We performed echocardiography on 13 subadult free-ranging, anaesthetised Scandinavian brown bears (Ursus arctos) during late hibernation and in early summer. Mean heart rate was 26 beats per minute (standard deviation (SD): 8) during hibernation vs 71 (SD: 14) during active state. All left ventricular (LV) systolic and diastolic measures were decreased during hibernation: mean ejection fraction: 44.2% (SD: 6.0) active state vs 34.0 (SD: 8.1) hibernation, P = 0.001; global longitudinal strain: −11.2% (SD: 2.0) vs −8.8 (SD: 3.3), P = 0.03; global longitudinal strain rate: −0.82 (SD: 0.15) vs −0.41 (SD: 0.18), P < 0.001; septal e’: 9.8 cm/s (SD: 1.8) vs 5.2 (SD: 2.7), P < 0.001. In general, measures of total myocardial motion (ejection fraction and global longitudinal strain) were decreased to a lesser extent than measures of myocardial velocities. In the hibernating brown bear, cardiac adaptation included decreased functional measures, primarily measures of myocardial velocities, but was not associated with cardiac atrophy. Understanding the mechanisms of these adaptations could provide pathophysiological insight of human pathological conditions such as heart failure.
Collapse
|
94
|
Terbeck S, Heinisch PP, Lenz A, Friess JO, Guensch D, Carrel T, Eberle B, Erdoes G. Levosimendan and systemic vascular resistance in cardiac surgery patients: a systematic review and meta-analysis. Sci Rep 2019; 9:20343. [PMID: 31889123 PMCID: PMC6937247 DOI: 10.1038/s41598-019-56831-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractLevosimendan is a potent non-adrenergic inodilator agent. The net effect of hemodynamic changes may result in a hyperdynamic state with low systemic vascular resistance. We conducted a systematic review and meta-analysis assessing hemodynamics in cardiac surgery patients treated with levosimendan. English-language literature was searched systematically from 2006 until October 2018, including randomized controlled trials and case-matched or retrospective studies providing at least two sequentially measured hemodynamic variables in adult patients who underwent cardiac surgery with cardiopulmonary bypass and were treated with levosimendan in comparison to alternative drugs or devices. Cardiac index significantly increased in the levosimendan group by 0.74 (0.24 to 1.23) [standardized mean difference (95% CI); p = 0.003] from baseline to postoperative day (POD) 1, and by 0.75 (0.25 to 1.25; p = 0.003) from baseline to POD 7, when corrected for the standardized mean difference at baseline by a multivariate mixed effects meta-analysis model. With this correction for baseline differences, other hemodynamic variables including systemic vascular resistance did not significantly differ until POD 1 [−0.17 (−0.64 to 0.30), p = 0.48] and POD 7 [−0.13 (−0.61 to 0.34), p = 0.58] between the levosimendan and the comparator group. Levosimendan increases cardiac index in patients undergoing cardiac surgery. Although levosimendan has inodilator properties, this meta-analysis finds no clinical evidence that levosimendan produces vasopressor-resistant vasoplegic syndrome.
Collapse
|
95
|
Bistola V, Arfaras-Melainis A, Polyzogopoulou E, Ikonomidis I, Parissis J. Inotropes in Acute Heart Failure: From Guidelines to Practical Use: Therapeutic Options and Clinical Practice. Card Fail Rev 2019; 5:133-139. [PMID: 31768269 PMCID: PMC6848944 DOI: 10.15420/cfr.2019.11.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Inotropes are pharmacological agents that are indicated for the treatment of patients presenting with acute heart failure (AHF) with concomitant hypoperfusion due to decreased cardiac output. They are usually administered for a short period during the initial management of AHF until haemodynamic stabilisation and restoration of peripheral perfusion occur. They can be used for longer periods to support patients as a bridge to a more definite treatment, such as transplant of left ventricular assist devices, or as part of a palliative care regimen. The currently available inotropic agents in clinical practice fall into three main categories: beta-agonists, phosphodiesterase III inhibitors and calcium sensitisers. However, due to the well-documented potential for adverse events and their association with increased long-term mortality, physicians should be aware of the indications and dosing strategies suitable for different types of patients. Novel inotropes that use alternative intracellular pathways are under investigation, in an effort to minimise the drawbacks that conventional inotropes exhibit.
Collapse
Affiliation(s)
- Vasiliki Bistola
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Angelos Arfaras-Melainis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Eftihia Polyzogopoulou
- Emergency Medicine Department, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Ignatios Ikonomidis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| |
Collapse
|
96
|
Agostoni P, Farmakis DT, García-Pinilla JM, Harjola VP, Karason K, von Lewinski D, Parissis J, Pollesello P, Pölzl G, Recio-Mayoral A, Reinecke A, Yerly P, Zima E. Haemodynamic Balance in Acute and Advanced Heart Failure: An Expert Perspective on the Role of Levosimendan. Card Fail Rev 2019; 5:155-161. [PMID: 31768272 PMCID: PMC6848932 DOI: 10.15420/cfr.2019.01.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022] Open
Abstract
Acute and advanced heart failure are associated with substantial adverse short- and longer-term prognosis. Both conditions necessitate complex treatment choices to restore haemodynamic stability and organ perfusion, relieve congestion, improve symptoms and allow the patient to leave the hospital and achieve an adequate quality of life. Among the available intravenous vasoactive therapies, inotropes constitute an option when an increase in cardiac contractility is needed to reverse a low output state. Within the inotrope category, levosimendan is well suited to the needs of both sets of patients since, in contrast to conventional adrenergic inotropes, it has not been linked in clinical trials or wider clinical usage with increased mortality risk and retains its efficacy in the presence of beta-adrenergic receptor blockade; it is further believed to possess beneficial renal effects. The overall haemodynamic profile and clinical tolerability of levosimendan, combined with its extended duration of action, have encouraged its intermittent use in patients with advanced heart failure. This paper summarises the key messages derived from a series of 12 tutorials held at the Heart Failure 2019 congress organised in Athens, Greece, by the Heart Failure Association of the European Society of Cardiology.
Collapse
Affiliation(s)
- Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS Milan, Italy.,Department of Clinical Sciences and Community Health - Cardiovascular Section, University of Milan Milan, Italy
| | - Dimitrios T Farmakis
- University of Cyprus Medical School Nicosia, Cyprus.,Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Jose M García-Pinilla
- Heart Failure and Familial Cardiopathies Unit, Cardiology Department, Hospital Universitario Virgen de la Victoria, IBIMA Málaga, Spain
| | - Veli-Pekka Harjola
- Emergency Medicine, University of Helsinki, Helsinki University Hospital Helsinki, Finland
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University Graz, Austria
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece.,Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | | | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology Medical University of Innsbruck Austria
| | | | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätskllinikum Schleswig-Holstein Kiel, Germany
| | - Patrik Yerly
- Service de Cardiologie, CHUV, Université de Lausanne Lausanne, Switzerland
| | - Endre Zima
- Heart and Vascular Center, Semmelweis University Budapest, Hungary
| |
Collapse
|
97
|
Pollesello P, Ben Gal T, Bettex D, Cerny V, Comin-Colet J, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Harjola VP, Herpain A, Heringlake M, Heunks L, Husebye T, Ivancan V, Karason K, Kaul S, Kubica J, Mebazaa A, Mølgaard H, Parissis J, Parkhomenko A, Põder P, Pölzl G, Vrtovec B, Yilmaz MB, Papp Z. Short-Term Therapies for Treatment of Acute and Advanced Heart Failure-Why so Few Drugs Available in Clinical Use, Why Even Fewer in the Pipeline? J Clin Med 2019; 8:jcm8111834. [PMID: 31683969 PMCID: PMC6912236 DOI: 10.3390/jcm8111834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
Both acute and advanced heart failure are an increasing threat in term of survival, quality of life and socio-economical burdens. Paradoxically, the use of successful treatments for chronic heart failure can prolong life but-per definition-causes the rise in age of patients experiencing acute decompensations, since nothing at the moment helps avoiding an acute or final stage in the elderly population. To complicate the picture, acute heart failure syndromes are a collection of symptoms, signs and markers, with different aetiologies and different courses, also due to overlapping morbidities and to the plethora of chronic medications. The palette of cardio- and vasoactive drugs used in the hospitalization phase to stabilize the patient's hemodynamic is scarce and even scarcer is the evidence for the agents commonly used in the practice (e.g. catecholamines). The pipeline in this field is poor and the clinical development chronically unsuccessful. Recent set backs in expected clinical trials for new agents in acute heart failure (AHF) (omecamtiv, serelaxine, ularitide) left a field desolately empty, where only few drugs have been approved for clinical use, for example, levosimendan and nesiritide. In this consensus opinion paper, experts from 26 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Israel, Italy, The Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, Turkey, U.K. and Ukraine) analyse the situation in details also by help of artificial intelligence applied to bibliographic searches, try to distil some lesson-learned to avoid that future projects would make the same mistakes as in the past and recommend how to lead a successful development project in this field in dire need of new agents.
Collapse
Affiliation(s)
| | - Tuvia Ben Gal
- Heart Failure Unit, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492d, Israel.
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Vladimir Cerny
- Department of Anesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University, 400 96 Usti nad Labem, Czech Republic.
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge, 08015 Barcelona, Spain.
| | - Alexandr A Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University, 119146 Moscow, Russia.
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus, 1678 Nicosia, Cyprus.
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, 'La Sapienza' University of Rome, 00185 Rome, Italy.
| | - Cândida Fonseca
- Heart Failure Clinic of S. Francisco Xavier Hospital, CHLO, 1449-005 Lisbon, Portugal.
| | - Veli-Pekka Harjola
- Emergency Medicine, Department of Emergency Medicine and Services, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland.
| | - Antoine Herpain
- Department of Intensive Care, Experimental Laboratory of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Matthias Heringlake
- Department of Anesthesiology and Intensive Care Medicine, University of Lübeck, 23562 Lübeck, Germany.
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, location VUmc 081 HV, The Netherlands.
| | - Trygve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal, 0372 Oslo, Norway.
| | - Visnja Ivancan
- Department of Anesthesiology, Reanimatology and Intensive Care, University Hospital Centre, 10000 Zagreb, Croatia.
| | - Kristian Karason
- Transplant Institute, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service, Leeds LS2 9JT, UK.
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, Université de Paris and INSERM UMR-S 942-MASCOT, 75010 Paris, France.
| | - Henning Mølgaard
- Department of Cardiology, Århus University Hospital, 8200 Århus, Denmark.
| | - John Parissis
- Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece.
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Center M.D. Strazhesko Institute of Cardiology, 02000 Kiev, Ukraine.
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Center, 13419 Tallinn, Estonia.
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia.
| | - Mehmet B Yilmaz
- Department of Cardiology, Dokuz Eylul University Faculty of Medicine, 35340 Izmir, Turkey.
| | - Zoltan Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 4001 Debrecen, Hungary.
| |
Collapse
|
98
|
Reddy GMK, Singamsetti JM, Kaliyaperumal M, Doddipalla R, Ivaturi R, Rumalla CS, Korupolu RB, Babu BK. Degradation studies of levosimendan isolation, identification, and structure confirmation of stress degradation products using LCMS, mass mediated Prep-HPLC, NMR, HRMS, SFC and FTIR. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1613429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- G. Mahesh Kumar Reddy
- Department of Medicinal Chemistry, GVK Biosciences Pvt. Ltd, Hyderabad, India
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, India
| | | | | | - Raju Doddipalla
- Department of Medicinal Chemistry, GVK Biosciences Pvt. Ltd, Hyderabad, India
| | - Ramu Ivaturi
- Department of Medicinal Chemistry, GVK Biosciences Pvt. Ltd, Hyderabad, India
| | | | - Raghu Babu Korupolu
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, India
| | - B. Kishore Babu
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, India
| |
Collapse
|
99
|
Belletti A, Landoni G, Lomivorotov VV, Oriani A, Ajello S. Adrenergic Downregulation in Critical Care: Molecular Mechanisms and Therapeutic Evidence. J Cardiothorac Vasc Anesth 2019; 34:1023-1041. [PMID: 31839459 DOI: 10.1053/j.jvca.2019.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Catecholamines remain the mainstay of therapy for acute cardiovascular dysfunction. However, adrenergic receptors quickly undergo desensitization and downregulation after prolonged stimulation. Moreover, prolonged exposure to high circulating catecholamines levels is associated with several adverse effects on different organ systems. Unfortunately, in critically ill patients, adrenergic downregulation translates into progressive reduction of cardiovascular response to exogenous catecholamine administration, leading to refractory shock. Accordingly, there has been a growing interest in recent years toward use of noncatecholaminergic inotropes and vasopressors. Several studies investigating a wide variety of catecholamine-sparing strategies (eg, levosimendan, vasopressin, β-blockers, steroids, and use of mechanical circulatory support) have been published recently. Use of these agents was associated with improvement in hemodynamics and decreased catecholamine use but without a clear beneficial effect on major clinical outcomes. Accordingly, additional research is needed to define the optimal management of catecholamine-resistant shock.
Collapse
Affiliation(s)
- Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Vladimir V Lomivorotov
- Department of Anesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Alessandro Oriani
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ajello
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
100
|
Roesthuis L, van der Hoeven H, Sinderby C, Frenzel T, Ottenheijm C, Brochard L, Doorduin J, Heunks L. Effects of levosimendan on respiratory muscle function in patients weaning from mechanical ventilation. Intensive Care Med 2019; 45:1372-1381. [PMID: 31576436 PMCID: PMC6773912 DOI: 10.1007/s00134-019-05767-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Respiratory muscle weakness frequently develops in critically ill patients and is associated with adverse outcome, including difficult weaning from mechanical ventilation. Today, no drug is approved to improve respiratory muscle function in these patients. Previously, we have shown that the calcium sensitizer levosimendan improves calcium sensitivity of human diaphragm muscle fibers in vitro and contractile efficiency of the diaphragm in healthy subjects. The main purpose of this study is to investigate the effects of levosimendan on diaphragm contractile efficiency in mechanically ventilated patients. METHODS In a double-blind randomized placebo-controlled trial, mechanically ventilated patients performed two 30-min continuous positive airway pressure (CPAP) trials with 5-h interval. After the first CPAP trial, study medication (levosimendan 0.2 µg/kg/min continuous infusion or placebo) was administered. During the CPAP trials, electrical activity of the diaphragm (EAdi), transdiaphragmatic pressure (Pdi), and flow were measured. Neuromechanical efficiency (primary outcome parameter) was calculated. RESULTS Thirty-nine patients were included in the study. Neuromechanical efficiency was not different during the CPAP trial after levosimendan administration compared to the CPAP trial before study medication. Tidal volume and minute ventilation were higher after levosimendan administration (11 and 21%, respectively), whereas EAdi and Pdi were higher in both groups in the CPAP trial after study medication compared to the CPAP trial before study medication. CONCLUSIONS Levosimendan does not improve diaphragm contractile efficiency.
Collapse
Affiliation(s)
- Lisanne Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christer Sinderby
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tim Frenzel
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, location VUmc, Postbox 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|