51
|
Lin Y, Wang X, Lenz L, Ndiaye O, Qin J, Wang X, Huang H, Jeuland MA, Zhang J. Dried Blood Spot Biomarkers of Oxidative Stress and Inflammation Associated with Blood Pressure in Rural Senegalese Women with Incident Hypertension. Antioxidants (Basel) 2021; 10:antiox10122026. [PMID: 34943129 PMCID: PMC8698702 DOI: 10.3390/antiox10122026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Blood biomarkers of oxidative stress and inflammation have been associated with increased risk of hypertension development; yet their application in sub-Saharan Africa has been limited due to the lack of blood collection facilities. In this study, we evaluated the usefulness of dried blood spots (DBS), a more feasible alternative to venous blood, in rural sub-Saharan residents. We recruited 342 women with incident hypertension from rural Senegal, and measured C-reactive protein (CRP) and malondialdehyde (MDA) in DBS and concurrent blood pressure (BP) at baseline and 1-year follow-up. Associations of DBS biomarkers with current levels of and 1-year changes in BP were examined after adjusting for demographic, medical, and socioeconomic covariates. DBS concentrations of MDA were significantly associated with concurrent systolic BP (SBP) (p < 0.05), while DBS baseline concentrations of CRP were associated with longitudinal changes in SBP between baseline and follow-up. Compared to participants with baseline CRP < 1 mg/L, those with CRP of 1–3 mg/L and 3–10 mg/L had 2.11 mmHg (95%CI: −2.79 to 7.02 mmHg) and 4.68 mmHg (95%CI: 0.01 to 9.36 mmHg) increases in SBP at follow-up, respectively. The results support the use of DBS biomarkers for hypertension prevention and control, especially in settings with limited clinical resources.
Collapse
Affiliation(s)
- Yan Lin
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
| | - Xiangtian Wang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
| | - Luciane Lenz
- RWI Leibniz Institute for Economic Research, 10115 Berlin, Germany; (L.L.); (M.A.J.)
| | - Ousmane Ndiaye
- Centre de Recherche pour le Développement Economique et Social (CRDES), Université Gaston-Berger, Saint-Louis, P.O. Box 234, Senegal;
| | - Jian Qin
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiaoli Wang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300387, China
| | - Hui Huang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Marc A. Jeuland
- RWI Leibniz Institute for Economic Research, 10115 Berlin, Germany; (L.L.); (M.A.J.)
- Sanford School of Public Policy and Duke Global Health Institute, Duke University, Durham, NC 27705, USA
| | - Junfeng Zhang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
- Correspondence:
| |
Collapse
|
52
|
Zhang S, Lu W, Wei Z, Zhang H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front Cardiovasc Med 2021; 8:736151. [PMID: 34778399 PMCID: PMC8581215 DOI: 10.3389/fcvm.2021.736151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and kills over 17 million people per year. In the recent decade, growing epidemiological evidence links air pollution and cardiac arrhythmias, suggesting a detrimental influence of air pollution on cardiac electrophysiological functionality. However, the proarrhythmic mechanisms underlying the air pollution-induced cardiac arrhythmias are not fully understood. The purpose of this work is to provide recent advances in air pollution-induced arrhythmias with a comprehensive review of the literature on the common air pollutants and arrhythmias. Six common air pollutants of widespread concern are discussed, namely particulate matter, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and ozone. The epidemiological and clinical reports in recent years are reviewed by pollutant type, and the recently identified mechanisms including both the general pathways and the direct influences of air pollutants on the cellular electrophysiology are summarized. Particularly, this review focuses on the impaired ion channel functionality underlying the air pollution-induced arrhythmias. Alterations of ionic currents directly by the air pollutants, as well as the alterations mediated by intracellular signaling or other more general pathways are reviewed in this work. Finally, areas for future research are suggested to address several remaining scientific questions.
Collapse
Affiliation(s)
- Shugang Zhang
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Weigang Lu
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zhiqiang Wei
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
53
|
Liu K, Cao H, Li B, Guo C, Zhao W, Han X, Zhang H, Wang Z, Tang N, Niu K, Pan L, He H, Cui Z, Sun J, Shan G, Zhang L. Long-term exposure to ambient nitrogen dioxide and ozone modifies systematic low-grade inflammation: The CHCN-BTH study. Int J Hyg Environ Health 2021; 239:113875. [PMID: 34757279 DOI: 10.1016/j.ijheh.2021.113875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
The potential effect of long-term exposure to ambient air pollutants on low-grade systematic inflammation has seldom been evaluated taking indoor air pollution and self-protection behaviors on smog days into account. A total of 24,346 participants at baseline were included to conduct a cross-sectional study. The annual (2016) average pollutant concentrations were assessed by air monitoring stations for PM2.5, PM10, SO2, NO2, O3 and CO. Associations between annual ambient air pollution and low-grade systematic inflammation (hsCRP>3 mg/L) were estimated by generalized linear mixed models. Stratification analysis was also performed based on demographic characteristics, health-related behaviors and disease status. Annual ambient NO2 and O3 were all associated with low-grade systematic inflammation in single-pollutant models after adjusting for age, sex, blood lipids, blood pressure, lifestyle risk factors, cooking fuel, heating fuel and habits during smog days (NO2 per 10 μg/m3: OR = 1.057, P = 0.018; O3 per 10 μg/m3: OR = 0.953, P = 0.012). The 2-year and 3-year ozone concentrations were consistently associated with lower systematic inflammation (2-year O3 per 10 μg/m3: OR = 0.959, P = 0.004; 3-year O3 per 10 μg/m3: OR = 0.961, P = 0.014). In two-pollutant models, the estimated effects of annual NO2 and O3 on low-grade systematic inflammation remained stable. The effect size of annual pollutants on inflammation increased in participants without air-purifier usage (NO2 per 10 μg/m3: OR = 1.079, P = 0.009; O3 per 10 μg/m3: OR = 0.925, P = 0.001), while the association was null in the air-purifier usage group. Thus, long-term exposure to ambient NO2 and O3 was associated with low-grade systemic inflammation, and the results were generally stable after sensitivity analysis. The usage of air purifiers on smog days can modify the association between gaseous pollutants and systematic inflammation.
Collapse
Affiliation(s)
- Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Wei Zhao
- Department of Chronic and Noncommunicable Disease Prevention and Control, Chaoyang District Center for Disease Prevention and Control, Beijing, China
| | - Xiaoyan Han
- Department of Chronic and Noncommunicable Disease Prevention and Control, Chaoyang District Center for Disease Prevention and Control, Beijing, China
| | - Han Zhang
- Health Management Center, Beijing Aerospace General Hospital, Beijing, China
| | - Zhengfang Wang
- Health Management Center, Beijing Aerospace General Hospital, Beijing, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Li Pan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Huijing He
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ze Cui
- Department of Chronic and Noncommunicable Disease Prevention and Control, Hebei Provincial Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Jixin Sun
- Department of Chronic and Noncommunicable Disease Prevention and Control, Hebei Provincial Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
54
|
Chen Y, Cao F, Xiao JP, Fang XY, Wang XR, Ding LH, Wang DG, Pan HF. Emerging role of air pollution in chronic kidney disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52610-52624. [PMID: 34448134 DOI: 10.1007/s11356-021-16031-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Chronic kidney disease (CKD), a global disease burden related to high rates of incidence and mortality, manifests as progressive and irretrievable nephron loss and decreased kidney regeneration capacity. Emerging studies have suggested that exposure to air pollution is closely relevant to increased risk of CKD, CKD progression and end-stage kidney disease (ESKD). Inhaled airborne particles may cause vascular injury, intraglomerular hypertension, or glomerulosclerosis through non-hemodynamic and hemodynamic factors with multiple complex interactions. The mechanisms linking air pollutants exposure to CKD include elevated blood pressure, worsening oxidative stress and inflammatory response, DNA damage and abnormal metabolic changes to aggravate kidney damage. In the present review, we will discuss the epidemiologic observations linking air pollutants exposure to the incidence and progression of CKD. Then, we elaborate the potential roles of several air pollutants including particulate matter and gaseous co-pollutants, environmental tobacco smoke, and gaseous heavy metals in its pathogenesis. Finally, this review outlines the latent effect of air pollution in ESKD patients undergoing dialysis or renal transplant, kidney cancer and other kidney diseases. The information obtained may be beneficial for further elucidating the pathogenesis of CKD and making proper preventive strategies for this disease.
Collapse
Affiliation(s)
- Yue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China
| | - Jian-Ping Xiao
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
55
|
The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol Ther 2021; 232:107996. [PMID: 34571110 PMCID: PMC8941724 DOI: 10.1016/j.pharmthera.2021.107996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Air pollution is associated with staggering levels of cardiovascular morbidity and mortality. Airborne particulate matter (PM), in particular, has been associated with a wide range of detrimental cardiovascular effects, including impaired vascular function, raised blood pressure, alterations in cardiac rhythm, blood clotting disorders, coronary artery disease, and stroke. Considerable headway has been made in elucidating the biological processes underlying these associations, revealing a labyrinth of multiple interacting mechanistic pathways. Several studies have used pharmacological agents to prevent or reverse the cardiovascular effects of PM; an approach that not only has the advantages of elucidating mechanisms, but also potentially revealing therapeutic agents that could benefit individuals that are especially susceptible to the effects of air pollution. This review gathers investigations with pharmacological agents, offering insight into the biology of how PM, and other air pollutants, may cause cardiovascular morbidity.
Collapse
|
56
|
Tang L, Shi S, Wang B, Liu L, Yang Y, Sun X, Ni Z, Wang X. Effect of urban air pollution on CRP and coagulation: a study on inpatients with acute exacerbation of chronic obstructive pulmonary disease. BMC Pulm Med 2021; 21:296. [PMID: 34537026 PMCID: PMC8449878 DOI: 10.1186/s12890-021-01650-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is an important event in the course of chronic obstructive pulmonary disease that negatively affects patients' quality of life and leads to higher socioeconomic costs. While previous studies have demonstrated a significant association between urban air pollution and hospitalization for AECOPD, there is a lack of research on the impact of particulate matter (PM) on inflammation and coagulation in AECOPD inpatients. Therefore, this study investigated the association of changes in coagulation function and C-reactive protein (CRP) with PM levels in the days preceding hospitalization. PATIENTS AND METHODS We reviewed the medical records of AECOPD patients admitted to Putuo Hospital, Shanghai University of Traditional Chinese Medicine, between March 2017 and September 2019. We analyzed the association of coagulation function and CRP level in AECOPD patients with PM levels in the days before hospitalization. Multivariate unconditional logistic regression analyses were used to evaluate the adjusted odds ratio (OR) and 95% confidence interval (CI) for the association of CRP data with hospitalization day. Kruskal-Wallis tests were used to evaluate mean aerodynamic diameter of ≥ 2.5 μm (PM2.5) exposure on the day before hospitalization; we assessed its association with changes in prothrombin time (PT) in AECOPD inpatients with different Global Initiative for Chronic Obstructive Lung Disease (GOLD) classes. RESULTS The peripheral blood PT of AECOPD patients with PM2.5 ≥ 25 mg/L on the day before hospitalization were lower than those of patients with PM2.5 < 25 mg/L (t = 2.052, p = 0.041). Patients with severe GOLD class exposed to greater than 25 mg/L of PM2.5on the day before hospitalization showed significant differences in PT (F = 9.683, p = 0.008). Peripheral blood CRP levels of AECOPD patients exposed to PM2.5 ≥ 25 mg/L and PM10 ≥ 50 mg/L on the day before hospitalization were higher than those of patients exposed to PM2.5 < 25 mg/L and PM10 < 50 mg/L (t = 2.008, p = 0.046; t = 2.637, p = 0.009). Exposure to < 25 mg/L of PM2.5 on the day before hospitalization was significantly associated with CRP levels (adjusted OR 1.91; 95% CI 1.101, 3.315; p = 0.024). CONCLUSION Exposure of patients with AECOPD to high PM levels on the day before hospitalization was associated with an increased CRP level and shortened PT. Moreover, PM2.5 had a greater effect on CRP level and PT than mean aerodynamic diameter of ≥ 10 μm (PM10). AECOPD patients with severe GOLD class were more sensitive to PM2.5-induced shortening of PT than those with other GOLD classes.
Collapse
Affiliation(s)
- Lingling Tang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Suofang Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Bohan Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Li Liu
- Department of Central Lab, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Ying Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Xianhong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Zhenhua Ni
- Department of Central Lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
57
|
Ku MS, Liu CY, Hsu CY, Chiu HM, Chen HH, Chan CC. Association of Ambient Fine Particulate Matter (PM 2.5) with Elevated Fecal Hemoglobin Concentration and Colorectal Carcinogenesis: A Population-Based Retrospective Cohort Study. Cancer Control 2021; 28:10732748211041232. [PMID: 34525876 PMCID: PMC8450689 DOI: 10.1177/10732748211041232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The roles of ambient fine particulate matter (PM2.5) in the prevention of colorectal cancer (CRC) have been scarcely highlighted as there is short of empirical evidence regarding the influences of PM2.5 on multistep carcinogenic processes of CRC. A retrospective cohort design with multistate outcomes was envisaged by linking monthly average PM2.5 concentrations at 22 city/county level with large-scale cohorts of cancer-screened population to study the influences of PM2.5 on short-term inflammatory process and multistep carcinogenic processes of CRC. Our study included a nationwide CRC screening cohort of 4,628,995 aged 50-69 years who attended first screen between 2004 and 2009 and continued periodical screens until 2016. We aimed to illustrate the carcinogenesis of PM2.5 related to CRC by applying both hierarchical logistical and multistate Markov regression models to estimate the effects of air pollution on fecal immunochemical test (FIT) positive (a proxy of inflammatory marker) and pre-clinical and clinical states of CRC in the nationwide cohort. We found a significant association of high PM2.5 exposure and FIT-positive by an increased risk of 11% [95% confidence interval (CI), 10-12]. PM2.5 enhanced the risk of being preclinical state by 14% (95% CI, 10-18) and that of subsequent progression from pre-clinical to clinical state by 21% (95% CI, 14-28). Furthermore, the elevated risks for CRC carcinogenesis were significantly higher for people living in high PM2.5 pollution areas in terms of yearly averages and the number days above 35 µg/m3 than those living in low PM2.5 pollution areas. We concluded that both short-term and long-term PM2.5 exposure were associated with multistep progression of CRC, which were useful to design precision primary and secondary prevention strategies of CRC for people who are exposed to high PM2.5 pollution.
Collapse
Affiliation(s)
- Mei-Sheng Ku
- Innovation and Policy Center for Population Health and Sustainable Environment, College of Public Health, 33561National Taiwan University, Taipei, Taiwan.,Institute of Environmental and Occupational Health Science, College of Public Health, 33561National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Liu
- Innovation and Policy Center for Population Health and Sustainable Environment, College of Public Health, 33561National Taiwan University, Taipei, Taiwan.,Institute of Environmental and Occupational Health Science, College of Public Health, 33561National Taiwan University, Taipei, Taiwan
| | - Chen-Yang Hsu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, 33561National Taiwan University, Taipei, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, 33561National Taiwan UniversityHospital, Taipei, Taiwan
| | - Hsiu-Hsi Chen
- Innovation and Policy Center for Population Health and Sustainable Environment, College of Public Health, 33561National Taiwan University, Taipei, Taiwan.,Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, 33561National Taiwan University, Taipei, Taiwan
| | - Chang-Chuan Chan
- Innovation and Policy Center for Population Health and Sustainable Environment, College of Public Health, 33561National Taiwan University, Taipei, Taiwan.,Institute of Environmental and Occupational Health Science, College of Public Health, 33561National Taiwan University, Taipei, Taiwan
| |
Collapse
|
58
|
Hart JE, Hohensee C, Laden F, Holland I, Whitsel EA, Wellenius GA, Winkelmayer WC, Sarto GE, Warsinger Martin L, Manson JE, Greenland P, Kaufman J, Albert C, Perez MV. Long-Term Exposures to Air Pollution and the Risk of Atrial Fibrillation in the Women's Health Initiative Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97007. [PMID: 34523977 PMCID: PMC8442602 DOI: 10.1289/ehp7683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with substantial morbidity and mortality. Short-term exposures to air pollution have been associated with AF triggering; less is known regarding associations between long-term air pollution exposures and AF incidence. OBJECTIVES Our objective was to assess the association between long-term exposures to air pollution and distance to road on incidence of AF in a cohort of U.S. women. METHODS We assessed the association of high resolution spatiotemporal model predictions of long-term exposures to particulate matter (PM 10 and PM 2.5 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and distance to major roads with incidence of AF diagnosis, identified through Medicare linkage, among 83,117 women in the prospective Women's Health Initiative cohort, followed from enrollment in Medicare through December 2012, incidence of AF, or death. Using time-varying Cox proportional hazards models adjusted for age, race/ethnicity, study component, body mass index, physical activity, menopausal hormone therapy, smoking, diet quality, alcohol consumption, educational attainment, and neighborhood socioeconomic status, we estimated the relative risk of incident AF in association with each pollutant. RESULTS A total of 16,348 incident AF cases were observed over 660,236 person-years of follow-up. Most exposure-response associations were nonlinear. NO 2 was associated with risk of AF in multivariable adjusted models [Hazard Ratio ( HR ) = 1.18 ; 95% confidence interval (CI): 1.13, 1.24, comparing the top to bottom quartile, p -for-trend = < 0.0001 ]. Women living closer to roadways were at higher risk of AF (e.g., HR = 1.07 ; 95% CI: 1.01, 1.13 for living within 50 m of A3 roads, compared with ≥ 1,000 m , p -for-trend = 0.02 ), but we did not observe adverse associations with exposures to PM 10 , PM 2.5 , or SO 2 . There were adverse associations with PM 10 (top quartile HR = 1.10 ; 95% CI: 1.05, 1.16, p -for-trend = < 0.0001 ) and PM 2.5 (top quartile HR = 1.09 ; 95% CI: 1.03, 1.14, p -for-trend = 0.002 ) in sensitivity models adjusting for census region. DISCUSSION In this study of postmenopausal women, NO 2 and distance to road were consistently associated with higher risk of AF. https://doi.org/10.1289/EHP7683.
Collapse
Affiliation(s)
- Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Chancellor Hohensee
- Women’s Health Initiative Clinical Coordinating Center, Division of Public Health, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Isabel Holland
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Gregory A. Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Wolfgang C. Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Baylor College of Medicine, Houston, Texas, USA
| | - Gloria E. Sarto
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lisa Warsinger Martin
- Division of Cardiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - JoAnn E. Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Philip Greenland
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joel Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christine Albert
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Marco V. Perez
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
59
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
60
|
Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants and cardiovascular disease: Strategies for intervention. Pharmacol Ther 2021; 223:107890. [PMID: 33992684 PMCID: PMC8216045 DOI: 10.1016/j.pharmthera.2021.107890] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Air pollution is consistently linked with elevations in cardiovascular disease (CVD) and CVD-related mortality. Particulate matter (PM) is a critical factor in air pollution-associated CVD. PM forms in the air during the combustion of fuels as solid particles and liquid droplets and the sources of airborne PM range from dust and dirt to soot and smoke. The health impacts of PM inhalation are well documented. In the US, where CVD is already the leading cause of death, it is estimated that PM2.5 (PM < 2.5 μm in size) is responsible for nearly 200,000 premature deaths annually. Despite the public health data, definitive mechanisms underlying PM-associated CVD are elusive. However, evidence to-date implicates mechanisms involving oxidative stress, inflammation, metabolic dysfunction and dyslipidemia, contributing to vascular dysfunction and atherosclerosis, along with autonomic dysfunction and hypertension. For the benefit of susceptible individuals and individuals who live in areas where PM levels exceed the National Ambient Air Quality Standard, interventional strategies for mitigating PM-associated CVD are necessary. This review will highlight current state of knowledge with respect to mechanisms for PM-dependent CVD. Based upon these mechanisms, strategies for intervention will be outlined. Citing data from animal models and human subjects, these highlighted strategies include: 1) antioxidants, such as vitamins E and C, carnosine, sulforaphane and resveratrol, to reduce oxidative stress and systemic inflammation; 2) omega-3 fatty acids, to inhibit inflammation and autonomic dysfunction; 3) statins, to decrease cholesterol accumulation and inflammation; 4) melatonin, to regulate the immune-pineal axis and 5) metformin, to address PM-associated metabolic dysfunction. Each of these will be discussed with respect to its potential role in limiting PM-associated CVD.
Collapse
Affiliation(s)
- Ankit Aryal
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Ashlyn C Harmon
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Tammy R Dugas
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America.
| |
Collapse
|
61
|
Feng D, Cao K, He ZZ, Knibbs LD, Jalaludin B, Leskinen A, Roponen M, Komppula M, Jalava P, Guo PY, Xu SL, Yang BY, Hu L, Zeng XW, Chen G, Yu HY, Lin L, Dong G. Short-Term Effects of Particle Sizes and Constituents on Blood Biomarkers among Healthy Young Adults in Guangzhou, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5636-5647. [PMID: 33822602 DOI: 10.1021/acs.est.0c06609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Evidence of the effects of various particle sizes and constituents on blood biomarkers is limited. We performed a panel study with five repeated measurements in 88 healthy college students in Guangzhou, China between December 2017 and January 2018. Mass concentrations of particles with aerodynamic diameters ≤ 2.5 μm (PM2.5), PM1, and PM0.5 and number concentrations of particles with aerodynamic diameters ≤ 200 nm (PN0.2) and PN0.1 were measured. We used linear mixed-effect models to explore the associations of size-fractionated particulate matter and PM2.5 constituents with five blood biomarkers 0-5 days prior to blood collection. We found that an interquartile range (45.9 μg/m3) increase in PM2.5 concentration was significantly associated with increments of 16.6, 3.4, 12.3, and 8.8% in C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), and endothelin-1(ET-1) at a 5-day lag, respectively. Similar estimates were observed for PM1, PM0.5, PN0.2, and PN0.1. For PM2.5 constituents, consistent positive associations were observed between F- and sVCAM-1 and CRP and between NH4+ and MCP-1, and negative associations were found between Na+ and MCP-1 and ET-1, between Cl- and MCP-1, and between Mg2+ and sVCAM-1. Our results suggested that both particle size and constituent exposure are significantly associated with circulating biomarkers among healthy Chinese adults. Particularly, PN0.1 at a 5-day lag and F- and NH4+ are the most associated with these blood biomarkers.
Collapse
Affiliation(s)
- Dan Feng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ke Cao
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Zhou He
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, Brisbane, Queensland 4006, Australia
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, NSW 2037, Australia
- Ingham Institute for Applied Medial Research, University of New South Wales, Sydney 2170, Australia
| | - Ari Leskinen
- Finnish Meteorological Institute, Kuopio 70211, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Kuopio 70211, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio FI 70211, Finland
| | - Peng-Yue Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
62
|
Zhu H, Wu Y, Kuang X, Liu H, Guo Z, Qian J, Wang D, Wang M, Chu H, Gong W, Zhang Z. Effect of PM 2.5 exposure on circulating fibrinogen and IL-6 levels: A systematic review and meta-analysis. CHEMOSPHERE 2021; 271:129565. [PMID: 33460893 DOI: 10.1016/j.chemosphere.2021.129565] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) pollution poses a great threat on global health. Previous studies have reported that PM2.5 regulates circulating fibrinogen and IL-6 levels in the development of cardiovascular and respiratory disease. However, the correlation between PM2.5 exposure and both biomarkers remains inconsistent. METHODS We searched related articles through PubMed, Web of Science and ScienceDirect. Random effects model was used to obtain a pooled estimate effect of both biomarkers as PM2.5 concentration increased by every 10 μg/m3. Meta-regression analysis, sensitivity analysis and publication bias test were conducted to evaluate the heterogeneity, stability and reliability of this meta-analysis. RESULTS A total of 22 articles were included. Each 10 μg/m3 increase in PM2.5 concentration was significantly correlated with a 1.76% increase in circulating fibrinogen level (95% CI: 0.38%-3.14%, P = 0.013) and a 4.66% increase in IL-6 level (95% CI: 1.14%-8.18%, P = 0.010). Subgroup analysis revealed that high-level PM2.5 exposure had a more significant association with circulating IL-6 level (11.67%, 95% CI: 0.66%-22.69%, P = 0.038) than low-level exposure, but this association was not observed in fibrinogen (2.50%, 95% CI: -0.78%-5.77%, P = 0.135). Sensitivity analysis and publication bias test confirmed the stability of the results. CONCLUSION Circulating fibrinogen and IL-6 significantly increased with exposure to PM2.5, may serve as promising biomarkers for PM2.5-related adverse effects.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanling Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingya Kuang
- Department of Occupational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Guo
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Qian
- Department of General Surgery, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, China
| | - Dafei Wang
- Department of Radiotherapy, Yixing Cancer Hospital, Yixing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Weida Gong
- Department of General Surgery, Yixing People's Hospital, Yixing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
63
|
Elbarbary M, Oganesyan A, Honda T, Morgan G, Guo Y, Guo Y, Negin J. Systemic Inflammation (C-Reactive Protein) in Older Chinese Adults Is Associated with Long-Term Exposure to Ambient Air Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063258. [PMID: 33809857 PMCID: PMC8004276 DOI: 10.3390/ijerph18063258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
There is an established association between air pollution and cardiovascular disease (CVD), which is likely to be mediated by systemic inflammation. The present study evaluated links between long-term exposure to ambient air pollution and high-sensitivity C reactive protein (hs-CRP) in an older Chinese adult cohort (n = 7915) enrolled in the World Health Organization (WHO) study on global aging and adult health (SAGE) China Wave 1 in 2008–2010. Multilevel linear and logistic regression models were used to assess the associations of particulate matter (PM) and nitrogen dioxide (NO2) on log-transformed hs-CRP levels and odds ratios of CVD risk derived from CRP levels adjusted for confounders. A satellite-based spatial statistical model was applied to estimate the average community exposure to outdoor air pollutants (PM with an aerodynamic diameter of 10 μm or less (PM10), 2.5 μm or less (PM2.5), and 1 μm or less (PM1) and NO2) for each participant of the study. hs-CRP levels were drawn from dried blood spots of each participant. Each 10 μg/m3 increment in PM10, PM2.5, PM1, and NO2 was associated with 12.8% (95% confidence interval; (CI): 9.1, 16.6), 15.7% (95% CI: 10.9, 20.8), 10.2% (95% CI: 7.3, 13.2), and 11.8% (95% CI: 7.9, 15.8) higher serum levels of hs-CRP, respectively. Our findings suggest that air pollution may be an important factor in increasing systemic inflammation in older Chinese adults.
Collapse
Affiliation(s)
- Mona Elbarbary
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
- Correspondence: or ; Tel.: +61-416-405-016
| | - Artem Oganesyan
- Department of Hematology and Transfusion Medicine, National Institute of Health, Yerevan 0051, Armenia;
| | - Trenton Honda
- Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA;
| | - Geoffrey Morgan
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
- School of Public Health, University Centre for Rural Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3800, Australia;
| | - Yanfei Guo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Joel Negin
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
| |
Collapse
|
64
|
Mu G, Zhou M, Wang B, Cao L, Yang S, Qiu W, Nie X, Ye Z, Zhou Y, Chen W. Personal PM 2.5 exposure and lung function: Potential mediating role of systematic inflammation and oxidative damage in urban adults from the general population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142522. [PMID: 33032136 DOI: 10.1016/j.scitotenv.2020.142522] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Short-term effects of fine particulate matter (PM2.5) exposure on lung function have been reported. However, few studies have assessed PM2.5 exposure on the personal level, and the mechanism underlying the effects of PM2.5 exposure on lung function remains less clear. OBJECTIVES To evaluate the association between personal PM2.5 exposure and lung function alteration in general population and to explore the roles of systematic inflammation and oxidative damage in this association. METHODS A total of 7685 lung function tests were completed among 4697 urban adults in Wuhan, China. Plasma C-reactive protein (CRP), urinary 8-iso-prostaglandin-F2α (8-iso-PGF2α) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were measured. Personal PM2.5 exposure levels were estimated using an estimation model from the actual measurements of individual PM2.5 levels in 191 participants. Mixed linear models were used to evaluate the association between personal PM2.5 exposure and lung function. Mediation analyses were conducted to investigate the roles of CRP, 8-iso-PGF2α and 8-OHdG in above associations. RESULTS After adjusting for confounders, each 10 μg/m3 increase in the previous-day personal PM2.5 exposure was associated with 2.94 mL, 2.02 mL and 16.14 mL/s decreases in forced vital capacity (FVC), forced expiration volume in 1 s (FEV1) and peak expiratory flow, respectively. The associations were more obvious among never smokers compared with current smokers. Cumulative 7-day exposure to PM2.5 led to the strongest adverse effects on lung function. Among never smokers with high PM2.5 exposure levels, a positive relationship was observed between personal PM2.5 level and urinary 8-iso-PGF2α, and 8-iso-PGF2α meditated 4.69% and 12.30% of the association between the 7-day moving PM2.5 concentration and FVC and FEV1, respectively. We did not observe a significant positive association between PM2.5 exposure and plasma CRP or urinary 8-OHdG. CONCLUSION Short-term personal exposure to PM2.5 is associated with reduced pulmonary ventilation function. Urinary 8-iso-PGF2α partly mediates these associations.
Collapse
Affiliation(s)
- Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
65
|
Inhalants other than personal cigarette smoking and risk for developing rheumatoid arthritis. Curr Opin Rheumatol 2021; 32:279-288. [PMID: 32141952 DOI: 10.1097/bor.0000000000000705] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The current review summarizes the current evidence on inhalants other than personal cigarette smoking and risk for developing rheumatoid arthritis (RA). RECENT FINDINGS Personal cigarette smoking has been implicated as an environmental risk factor for seropositive RA, perhaps by inducing autoimmunity at pulmonary mucosa. Since many patients with RA are nonsmokers, other inhalants are being investigated as potential RA risk factors. Recent case-control and cohort studies have investigated passive cigarette smoking, air pollution, inhalant-related occupations, silica, pesticides, household environment, and allergic inhalants as inhalant exposures for RA risk. Inhalant-related occupations and silica inhalants have the most consistent evidence for associations with increased RA risk. However, most studies relied on retrospective designs and had limited ability to adjust for personal cigarette smoking or investigate associations among nonsmokers. SUMMARY Several inhalants other than personal cigarette smoking may be associated with increased risk for developing RA. These results support the hypothesis that inhalants, pulmonary mucosal inflammation, and RA pathogenesis may be linked. Future studies are needed to firmly establish the independence of these findings from personal cigarette smoking and to determine the specific inhalants and biologic mechanisms related to RA pathogenesis.
Collapse
|
66
|
Adami G, Viapiana O, Rossini M, Orsolini G, Bertoldo E, Giollo A, Gatti D, Fassio A. Association between environmental air pollution and rheumatoid arthritis flares. Rheumatology (Oxford) 2021; 60:4591-4597. [DOI: 10.1093/rheumatology/keab049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023] Open
Abstract
Abstract
Objectives
Environmental air pollution has been linked to the pathogenesis of RA. Nevertheless, evidence linking higher concentrations of air pollutants with the risk of RA reactivations is missing. The objective of the present study was to determine the association between RA flares and air pollution.
Methods
We collected longitudinal data of patients affected by RA and of the daily concentration of air pollutants in the Verona area. We designed a case-crossover study. We compared the exposure to pollutants in the 30-day and 60-day periods preceding an arthritic flare referent to the 30-day and 60-day preceding a low-disease activity visit.
Results
The study included 888 patients with RA with 3396 follow-up visits; 13 636 daily air pollution records were retrieved. We found an exposure–response relationship between the concentration of air pollutants and the risk of having abnormal CRP levels. Patients exposed to greater concentrations of air pollutants were at higher risk of having CRP levels ≥5 mg/l. Concentrations of CO, NO, NO2, NOx, PM10, PM2.5 and O3 were higher in the 60-day period preceding a flare.
Conclusions
We found a striking association between air pollution and RA disease severity and reactivations in a cohort of patients followed over a 5-year period. The exposure to high levels of air pollutants was associated with increased CRP levels and a higher risk of experiencing a flare of arthritis. This excessive risk was evident at very low levels of exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona, Italy
| |
Collapse
|
67
|
Tang H, Cheng Z, Li N, Mao S, Ma R, He H, Niu Z, Chen X, Xiang H. The short- and long-term associations of particulate matter with inflammation and blood coagulation markers: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115630. [PMID: 33254709 PMCID: PMC7687019 DOI: 10.1016/j.envpol.2020.115630] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 05/16/2023]
Abstract
Inflammation and the coagulation cascade are considered to be the potential mechanisms of ambient particulate matter (PM) exposure-induced adverse cardiovascular events. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and fibrinogen are arguably the four most commonly assayed markers to reflect the relationships of PM with inflammation and blood coagulation. This review summarized and quantitatively analyzed the existing studies reporting short- and long-term associations of PM2.5(PM with an aerodynamic diameter ≤2.5 μm)/PM10 (PM with an aerodynamic diameter≤10 μm) with important inflammation and blood coagulation markers (TNF-α, IL-6, IL-8, fibrinogen). We reviewed relevant studies published up to July 2020, using three English databases (PubMed, Web of Science, Embase) and two Chinese databases (Wang-Fang, China National Knowledge Infrastructure). The OHAT tool, with some modification, was applied to evaluate risk of bias. Meta-analyses were conducted with random-effects models for calculating the pooled estimate of markers. To assess the potential effect modifiers and the source of heterogeneity, we conducted subgroup analyses and meta-regression analyses where appropriate. The assessment and correction of publication bias were based on Begg's and Egger's test and "trim-and-fill" analysis. We identified 44 eligible studies. For short-term PM exposure, the percent change of a 10 μg/m3 PM2.5 increase on TNF-α and fibrinogen was 3.51% (95% confidence interval (CI): 1.21%, 5.81%) and 0.54% (95% confidence interval (CI): 0.21%, 0.86%) respectively. We also found a significant short-term association between PM10 and fibrinogen (percent change = 0.17%, 95% CI: 0.04%, 0.29%). Overall analysis showed that long-term associations of fibrinogen with PM2.5 and PM10 were not significant. Subgroup analysis showed that long-term associations of fibrinogen with PM2.5 and PM10 were significant only found in studies conducted in Asia. Our findings support significant short-term associations of PM with TNF-α and fibrinogen. Future epidemiological studies should address the role long-term PM exposure plays in inflammation and blood coagulation markers level change.
Collapse
Affiliation(s)
- Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122# Luoshi Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Runxue Ma
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Haijun He
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
68
|
Li Z, Liu Q, Xu Z, Guo X, Wu S. Association between short-term exposure to ambient particulate air pollution and biomarkers of oxidative stress: A meta-analysis. ENVIRONMENTAL RESEARCH 2020; 191:110105. [PMID: 32835677 DOI: 10.1016/j.envres.2020.110105] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to ambient particulate air pollution contributes substantially to the mortality and morbidity due to cardiovascular diseases (CVD), respiratory diseases and neurodegenerative diseases. Several hypothetical mechanisms have been proposed to explain these associations, particularly oxidative stress. Malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and Superoxide Dismutase (SOD) are typical biomarkers of oxidative stress and have been frequently investigated. However, the association between exposure to ambient particulate matter (PM) and these biomarkers has not been well established. OBJECTIVES Evaluate the association between ambient particulate air pollution and biomarkers of oxidative stress based on existing epidemiological studies. METHODS A systematic literature search was conducted in databases of Science Direct, PubMed, Web of Science, and Scopus up to April 24, 2020 to summarize epidemiological studies reporting the association between exposure to ambient PM (PM2.5, PM10, or both) and biomarkers of oxidative stress, and a meta-analysis was performed for the associations reported in individual studies using a random-effect model. RESULTS This meta-analysis included 23 epidemiological studies (13 identified for 8-OHdG, 11 identified for MDA and 5 identified for SOD). A 10 μg/m3 increase in short-term exposure to ambient PM2.5 was associated with pooled percent changes of 2.10% (95% CIs: -0.13%, 4.38%), 1.60% (95% CIs: 0.21%, 3.01%) and -0.61% (95% CIs: -1.92%, 0.72%) in 8-OHdG, MDA and SOD, respectively. CONCLUSION Short-term exposure to ambient PM2.5 was associated with a significantly increased level of MDA, indicating that ambient particulate air pollution may contribute to increased oxidative stress.
Collapse
Affiliation(s)
- Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, China.
| |
Collapse
|
69
|
Niu Z, Liu F, Li B, Li N, Yu H, Wang Y, Tang H, Chen X, Lu Y, Cheng Z, Liu S, Chen G, Zhang Y, Xiang H. Acute effect of ambient fine particulate matter on heart rate variability: an updated systematic review and meta-analysis of panel studies. Environ Health Prev Med 2020; 25:77. [PMID: 33261557 PMCID: PMC7706193 DOI: 10.1186/s12199-020-00912-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Decreased heart rate variability (HRV) is a predictor of autonomic system dysfunction, and is considered as a potential mechanism of increased risk of cardiovascular disease (CVD) induced by exposure to particulate matter less than 2.5 μm in diameter (PM2.5). Previous studies have suggested that exposure to PM2.5 may lead to decreased HRV levels, but the results remain inconsistent. Methods An updated systematic review and meta-analysis of panel studies till November 1, 2019 was conducted to evaluate the acute effect of exposure to ambient PM2.5 on HRV. We searched electronic databases (PubMed, Web of Science, and Embase) to identify panel studies reporting the associations between exposure to PM2.5 and the four indicators of HRV (standard deviation of all normal-to-normal intervals (SDNN), root mean square of successive differences in adjacent normal-to-normal intervals (rMSSD), high frequency power (HF), and low frequency power (LF)). Random-effects model was used to calculate the pooled effect estimates. Results A total of 33 panel studies were included in our meta-analysis, with 16 studies conducted in North America, 12 studies in Asia, and 5 studies in Europe. The pooled results showed a 10 μg/m3 increase in PM2.5 exposure which was significantly associated with a − 0.92% change in SDNN (95% confidence intervals (95%CI) − 1.26%, − 0.59%), − 1.47% change in rMSSD (95%CI − 2.17%, − 0.77%), − 2.17% change in HF (95%CI − 3.24%, − 1.10%), and − 1.52% change in LF (95%CI − 2.50%, − 0.54%), respectively. Overall, subgroup analysis suggested that short-term exposure to PM2.5 was associated with lower HRV levels in Asians, healthy population, and those aged ≥ 40 years. Conclusion Short-term exposure to PM2.5 was associated with decreased HRV levels. Future studies are warranted to clarity the exact mechanism of exposure to PM2.5 on the cardiovascular system through disturbance of autonomic nervous function. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-020-00912-2.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Baojing Li
- Department of Public Health Sciences, Karolinska Institutet, Tomtebodavägen 18, Solna, SE-171 65, Stockholm, Sweden
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hongmei Yu
- School of Management, Chengdu University of Traditional Chinese Medicine, 37# Shierqiao Road, Chengdu, China
| | - Yongbo Wang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122# Luoshi Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Zhang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China. .,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China. .,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
70
|
Ma JW, Lai TJ, Hu SY, Lin TC, Ho WC, Tsan YT. Effect of ambient air pollution on the incidence of colorectal cancer among a diabetic population: a nationwide nested case-control study in Taiwan. BMJ Open 2020; 10:e036955. [PMID: 33115890 PMCID: PMC7594369 DOI: 10.1136/bmjopen-2020-036955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES An increasing number of studies had shown that air pollution exposure may aggravate blood glucose control in patients with diabetes, an independent risk factor for colorectal cancer (CRC) proposed by some researchers. This study aimed to investigate the impact of exposure to ambient particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) on the incidence of CRC among a diabetic population. DESIGN A nested case-control study. SETTING A subset data retrieved from the Taiwan's National Health Insurance Research Database. PARTICIPANTS We identified patients with newly diagnosed diabetes (n=1 164 962) during 1999-2013. Participants who had subsequently developed an incident of CRC were placed into the case group, while controls were matched to the cases at a 4:1 ratio by age, gender, date of diabetes diagnosis and the index date of CRC diagnosis. METHODS AND OUTCOME MEASURES All variables associated with the risk of CRC entered into a multinomial logistic regression model. The dose-response relationship between various average concentrations of PM2.5 exposure and the incidence of CRC was estimated by logistic regression. RESULTS The study included a total of 7719 incident CRC cases matched with 30 876 controls of random sampling. The mean annual concentration of PM2.5 was 35.3 µg/m3. After adjusting for potential confounders, a dose-response relationship was observed between the CRC risks and each interquartile increase of PM2.5 concentration (Q1-Q2: 1.03 (0.95-1.11), Q2-Q3: 1.06 (0.98-1.15), ≥Q3: 1.19 (1.10-1.28) in model 2. The adjusted ORs (95% CI) of CRC incidence for each 10 µg/m3 increment of PM2.5 was 1.08 (1.04-1.11). Moreover, a faster growing adapted Diabetes Complications Severity Index (aDCSI) score was noticed in CRC group compared with the controls, which also showed a significant association in our multivariate analysis (adjusted OR=1.28, 95% CI 1.18 to 1.38). CONCLUSIONS Long-term exposure to high concentrations of PM2.5 may contribute to an increased incidence of CRC among diabetic populations.
Collapse
Affiliation(s)
- Jen-Wen Ma
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ting-Ju Lai
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Sung-Yuan Hu
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Chieh Lin
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Yu-Tse Tsan
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
71
|
Chen X, Liu F, Niu Z, Mao S, Tang H, Li N, Chen G, Liu S, Lu Y, Xiang H. The association between short-term exposure to ambient air pollution and fractional exhaled nitric oxide level: A systematic review and meta-analysis of panel studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114833. [PMID: 32544661 DOI: 10.1016/j.envpol.2020.114833] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 05/27/2023]
Abstract
Several epidemiological studies have evaluated the fractional exhaled nitric oxide (FeNO) of ambient air pollution but the results were controversial. We therefore conducted a systematic review and meta-analysis to investigate the associations between short-term exposure to air pollutants and FeNO level. We searched PubMed and Web of Science and included a total of 27 articles which focused on associations between ambient air pollutants (PM10, PM2.5, black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3)) exposure and the change of FeNO. Random effect model was used to calculate the percent change of FeNO in association with a 10 or 1 μg/m3 increase in air pollutants exposure concentrations. A 10 μg/m3 increase in short-term PM10, PM2.5, NO2, and SO2 exposure was associated with a 3.20% (95% confidence interval (95%CI): 1.11%, 5.29%), 2.25% (95%CI: 1.51%, 2.99%),4.90% (95%CI: 1.98%, 7.81%), and 8.28% (95%CI: 3.61%, 12.59%) change in FeNO, respectively. A 1 μg/m3 increase in short-term exposure to BC was associated with 3.42% (95%CI: 1.34%, 5.50%) change in FeNO. The association between short-term exposure to O3 and FeNO level was insignificant (P>0.05). Future studies are warranted to investigate the effect of multiple pollutants, different sources and composition of air pollutants on airway inflammation.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960, East West Rd, Biomed Bldg, D105, Honolulu, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
72
|
Liang Q, Sun M, Wang F, Ma Y, Lin L, Li T, Duan J, Sun Z. Short-term PM 2.5 exposure and circulating von Willebrand factor level: a meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140180. [PMID: 32783836 DOI: 10.1016/j.scitotenv.2020.140180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) is a major threat to cardiovascular health. Endothelial dysfunction is the initiating event associated with the PM2.5-induced cardiovascular disease (CVD). A sensitive marker of endothelial function-circulating von Willebrand factor (vWF), is an independent predictor of adverse clinical outcome in CVD patients. PM2.5 exposure may cause CVD, but the reports of relationship between short-term PM2.5 exposure and circulating vWF are inconsistent. OBJECTIVE To explore the influence of short-term PM2.5 exposure on circulating vWF. METHODS By using a combination of computer and manual retrieval, a systematic literature retrieval was conducted on PubMed, Cochrane Library, Web of Science, Embase and Scopus databases up to October 2019. The heterogeneity among studies was tested by Stata 12.0, and the pooled %-change (percentage change per 10 μg/m3 increase in PM2.5) and its 95% confidence interval (95%CI) were calculated by using random effect model. Sensitivity analysis and publication bias detection were also carried out. RESULTS 12 articles were included in this meta-analysis. Short-term PM2.5 exposure (per 10 μg/m3 increase) was associated with the increased vWF (%-change = 0.41, 95%CI: 0.11-0.71). The pooled effect estimates of subgroup with PM2.5 exposure level < 25 μg/m3 was higher (%-change = 8.26; 95%CI: 1.99-14.53) than that with PM2.5 exposure level ≥ 25 μg/m3 (%-change = 0.36; 95%CI: 0.09-0.63). CONCLUSION Short-term PM2.5 exposure is associated with the increased circulating vWF. It suggests that short-term PM2.5 exposure causes endothelial dysfunction.
Collapse
Affiliation(s)
- Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
73
|
Niehoff NM, Keil AP, Jones RR, Fan S, Gierach GL, White AJ. Outdoor air pollution and terminal duct lobular involution of the normal breast. Breast Cancer Res 2020; 22:100. [PMID: 32972455 PMCID: PMC7513536 DOI: 10.1186/s13058-020-01339-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background Exposure to certain outdoor air pollutants may be associated with a higher risk of breast cancer, though potential underlying mechanisms are poorly understood. We examined whether outdoor air pollution was associated with involution of terminal duct lobular units (TDLUs), the histologic site where most cancers arise and an intermediate marker of breast cancer risk. Methods Pathologist-enumerated TDLUs were assessed in H&E (hematoxylin and eosin)-stained breast tissue sections from 1904 US women ages 18–75 who donated to the Susan G. Komen Tissue Bank (2009–2012). The 2009 annual fine particulate matter < 2.5 μm in diameter (PM2.5) total mass (μg/m3) at each woman’s residential address was estimated from the Environmental Protection Agency’s Downscaler Model combining Community Multiscale Air Quality (CMAQ) System modeling with air quality monitoring data. We secondarily considered CMAQ-modeled components of PM2.5 and gaseous pollutants. We used K-means clustering to identify groups of individuals with similar levels of PM2.5 components, selecting groups via cluster stability analysis. Relative rates (RRs) and 95% confidence intervals (95% CIs) for the association between air pollutants and TDLU counts were estimated from a zero-inflated negative binomial regression model adjusted for potential confounders. Results PM2.5 total mass was associated with higher TDLU counts among all women (interquartile range (IQR) increase, RR = 1.06; 95% CI: 1.01–1.11). This association was evident among both premenopausal and postmenopausal women (premenopausal RR = 1.05, 95% CI: 1.00–1.11; postmenopausal RR = 1.11, 95% CI: 1.00–1.23). We identified 3 groups corresponding to clusters that varied geographically and roughly represented high, medium, and low levels of PM2.5 components relative to population mean levels. Compared to the cluster with low levels, the clusters with both high (RR = 1.74; 95% CI: 1.08–2.80) and medium (RR = 1.82; 95% CI: 1.13–2.93) levels were associated with higher TDLU counts; although not significantly different, the magnitude of the associations was stronger among postmenopausal women. Conclusions Higher PM2.5 levels were associated with reduced TDLU involution as measured by TDLU counts. Air pollution exposure may influence the histologic characteristics of normal tissue which could in turn affect breast cancer risk.
Collapse
Affiliation(s)
- Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Alexander P Keil
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA.,Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Shaoqi Fan
- Integrative Tumor Biology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Gretchen L Gierach
- Integrative Tumor Biology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
74
|
Bai W, Li Y, Niu Y, Ding Y, Yu X, Zhu B, Duan R, Duan H, Kou C, Li Y, Sun Z. Association between ambient air pollution and pregnancy complications: A systematic review and meta-analysis of cohort studies. ENVIRONMENTAL RESEARCH 2020; 185:109471. [PMID: 32276169 DOI: 10.1016/j.envres.2020.109471] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/08/2020] [Accepted: 03/30/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pregnancy complications, such as gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy (HDP), have a great impact on public health. Exposure to ambient air pollution during pregnancy may cause pregnancy complications. The aim of our study is to explore the risk of trimester-specific maternal exposure to air pollutants on complications of pregnancy. METHODS PubMed, EMBASE, Web of Science, and Cochrane were systematically searched for cohort studies published before October 27, 2019 which reported the association between ambient air pollutants (PM2.5, PM10, CO, NO, NO2, NOx, O3, and SO2) and pregnancy complications (GDM, HDP, preeclampsia, and gestational hypertension) during different exposure windows. A meta-analysis was applied to combine relative risks (RRs) and their confidence intervals (CIs) from eligible studies. Quality assessment was conducted and Egger test was used to evaluate the publication bias. All statistical analyses were performed by STATA software (Version 15, StataCorp, College Station, Texas, USA). RESULTS This meta-analysis consisted of 33 cohort studies conducted on 22,253,277 pregnant women. Meta-analyses showed during the first trimester, there were significant associations of PM10 with gestational hypertension (RR = 1.07, 95% CI: 1.02-1.12 per 10 μg/m3, I2 = 0.0%), of SO2 with GDM (RR = 1.04, 95% CI: 1.00-1.08 per 1 ppb increment, I2 = 54.1%), of PM2.5 with preeclampsia (RR = 0.97, 95% CI: 0.95-1.00 per 5 μg/m3, I2 = 4.1%). During the entire pregnancy, PM2.5 significantly increased the risk of hypertensive disorders of pregnancy (RR = 1.18, 95% CI: 1.02-1.34 per 5 μg/m3, I2 = 85.1%). Egger test indicated that wide-scale publication bias was unlikely. CONCLUSION Maternal exposure to ambient air pollutants is associated with pregnancy complications especially during the first trimester. Further large multicenter cohort studies considering different constituents of pollutants, levels of disease severity, sensitive populations, and various exposure windows are warranted in the future research.
Collapse
Affiliation(s)
- Wei Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Yuanyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Yaling Niu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Ye Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Xiao Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Bo Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Ruixin Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China.
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
75
|
Huang F, Wang P, Pan X, Wang Y, Ren S. Effects of short-term exposure to particulate matters on heart rate variability: A systematic review and meta-analysis based on controlled animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113306. [PMID: 31733955 DOI: 10.1016/j.envpol.2019.113306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to particulate matters (PM) is recognized as an important risk factor for cardiovascular disease. A change in cardiac autonomic function is one postulated mechanism leading to PM related cardiovascular events. This study therefore evaluated the associations of short-term exposure to PM and heart rate variability (HRV) parameters, which can reflect the cardiac autonomic function. METHODS Four electronic databases were searched for controlled studies of rodents published prior to December 2018. A systematic review and meta-analysis was conducted. Effect sizes were calculated for five main HRV parameters, including standard deviation of normal-to-normal intervals (SDNN), square root of mean squared differences between successive normal-to-normal intervals (rMSSD), low frequency (LF), high frequency (HF), and the ratio of LF and HF (LF/HF). RESULTS The review included 23 studies with 401 animals. Short-term exposure to PM by instillation yielded statistically significant effects on SDNN (Standardized Mean Difference [SMD] = -1.11, 95% Confidence Intervals [CI] = -2.22 to -0.01, P = 0.05), LF (SMD = -1.19, 95% CI = -1.99 to -0.40, P = 0.003) and LF/HF (SMD = -1.05, 95% CI = -2.03 to -0.07, P = 0.04). Short-term exposure to PM by inhalation only yielded statistically significant effect on LF/HF (SMD = -0.83, 95% CI = -1.39 to -0.27, P = 0.004). There was no evidence that animal model and exposure frequency influenced the relationship of PM and HRV. CONCLUSIONS Short-term exposure to PM can decrease HRV of rodents, affecting cardiac autonomic function. Exposure methods can influence the relationships of PM and HRV parameters. Further studies should focus on the effects of long-term PM exposure, on human beings, and potential influential factors of PM-HRV associations.
Collapse
Affiliation(s)
- Fangfang Huang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ping Wang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xinjuan Pan
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yingfang Wang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Shuai Ren
- Luoyang Fifth People's Hospital, The Fifth Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|