51
|
Loss of the acetate switch in Vibrio vulnificus enhances predation defence against Tetrahymena pyriformis. Appl Environ Microbiol 2021; 88:e0166521. [PMID: 34731052 PMCID: PMC8788688 DOI: 10.1128/aem.01665-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen and autochthonous inhabitant of coastal marine environments, where the bacterium is under constant predation by heterotrophic protists or protozoans. As a result of this selection pressure, genetic variants with antipredation mechanisms are selected for and persist in the environment. Such natural variants may also be pathogenic to animal or human hosts, making it important to understand these defense mechanisms. To identify antipredator strategies, 13 V. vulnificus strains of different genotypes isolated from diverse environments were exposed to predation by the ciliated protozoan Tetrahymena pyriformis, and only strain ENV1 was resistant to predation. Further investigation of the cell-free supernatant showed that ENV1 acidifies the environment by the excretion of organic acids, which are toxic to T. pyriformis. As this predation resistance was dependent on the availability of iron, transcriptomes of V. vulnificus in iron-replete and iron-deplete conditions were compared. This analysis revealed that ENV1 ferments pyruvate and the resultant acetyl-CoA leads to acetate synthesis under aerobic conditions, a hallmark of overflow metabolism. The anaerobic respiration global regulator arcA was upregulated when iron was available. An ΔarcA deletion mutant of ENV1 accumulated less acetate and, importantly, was sensitive to grazing by T. pyriformis. Based on the transcriptome response and quantification of metabolites, we conclude that ENV1 has adapted to overflow metabolism and has lost a control switch that shifts metabolism from acetate excretion to acetate assimilation, enabling it to excrete acetate continuously. We show that overflow metabolism and the acetate switch contribute to prey-predator interactions. IMPORTANCE Bacteria in the environment, including Vibrio spp., interact with protozoan predators. To defend against predation, bacteria evolve antipredator mechanisms ranging from changing morphology, biofilm formation, and secretion of toxins or virulence factors. Some of these adaptations may result in strains that are pathogenic to humans. Therefore, it is important to study predator defense strategies of environmental bacteria. V. vulnificus thrives in coastal waters and infects humans. Very little is known about the defense mechanisms V. vulnificus expresses against predation. Here, we show that a V. vulnificus strain (ENV1) has rewired the central carbon metabolism, enabling the production of excess organic acid that is toxic to the protozoan predator T. pyriformis. This is a previously unknown mechanism of predation defense that protects against protozoan predators.
Collapse
|
52
|
Carmona-Salido H, Fouz B, Sanjuán E, Carda M, Delannoy CMJ, García-González N, González-Candelas F, Amaro C. The widespread presence of a family of fish virulence plasmids in Vibrio vulnificus stresses its relevance as a zoonotic pathogen linked to fish farms. Emerg Microbes Infect 2021; 10:2128-2140. [PMID: 34702148 PMCID: PMC8635547 DOI: 10.1080/22221751.2021.1999177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vibrio vulnificus is a pathogen of public health concern that causes either primary septicemia after ingestion of raw shellfish or secondary septicemia after wound exposure to seawater. In consequence, shellfish and seawater are considered its main reservoirs. However, there is one aspect of its biology that is systematically overlooked: its association with fish in its natural environment. This association led in 1975 to the emergence of a zoonotic clade within phylogenetic lineage 2 following successive outbreaks of vibriosis in farmed eels. Although this clade is now worldwide distributed, no new zoonotic clades were subsequently reported. In this work, we have performed phylogenetic, genomic and functional studies to show that other zoonotic clades are in fact present in 4 of the 5 lineages of the species. Further, we associate these clades, most of them previously but incompletely described, with the acquisition of a family of fish virulence plasmids containing genes essential for resistance to the immune system of certain teleosts of interest in aquaculture. Consequently, our results provide several pieces of evidence about the importance of this species as a zoonotic agent linked to fish farms, as well as on the relevance of these artificial environments acting as drivers that accelerate the evolution of the species.
Collapse
Affiliation(s)
- Héctor Carmona-Salido
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| | - Belén Fouz
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| | - Eva Sanjuán
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| | - Miguel Carda
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| | | | - Neris García-González
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology I2SysBio (UV-CSIC), Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology I2SysBio (UV-CSIC), Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| | - Carmen Amaro
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| |
Collapse
|
53
|
López-Pérez M, Jayakumar JM, Grant TA, Zaragoza-Solas A, Cabello-Yeves PJ, Almagro-Moreno S. Ecological diversification reveals routes of pathogen emergence in endemic Vibrio vulnificus populations. Proc Natl Acad Sci U S A 2021; 118:e2103470118. [PMID: 34593634 PMCID: PMC8501797 DOI: 10.1073/pnas.2103470118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Pathogen emergence is a complex phenomenon that, despite its public health relevance, remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that lead to the emergence of clinical strains and the unique genetic traits that allow these clones to colonize the human host remain mostly unknown. We recently surveyed a large estuary in eastern Florida, where outbreaks of the disease frequently occur, and found endemic populations of the bacterium. We established two sampling sites and observed strong correlations between location and pathogenic potential. One site is significantly enriched with strains that belong to one phylogenomic cluster (C1) in which the majority of clinical strains belong. Interestingly, strains isolated from this site exhibit phenotypic traits associated with clinical outcomes, whereas strains from the second site belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes indicate unique genetic markers in the form of clinical-associated alleles with a potential role in virulence. Finally, metagenomic and physicochemical analyses of the sampling sites indicate that this marked cluster distribution and genetic traits are strongly associated with distinct biotic and abiotic factors (e.g., salinity, nutrients, or biodiversity), revealing how ecosystems generate selective pressures that facilitate the emergence of specific strains with pathogenic potential in a population. This knowledge can be applied to assess the risk of pathogen emergence from environmental sources and integrated toward the development of novel strategies for the prevention of future outbreaks.
Collapse
Affiliation(s)
- Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Jane M Jayakumar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| | - Trudy-Ann Grant
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| | - Asier Zaragoza-Solas
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816;
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| |
Collapse
|
54
|
Lorenzoni G, Tedde G, Mara L, Bazzoni AM, Esposito G, Salza S, Piras G, Tedde T, Bazzardi R, Arras I, Uda MT, Virgilio S, Meloni D, Mudadu AG. Presence, Seasonal Distribution, and Biomolecular Characterization of Vibrio parahaemolyticus and Vibrio vulnificus in Shellfish Harvested and Marketed in Sardinia (Italy) between 2017 and 2018. J Food Prot 2021; 84:1549-1554. [PMID: 33956961 DOI: 10.4315/jfp-21-059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023]
Abstract
ABSTRACT In the present study, we investigated the presence, seasonal distribution, and biomolecular characteristics of Vibrio parahaemolyticus and Vibrio vulnificus in samples of bivalve mollusks (Mytilus galloprovincialis, Crassostrea gigas, and Ruditapes decussatus) harvested and marketed in Sardinia (Italy) between 2017 and 2018. A total of 435 samples were submitted for qualitative determination of Vibrio spp., V. parahaemolyticus, and V. vulnificus. Potentially enteropathogenic isolates were detected with biomolecular methods. The overall prevalence of Vibrio spp. was 7.6%. The highest Vibrio prevalence was found in R. decussatus (8.3%). The prevalences of V. parahaemolyticus and V. vulnificus were 2.7 and 4.8%, respectively. Higher prevalences of V. parahaemolyticus and V. vulnificus were found in R. decussatus (4.2%) and C. gigas (6.2%), respectively. Only two pathogenic V. parahaemolyticus strains were recovered (genotypes: tdh- and trh+; tdh+ and trh-), both from M. galloprovincialis. None of the isolates were tdh+ and trh+. Pathogenic Vibrio infections are often underestimated, and human infections are increasing in Europe. European data on the true distribution of Vibrionaceae are scarce, and the results of the present study highlight the need of constant monitoring to update the distribution of pathogenic vibrios. HIGHLIGHTS
Collapse
Affiliation(s)
- Giuseppa Lorenzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Giuseppe Tedde
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Laura Mara
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Anna Maria Bazzoni
- Agenzia Regionale per la Protezione dell'Ambiente della Sardegna, Via Rockefeller 58/60, 07100 Sassari, Italy
| | - Giuseppe Esposito
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sara Salza
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Gabriella Piras
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Tiziana Tedde
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Riccardo Bazzardi
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Igor Arras
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Maria Teresa Uda
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Sebastiano Virgilio
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Domenico Meloni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Alessandro Graziano Mudadu
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| |
Collapse
|
55
|
Shepard Z, Rios M, Solis J, Wand T, Henao-Martínez AF, Franco-Paredes C, Suarez JA. Common Dermatologic Conditions in Returning Travelers. CURRENT TROPICAL MEDICINE REPORTS 2021; 8:104-111. [PMID: 34458071 DOI: 10.1007/s40475-021-00231-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Travel medicine practitioners often are confronted with returning travelers with dermatologic disorders that could be of infectious causes or inflammatory or allergic. Some dermatologic processes are the result of exposure to insects or acquired due to environmental exposures. There is a broad range of dermatosis of infectious and non-infectious etiologies that clinicians need to consider in the differential diagnosis of dermatosis in travelers. Recent Findings With increasing international travel to tropical destinations, many individuals may be exposed to rickettsia (i.e., African tick bite fever, scrub typhus, or Mediterranean spotted fever), parasitic infections (i.e., cutaneous larva migrans, cutaneous leishmaniasis, African trypanosomiasis, or American trypanosomiasis), viral infections (i.e., measles or Zika virus infection), bacterial (i.e., Buruli ulcer) or ectoparasites (scabies or tungiasis), and myiasis. Cutaneous lesions provide clinical clues to the diagnosis of specific exposures during travel among returned travelers. Summary Dermatologic disorders represent the third most common health problem in returned travelers, after gastrointestinal and respiratory illness. Many of these conditions may pose a risk of severe complications if there is any delay in diagnosis. Therefore, clinicians caring for travelers need to become familiar with the most frequent infectious and non-infectious skin disorders in travelers.
Collapse
Affiliation(s)
- Zachary Shepard
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, 11C01, Aurora, CO 80045, USA
| | - Margarita Rios
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panamá
| | - Jamie Solis
- School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, 11C01, Aurora, CO 80045, USA
| | - Taylor Wand
- School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, 11C01, Aurora, CO 80045, USA
| | - Andrés F Henao-Martínez
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, 11C01, Aurora, CO 80045, USA
| | - Carlos Franco-Paredes
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, 11C01, Aurora, CO 80045, USA
| | - José Antonio Suarez
- Investigador SNI Senacyt Panamá, Clinical Research Department, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panamá
| |
Collapse
|
56
|
Ramos LB, Darwin LC, de-Leon AP. A fatal case of Vibrio vulnificus septicemia in an end-stage liver disease patient. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2021; 39:352-354. [PMID: 34353513 DOI: 10.1016/j.eimce.2020.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/01/2020] [Indexed: 06/13/2023]
Affiliation(s)
- Laura Badel Ramos
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.
| | - Lambraño-Castillo Darwin
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Alfredo Ponce de-Leon
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| |
Collapse
|
57
|
Li J, Tian F, Hu Y, Lin W, Liu Y, Zhao F, Ren H, Pan Q, Shi T, Tong Y. Characterization and Genomic Analysis of BUCT549, a Novel Bacteriophage Infecting Vibrio alginolyticus With Flagella as Receptor. Front Microbiol 2021; 12:668319. [PMID: 34220752 PMCID: PMC8245777 DOI: 10.3389/fmicb.2021.668319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
Vibrio alginolyticus is one of the most important of pathogens that can infect humans and a variety of aquatic animals, and it can cause food poisoning and septicemia in humans. Widely used antibiotics are gradually losing their usefulness, and phages are gaining more attention as new antibacterial strategies. To have more potential strategies for controlling pathogenic bacteria, we isolated a novel V. alginolyticus phage BUCT549 from seafood market sewage. It was classified as a new member of the family Siphoviridae by transmission electron microscopy and a phylogenetic tree. We propose creating a new genus for BUCT549 based on the intergenomic similarities (maximum is 56%) obtained from VIRIDIC calculations. Phage BUCT549 could be used for phage therapy due to its stability in a wide pH (3.0–11.0) range and high-temperature (up to 60°C) environment. It had a latent period of 30–40 min and a burst size of 141 PFU/infected bacterium. In the phylogenetic tree based on a terminase large subunit, BUCT549 was closely related to eight Vibrio phages with different species of host. Meanwhile, our experiments proved that BUCT549 has the ability to infect a strain of Vibrio parahaemolyticus. A coevolution experiment determined that three strains of tolerant V. alginolyticus evaded phage infestation by mutating the MSHA-related membrane protein expression genes, which caused the loss of flagellum. This research on novel phage identification and the mechanism of infestation will help phages to become an integral part of the strategy for biological control agents.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fengjuan Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yunjia Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yujie Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Feiyang Zhao
- Qingdao Phagepharm Bio-tech Co., Ltd., Shandong, China
| | - Huiying Ren
- Qingdao Phagepharm Bio-tech Co., Ltd., Shandong, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co., Ltd., Shandong, China
| | - Taoxing Shi
- Academy of Military Medical Sciences, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
58
|
Narendrakumar L, Gopinathan A, Sreekrishnan TP, Asokan A, Kumar A, Kumar G, Thomas S. The bane of coastal marine environment: A fatal case of Vibrio vulnificus associated cellulitis and septicaemia. Indian J Med Microbiol 2021; 39:386-388. [PMID: 34127319 DOI: 10.1016/j.ijmmb.2021.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/26/2022]
Abstract
Vibrio vulnificus is a Gram negative motile bacterium known to cause fatal septicaemia and wound infection. It is commonly associated with the consumption of under-cooked seafood or exposure to marine environment. We report a case of a 55 year old male patient, who was presented with right lower limb cellulitis and septicaemia due to V. vulnificus. V. vulnificus infection in India are rare. However, increasing reports of V. vulnificus from India recommends considering the pathogen while dealing necrotising fasciitis especially in the proximity of marine environment.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, 695014, Kerala, India
| | - Anusha Gopinathan
- Department of Microbiology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, 682041, Kerala, India
| | - T P Sreekrishnan
- Department of Emergency Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, 682041, Kerala, India
| | - Anisha Asokan
- Department of Microbiology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, 682041, Kerala, India
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, 682041, Kerala, India.
| | - Gireesh Kumar
- Department of Emergency Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, 682041, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, 695014, Kerala, India.
| |
Collapse
|
59
|
Effectiveness of depuration of Pacific Oyster ( Crassostrea gigas): removal of bioaccumulated Vibrio vulnificus by UV-treatment. Food Sci Biotechnol 2021; 30:765-771. [PMID: 34025128 PMCID: PMC8123095 DOI: 10.1007/s10068-021-00912-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to evaluate the efficacy of a depuration system equipped with UV-irradiation to control Vibrio vulnificus infection such as septicemia (or sepsis) using alive oysters. After 6 h of bioaccumulation of V. vulnificus, Pacific oyster Crassostrea gigas were found to be contaminated by > 8.0 log MPN/g of V. vulnificus cells. After 60 h of depuration, the V. vulnificus cell number significantly decreased to < 4.0 log MPN/g. The present depuration process meets the standard effectiveness in reducing V. vulnificus cells by > 3.52 log and < 30 MPN/g as recommended by the National Shellfish Sanitization Procedure Molluscan Shellfish Control guidelines. Furthermore, no significant changes in pH value and glycogen content indicate that the depuration process did not affect the freshness and quality of the oyster samples. The present study could help control any potential infection associated with the consumption of raw oysters without losing their quality.
Collapse
|
60
|
Elnahla A, Attia AS, Toraih E, Guidry C, Akkera M, Schroll R, Killackey M, Nichols R, Kandil E. Prognostic Factors of Mortality in Vibrio vulnificus Sepsis and Soft Tissue Infections: Meta-Analysis. Surg Infect (Larchmt) 2021; 22:928-939. [PMID: 33970025 DOI: 10.1089/sur.2020.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Vibrio vulnificus is a rare but life-threatening infection that effects the population near warm coastal areas. This infection could be fulminant and rapidly progress to severe sepsis and necrotizing soft tissue infection. Early diagnosis and treatment are critical to saving patients' lives. With multiple studies reporting discrepancies in prognostic factors and different treatment protocols, we aimed through this meta-analysis to assess these factors and protocols and the impact on the outcome of the infection. Materials and Methods: In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic search of PubMed, Embase, and Cochrane Library databases by two independent reviewers was reported. Studies evaluating prognostic factors and treatment outcomes of Vibrio vulnificus infections were included. Comprehensive Meta-Analysis, version 3.0 was used. Results: Two hundred eleven studies were identified. Of those, eight studies met our inclusion criteria. The following factors on presentation were associated with higher mortality rates; concomitant liver disease (odds ratio [OR], 4.38; 95% confidence interval [CI], 2.43-7.87; p < 0.001), renal disease (OR, 3.90; 95% CI, 1.37-11.12; p = 0.011), septic shock (OR, 2.82; 95% CI, 1.84-4.31; p < 0.001), higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (OR, 3.40; 95% CI, 2.26-5.12; p < 0.001), elevated band cells count (OR, 2.61; 95% CI, 1.13-6.0; p = 0.024), hypoalbuminemia (OR, 3.41; 95% CI, 1.58-7.35; p = 0.002), and infection involving multiple limbs (OR, 4.36; 95% CI, 1.72-11.07; p = 0.002). Interestingly, different antibiotic regimens did not have any impact on outcomes, however, delayed surgical intervention after the first 12 or 24 hours was associated with higher mortality rates (OR, 2.64; 95% CI, 1.39-5.0; p = 0.003 and OR, 2.99; 95% CI, 1.54-5.78; p = 0.001, respectively). Conclusion: The presence of liver or renal disease, higher APACHE II scores, septic shock, hypoalbuminemia, or elevated band cell on presentation should alert the physician to the higher risk of mortality. Different antibiotic regimens did not impact the outcomes in these patients and delayed surgical intervention is associated with worsening of mortality.
Collapse
Affiliation(s)
| | | | - Eman Toraih
- Tulane University, New Orleans, Louisiana, USA.,Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | | | | | | | | - Emad Kandil
- Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
61
|
Cai R, Zhen M, Guan Z, Li M, Liao Q, Liu X, Wu Y, Lai W, Shu B, Qi S. New atypical manifestations and prognostic factors of Vibrio vulnificus infection: A 10-year retrospective study. Jpn J Infect Dis 2021; 74:549-553. [PMID: 33952769 DOI: 10.7883/yoken.jjid.2020.843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vibrio vulnificus (V. vulnificus) infection is rare but potentially fatal. This study explored the new atypical manifestations and prognostic factors of V. vulnificus-infected patients throughout hospitalization. we retrospectively reviewed 33 patients diagnosed as having V. vulnificus infection in Guangdong Province, China between 2010 and 2020. Medical records were analyzed. Multiple logistic regression and receiver operating characteristic (ROC) curve analyses were performed. New atypical manifestations were found, including cholangitis, urinary tract infection, and suppurative otitis media. Eleven of thirty-three (33.3%) V. vulnificus-infected patients died eventually. By univariate analysis, patients with cardio-cerebro-vascular diseases, lower platelet counts, higher levels of C-reactive protein and procalcitonin (PCT) had a statistically higher mortality. However, multivariate analysis showed that only PCT (P = 0.036) reached statistical significance. Also, the area under the ROC value estimate for PCT was 0.8816 (95% CI, 0.759-1.000; P = 0.0009). More than half of patients with V. vulnificus infection would die when PCT >20 ng/ml, while no patient dies when PCT ≤ 20 ng/ml. This study found new atypical manifestations of V. vulnificus infection. Also, PCT is an effective and independent predictor of mortality of V. vulnificus infection, and is suitable for clinicians to make early risk stratification and best therapeutic strategies.
Collapse
Affiliation(s)
- Ruizhao Cai
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, China.,Guangdong Engineering & Technology Research Center for Precise Diagnosis and Treatment of Burns and Wounds, China
| | - Miao Zhen
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, China.,Guangdong Engineering & Technology Research Center for Precise Diagnosis and Treatment of Burns and Wounds, China
| | - Zhiguang Guan
- Department of Burn and Plastic Surgery, The People's Hospital of Taishan, China
| | - Menghe Li
- Department of Burn and Plastic Surgery, GuangDong Yangjiang People's Hospital, China
| | - Qiangyun Liao
- Department of Burn and Plastic Surgery, Binhaiwan Central Hospital of Dongguan, China
| | - Xing Liu
- Department of Burn and Plastic Surgery, Zhongshan City People's Hospital, China
| | - Ying Wu
- The Clinical Laboratory of Foshan Hospital of Traditional Chinese Medicine, China
| | - Wen Lai
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), China
| | - Bin Shu
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, China.,Guangdong Engineering & Technology Research Center for Precise Diagnosis and Treatment of Burns and Wounds, China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, China.,Guangdong Engineering & Technology Research Center for Precise Diagnosis and Treatment of Burns and Wounds, China
| |
Collapse
|
62
|
Kim J, Chun BC. Effect of Seawater Temperature Increase on the Occurrence of Coastal Vibrio vulnificus Cases: Korean National Surveillance Data from 2003 to 2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094439. [PMID: 33922061 PMCID: PMC8122616 DOI: 10.3390/ijerph18094439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to assess the association between seawater temperature and Vibrio vulnificus cases in coastal regions of Korea. All V. vulnificus cases in coastal regions notified to the Korea Disease Control and Prevention Agency between 2003 and 2016 were included in this work. Data for seawater temperature on the south, west, and east coast during the study period were provided by the Korea Oceanographic Data Center of the National Institute of Fisheries Science. We used a generalized additive model and performed a negative binomial regression analysis. In total, 383 notified cases were analyzed (west coast: 196 cases, south coast: 162, and east coast: 25). The maximum seawater temperature was the most significant predictor of V. vulnificus cases on the south and east coasts (relative risk according to the 1 °C increase in seawater temperature (RR) = 1.35 (95% confidence interval (CI): 1.19–1.53) and 1.30 (95% CI: 1.06–1.59), respectively). However, the mean seawater temperature was the most significant predictor for the west coast (RR = 1.34 (95% CI: 1.20–1.51)). These results indicate that continuously monitoring seawater temperature increase in each coastal area is crucial to prevent V. vulnificus infections and protect high-risk groups, such as persons with liver disease.
Collapse
Affiliation(s)
- Jungsook Kim
- Korea Disease Control and Prevention Agency, Cheongju 28159, Korea;
- Department of Public Health, Korea University Graduate School, Seoul 02841, Korea
| | - Byung Chul Chun
- Department of Public Health, Korea University Graduate School, Seoul 02841, Korea
- Department of Preventive Medicine, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1169
| |
Collapse
|
63
|
Assessment and Antibiotic Resistance Profiling in Vibrio Species Isolated from Wild Birds Captured in Danube Delta Biosphere Reserve, Romania. Antibiotics (Basel) 2021; 10:antibiotics10030333. [PMID: 33809945 PMCID: PMC8004222 DOI: 10.3390/antibiotics10030333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial and multidrug-resistant bacteria are a major problem worldwide and, consequently, the surveillance of antibiotic-resistant bacteria and assessment of the dissemination routes are essential. We hypothesized that migratory birds, coming from various environments, would carry more numerous Vibrio strains than sedentary species, with increased risk to be passed to their contacts or environment in habitats they transit or nest in. Similarly, we presumed that strains from migratory birds will show multidrug resistance. A total of 170 oral and rectal swabs were collected from wild birds captured in different locations of the Danube Delta (Malic, Sfantu-Gheorghe, Letea Forest) and processed using standardized selective media. V. cholerae strains were confirmed by serology and molecular methods and, subsequently, their susceptibility was evaluated. The prevalence of Vibrio species by host species, habitat type, and location was interpreted. The isolated Vibrio species were identified as Vibrio cholerae 14.33%, V. fluvialis 13.33%, V. alginolyticus 12%, V. mimicus 17.33%, V. vulnificus 10.88%, with V. parahaemolyticus and V. metschnikovii (16%) also being prevalent. Of the 76 Vibrio spp. isolates, 18.42% were resistant towards at least three antimicrobials, and 81.57% demonstrated a multidrug resistance phenotype, including mainly penicillins, aminoglycosides, and macrolides. The results of the present study indicate higher numbers of Vibrio strains in migratory (74.66%) than in sedentary birds (25.33%), confirming our hypothesis. Furthermore, the increased pathogenicity of Vibrio spp. strains, isolated from wild migratory and sedentary birds, was confirmed by their increased multiple antibiotic resistance (MAR) index (0.09–0.81).
Collapse
|
64
|
Tu PY, Huang SJ, Rajanbabu V, Wu JL, Chen JY. Comparative transcriptome analysis reveals ectopic delta-5 and delta-6 desaturases enhance protective gene expression upon Vibrio vulnificus challenge in Tilapia (Oreochromis niloticus). BMC Genomics 2021; 22:200. [PMID: 33752587 PMCID: PMC7983300 DOI: 10.1186/s12864-021-07521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tilapia (Oreochromis niloticus) cultures are frequently infected by Vibrio vulnificus, causing major economic losses to production units. Previously, tilapia expressing recombinant delta-5 desaturase and delta-6 desaturase (D56) were found to be resistant to V. vulnificus infection. In this report, we profile the D56-mediated molecular changes underlying this resistance in tilapia. A comparative transcriptome analysis was performed on V. vulnificus-infected wild-type and D56-transgenic tilapia using Illumina’s sequencing-by-synthesis approach. Gene enrichment analysis on differentially expressed unigenes was performed, and the expression patterns were validated by real-time PCR. Results Comparative transcriptome analysis was performed on RNA-sequence profiles obtained from wild-type and D56-transgenic tilapia at 0, 6 and 24 h post-infection with V. vulnificaus. GO and KEGG gene enrichment analyses showed that D56 regulates several pathways and genes, including fatty acid (FA) metabolism associated, and inflammatory and immune response. Expression of selected FA metabolism-associated, inflammatory and immune responsive genes was validated by qPCR. The inflammatory and immune responsive genes that are modulated by FA-associated D56 likely contribute to the enhanced resistance against V. vulnificus infection in Tilapia. Conclusions Transcriptome profiling and filtering for two-fold change variation showed that 3795 genes were upregulated and 1839 genes were downregulated in D56-transgenic tilapia. These genes were grouped into pathways, such as FA metabolism, FA elongation, FA biosynthesis, biosynthesis of unsaturated FA, FA degradation, inflammation, immune response, and chemokines. FA-associated genes and immune-related genes were modulated by D56 at 6 h and 24 h post infection with V. vulnificus. The expression patterns of FA-related genes, inflammatory genes, antimicrobial peptide genes and immune responsive genes at 0, 3, 6, 12, 24 and 48 h post-infection suggests these genes are involved in the enhanced resistance of D56 transgenic tilapia to V. vulnificus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07521-5.
Collapse
Affiliation(s)
- Pin-Yang Tu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan
| | - Shin-Jie Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Venugopal Rajanbabu
- Department of Plant Breeding 7 Genetics, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirapalli, Tamil Nadu, 620027, India
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan. .,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
65
|
Kim S, Chung HY, Kwon JG, Choi SH, Lee JH. Fresh Crab Plays an Important Role as a Nutrient Reservoir for the Rapid Propagation of Vibrio vulnificus. Front Microbiol 2021; 12:645860. [PMID: 33767684 PMCID: PMC7985530 DOI: 10.3389/fmicb.2021.645860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus is a well-known opportunistic pathogen causing food-borne illnesses by ingestion of contaminated seafood. A new strain of V. vulnificus FORC_016 was isolated from a patient's blood sample in South Korea. The genome consists of two circular DNA chromosomes: chromosome I (3,234,424 bp with a G + C contents of 46.60% containing 2,889 ORFs, 106 tRNA genes, and 31 rRNA genes) and chromosome II (1,837,945 bp with a GC content of 47.00% containing 1,572 ORFs, 13 tRNA genes, and 3 rRNA genes). In addition, chromosome I has a super integron (SI) containing 209 ORFs, which is probably associated with various additional functions including antibiotic resistance and pathogenicity. Pan-genome analysis with other V. vulnificus genomes revealed that core genome regions contain most of the important virulence factors. However, accessory genome regions are located in the SI region and contain unique genes regarding cell wall biosynthesis and generation of host cell protecting capsule, suggesting possible resistance ability against environmental stresses. Comparative RNA-Seq analysis of samples between contact and no contact to the crab conditions showed that expressions of amino acid/peptide and carbohydrate transport and utilization genes were down-regulated, but expressions of cell division and growth-related genes were up-regulated, suggesting that the crab may be a nutrition reservoir for rapid propagation of V. vulnificus. Therefore, consumption of the contaminated fresh crab would provide a large number of V. vulnificus to humans, which may be more dangerous. Consequently, biocontrol of V. vulnificus may be critical to ensure the safety in seafood consumption.
Collapse
Affiliation(s)
- Suyeon Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Han Young Chung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Joon-Gi Kwon
- Food Microbiome Laboratory, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Food Microbiome Laboratory, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
66
|
Vergis J, Rawool DB, Singh Malik SV, Barbuddhe SB. Food safety in fisheries: Application of One Health approach. Indian J Med Res 2021; 153:348-357. [PMID: 33906998 PMCID: PMC8204822 DOI: 10.4103/ijmr.ijmr_573_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Fisheries comprise the fastest growing sector meeting the global protein requirements. Being an affordable enterprise, it is considered a safe source of food and the muscles of healthy fishes are almost sterile. However, a multitude of hazards (biological, chemical, and environmental) can be introduced into aquaculture throughout the production and supply chain. Also, it can originate from unsuitable farming practices, environmental pollution, and socio-cultural habits prevailing in various regions. Hence, with an increasing global population and demands for aquacultural products, assessment and regulation of food safety concerns are becoming significantly evident. Ensuring safe, secure, affordable, and quality food for all in a global context is pragmatically difficult. In this context, it is quite imperative to understand the ecology and dynamics of these hazards throughout the entire production chain in a One Health approach. Here, we discuss the issues and challenges faced in the fisheries sector as a whole and the need for a One Health approach to overcome such hurdles.
Collapse
Affiliation(s)
- Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, India
| | - Deepak B. Rawool
- Department of Meat Safety, ICAR- National Research Centre on Meat, Chengicherla, Hyderabad, Telangana, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sukhadeo B. Barbuddhe
- Department of Meat Safety, ICAR- National Research Centre on Meat, Chengicherla, Hyderabad, Telangana, India
| |
Collapse
|
67
|
A Predictive Human Health Risk Assessment of Non-Choleraic Vibrio spp. during Hurricane-Driven Flooding Events in Coastal South Carolina, USA. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Densely populated, low-lying coastal areas are most at-risk for negative impacts from increasing intensity of storm-induced flooding. Due to the effects of global warming and subsequent climate change, coastal temperatures and the magnitude of storm-induced flooding are projected to increase, creating a hospitable environment for the aquatic Vibrio spp. bacteria. A relative risk model analysis was used to determine which census block groups in coastal South Carolina have the highest risk of Vibrio spp. exposure using storm surge flooding as a proxy. Coastal block groups with dense vulnerable sub-populations exposed to storm surge have the highest relative risk, while inland block groups away from riverine-mediated storm surge have the lowest relative risk. As Vibriosis infections may be extremely severe or even deadly, the best methods of infection control will be regular standardized coastal and estuarine water monitoring for Vibrio spp. to enable more informed and timely public health advisories and help prevent future exposure.
Collapse
|
68
|
Huang XH, Ma Y, Lou H, Chen N, Zhang T, Wu LY, Chen YJ, Zheng MM, Lou YL, Xie DL. The Role of TSC1 in the Macrophages Against Vibrio vulnificus Infection. Front Cell Infect Microbiol 2021; 10:596609. [PMID: 33585271 PMCID: PMC7873526 DOI: 10.3389/fcimb.2020.596609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus) is an estuarine bacterium that is capable of causing rapidly fatal infection in humans. Proper polarization and bactericidal activity of macrophages play essential roles in defending against invading pathogens. How macrophages limit V. vulnificus infection remains not well understood. Here we report that tuberous sclerosis complex 1 (TSC1) is crucial for the regulation of V. vulnificus-induced macrophage polarization, bacterial clearance, and cell death. Mice with myeloid-specific deletion of TSC1 exhibit a significant reduction of survival time after V. vulnificus infection. V. vulnificus infection induces both M1 and M2 polarization. However, TSC1 deficient macrophages show enhanced M1 response to V. vulnificus infection. Interestedly, the absence of TSC1 in myeloid cells results in impaired bacterial clearance both in vivo and in vitro after V. vulnificus infection. Inhibition of the mammalian target of rapamycin (mTOR) activity significantly reverses V. vulnificus-induced hypersensitive M1 response and resistant bactericidal activity both in wild-type and TSC1-deficient macrophages. Moreover, V. vulnificus infection causes cell death of macrophages, possibly contributes to defective of bacterial clearance, which also exhibits in a mTORC1-dependent manner. These findings highlight an essential role for the TSC1-mTOR signaling in the regulation of innate immunity against V. vulnificus infection.
Collapse
Affiliation(s)
- Xian-Hui Huang
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Yao Ma
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Laboratory Medicine, Dong Yang People's Hospital, Jinhua, China
| | - Han Lou
- Department of Pathology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Na Chen
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Ting Zhang
- Department of Laboratory Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Liu-Ying Wu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Yi-Ju Chen
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Meng-Meng Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Yong-Liang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Dan-Li Xie
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| |
Collapse
|
69
|
Dickerson J, Gooch-Moore J, Jacobs JM, Mott JB. Characteristics of Vibrio vulnificus isolates from clinical and environmental sources. Mol Cell Probes 2021; 56:101695. [PMID: 33453365 DOI: 10.1016/j.mcp.2021.101695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Researchers have developed multiple methods to characterize clinical and environmental strains of Vibrio vulnificus. The aim of our study was to use four assays to detect virulence factors in strains from infected patients and those from surface waters/sediments/oysters of South Carolina and the Gulf of Mexico. Vibrio vulnificus strains from clinical (n = 81) and environmental (n = 171) sources were tested using three real-time PCR methods designed to detect polymorphisms in the 16S rRNA, vcg and pilF genes and a phenotypic method, the ability to ferment D-mannitol. Although none of the tests correctly categorized all isolates, the differentiation between clinical and environmental isolates was similar for the pilF, vcgC/E and 16S rRNA assays, with sensitivities of 74.1-79.2% and specificities of 77.4-82.7%. The pilF and vcgC/E assays are comparable in efficacy to the widely used 16S rRNA method, while the D-mannitol fermentation test is less discriminatory (sensitivity = 77.8%, specificity = 61.4%). Overall percent agreement for the D-mannitol fermentation method was also lower (66.7%) than overall percent agreement for the 3 molecular assays (78.0%-80.2%). This study demonstrated, using a large, diverse group of Vibrio vulnificus isolates, that three assays could be used to distinguish most clinical vs environmental isolates; however, additional assays are needed to increase accuracy.
Collapse
Affiliation(s)
- J Dickerson
- James Madison University, Department of Biology, 951 Carrier Dr., MSC 7801, Harrisonburg, VA, USA; National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), National Center for Coastal Ocean Science (NCCOS), Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) Lab, Charleston, SC, USA
| | - J Gooch-Moore
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), National Center for Coastal Ocean Science (NCCOS), Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) Lab, Charleston, SC, USA
| | - J M Jacobs
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), National Center for Coastal Ocean Science (NCCOS), Oxford Lab, Oxford, MD, USA.
| | - J B Mott
- James Madison University, Department of Biology, 951 Carrier Dr., MSC 7801, Harrisonburg, VA, USA
| |
Collapse
|
70
|
A fatal case of Vibrio vulnificus septicemia in an end-stage liver disease patient. Enferm Infecc Microbiol Clin 2020. [PMID: 33388208 DOI: 10.1016/j.eimc.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
71
|
Gao P, Mohd Noor NQI, Md Shaarani S. Current status of food safety hazards and health risks connected with aquatic food products from Southeast Asian region. Crit Rev Food Sci Nutr 2020; 62:3471-3489. [PMID: 33356490 DOI: 10.1080/10408398.2020.1866490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
Collapse
Affiliation(s)
- Peiru Gao
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | | | - Sharifudin Md Shaarani
- Food Biotechnology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
72
|
Pereira C, Costa P, Duarte J, Balcão VM, Almeida A. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption. Int J Food Microbiol 2020; 338:108995. [PMID: 33316593 DOI: 10.1016/j.ijfoodmicro.2020.108995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Infectious human diseases acquired from bivalve shellfish consumption constitute a public health threat. These health threats are largely related to the filter-feeding phenomenon, by which bivalve organisms retain and concentrate pathogenic bacteria from their surrounding waters. Even after depuration, bivalve shellfish are still involved in outbreaks caused by pathogenic bacteria, which increases the demand for new and efficient strategies to control transmission of shellfish infection. Bacteriophage (or phage) therapy represents a promising, tailor-made approach to control human pathogens in bivalves, but its success depends on a deep understanding of several factors that include the bacterial communities present in the harvesting waters, the appropriate selection of phage particles, the multiplicity of infection that produces the best bacterial inactivation, chemical and physical factors, the emergence of phage-resistant bacterial mutants and the life cycle of bivalves. This review discusses the need to advance phage therapy research for bivalve decontamination, highlighting their efficiency as an antimicrobial strategy and identifying critical aspects to successfully apply this therapy to control human pathogens associated with bivalve consumption.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Costa
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, São Paulo, Brazil
| | - Adelaide Almeida
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
73
|
Yuan Y, Feng Z, Wang J. Vibrio vulnificus Hemolysin: Biological Activity, Regulation of vvhA Expression, and Role in Pathogenesis. Front Immunol 2020; 11:599439. [PMID: 33193453 PMCID: PMC7644469 DOI: 10.3389/fimmu.2020.599439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The Vibrio vulnificus (V. vulnificus) hemolysin (VVH) is a pore-forming cholesterol-dependent cytolysin (CDC). Although there has been some debate surrounding the in vivo virulence effects of the VVH, it is becoming increasingly clear that it drives different cellular outcomes and is involved in the pathogenesis of V. vulnificus. This minireview outlines recent advances in our understanding of the regulation of vvhA gene expression, the biological activity of the VVH and its role in pathogenesis. An in-depth examination of the role of the VVH in V. vulnificus pathogenesis will help reveal the potential targets for therapeutic and preventive interventions to treat fatal V. vulnificus septicemia in humans. Future directions in VVH research will also be discussed.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zihan Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
74
|
Pang R, Li Y, Liao K, Guo P, Li Y, Yang X, Zhang S, Lei T, Wang J, Chen M, Wu S, Xue L, Wu Q. Genome- and Proteome-Wide Analysis of Lysine Acetylation in Vibrio vulnificus Vv180806 Reveals Its Regulatory Roles in Virulence and Antibiotic Resistance. Front Microbiol 2020; 11:591287. [PMID: 33250879 PMCID: PMC7674927 DOI: 10.3389/fmicb.2020.591287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Infection with Vibrio vulnificus is notorious for its atypical clinical manifestations and irreversible disease progression. Lysine acetylation is a conserved post-translational modification (PTM) that plays a critical regulatory role in diverse cellular processes. However, little is known about the role of lysine acetylation on the pathogenesis of V. vulnificus. Here, we report the complete genome sequence and a global profile for protein lysine acetylation of V. vulnificus Vv180806, a highly cefoxitin resistant strain isolated from a mortality case. The assembled genome comprised two circular chromosomes and one circular plasmid; it contained 4,770 protein-coding genes and 153 RNA genes. Phylogenetic analysis revealed genetic homology of this strain with other V. vulnificus strains from food sources. Of all the proteins in this strain, 1,924 (40.34%) were identified to be acetylated at 6,626 sites. The acetylated proteins were enriched in metabolic processes, binding functions, cytoplasm, and multiple central metabolic pathways. Moreover, the acetylation was found in most identified virulence factors of this strain, suggesting its potentially important role in bacterial virulence. Our work provides insights into the genomic and acetylomic features responsible for the virulence and antibiotic resistance of V. vulnificus, which will facilitate future investigations on the pathogenesis of this bacterium.
Collapse
Affiliation(s)
- Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Penghao Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanping Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
75
|
Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere. ISME JOURNAL 2020; 15:789-806. [PMID: 33139870 PMCID: PMC8027867 DOI: 10.1038/s41396-020-00814-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
It is now indisputable that plastics are ubiquitous and problematic in ecosystems globally. Many suggestions have been made about the role that biofilms colonizing plastics in the environment—termed the “Plastisphere”—may play in the transportation and ecological impact of these plastics. By collecting and re-analyzing all raw 16S rRNA gene sequencing and metadata from 2,229 samples within 35 studies, we have performed the first meta-analysis of the Plastisphere in marine, freshwater, other aquatic (e.g., brackish or aquaculture) and terrestrial environments. We show that random forest models can be trained to differentiate between groupings of environmental factors as well as aspects of study design, but—crucially—also between plastics when compared with control biofilms and between different plastic types and community successional stages. Our meta-analysis confirms that potentially biodegrading Plastisphere members, the hydrocarbonoclastic Oceanospirillales and Alteromonadales are consistently more abundant in plastic than control biofilm samples across multiple studies and environments. This indicates the predilection of these organisms for plastics and confirms the urgent need for their ability to biodegrade plastics to be comprehensively tested. We also identified key knowledge gaps that should be addressed by future studies.
Collapse
Affiliation(s)
- Robyn J Wright
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada. .,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada.
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
| |
Collapse
|
76
|
Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA. Marine Plastic Debris: A New Surface for Microbial Colonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11657-11672. [PMID: 32886491 DOI: 10.1021/acs.est.0c02305] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastics become rapidly colonized by microbes when released into marine environments. This microbial community-the Plastisphere-has recently sparked a multitude of scientific inquiries and generated a breadth of knowledge, which we bring together in this review. Besides providing a better understanding of community composition and biofilm development in marine ecosystems, we critically discuss current research on plastic biodegradation and the identification of potentially pathogenic "hitchhikers" in the Plastisphere. The Plastisphere is at the interface between the plastic and its surrounding milieu, and thus drives every interaction that this synthetic material has with its environment, from ecotoxicity and new links in marine food webs to the fate of the plastics in the water column. We conclude that research so far has not shown Plastisphere communities to starkly differ from microbial communities on other inert surfaces, which is particularly true for mature biofilm assemblages. Furthermore, despite progress that has been made in this field, we recognize that it is time to take research on plastic-Plastisphere-environment interactions a step further by identifying present gaps in our knowledge and offering our perspective on key aspects to be addressed by future studies: (I) better physical characterization of marine biofilms, (II) inclusion of relevant controls, (III) study of different successional stages, (IV) use of environmentally relevant concentrations of biofouled microplastics, and (V) prioritization of gaining a mechanistic and functional understanding of Plastisphere communities.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gabriel Erni-Cassola
- Man-Society-Environment (MSE) program, University of Basel, Basel 4003, Switzerland
| | - Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Mira Latva
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Joseph A Christie-Oleza
- University of the Balearic Islands, Palma 07122, Spain
- IMEDEA (CSIC-UIB), Esporles 07190, Spain
| |
Collapse
|
77
|
Pote S, Kachhap S, Mank NJ, Daneshian L, Klapper V, Pye S, Arnette AK, Shimizu LS, Borowski T, Chruszcz M. Comparative structural and mechanistic studies of 4-hydroxy-tetrahydrodipicolinate reductases from Mycobacterium tuberculosis and Vibrio vulnificus. Biochim Biophys Acta Gen Subj 2020; 1865:129750. [PMID: 32980502 DOI: 10.1016/j.bbagen.2020.129750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The products of the lysine biosynthesis pathway, meso-diaminopimelate and lysine, are essential for bacterial survival. This paper focuses on the structural and mechanistic characterization of 4-hydroxy-tetrahydrodipicolinate reductase (DapB), which is one of the enzymes from the lysine biosynthesis pathway. DapB catalyzes the conversion of (2S, 4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate (HTPA) to 2,3,4,5-tetrahydrodipicolinate in an NADH/NADPH dependent reaction. Genes coding for DapBs were identified as essential for many pathogenic bacteria, and therefore DapB is an interesting new target for the development of antibiotics. METHODS We have combined experimental and computational approaches to provide novel insights into mechanism of the DapB catalyzed reaction. RESULTS Structures of DapBs originating from Mycobacterium tuberculosis and Vibrio vulnificus in complexes with NAD+, NADP+, as well as with inhibitors, were determined and described. The structures determined by us, as well as currently available structures of DapBs from other bacterial species, were compared and used to elucidate a mechanism of reaction catalyzed by this group of enzymes. Several different computational methods were used to provide a detailed description of a plausible reaction mechanism. CONCLUSIONS This is the first report presenting the detailed mechanism of reaction catalyzed by DapB. GENERAL SIGNIFICANCE Structural data in combination with information on the reaction mechanism provide a background for development of DapB inhibitors, including transition-state analogues.
Collapse
Affiliation(s)
- Swanandi Pote
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sangita Kachhap
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Nicholas J Mank
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Vincent Klapper
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sarah Pye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Amy K Arnette
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
78
|
Kim HJ, Kim YT, Kim HB, Choi SH, Lee JH. Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases. Food Microbiol 2020; 94:103630. [PMID: 33279062 DOI: 10.1016/j.fm.2020.103630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus is a major food-borne pathogen that causes septicemia and cellulitis with a mortality rate of >50%. However, there are no efficient natural food preservatives or biocontrol agents to control V. vulnificus in seafood. In this study, we isolated and characterized a novel bacteriophage VVP001. Host range and transmission electron microscopy morphology observations revealed that VVP001 belongs to the family Siphoviridae and specifically infects V. vulnificus. Phage stability tests showed that VVP001 is stable at a broad temperature range of -20 °C to 65 °C and a pH range from 3 to 11, which are conditions for food applications (processing, distribution, and storage). In vitro challenge assays revealed that VVP001 inhibited V. vulnificus MO6-24/O (a clinical isolate) growth up to a 3.87 log reduction. In addition, complete genome analysis revealed that the 76 kb VVP001 contains 102 open reading frames with 49.64% G + C content and no gene encoding toxins or other virulence factors, which is essential for food applications. Application of VVP001 to fresh abalone samples contaminated with V. vulnificus demonstrated its ability to inhibit V. vulnificus growth, and an in vivo mouse survival test showed that VVP001 protects mice against high mortality (survival rate >70% at a multiplicity of infection of 1000 for up to 7 days). Therefore, the bacteriophage VVP001 can be used as a good natural food preservative and biocontrol agent for food applications.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
79
|
Hernández-Cabanyero C, Amaro C. Phylogeny and life cycle of the zoonotic pathogen Vibrio vulnificus. Environ Microbiol 2020; 22:4133-4148. [PMID: 32567215 DOI: 10.1111/1462-2920.15137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Vibrio vulnificus is a zoonotic pathogen able to cause diseases in humans and fish that occasionally result in sepsis and death. Most reviews about this pathogen (including those related to its ecology) are clearly biased towards its role as a human pathogen, emphasizing its relationship with oysters as its main reservoir, the role of the known virulence factors as well as the clinic and the epidemiology of the human disease. This review tries to give to the reader a wider vision of the biology of this pathogen covering aspects related to its phylogeny and evolution and filling the gaps in our understanding of the general strategies that V. vulnificus uses to survive outside and inside its two main hosts, the human and the eel, and how its response to specific environmental parameters determines its survival, its death, or the triggering of an infectious process.
Collapse
Affiliation(s)
| | - Carmen Amaro
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, Valencia, 46100, Spain
| |
Collapse
|
80
|
Abstract
BACKGROUND The prevalence of Vibrio vulnificus heavily depends on the temperature and salinity of the sea water. In the course of climate change an increase in cases of fatal sepsis caused by V. vulnificus at the German Baltic Sea coast could be detected. OBJECTIVE To generate awareness for a life-threatening infection with increasing incidence in Germany. MATERIAL AND METHODS This article presents an overview of the current state of the literature followed by an exemplary description of cases with V vulnificus sepsis caused by contact with water in the Baltic Sea, which were treated at the Medical University in Greifswald in summer 2018. RESULTS In the presence of risk factors, such as liver and kidney diseases, immunosuppression and male sex, there is a danger of severe sepsis if damaged skin comes into contact with contaminated sea water. A pronounced organ dysfunction can frequently be found on admission. In these cases the diagnosis must be made promptly and timely surgical cleansing and antibiotic treatment should be initiated (e.g. a combination of tetracyclines and third generation cephalosporins). CONCLUSION Sepsis due to V. vulnificus will probably increase over the coming years. Because there is a latency in some cases between infection and onset of sepsis, physicians beyond the coastal region must also be informed about this disease.
Collapse
|
81
|
Tomenchok LE, Gidley ML, Mena KD, Ferguson AC, Solo-Gabriele HM. Children's Abrasions in Recreational Beach Areas and a Review of Possible Wound Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17114060. [PMID: 32517246 PMCID: PMC7313077 DOI: 10.3390/ijerph17114060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
The Beach Exposure and Child Health Study (BEACHES) quantified the behavior of children at recreational beach areas to evaluate how various behaviors might affect their exposure to environmental contaminants such as bacteria and chemicals. Due to limited information in the study about abrasions, we conducted a literature review to examine how marine bacteria cause infections in open wounds. The literature review revealed possible adverse health effects from the bacterium Vibrio vulnificus due to its increasing prevalence and the severity of infection. We used data from the BEACHES study to review children's behavior and their susceptibility to abrasions. Children six years of age and younger were evaluated before and after 1 hour of play for open or healing abrasions at two beaches in Miami-Dade County, Florida (Crandon and Haulover), and two beaches in Galveston County, Texas (Stewart and Seawall). The children were videotaped to monitor their activities and to determine the behavior that would increase their susceptibility to obtaining abrasions. Overall, 58.2% of the children had at least one existing abrasion before playing at the beach, while 8.2% of the children acquired a new abrasion during their time at the beach. Children who acquired new abrasions most often played in the sea water, with new abrasions most frequently occurring on exposed skin surfaces such as the knees. Proper wound care before and after visiting the beach should be encouraged to minimize the risk of bacterial infection, especially considering the possible detrimental impacts that can be caused by some bacterial pathogens through wound exposures.
Collapse
Affiliation(s)
- Lara E. Tomenchok
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Maribeth L. Gidley
- Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami, Miami, FL 33149, USA;
- Atlantic Oceanographic and Meteorological Laboratory (AOML), National Oceanic and Atmospheric Administration (NOAA), Miami, FL 33149, USA
| | - Kristina D. Mena
- School of Public Health, University of Texas, Houston, TX 77030, USA;
| | - Alesia C. Ferguson
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Helena M. Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA;
- Correspondence: ; Tel.: +1-305-284-2908
| |
Collapse
|
82
|
Kang SJ, Jung SI, Peck KR. Historical and Clinical Perspective of Vibrio vulnificus Infections in Korea. Infect Chemother 2020; 52:245-251. [PMID: 32468743 PMCID: PMC7335640 DOI: 10.3947/ic.2020.52.2.245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus infection was first reported as a necrotizing skin disease of unknown cause in Korea in 1979. In the early days, this disease caused panic across the country due to dreadful wound and its high mortality. Since then, the nature of the disease has become better understood and the overwhelming public fear has dissipated. However, there are still a certain number of infected patients each year and the high mortality rate remains a major health and social problem. From this review on historical and clinical perspective, better understanding of V. vulnificus infection would provide valuable information for public health planning.
Collapse
Affiliation(s)
- Seung Ji Kang
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sook In Jung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
83
|
Pettis GS, Mukerji AS. Structure, Function, and Regulation of the Essential Virulence Factor Capsular Polysaccharide of Vibrio vulnificus. Int J Mol Sci 2020; 21:ijms21093259. [PMID: 32380667 PMCID: PMC7247339 DOI: 10.3390/ijms21093259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Vibrio vulnificus populates coastal waters around the world, where it exists freely or becomes concentrated in filter feeding mollusks. It also causes rapid and life-threatening sepsis and wound infections in humans. Of its many virulence factors, it is the V. vulnificus capsule, composed of capsular polysaccharide (CPS), that plays a critical role in evasion of the host innate immune system by conferring antiphagocytic ability and resistance to complement-mediated killing. CPS may also provoke a portion of the host inflammatory cytokine response to this bacterium. CPS production is biochemically and genetically diverse among strains of V. vulnificus, and the carbohydrate diversity of CPS is likely affected by horizontal gene transfer events that result in new combinations of biosynthetic genes. Phase variation between virulent encapsulated opaque colonial variants and attenuated translucent colonial variants, which have little or no CPS, is a common phenotype among strains of this species. One mechanism for generating acapsular variants likely involves homologous recombination between repeat sequences flanking the wzb phosphatase gene within the Group 1 CPS biosynthetic and transport operon. A considerable number of environmental, genetic, and regulatory factors have now been identified that affect CPS gene expression and CPS production in this pathogen.
Collapse
|
84
|
Kim JY, Joo YS, Lee S, Lee JY, Park JT, Han SH, Yoo TH, Kang SW. Septicemia, necrotizing fasciitis, and peritonitis due to Vibrio vulnificus treated with early use of polymyxin B hemoperfusion in a patient undergoing CAPD: a case report. BMC Nephrol 2020; 21:127. [PMID: 32272896 PMCID: PMC7146884 DOI: 10.1186/s12882-020-01772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
Background Vibrio vulnificus infection is a rare but fatal foodborne illness. Here, we report a case of Vibrio vulnificus peritonitis followed by severe septicemia in a patient undergoing continuous ambulatory peritoneal dialysis (CAPD) who was treated with hemoperfusion using polymyxin B immobilized fiber. Case presentation A 63-year-old man undergoing CAPD was admitted to the emergency room due to general weakness, fever, and abdominal pain with hazy dialysate. Two days before admission, he had eaten raw fish. Initial laboratory tests including peritoneal fluid analysis suggested peritonitis. Despite empirical intraperitoneal antibiotic treatment, his fever did not subside, and multiple vesicles on the extremities newly appeared. The result of initial peritoneal fluid culture and blood cultures reported Vibrio vulnificus as the most likely causative pathogen. Hemoperfusion with polymyxin B immobilized fiber was performed to control gram-negative bacterial septicemia with antibiotics targeting the pathogenic organism. The patient recovered completely and was discharged without complications. Discussion and conclusion Suspicion of Vibrio vulnificus infection in susceptible immunocompromised patients is important for early diagnosis and prompt management. Peritonitis should be noted as a clinical manifestation of Vibrio vulnificus infection in CAPD patients, and polymyxin B hemoperfusion along with proper antibiotics could be considered as a treatment option.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Su Joo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangmi Lee
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Young Lee
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
85
|
Hernández-Cabanyero C, Sanjuán E, Fouz B, Pajuelo D, Vallejos-Vidal E, Reyes-López FE, Amaro C. The Effect of the Environmental Temperature on the Adaptation to Host in the Zoonotic Pathogen Vibrio vulnificus. Front Microbiol 2020; 11:489. [PMID: 32296402 PMCID: PMC7137831 DOI: 10.3389/fmicb.2020.00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively. The objective of this work was to unravel the role of temperature in the adaptation to the host through a transcriptomic and phenotypic approach. To this end, we obtained the transcriptome of a zoonotic strain grown in a minimum medium (CM9) at 20, 25, 28, and 37°C, and confirmed the transcriptomic results by RT-qPCR and phenotypic tests. In addition, we compared the temperature stimulon with those previously obtained for iron and serum (from eel and human, respectively). Our results suggest that warm temperatures activate adaptive traits that would prepare the bacteria for host colonization (metabolism, motility, chemotaxis, and the protease activity) and fish septicemia (iron-uptake from transferrin and production of O-antigen of high molecular weight) in a generalized manner, while environmental iron controls the expression of a host-adapted virulent phenotype (toxins and the production of a protective envelope). Finally, our results confirm that beyond the effect of temperature on the V. vulnificus distribution in the environment, it also has an effect on the infectious capability of this pathogen that must be taken into account to predict the real risk of V. vulnificus infection caused by global warming.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Sanjuán
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Belén Fouz
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - David Pajuelo
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Amaro
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
86
|
Abbas G, Zafar I, Ahmad S, Azam SS. Immunoinformatics design of a novel multi-epitope peptide vaccine to combat multi-drug resistant infections caused by Vibrio vulnificus. Eur J Pharm Sci 2020; 142:105160. [PMID: 31751777 DOI: 10.1016/j.ejps.2019.105160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/23/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Multi-drug resistant Vibrio vulnificus is a Gram-negative bacillus responsible for diseases, such as: sepsis, septicemia, gastroenteritis, and fatal necrotizing fasciitis in humans. The treatment and prevention of V. vulnificus infections are challenging because of resistance to antibiotics and the non-availability of a licensed vaccine. Considering this, an in-silico based approach comprising subtractive proteomics, immunoinformatics, molecular docking, and dynamics simulation studies is applied herein to identify potential epitope vaccine candidates for the mentioned pathogen. Two potential vaccine candidates: vibC and flgL are filtered based on essentiality, outer membrane localization, virulence, antigenic, pathway mapping, and cellular protein-protein network analysis. Using immunoinformatic tools, 9-mer B-cell derived T-cell antigenic epitopes are predicted for the said shortlisted two proteins that are demonstrating excellent affinity for predominant HLA allele (DRB1*0101) in human population. Screened peptides are used further in multi-epitope peptide designing and linked to an adjuvant to enhance the immunogenic properties of the designed construct. Furthermore, the construct was docked blindly to TLR4 immune receptor, and analyzed in conformational dynamics simulation to decipher the complex affinity and understand time dependent behavior, respectively. We expect this designed in silico construct to be useful for vaccinologists to evaluate its immune protective efficacy in in vivo animal models.
Collapse
Affiliation(s)
- Ghulam Abbas
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Zafar
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
87
|
Cronin SJF, Woolf CJ, Weiss G, Penninger JM. The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front Mol Biosci 2019; 6:116. [PMID: 31824960 PMCID: PMC6883604 DOI: 10.3389/fmolb.2019.00116] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Immunometabolism explores how the intracellular metabolic pathways in immune cells can regulate their function under different micro-environmental and (patho-)-physiological conditions (Pearce, 2010; Buck et al., 2015; O'Neill and Pearce, 2016). In the last decade great advances have been made in studying and manipulating metabolic programs in immune cells. Immunometabolism has primarily focused on glycolysis, the TCA cycle and oxidative phosphorylation (OXPHOS) as well as free fatty acid synthesis and oxidation. These pathways are important for providing the energy needs of cell growth, membrane rigidity, cytokine production and proliferation. In this review, we will however, highlight the specific role of iron metabolism at the cellular and organismal level, as well as how the bioavailability of this metal orchestrates complex metabolic programs in immune cell homeostasis and inflammation. We will also discuss how dysregulation of iron metabolism contributes to alterations in the immune system and how these novel insights into iron regulation can be targeted to metabolically manipulate immune cell function under pathophysiological conditions, providing new therapeutic opportunities for autoimmunity and cancer.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Guenter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
88
|
Herrera A, Muroski J, Sengupta R, Nguyen HH, Agarwal S, Ogorzalek Loo RR, Mattoo S, Loo JA, Satchell KJF. N-terminal autoprocessing and acetylation of multifunctional-autoprocessing repeats-in-toxins (MARTX) Makes Caterpillars Floppy-like effector is stimulated by adenosine diphosphate (ADP)-Ribosylation Factor 1 in advance of Golgi fragmentation. Cell Microbiol 2019; 22:e13133. [PMID: 31658406 DOI: 10.1111/cmi.13133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022]
Abstract
Studies have successfully elucidated the mechanism of action of several effector domains that comprise the multifunctional-autoprocessing repeats-in-toxins (MARTX) toxins of Vibrio vulnificus. However, the biochemical linkage between the cysteine proteolytic activity of Makes Caterpillars Floppy (MCF)-like effector and its cellular effects remains unknown. In this study, we identify the host cell factors that activate in vivo and in vitro MCF autoprocessing as adenosine diphosphate (ADP)-Ribosylation Factor 1 (ARF1) and ADP-Ribosylation Factor 3 (ARF3). Autoprocessing activity is enhanced when ARF1 is in its active [guanosine triphosphate (GTP)-bound] form compared to the inactive [guanosine diphosphate (GDP)-bound] form. Subsequent to auto-cleavage, MCF is acetylated on its exposed N-terminal glycine residue. Acetylation apparently does not dictate subcellular localization as MCF is found localized throughout the cell. However, the cleaved form of MCF gains the ability to bind to the specialized lipid phosphatidylinositol 5-phosphate enriched in Golgi and other membranes necessary for endocytic trafficking, suggesting that a fraction of MCF may be subcellularly localized. Traditional thin-section electron microscopy, high-resolution cryoAPEX localization, and fluorescent microscopy show that MCF causes Golgi dispersal resulting in extensive vesiculation. In addition, host mitochondria are disrupted and fragmented. Mass spectrometry analysis found no reproducible modifications of ARF1 suggesting that ARF1 is not post-translationally modified by MCF. Further, catalytically active MCF does not stably associate with ARF1. Our data indicate not only that ARF1 is a cross-kingdom activator of MCF, but also that MCF may mediate cytotoxicity by directly targeting another yet to be identified protein. This study begins to elucidate the biochemical activity of this important domain and gives insight into how it may promote disease progression.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Muroski
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Ranjan Sengupta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Hong Hanh Nguyen
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Shivangi Agarwal
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California.,UCLA/DOE Institute of Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California.,Department of Biological Chemistry, David Geffen School of Medicine, UCLA Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
89
|
D'Souza C, Kumar BK, Rai P, Deekshit VK, Karunasagar I. Application of gyrB targeted SYBR green based qPCR assay for the specific and rapid detection of Vibrio vulnificus in seafood. J Microbiol Methods 2019; 166:105747. [PMID: 31639359 DOI: 10.1016/j.mimet.2019.105747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
A SYBR green based qPCR assay targeting a unique region of gyrB was developed for the detection of Vibrio vulnificus. The specificity of the assay was studied using V. vulnificus and other bacterial strains belonging to Vibrio and non-Vibrio species. The assay unambiguously distinguished V.vulnificus with a sensitivity of 101 CFU/mL in pure culture while 102CFU/g was detected in clam meat homogenate with an efficiency of ≥98%.The utility of the qPCR assay was validated with naturally incurred seafood samples, where 24 out of 59(40.67%) seafood samples tested positive for V. vulnificus after 6-8 h enrichment in APW-P broth. In contrast, conventional PCR could detect only 11 samples (18.64%). Our results showed that qPCR assay developed in this study could be used as a rapid method for screening seafood samples for the presence of V. vulnificus, as the assay can be completed within 9-12 h including the enrichment of seafood in APW-P broth. The gyrB targeted qPCR developed in this study can provide excellent results on the presence and load of V. vulnificus in naturally contaminated samples quickly and efficiently; thus it could find application as a routine test in the seafood industry for the analysis V. vulnificus.
Collapse
Affiliation(s)
- Caroline D'Souza
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Praveen Rai
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Vijay Kumar Deekshit
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Indrani Karunasagar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| |
Collapse
|
90
|
Vibrio vulnificus cytolysin induces inflammatory responses in RAW264.7 macrophages through calcium signaling and causes inflammation in vivo. Microb Pathog 2019; 137:103789. [PMID: 31605759 DOI: 10.1016/j.micpath.2019.103789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/12/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
Vibrio vulnificus is a food-borne marine pathogen that causes both life-threatening primary septicemia and necrotizing wound infections which accompany severe inflammation. Cytolysin is a very powerful virulence factor of V. vulnificus and is one of the likely candidates in the pathogenesis of V. vulnificus infections. However, the pathogenetic roles of cytolysin in V. vulnificus-induced inflammation are not well understood. In this study, we used the recombinant protein Vibrio vulnificus cytolysin (VVC) to demonstrate that VVC can induce inflammatory responses in RAW264.7 macrophages. Low dose (<5 μg/ml) VVC had no impact on cell viability and induced pro-inflammatory cytokines production in RAW264.7 macrophages such as IL-6 and TNF-α. Moreover, VVC induced p65, p38, ERK1/2, and AKT phosphorylation in RAW264.7 macrophages. We further demonstrated that BAPTA-AM, a specific intracellular calcium chelator, inhibited VVC-induced inflammatory responses including pro-inflammatory cytokines production and inflammatory signaling activation in RAW264.7 macrophages. In addition, VVC primed rather than actived NLRP3 inflammasome in RAW264.7 macrophages. To determine whether VVC have a direct inflammatory effect on the host, we examined the effects of VVC injected into the skin of mice. VVC stimulated a significant induction of mRNAs for the pro-inflammatory cytokine IL-6 and inflammatory chemokines such as MCP-1 and IP-10. Histology data also showed that VVC caused inflammatory responses in the skin of mice. Collectively, our findings indicated that VVC induced inflammatory responses in RAW264.7 macrophages and in vivo and suggested the possibility of targeting VVC as a strategy for the clinical management of V. vulnificus-induced inflammatory responses.
Collapse
|
91
|
Guerrero A, Licea-Navarro AF, González-Sánchez R, Lizárraga-Partida ML. Whole-genome comparison between reference sequences and oyster Vibrio vulnificus C-genotype strains. PLoS One 2019; 14:e0220385. [PMID: 31361763 PMCID: PMC6667273 DOI: 10.1371/journal.pone.0220385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/15/2019] [Indexed: 01/22/2023] Open
Abstract
Whole-genome sequences of Vibrio vulnificus clinical genotype (C-genotype) from the CICESE Culture Collection, isolated from oysters, were compared with reference sequences of CMCP6 and YJ016 V. vulnificus C-genotype strains of clinical origin. The RAST web server estimated the whole genome to be ~4.8 Mb in CICESE strain 316 and ~4.7 Mb in CICESE strain 325. No plasmids were detected in the CICESE strains. Based on a phylogenetic tree that was constructed with the whole-genome results, we observed high similarity between the reference sequences and oyster C-genotype isolates and a sharp contrast with environmental genotype (E-genotype) reference sequences, indicating that the differences between the C- and E-genotypes do not necessarily correspond to their isolation origin. The CICESE strains share 3488 genes (63.2%) with the YJ016 strain and 3500 genes (63.9%) with the CMCP6 strain. A total of 237 pathogenicity associated genes were selected from reference clinical strains, where—92 genes were from CMCP6, 126 genes from YJ016, and 19 from MO6-24/O; the presence or absence of these genes was recorded for the CICESE strains. Of the 92 genes that were selected for CMCP6, 67 were present in both CICESE strains, as were as 86 of the 126 YJ016 genes and 13 of the 19 MO6-24/O genes. The detection of elements that are related to virulence in CICESE strains—such as the RTX gene cluster, vvhA and vvpE, the type IV pili cluster, the XII genomic island, and the viuB genes, suggests that environmental isolates with the C-genotype, have significant potential for infection.
Collapse
Affiliation(s)
- Abraham Guerrero
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Alexei Fedorovish Licea-Navarro
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Ricardo González-Sánchez
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Marcial Leonardo Lizárraga-Partida
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
- * E-mail:
| |
Collapse
|
92
|
Epidemiology, pathogenetic mechanism, clinical characteristics, and treatment of Vibrio vulnificus infection: a case report and literature review. Eur J Clin Microbiol Infect Dis 2019; 38:1999-2004. [PMID: 31325061 DOI: 10.1007/s10096-019-03629-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus is a Gram-negative bacterium that belongs to the Vibrionaceae family. It represents a deadly opportunistic human pathogen which grows in water with the proper temperature and salinity, and is mostly acquired from seafood eating or direct contact. In susceptible individuals, a traumatic infection could be fatal, causing severe wound infection and even septic shock, and may require amputation. Global warming plays an important role in the geographical area expanding of Vibrio disease. The pathogenesis of Vibrio vulnificus-associated sepsis is very complex, including iron intake, cell injury, and adhesion-related protein and virulence regulation. Vibrio vulnificus infection mainly manifests clinical subtypes such as primary sepsis, traumatic infection, and gastroenteritis, with rapid symptom progression and signs of multiple organ dysfunction syndrome (MODS). It is important to assess these pathogenetic mechanisms in order to select more appropriate measures to prevent and treat Vibrio vulnificus infections, including antibiotic usage and surgical intervention. In this work, we report a typical case of successful treatment of necrotizing fasciitis caused by Vibrio vulnificus, and review the epidemiology, pathogenetic mechanism, clinical characteristics, and treatment of Vibrio vulnificus infection.
Collapse
|
93
|
Hernández-Cabanyero C, Lee CT, Tolosa-Enguis V, Sanjuán E, Pajuelo D, Reyes-López F, Tort L, Amaro C. Adaptation to host in Vibrio vulnificus, a zoonotic pathogen that causes septicemia in fish and humans. Environ Microbiol 2019; 21:3118-3139. [PMID: 31206984 DOI: 10.1111/1462-2920.14714] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Vibrio vulnificus is a siderophilic pathogen spreading due to global warming. The zoonotic strains constitute a clonal-complex related to fish farms that are distributed worldwide. In this study, we applied a transcriptomic and single gene approach and discover that the zoonotic strains bypassed the iron requirement of the species thanks to the acquisition of two iron-regulated outer membrane proteins (IROMPs) involved in resistance to fish innate immunity. Both proteins have been acquired by horizontal gene transfer and are contributing to the successful spreading of this clonal-complex. We have also discovered that the zoonotic strains express a virulent phenotype in the blood of its main susceptible hosts (iron-overloaded humans and healthy eels) by combining a host-specific protective envelope with the common expression of two toxins (VvhA and RtxA1), one of which (RtxA1) is directly involved in sepsis. Finally, we found that both IROMPs are also present in other fish pathogenic species and have recently been transmitted to the phylogenetic lineage involved in human primary sepsis after raw seafood ingestion. Together our results highlight the potential hazard that the aquaculture industry poses to public health, which is of particular relevance in the context of a warming world.
Collapse
Affiliation(s)
| | - Chung-Te Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Eva Sanjuán
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| | - David Pajuelo
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Felipe Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Carmen Amaro
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| |
Collapse
|
94
|
Peetermans M, de Prost N, Eckmann C, Norrby-Teglund A, Skrede S, De Waele JJ. Necrotizing skin and soft-tissue infections in the intensive care unit. Clin Microbiol Infect 2019; 26:8-17. [PMID: 31284035 DOI: 10.1016/j.cmi.2019.06.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Necrotizing skin and soft-tissue infections (NSTI) are rare but potentially life-threatening and disabling infections that often require intensive care unit admission. OBJECTIVES To review all aspects of care for a critically ill individual with NSTI. SOURCES Literature search using Medline and Cochrane library, multidisciplinary panel of experts. CONTENT The initial presentation of a patient with NSTI can be misleading, as features of severe systemic toxicity can obscure sometimes less impressive skin findings. The infection can spread rapidly, and delayed surgery worsens prognosis, hence there is a limited role for additional imaging in the critically ill patient. Also, the utility of clinical scores is contested. Prompt surgery with aggressive debridement of necrotic tissue is required for source control and allows for microbiological sampling. Also, prompt administration of broad-spectrum antimicrobial therapy is warranted, with the addition of clindamycin for its effect on toxin production, both in empirical therapy, and in targeted therapy for monomicrobial group A streptococcal and clostridial NSTI. The role of immunoglobulins and hyperbaric oxygen therapy remains controversial. IMPLICATIONS Close collaboration between intensive care, surgery, microbiology and infectious diseases, and centralization of care is fundamental in the approach to the severely ill patient with NSTI. As many aspects of management of these rare infections are supported by low-quality data only, multicentre trials are urgently needed.
Collapse
Affiliation(s)
- M Peetermans
- Department of Critical Care, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - N de Prost
- Service de Réanimation Médicale, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris, Créteil, France; Groupe de Recherche Clinique CARMAS, Université Paris-Est Créteil, IMRB, Créteil, France
| | - C Eckmann
- Department of General, Visceral and Thoracic Surgery, Klinikum Peine, Academic Hospital of Medical University Hannover, Germany
| | - A Norrby-Teglund
- Centre for Infectious Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - S Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - J J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
95
|
Risk factors of synchronous multifocal necrotizing fasciitis: a case control study in comparison with monofocal necrotizing fasciitis in Taiwan. BMC Infect Dis 2019; 19:513. [PMID: 31185920 PMCID: PMC6558844 DOI: 10.1186/s12879-019-4103-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
Background Monofocal necrotizing fasciitis (MONF) involves a single site in a rapidly progressing infection and necrosis of the fascia and surrounding soft tissue. Synchronous multifocal necrotizing fasciitis (SMNF), the simultaneous development of NF in multiple noncontiguous sites, is rarely reported. This study aimed to compare the clinical characteristics and outcomes between patients with SMNF and MONF, and to determine the risk factors of SMNF. Methods Our retrospective case-control study compared the clinical characteristics and outcomes, between January 2006 and January 2013, of patients with SMNF and of patients with MONF of the extremities. Results We enrolled 144 patients with NF of the extremities: 19 with SMNF and 125 with MONF. The duration of symptoms before admission was significantly shorter for the former than for the latter (1.7 days vs. 3.3 days, p = 0.001); the prevalence of shock at the initial visit significantly higher (73.7% vs. 36%, p = 0.002); and the total-case postoperative mortality rate significantly higher (68.4% vs. 14.4%, p < 0.001). In further analysis of the total-case mortality, 9 in 13 SMNF deaths (69.2%) within 7 days after fasciotomy were in the majority while 13 with 28-day mortality (72.2%) was the majority of MONF deaths (p < 0.001). SMNF was significantly more likely to involve bacteremia (89.5% vs. 36%, p < 0.001). Independent risk factors for SMNF were liver cirrhosis (LC) (odds ratio [OR] 6.0, p = 0.001) and end-stage renal disease (ESRD) (OR 7.1, p = 0.035). Gram-negative bacteria were most common in SMNF, and Gram-positive bacteria in MONF (83.3% vs. 53.3%, p = 0.005). Vibrio species were the most common single microbial cause (35.4%) of all NF patients and were the overwhelming cause (73.7%) of SMNF. Staphylococcus aureus and group A β-hemolytic streptococcus (45.6%) were the other predominant causes of MONF while both (10.5%) rarely caused multifocal NF. Conclusions SMNF was more fulminant than was MONF. SMNF was attributable primarily to marine Gram-negative bacteria. Physicians should be aware of SMNF because of its extremely high mortality rate.
Collapse
|
96
|
|
97
|
D'Souza C, Prabhakar Alva P, Karanth Padyana A, Karunasagar I, Karunasagar I, Kumar BK. Unveiling the acid stress response of clinical genotype Vibrio vulnificus isolated from the marine environments of Mangaluru coast, India. Can J Microbiol 2019; 65:681-690. [PMID: 31075207 DOI: 10.1139/cjm-2018-0700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gastric acidity is one of the earliest host defences faced by ingested organisms, and successful pathogens need to overcome this hurdle. The objective of this study was the systematic assessment of acid-stress response of Vibrio vulnificus isolated from coastal regions of Mangaluru. Acid-shock experiments were carried out at pH 4.0 and pH 4.5, with different experimental conditions expected to produce a varied acid response. Exposure to mild acid before the acid shock was favourable to the bacteria but was dependent on cell population and pH of the media and was independent of the strains tested. Lysine-dependent acid response was demonstrated with reference to the previously identified lysine decarboxylase system. Additionally, the results showed that inoculation into oysters provided some level of protection against acid stress. Increased expression of lysine/cadaverine genes was observed upon the addition of ground oyster and was confirmed by quantitative real-time PCR. The potential role of ornithine was analyzed with regard to acid stress, but no change in the survival pattern was observed. These findings highlight the physiology of bacteria in acid stress.
Collapse
Affiliation(s)
- Caroline D'Souza
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Prathiksha Prabhakar Alva
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Anupama Karanth Padyana
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Indrani Karunasagar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| |
Collapse
|
98
|
Wong RM, Chau LTC, Mak MCK, Tse WL, Ho PC. Necrotizing fasciitis induced by Vibrio vulnificus in patients without marine contact in Hong Kong. J Orthop Translat 2019; 19:151-154. [PMID: 31844623 PMCID: PMC6896480 DOI: 10.1016/j.jot.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/30/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Necrotizing fasciitis caused by Vibrio species is a life-threatening soft tissue infection with rapid progression and high mortality. The classic history of Vibrio species–induced necrotizing fasciitis is the infection of wounds by direct invasion or contact with contaminated seawater or raw seafood, especially in immunocompromised patients. We present two cases of Vibrio vulnificus necrotizing fasciitis in the upper limb without any wounds or seawater contact and with good past medical history. Both underwent timely surgical debridement and resulted with good functional outcome. Although rare, as clinicians, we need to have a high index of suspicion for the possibility of V. vulnificus necrotizing fasciitis despite no risk factors and give timely and appropriate treatment and, more importantly, patient survival.
Collapse
Affiliation(s)
- Ronald M.Y. Wong
- Corresponding author. Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, N.T. Shatin, Hong Kong.
| | | | | | | | | |
Collapse
|
99
|
Lee MT, Dinh AQ, Nguyen S, Krucke G, Tran TT. Late-onset Vibrio vulnificus septicemia without cirrhosis. Proc (Bayl Univ Med Cent) 2019; 32:286-288. [PMID: 31191157 DOI: 10.1080/08998280.2019.1580661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Recent surveillance from the Centers for Disease Control and Prevention indicates rising annual incidence rates of Vibrio vulnificus infection. Unfortunately, this infection is often excluded from the differential diagnosis in lesser known at-risk populations. Transmission occurs via wound exposure or ingestion, with V. vulnificus foodborne illness having the highest mortality rate of all Vibrio species. Fatality rates of V. vulnificus rival those of Ebola and bubonic plague, so timely treatment is imperative. Current literature favors surgical debridement with a third-generation cephalosporin plus intravenous doxycycline or fluoroquinolone. Cephalosporin monotherapy is discouraged due to rising resistance. This case features V. vulnificus septicemia with prolonged incubation time in a noncirrhotic patient.
Collapse
Affiliation(s)
- Michelle T Lee
- Department of Internal Medicine, University of Texas Health Science CenterHoustonTexas
| | - An Q Dinh
- Department of Internal Medicine, University of Texas Health Science CenterHoustonTexas.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science CenterHoustonTexas
| | - Stephanie Nguyen
- McGovern Medical School, University of Texas Health Science CenterHoustonTexas
| | - Gus Krucke
- Department of Internal Medicine, University of Texas Health Science CenterHoustonTexas
| | - Truc T Tran
- Department of Internal Medicine, University of Texas Health Science CenterHoustonTexas.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science CenterHoustonTexas
| |
Collapse
|
100
|
Intestinal epithelial cell apoptosis due to a hemolytic toxin from Vibrio vulnificus and protection by a 36 kDa glycoprotein from Rhus verniciflua Stokes. Food Chem Toxicol 2019; 125:46-54. [DOI: 10.1016/j.fct.2018.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 01/22/2023]
|