51
|
Wallenwein CM, Nova MV, Janas C, Jablonka L, Gao GF, Thurn M, Albrecht V, Wiehe A, Wacker MG. A dialysis-based in vitro drug release assay to study dynamics of the drug-protein transfer of temoporfin liposomes. Eur J Pharm Biopharm 2019; 143:44-50. [PMID: 31421208 DOI: 10.1016/j.ejpb.2019.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Today, a growing number of nanotherapeutics is utilized to deliver poorly soluble compounds using the intravenous route of administration. The drug release and the direct transfer of the active pharmaceutical ingredient to serum proteins plays an important role in bioavailability and accumulation of the drug at the target site. It is closely related to the formation of a protein corona as well as the plasma protein binding of the compound. In the present study, two in vitro drug release methods, the flow-through cell and the dispersion releaser technology, were evaluated with regards to their capability to measure a time-resolved profile of the serum protein binding. In this context, the photosensitizer temoporfin and temoporfin-loaded liposomes were tested. While in the fine capillaries of the flow-through cell a rapid agglomeration of proteins occurred, the dispersion releaser technology in combination with the four-step model enabled the measurement of the transfer of drugs from liposomes to proteins. In presence of 10% of fetal calf serum approximately 20% of the model compound temoporfin were bound to serum proteins within the first 3 h. At higher serum concentration this binding remained stable for approximately 10 h.
Collapse
Affiliation(s)
- Chantal M Wallenwein
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Mônica Villa Nova
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Christine Janas
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Laura Jablonka
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Ge F Gao
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Manuela Thurn
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Volker Albrecht
- Biolitec Research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Arno Wiehe
- Biolitec Research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, 6 Science Drive 2, Singapore 117546, Singapore.
| |
Collapse
|
52
|
Mehta A, Dalle Vedove E, Isert L, Merkel OM. Targeting KRAS Mutant Lung Cancer Cells with siRNA-Loaded Bovine Serum Albumin Nanoparticles. Pharm Res 2019; 36:133. [PMID: 31289919 DOI: 10.1007/s11095-019-2665-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE KRAS is the most frequently mutated gene in human cancers. Despite its direct involvement in malignancy and intensive effort, direct inhibition of KRAS via pharmacological inhibitors has been challenging. RNAi induced knockdown using siRNAs against mutant KRAS alleles offers a promising tool for selective therapeutic silencing in KRAS-mutant lung cancers. However, the major bottleneck for clinical translation is the lack of efficient biocompatible siRNA carrier systems. METHODS Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method to deliver siRNA targeting the KRAS G12S mutation. The BSA nanoparticles were characterized with respect to their size, zeta potential, encapsulation efficiency and nucleic acid release. Nanoparticle uptake, cellular distribution of nucleic acids, cytotoxicity and gene knock down to interfere with cancer hallmarks, uncontrolled proliferation and migration, were evaluated in KRAS G12S mutant A459 cells, a lung adenocarcinoma cell line. RESULTS BSA nanoparticles loaded with siRNA resulted in nanoparticles smaller than 200 nm in diameter and negative zeta potentials, displaying optimal characteristics for in vivo application. Encapsulating and protecting the siRNA payload well, the nanoparticles enabled transport to A549 cells in vitro, could evade endosomal entrapment and mediated significant sequence-specific KRAS knockdown, resulting in reduced cell growth of siRNA transfected lung cancer cells. CONCLUSIONS BSA nanoparticles loaded with mutant specific siRNA are a promising therapeutic approach for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| | - Elena Dalle Vedove
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Lorenz Isert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
53
|
Jablonka L, Ashtikar M, Gao G, Jung F, Thurn M, Preuß A, Scheglmann D, Albrecht V, Röder B, Wacker MG. Advanced in silico modeling explains pharmacokinetics and biodistribution of temoporfin nanocrystals in humans. J Control Release 2019; 308:57-70. [PMID: 31247282 DOI: 10.1016/j.jconrel.2019.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 01/21/2023]
Abstract
Foscan®, a formulation comprising temoporfin dissolved in a mixture of ethanol and propylene glycol, has been approved in Europe for palliative photodynamic therapy of squamous cell carcinoma of the head and neck. During clinical and preclinical studies it was observed that considering the administration route, the drug presents a rather atypical plasma profile as plasma concentration peaks delayed. Possible explanations, as for example the formation of a drug depot or aggregation after intravenous administration, are discussed in current literature. In the present study an advanced in silico model was developed and evaluated for the detailed description of Foscan® pharmacokinetics. Therefore, in vitro release data obtained from experiments with the dispersion releaser technology investigating dissolution pressures of various release media on the drug as well as in vivo data obtained from a clinical study were included into the in silico models. Furthermore, precipitation experiments were performed in presence of biorelevant media and precipitates were analyzed by nanoparticle tracking analysis. Size analysis and particle fraction were also incorporated in this model and a sensitivity analysis was performed. An optimal description of the in vivo situation based on in vitro release and particle characterization data was achieved, as demonstrated by an absolute average fold error of 1.21. This in vitro-in vivo correlation provides an explanation for the pharmacokinetics of Foscan® in humans.
Collapse
Affiliation(s)
- Laura Jablonka
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Mukul Ashtikar
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Ge Gao
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Fabian Jung
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Manuela Thurn
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Annegret Preuß
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | | | - Volker Albrecht
- Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Beate Röder
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore.
| |
Collapse
|
54
|
Luo L, Chen Q, Wei N, Liu Y, He H, Zhang Y, Yin T, Gou J, Tang X. The modulation of drug-loading stability within lipid membranes via medium chain triglycerides incorporation. Int J Pharm 2019; 566:371-382. [PMID: 31170477 DOI: 10.1016/j.ijpharm.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/18/2022]
Abstract
The current research aimed to explore medium chain triglycerides (MCT) incorporation in liposomes to overcome stability challenges when drugs with high molecular weight and payload are loaded within lipid membranes. A model drug clarithromycin was loaded in lipid dispersions with various MCT/phospholipids ratios (RM/P = 0, 0.5, 1.75 and 7.5 w/w). TEM images demonstrated a liposome-to-emulsion structural transformation by MCT incorporation to cause increased particle size (104.3-167.7 nm) but decreased zeta potential (-63.6 to -44.4 mV) of lipid particles. MCT incorporation produced biphasic release in PBS and accelerated released in plasma. The tolerance of liposomes for thermal sterilization, high temperature test and freeze-thaw cycles were significantly improved by MCT incorporation. However, MCT incorporation produced adverse effects on colloidal stability in plasma and pharmacokinetics behavior in vivo to some extent. MCT stabilizing mechanism attributes to the modulation of drug loading area and stability improvement of lipid carriers. MCT incorporated liposomes achieved 2-3 fold cellular uptake level than traditional liposomes without significant cytotoxicity. These results indicated that MCT incorporation could be a promising strategy to apply in liposome production to achieve stable drug loading.
Collapse
Affiliation(s)
- Lifeng Luo
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qiuyue Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Nana Wei
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
55
|
Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev 2019; 143:97-114. [PMID: 31255595 DOI: 10.1016/j.addr.2019.06.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Nanocarriers (NCs) are a type of drug delivery system commonly used to regulate the pharmacokinetic and pharmacodynamic properties of drugs. Although a wide variety of NCs has been developed, relatively few have been registered for clinical trials and even fewer are clinically approved. Overt or potential toxicity, indistinct mechanisms of drug release and unsatisfactory pharmacokinetic behavior all contribute to their high failure rate during preclinical and clinical testing. These negative characteristics are not only due to the NCs themselves but also to the materials of the drug nanocarrier system (MDNS) that are released in vivo. In this article, we review the main analytical techniques used for bioassay of NCs and MDNS and their pharmacokinetics after administration by various routes. We anticipate our review will serve to improve the understanding of MDNS pharmacokinetics and facilitate the development of NC drug delivery systems.
Collapse
|
56
|
Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv 2019; 10:113-132. [DOI: 10.4155/tde-2018-0062] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The emergence of nanomedicine as an innovative and promising alternative technology shows many advantages over conventional cancer therapies and provides new opportunities for early detection, improved treatment, and diagnosis of cancer. Despite the cancer nanomedicines’ capability of delivering chemotherapeutic agents while providing lower systemic toxicity, it is paramount to consider the cancer complexity and dynamics for bridging the translational bench-to-bedside gap. It is important to conduct appropriate investigations for exploiting the tumor microenvironment, and achieving a more comprehensive understanding of the fundamental biological processes in cancer and their roles in modulating nanoparticle–protein interactions, blood circulation, and tumor penetration. This review provides an overview of the current cancer nanomedicines, the major challenges, and the future opportunities in this research area.
Collapse
|
57
|
Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of Transdermal Delivery of Haloperidol via Spanlastic Dispersions: Entrapment Efficiency vs. Particle Size. AAPS PharmSciTech 2019; 20:95. [PMID: 30694404 DOI: 10.1208/s12249-019-1306-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023] Open
Abstract
Haloperidol (Hal) is a well-known typical antipsychotic. Hepatic first pass metabolism leads to its limited oral bioavailability. This study aimed at enhancing transdermal delivery of Hal via spanlastic formulae. Hal-loaded spanlastics of Span®60 and an edge activator (EA) were successfully prepared by ethanol injection method according to a 31.41 full factorial design. In this design, independent variables were X1, EA type, and X2, Span®60 to EA ratio. Y1, percentage entrapment efficiency (EE%); Y2, particle size (PS); Y3, deformability index (DI); and Y4, percentage drug released after 4h (Q4h), were chosen as dependent variables. The Fourier-transform infrared spectral analysis showed no considerable chemical interaction between Hal and the used excipients. Both factors affected significantly all the responses except DI. Desirability of each prepared formula was calculated based on maximizing EE% and Q4h and minimizing PS. Formula F6, with X1, Tween®80, and X2, 8:2, had the highest desirability value followed by F7, with X1, Tween®80, and X2, 6:4, and both were chosen as selected formulae (SF) for further investigation. F6 (having more entrapped Hal), F7 (of smaller PS), and Hal solution in propylene glycol were subjected to ex vivo permeation test through newborn rat skin. Both formulae showed marked enhancement in drug permeation compared with drug solution. The significantly higher Q36h and J36h of F7 from F6 may indicate that the smaller particle size aided more than higher entrapment in achieving a higher permeation for Hal of 3.5±0.2μg/cm2.h. These results are promising for further investigation of this formula.
Collapse
|
58
|
Wacker MG. Frontiers in pharmaceutical nanotechnology. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2538-2540. [PMID: 31921532 PMCID: PMC6941437 DOI: 10.3762/bjnano.10.244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 05/14/2023]
Affiliation(s)
- Matthias G Wacker
- National University of Singapore, Faculty of Science, Department of Pharmacy, 6 Science Drive 2, 117546 Singapore
| |
Collapse
|
59
|
Ferrari R, Sponchioni M, Morbidelli M, Moscatelli D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. NANOSCALE 2018; 10:22701-22719. [PMID: 30512025 DOI: 10.1039/c8nr05933k] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review article we discuss some of the key aspects concerning the development of a polymer-based nanoparticle formulation for intravenous drug delivery. Since numerous preparations fail before and during clinical trials, our aim is to emphasize the main issues that a nanocarrier has to face once injected into the body. These include biocompatibility and toxicity, drug loading and release, nanoparticle storage and stability, biodistribution, selectivity towards the target organs or tissues, internalization in cells and biodegradability. They represent the main checkpoints to define a polymer-based formulation as safe and effective. Indeed, this review is intended to provide guidelines to be followed in the early development of a new nanotherapeutic to hopefully increase the success rate of polymer-based formulations entering clinical trials. The corresponding requirements and characteristics are discussed in the context of some relevant case studies taken from the literature and mainly related to the delivery of lipophilic anticancer therapeutics.
Collapse
Affiliation(s)
- R Ferrari
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - M Sponchioni
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland. and Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - M Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - D Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
60
|
Feng C, Yuan X, Chu K, Zhang H, Ji W, Rui M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int J Biol Macromol 2018; 125:700-710. [PMID: 30521927 DOI: 10.1016/j.ijbiomac.2018.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
Abstract
Fisetin is a natural flavonoid with promising antitumor activity, whereas its clinical application is limited by its hydrophobic property. In this study, we aimed to load fisetin into poly(lactic acid) (PLA) nanoparticles to increase fisetin's solubility and therapeutic efficacy. Based on spontaneous emulsification solvent diffusion (SESD) method, the formulation of PLA nanoparticles was optimized by two successive experimental designs. One-factor-at-a-time variation experiments were first applied to investigate the effects of four process variables on three responses, including drug encapsulation efficiency, average particles size and cumulative drug release ratio, followed by determining the possible ranges of these variables. Subsequently, the combinations of four variables at best levels were evaluated using a Taguchi orthogonal array design with regard to the same three responses. Eventually, the nanoparticle prepared by optimized procedure showed a narrow size distribution around 226.85 ± 4.78 nm with a high encapsulation efficiency of 90.35%. The incorporation of fisetin in nanoparticles was subsequently confirmed by FT-IR and DSC spectroscopy. Furthermore, cytotoxicity assay against HCT116 colon cancer cells in vitro and antitumor test in a xenograft 4T1 breast cancer model in vivo demonstrated that the antitumor effect of drug-loaded nanoparticles was superior to that of free drug solution.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xianqin Yuan
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Kexin Chu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Haisheng Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Ji
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
61
|
Roles of alcohol desolvating agents on the size control of bovine serum albumin nanoparticles in drug delivery system. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
62
|
Gänger S, Schindowski K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018; 10:pharmaceutics10030116. [PMID: 30081536 PMCID: PMC6161189 DOI: 10.3390/pharmaceutics10030116] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier are major obstacles in central nervous system (CNS) drug delivery, since they block most molecules from entering the brain. Alternative drug delivery routes like intraparenchymal or intrathecal are invasive methods with a remaining risk of infections. In contrast, nose-to-brain delivery is a minimally invasive drug administration pathway, which bypasses the blood-brain barrier as the drug is directed from the nasal cavity to the brain. In particular, the skull base located at the roof of the nasal cavity is in close vicinity to the CNS. This area is covered with olfactory mucosa. To design and tailor suitable formulations for nose-to-brain drug delivery, the architecture, structure and physico-chemical characteristics of the mucosa are important criteria. Hence, here we review the state-of-the-art knowledge about the characteristics of the nasal and, in particular, the olfactory mucosa needed for a rational design of intranasal formulations and dosage forms. Also, the information is suitable for the development of systemic or local intranasal drug delivery as well as for intranasal vaccinations.
Collapse
Affiliation(s)
- Stella Gänger
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
- Faculty of Medicine, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| |
Collapse
|
63
|
Wolf M, Reiter F, Heuser T, Kotisch H, Klang V, Valenta C. Monoacyl-phospatidylcholine based drug delivery systems for lipophilic drugs: Nanostructured lipid carriers vs. nano-sized emulsions. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
64
|
Gai X, Jiang Z, Liu M, Li Q, Wang S, Li T, Pan W, Yang X. Therapeutic Effect of a Novel Nano-Drug Delivery System on Membranous Glomerulonephritis Rat Model Induced by Cationic Bovine Serum. AAPS PharmSciTech 2018; 19:2195-2202. [PMID: 29725902 DOI: 10.1208/s12249-018-1034-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023] Open
Abstract
In order to explore a novel high efficacy drug delivery system for membranous glomerulonephritis (MGN), a complex chronic inflammation, methylprednisolone bovine serum albumin nanoparticles (ME BSA NPs) were designed. The nanoparticles were prepared by desolvation-chemical crosslinking method and its physicochemical characterizations were conducted. The experimental MGN rat models induced by cationic bovine serum albumin were established by a modified Border's method and applied in the pharmacodynamics study of ME BSA NPs. The results showed that the particle size, particle dispersion index, and entrapment efficiency of ME BSA NPs were 131.1 ± 3.4 nm, 0.159 ± 0.036, and 71.51 ± 1.74%, respectively. In addition, the image of transmission electron microscopy showed that the ME BSA NPs were the relatively uniform spherical particles. In the in vivo pharmacodynamics study, compared with saline group and SOLU-MEDROL® group, that the ME BSA NPs group was significantly reduced the levels of 24 h urinary protein (P < 0.01) and serum creatinine (P < 0.05). Consequently, these outcomes indicated that the nanoparticles we studied were a promising drug delivery system for the MGN disease, and it may be also useful for other complex chronic inflammations.
Collapse
|
65
|
Nothnagel L, Wacker MG. How to measure release from nanosized carriers? Eur J Pharm Sci 2018; 120:199-211. [PMID: 29751101 DOI: 10.1016/j.ejps.2018.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022]
Abstract
Novel drug delivery systems exhibit great potential in the formulation of poorly soluble compounds but have also been applied to reduce side effects of highly active drug molecules. Despite all efforts, there are only few technologies available to investigate the in vitro release of next-generation nanotherapeutics. In the following, different approaches for testing the drug release from nanoparticles in the fields of formulation development and quality control will be discussed. A variety of methods is available, starting from dialysis-based equipment, in situ measurements, flow-through devices and sample and separate setups. If possible, these methods should enable a more rapid formulation development and quality control of nanosized carriers as well as improve the prediction of in vivo performance and clinical outcomes.
Collapse
Affiliation(s)
- Lisa Nothnagel
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), 60438 Frankfurt am Main, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Technology, Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
66
|
Ashtikar M, Wacker MG. Nanopharmaceuticals for wound healing - Lost in translation? Adv Drug Deliv Rev 2018; 129:194-218. [PMID: 29567397 DOI: 10.1016/j.addr.2018.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
Today, many of the newly developed pharmaceuticals and medical devices take advantage of nanotechnology and with a rising incidence of chronic diseases such as diabetes and cardiovascular disease, the number of patients afflicted globally with non-healing wounds is growing. This has created a requirement for improved therapies and wound care. However, converting the strategies applied in early research into new products is still challenging. Many of them fail to comply with the market requirements. This review discusses the legal and scientific challenges in the design of nanomedicines for wound healing. Are they lost in translation or is there a new generation of therapeutics in the pipeline?
Collapse
Affiliation(s)
- Mukul Ashtikar
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany.
| |
Collapse
|
67
|
Fernández Fernández E, Santos-Carballal B, de Santi C, Ramsey JM, MacLoughlin R, Cryan SA, Greene CM. Biopolymer-Based Nanoparticles for Cystic Fibrosis Lung Gene Therapy Studies. MATERIALS 2018; 11:ma11010122. [PMID: 29342838 PMCID: PMC5793620 DOI: 10.3390/ma11010122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Lung gene therapy for cystic fibrosis disease has not been successful due to several challenges such as the absence of an appropriate vector. Therefore, optimal delivery of emerging therapeutics to airway epithelial cells demands suitable non-viral systems. In this work, we describe the formulation and the physicochemical investigation of biocompatible and biodegradable polymeric nanoparticles (NPs), including PLGA and chitosan (animal and non-animal), as novel methods for the safe and efficient delivery of CFTR-specific locked nucleic acids (LNAs).
Collapse
Affiliation(s)
- Elena Fernández Fernández
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | | | - Chiara de Santi
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | - Joanne M Ramsey
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Ronan MacLoughlin
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland.
- Aerogen Ltd., Galway Business Park, Dangan, Galway H91 HE94, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
68
|
Stanisic D, Costa AF, Cruz G, Durán N, Tasic L. Applications of Flavonoids, With an Emphasis on Hesperidin, as Anticancer Prodrugs: Phytotherapy as an Alternative to Chemotherapy. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00006-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
69
|
Perrier DL, Rems L, Boukany PE. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interface Sci 2017; 249:248-271. [PMID: 28499600 DOI: 10.1016/j.cis.2017.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/04/2023]
Abstract
The present review focuses on the effects of pulsed electric fields on lipid vesicles ranging from giant unilamellar vesicles (GUVs) to small unilamellar vesicles (SUVs), from both fundamental and applicative perspectives. Lipid vesicles are the most popular model membrane systems for studying biophysical and biological processes in living cells. Furthermore, as vesicles are made from biocompatible and biodegradable materials, they provide a strategy to create safe and functionalized drug delivery systems in health-care applications. Exposure of lipid vesicles to pulsed electric fields is a common physical method to transiently increase the permeability of the lipid membrane. This method, termed electroporation, has shown many advantages for delivering exogenous molecules including drugs and genetic material into vesicles and living cells. In addition, electroporation can be applied to induce fusion between vesicles and/or cells. First, we discuss in detail how research on cell-size GUVs as model cell systems has provided novel insight into the basic mechanisms of cell electroporation and associated phenomena. Afterwards, we continue with a thorough overview how electroporation and electrofusion have been used as versatile methods to manipulate vesicles of all sizes in different biomedical applications. We conclude by summarizing the open questions in the field of electroporation and possible future directions for vesicles in the biomedical field.
Collapse
|
70
|
Gou J, Feng S, Liang Y, Fang G, Zhang H, Yin T, Zhang Y, He H, Wang Y, Tang X. Polyester-Solid Lipid Mixed Nanoparticles with Improved Stability in Gastro-Intestinal Tract Facilitated Oral Delivery of Larotaxel. Mol Pharm 2017; 14:3750-3761. [PMID: 28945434 DOI: 10.1021/acs.molpharmaceut.7b00503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this study was to investigate the role of core stability of nanoparticles on their performances in oral drug delivery. Solid lipids (Geleol Mono and Diglycerides Nf) were incorporated into nanoparticles composed of mPEG-b-PCL by the dialysis method. The prepared solid lipid loaded nanoparticles were found to be spherical nanoparticles with a core state and size distribution dependent on the amount of solid lipid incorporated. The critical aggregation concentrations of lipid-loaded nanoparticles were determined using pyrene fluorescence. Then, the stability of block copolymer in nanoparticles with different solid lipid contents was studied in simulated gastric fluid and simulated intestinal fluid. Solid lipids were found to stabilize nanoparticle cores by improving not only the thermodynamic stability (lowered CAC) of the nanoparticle but also the chemical stability of the block copolymer in the gastrointestinal environment. The stability of the loaded drug (larotaxel, LTX) in nanoparticles with different solid lipid contents was challenged by intestinal homogenate and rat liver microsome, and solid lipid loaded nanoparticles showed superior drug-protecting capability. Solid lipid incorporation exhibited limited influence on the cytotoxicity and cellular uptake but improved the transcytosis of nanoparticles in Caco-2 monolayers. The results of pharmacokinetic study indicated that core stabilization was helpful in promoting oral larotaxel absorption as the absolute bioavailability of LTX delivered by solid lipid loaded nanoparticles was found to be 13.17%, compared with that by the lipid-free nanoparticles (6.264%) and LTX solution (2.435%). Additionally, the results of biodistribution study indicated relatively higher particle integrity of solid lipid loaded nanoparticles, shown by slower liver and spleen accumulation rate, compared with its lipid-free counterpart. Overall, incorporation of solid lipids made the nanoparticles more suitable for oral drug delivery.
Collapse
Affiliation(s)
- Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| | - Shuangshuang Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| | - Yuheng Liang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| | - Guihua Fang
- School of Pharmacy, Nantong University , No. 19 Qixiu Road, Nantong, China , 226001
| | - Haotian Zhang
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| | - Tian Yin
- Department of Wine, School of Functional Food and Wine, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang, China , 110016
| |
Collapse
|
71
|
Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Galindo Rodríguez SA, Román RÁ, Fessi H, Elaissari A. Nanoprecipitation process: From encapsulation to drug delivery. Int J Pharm 2017; 532:66-81. [DOI: 10.1016/j.ijpharm.2017.08.064] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 01/09/2023]
|
72
|
Safavi MS, Shojaosadati SA, Dorkoosh FA, Jo HJ, Kwon Y, Lee KC, Yang HG, Park EJ, Na DH. The synthesis of tamoxifen-loaded albumin nanoparticles by homogenizers: Optimization and in vitro characterization. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
73
|
da Silva AL, Cruz FF, Rocco PRM, Morales MM. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys Rev 2017; 9:793-803. [PMID: 28914424 PMCID: PMC5662054 DOI: 10.1007/s12551-017-0319-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization (WHO), hundreds of millions of people of all ages and in all countries suffer from chronic respiratory diseases, with particular negative consequences such as poor health-related quality of life, impaired work productivity, and limitations in the activities of daily living. Chronic obstructive pulmonary disease, asthma, occupational lung diseases (such as silicosis), cystic fibrosis, and pulmonary arterial hypertension are the most common of these diseases, and none of them are curable with current therapies. The advent of nanotechnology holds great therapeutic promise for respiratory conditions, because non-viral vectors are able to overcome the mucus and lung remodeling barriers, increasing pharmacologic and therapeutic potency. It has been demonstrated that the extent of pulmonary nanoparticle uptake depends not only on the physical and chemical features of nanoparticles themselves, but also on the health status of the organism; thus, the huge diversity in nanotechnology could revolutionize medicine, but safety assessment is a challenging task. Within this context, the present review discusses some of the major new perspectives in nanotherapeutics for lung disease and highlights some of the most recent studies in the field.
Collapse
Affiliation(s)
- Adriana Lopes da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Marcos Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
74
|
Sybachin AV, Zaborova OV, Efimova AA, Ballauff M, Yaroslavov AA. Electrostatic complexes of liquid and solid liposomes with spherical polycationic brushes. POLYMER SCIENCE SERIES C 2017. [DOI: 10.1134/s181123821701012x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
75
|
Safavi MS, Shojaosadati SA, Yang HG, Kim Y, Park EJ, Lee KC, Na DH. Reducing agent-free synthesis of curcumin-loaded albumin nanoparticles by self-assembly at room temperature. Int J Pharm 2017; 529:303-309. [DOI: 10.1016/j.ijpharm.2017.06.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/17/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022]
|
76
|
Zhang S, Liu J, Ge B, Du M, Fu L, Fu Y, Yan Q. Enhanced antitumor activity in A431 cells via encapsulation of 20(R)-ginsenoside Rg3 in PLGA nanoparticles. Drug Dev Ind Pharm 2017; 43:1734-1741. [DOI: 10.1080/03639045.2017.1339079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shaozhi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Baojian Ge
- Department of Anatomy, Dalian Medical University, Dalian, China
| | - Meiling Du
- Department of Anatomy, Dalian Medical University, Dalian, China
| | - Li Fu
- Engineering Technology Center of Traditional Chinese Medicine, Dalian, China
| | - Yushan Fu
- Department of Anatomy, Dalian Medical University, Dalian, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| |
Collapse
|
77
|
Xia X, Liu H, Lv H, Zhang J, Zhou J, Zhao Z. Preparation, characterization, and in vitro/vivo studies of oleanolic acid-loaded lactoferrin nanoparticles. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1417-1427. [PMID: 28533680 PMCID: PMC5431734 DOI: 10.2147/dddt.s133997] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oleanolic acid (OA), a pentacyclic triterpene, is used to safely and economically treat hepatopathy. However, OA, a Biopharmaceutics Classification System IV category drug, has low bioavailability owing to low solubility (<1 μg/mL) and biomembrane permeability. We developed a novel OA nanoparticle (OA-NP)-loaded lactoferrin (Lf) nanodelivery system with enhanced in vitro OA dissolution and improved oral absorption and bioavailability. The OA-NPs were prepared using NP albumin-bound technology and characterized using dynamic light scattering, scanning electron microscopy, X-ray powder diffraction, differential scanning calorimetry, and in vitro dissolution test. The in vivo pharmacokinetics was investigated in Sprague Dawley rats using liquid chromatography-tandem mass spectrometry. OA-NPs (OA:Lf =1:6, w/w%) exhibited spherical morphology, 202.2±8.3 nm particle size, +(27.1±0.32) mV ζ potential, 92.59%±3.24% encapsulation efficiency, and desirable in vitro release profiles. An effective in vivo bioavailability (340.59%) was achieved compared to the free drug following oral administration to rats. The Lf novel nanodelivery vehicle enhanced the dissolution rate, intestinal absorption, and bioavailability of OA. These results demonstrate that Lf NPs are a new strategy for improving oral absorption and bioavailability of poorly soluble and poorly absorbed drugs.
Collapse
Affiliation(s)
- Xiaojing Xia
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing.,Department of Pharmaceutics, ZheJiang Pharmaceutical College, Ningbo
| | - Haowei Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing
| | - Huixia Lv
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing
| | - Jing Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing
| | - Zhiying Zhao
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
78
|
Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today 2017; 22:270-281. [DOI: 10.1016/j.drudis.2016.11.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
|
79
|
Möckl L, Hirn S, Torrano AA, Uhl B, Bräuchle C, Krombach F. The glycocalyx regulates the uptake of nanoparticles by human endothelial cells in vitro. Nanomedicine (Lond) 2017; 12:207-217. [PMID: 28078967 DOI: 10.2217/nnm-2016-0332] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To assess the role of the endothelial glycocalyx (eGCX) for the uptake of nanoparticles by endothelial cells. METHODS The expression of the eGCX on cultured human umbilical vein endothelial cells was determined by immunostaining of heparan sulfate. Enzymatic degradation of the eGCX was achieved by incubating the cells with eGCX-shedding enzymes. The uptake of 50-nm polystyrene nanospheres was quantified by confocal microscopy. RESULTS Human umbilical vein endothelial cells expressed a robust eGCX when cultured for 10 days. The uptake of both carboxylated and aminated polystyrene nanospheres was significantly increased in cells in which the glycocalyx was enzymatically degraded, while it remained at a low level in cells with an intact glycocalyx. CONCLUSION The eGCX constitutes a barrier against the internalization of blood-borne nanoparticles by endothelial cells.
Collapse
Affiliation(s)
- Leonhard Möckl
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| | - Stephanie Hirn
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany
| | - Adriano A Torrano
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| | - Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany
| | - Christoph Bräuchle
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
80
|
Mesquita PC, dos Santos-Silva E, Streck L, Damasceno IZ, Maia AMS, Fernandes-Pedrosa MF, da Silva-Júnior AA. Cationic functionalized biocompatible polylactide nanoparticles for slow release of proteins. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
81
|
A New Method for Evaluating Actual Drug Release Kinetics of Nanoparticles inside Dialysis Devices via Numerical Deconvolution. J Control Release 2016; 243:11-20. [DOI: 10.1016/j.jconrel.2016.09.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 09/26/2016] [Indexed: 01/02/2023]
|
82
|
Voulgari E, Bakandritsos A, Galtsidis S, Zoumpourlis V, Burke BP, Clemente GS, Cawthorne C, Archibald SJ, Tuček J, Zbořil R, Kantarelou V, Karydas AG, Avgoustakis K. Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers. J Control Release 2016; 243:342-356. [PMID: 27793687 DOI: 10.1016/j.jconrel.2016.10.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/15/2016] [Accepted: 10/23/2016] [Indexed: 12/11/2022]
Abstract
The development of anticancer drug delivery systems which retain or enhance the cytotoxic properties of the drug to tumorous tissues, while reducing toxicity to other organs is of key importance. We investigated different poly(methacrylic acid)-g-poly(ethyleneglycol methacrylate) polymers as in situ coating agents for magnetite nanocrystallites. The obtained magnetic nano-assemblies were in turn thoroughly characterized for their structural, colloidal and physicochemical properties (drug loading capacity/release, magnetic field triggered drug release, cell uptake and localization) in order to select the best performing system. With the focus on in vivo validation of such magnetic drug delivery systems for first time, we selected cisplatin as the drug, since it is a potent anticancer agent which exhibits serious side effects due to lack of selectivity. In addition, cisplatin would offer facile determination of the metal content in the animal tissues for biodistribution studies. Alongside post-mortem Pt determination in the tissues, the biodistribution of the drug nanocarriers was also monitored in real time with PET-CT (positron emission tomography/computed tomography) with and without the presence of magnetic field gradients; using a novel chelator-free method, the nanoparticles were radiolabeled with 68Ga without having to alter their structure with chemical modifications for conjugation of radiochelators. The ability to be radiolabeled in such a straightforward but very robust way, along with their measured high MRI response, renders them attractive for dual imaging, which is an important functionality for translational investigations. Their anticancer properties were evaluated in vitro and in vivo, in a cisplatin resistant HT-29 human colon adenocarcinoma model, with and without the presence of magnetic field gradients. Enhanced anticancer efficacy and reduced toxicity was recorded for the cisplatin-loaded nanocarriers in comparison to the free cisplatin, particularly when a magnetic field gradient was applied at the tumor site. Post mortem and real-time tissue distribution studies did not reveal increased cisplatin concentration in the tumor site, suggesting that the enhanced anticancer efficacy of the cisplatin-loaded nanocarriers is driven by mechanisms other than increased cisplatin accumulation in the tumors.
Collapse
Affiliation(s)
| | - Aristides Bakandritsos
- Department of Materials Science, University of Patras, Patras 26500, Greece; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17.listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Sotiris Galtsidis
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | | | - Benjamin P Burke
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Gonçalo S Clemente
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Christopher Cawthorne
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Stephen J Archibald
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Jiři Tuček
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17.listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17.listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vasiliki Kantarelou
- Institute of Nuclear and Particle Physics, NCSR "Demokritos", Athens, Greece
| | | | | |
Collapse
|
83
|
Sidhaye AA, Bhuran KC, Zambare S, Abubaker M, Nirmalan N, Singh KK. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes. Nanomedicine (Lond) 2016; 11:2809-2828. [PMID: 27759489 DOI: 10.2217/nnm-2016-0235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM The intra-erythrocytic development of the malarial parasite is dependent on active uptake of nutrients, including human serum albumin (HSA), into parasitized red blood cells (pRBCs). We have designed HSA-based nanoparticles as a potential drug-delivery option for antimalarials. METHODS Artemether-loaded nanoparticles (AANs) were designed and antimalarial activity evaluated in vitro/in vivo using Plasmodium falciparum/Plasmodium berghei species, respectively. RESULTS Selective internalization of AAN into Plasmodium-infected RBCs in preference to healthy erythrocytes was observed using confocal imaging. In vitro studies showed 50% dose reduction for AAN as compared with drug-only controls to achieve IC50 levels of inhibition. The nanoparticles exhibited twofold higher peak drug concentrations in RBCs with antimalarial activity at 50% of therapeutic doses in P. bergei infected mice. CONCLUSION Novel HSA-based nanoparticles offer safe and effective approach for selective targeting of antimalarial drugs.
Collapse
Affiliation(s)
- Aditi A Sidhaye
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Kanchan C Bhuran
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Sneha Zambare
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India
| | - Munna Abubaker
- School of Environment & Life Sciences, University of Salford, Manchester, M5 4WT, UK
| | - Niroshini Nirmalan
- School of Environment & Life Sciences, University of Salford, Manchester, M5 4WT, UK
| | - Kamalinder K Singh
- CU Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, India.,School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
84
|
Günday Türeli N, Türeli AE, Schneider M. Optimization of ciprofloxacin complex loaded PLGA nanoparticles for pulmonary treatment of cystic fibrosis infections: Design of experiments approach. Int J Pharm 2016; 515:343-351. [PMID: 27744035 DOI: 10.1016/j.ijpharm.2016.10.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 01/31/2023]
Abstract
Design of Experiments (DoE) is a powerful tool for systematic evaluation of process parameters' effect on nanoparticle (NP) quality with minimum number of experiments. DoE was employed for optimization of ciprofloxacin loaded PLGA NPs for pulmonary delivery against Pseudomonas aeruginosa infections in cystic fibrosis (CF) lungs. Since the biofilm produced by bacteria was shown to be a complicated 3D barrier with heterogeneous meshes ranging from 100nm to 500nm, nanoformulations small enough to travel through those channels were assigned as target quality. Nanoprecipitation was realized utilizing MicroJet Reactor (MJR) technology based on impinging jets principle. Effect of MJR parameters flow rate, temperature and gas pressure on particle size and PDI was investigated using Box-Behnken design. The relationship between process parameters and particle quality was demonstrated by constructed fit functions (R2=0.9934 p<0.0001 and R2=0.9983 p<0.0001, for particle size and PDI, respectively). Prepared nanoformulations varied between 145.2 and 979.8nm with PDI ranging from 0.050 to 1.00 and showed encapsulation efficiencies >65%. Response surface plots provided experimental data-based understanding of MJR parameters' effect, thus NP quality. Presented work enables ciprofloxacin loaded PLGA nanoparticle preparations with pre-defined quality to fulfill the requirements of local drug delivery under CF disease conditions.
Collapse
Affiliation(s)
- Nazende Günday Türeli
- MJR PharmJet GmbH, Industriestr. 1B, 66802 Überherrn, Germany; Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | | | - Marc Schneider
- Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
85
|
Günday Türeli N, Türeli AE, Schneider M. Counter-ion complexes for enhanced drug loading in nanocarriers: Proof-of-concept and beyond. Int J Pharm 2016; 511:994-1001. [PMID: 27520732 DOI: 10.1016/j.ijpharm.2016.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022]
Abstract
Enhanced drug loading is an important prerequisite of nanomedicines, to reach administration dose while reducing the amount of excipient. Considering biocompatible and biodegradable polymers such as PLGA, pH dependent solubility characteristics along with limited organic solvent solubility of the drug hampers nanoparticle (NP) preparation. To improve loading of such molecules, a method based on using counter ions for complex formation is proposed. Formed complex alters the intrinsic solubility of active substance via electrostatic interaction without chemical modification. A proof-of-concept study was conducted with sodium dodecyl sulfate as counter-ion to fluoroquinolone antibiotic ciprofloxacin. Complex formation resulted in suppressed pH dependent solubility over pH 1.2-9.0 and an additional -80 fold increase in organic solubility was achieved. In consequence, NPs prepared by microjet reactor technology have shown enhanced drug loading efficiencies (-78%) and drug loading of 14%. Moreover, the counter-ion concept was also demonstrated with another class of antibiotics, water soluble aminoglycosides gentamycin and tobramycin. In addition, the counter ion was substituted by degradable excipients such as phosphatidic acid derivatives. Successful implementation has proven the counter-ion concept to be a platform concept that can be successfully implemented for a variety of active substances and counter-ions to enhance drug loading in nanocarriers.
Collapse
Affiliation(s)
- Nazende Günday Türeli
- MJR PharmJet GmbH, Industriestr. 1B, 66802 Überherrn, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Akif E Türeli
- MJR PharmJet GmbH, Industriestr. 1B, 66802 Überherrn, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
86
|
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol Rev 2016; 68:701-87. [PMID: 27363439 PMCID: PMC4931871 DOI: 10.1124/pr.115.012070] [Citation(s) in RCA: 462] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Phatsapong Yingchoncharoen
- Molecular Pharmacology and Pathology Program, Department of Pathology, Faculty of Medicine, Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, Faculty of Medicine, Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, Faculty of Medicine, Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
87
|
Giannakou C, Park MV, de Jong WH, van Loveren H, Vandebriel RJ, Geertsma RE. A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. Int J Nanomedicine 2016; 11:2935-52. [PMID: 27382281 PMCID: PMC4922791 DOI: 10.2147/ijn.s102385] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanomaterials (NMs) are attractive for biomedical and pharmaceutical applications because of their unique physicochemical and biological properties. A major application area of NMs is drug delivery. Many nanomedicinal products (NMPs) currently on the market or in clinical trials are most often based on liposomal products or polymer conjugates. NMPs can be designed to target specific tissues, eg, tumors. In virtually all cases, NMPs will eventually reach the immune system. It has been shown that most NMs end up in organs of the mononuclear phagocytic system, notably liver and spleen. Adverse immune effects, including allergy, hypersensitivity, and immunosuppression, have been reported after NMP administration. Interactions of NMPs with the immune system may therefore constitute important side effects. Currently, no regulatory documents are specifically dedicated to evaluate the immunotoxicity of NMs or NMPs. Their immunotoxicity assessment is performed based on existing guidelines for conventional substances or medicinal products. Due to the unique properties of NMPs when compared with conventional medicinal products, it is uncertain whether the currently prescribed set of tests provides sufficient information for an adequate evaluation of potential immunotoxicity of NMPs. The aim of this study was therefore, to compare the current regulatory immunotoxicity testing requirements with the accumulating knowledge on immunotoxic effects of NMPs in order to identify potential gaps in the safety assessment. This comparison showed that immunotoxic effects, such as complement activation-related pseudoallergy, myelosuppression, inflammasome activation, and hypersensitivity, are not readily detected by using current testing guidelines. Immunotoxicity of NMPs would be more accurately evaluated by an expanded testing strategy that is equipped to stratify applicable testing for the various types of NMPs.
Collapse
Affiliation(s)
- Christina Giannakou
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven; Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Margriet Vdz Park
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Wim H de Jong
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Henk van Loveren
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven; Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Robert E Geertsma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| |
Collapse
|
88
|
Gou J, Chao Y, Liang Y, Zhang N, He H, Yin T, Zhang Y, Xu H, Tang X. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier. Pharm Res 2016; 33:2140-51. [PMID: 27251415 DOI: 10.1007/s11095-016-1952-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). METHODS Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. RESULTS The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. CONCLUSION Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.
Collapse
Affiliation(s)
- Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yanhui Chao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yuheng Liang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Ning Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Tian Yin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
89
|
Janas C, Mostaphaoui Z, Schmiederer L, Bauer J, Wacker MG. Novel polymeric micelles for drug delivery: Material characterization and formulation screening. Int J Pharm 2016; 509:197-207. [PMID: 27234698 DOI: 10.1016/j.ijpharm.2016.05.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/24/2022]
Abstract
A rising number of new chemical entities that exhibit only poor aqueous solubility are identified in drug discovery processes. Polymeric micelles composed of block copolymers (BP) facilitate the delivery of such lipophilic molecules in drug therapy. Consequently, a rational screening and selection procedure for novel BP was established. Further, the interplay of polymer structure, micelle formation and drug binding was studied. Therefore seven polymers (BP001 to BP007) were synthesized from different monomer compositions resulting in nanocarriers varying in surface decoration and lipophilicity. These polymers were characterized by H(1)-NMR and SEC. The molecular weight was ranging between 13 and 37kDa. The critical micelle concentration and micellar integrity in presence of human plasma were determined. Micelles were loaded with dexamethasone and characterized with regards to their size, morphology and surface charge. Polymeric micelles with a size of 49.21-236.37nm were obtained. A half-life of 11h was determined for five of the copolymers in presence of human plasma. Two nanocarrier formulations (BP006 and BP007) were exhibiting optimal micellar integrity in vitro and a modified release profile under biorelevant conditions. Strongest drug-polymer interaction was observed for nanocarrier compositions providing benzyl and carboxylic groups and were composed of BP006 and BP007.
Collapse
Affiliation(s)
- Christine Janas
- Goethe University, Institute of Pharmaceutical Technology, D-60438 Frankfurt, Germany
| | - Zouhair Mostaphaoui
- Goethe University, Institute of Pharmaceutical Technology, D-60438 Frankfurt, Germany
| | | | - Johann Bauer
- Merck KGaA, Frankfurter Straße 250, D-64293, Darmstadt, Germany
| | - Matthias G Wacker
- Fraunhofer-Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine & Pharmacology, D-60438 Frankfurt, Germany.
| |
Collapse
|
90
|
Nanomilling of Drugs for Bioavailability Enhancement: A Holistic Formulation-Process Perspective. Pharmaceutics 2016; 8:pharmaceutics8020017. [PMID: 27213434 PMCID: PMC4932480 DOI: 10.3390/pharmaceutics8020017] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 11/17/2022] Open
Abstract
Preparation of drug nanoparticles via wet media milling (nanomilling) is a very versatile drug delivery platform and is suitable for oral, injectable, inhalable, and buccal applications. Wet media milling followed by various drying processes has become a well-established and proven formulation approach especially for bioavailability enhancement of poorly water-soluble drugs. It has several advantages such as organic solvent-free processing, tunable and relatively high drug loading, and applicability to a multitude of poorly water-soluble drugs. Although the physical stability of the wet-milled suspensions (nanosuspensions) has attracted a lot of attention, fundamental understanding of the process has been lacking until recently. The objective of this review paper is to present fundamental insights from available published literature while summarizing the recent advances and highlighting the gap areas that have not received adequate attention. First, stabilization by conventionally used polymers/surfactants and novel stabilizers is reviewed. Then, a fundamental understanding of the process parameters, with a focus on wet stirred media milling, is revealed based on microhydrodynamic models. This review is expected to bring a holistic formulation-process perspective to the nanomilling process and pave the way for robust process development scale-up. Finally, challenges are indicated with a view to shedding light on future opportunities.
Collapse
|
91
|
Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium: II. Design, appraisal and pharmacokinetic assessments of enteric surface-decorated nanocubosomal dispersions. Drug Deliv 2016; 23:3266-3278. [PMID: 27094305 DOI: 10.3109/10717544.2016.1172367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Saadia Ahmed Tayel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Ahmed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Wessam Hamdy Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
92
|
Häuser M, Langer K, Schönhoff M. pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:2504-2512. [PMID: 26885463 PMCID: PMC4734421 DOI: 10.3762/bjnano.6.260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Nanoparticles (NP) of poly(lactic-co-glycolic acid) (PLGA) represent a promising biodegradable drug delivery system. We suggest here a two-step release system of PLGA nanoparticles with a pH-tunable polymeric shell, providing an initial pH-triggered step, releasing a membrane-toxic cationic compound. PLGA nanoparticles are coated by polyelectrolytes using the layer-by-layer self-assembly technique, employing poly(acrylic acid) (PAA) as a pH-sensitive component and poly(diallyldimethylammonium chloride) (PDADMAC) as the releasable polycation. The pH during multilayer deposition plays a major role and influences the titration curve of the layer system. The pH-tunability of PAA is intensively investigated with regard to the pH region, in which the particle system becomes uncharged. The isoelectric point can be shifted by employing suitable deposition pH values. The release is investigated by quantitative (1)H NMR, yielding a pH-dependent release curve. A release of PDADMAC is initiated by a decrease of the pH value. The released amount of polymer, as quantified by (1)H NMR analysis, clearly depends on the pH value and thus on the state of deprotonation of the pH-sensitive PAA layer. Subsequent incubation of the nanoparticles with high concentrations of sodium chloride shows no further release and thus demonstrates the pH-driven release to be quantitative.
Collapse
Affiliation(s)
- Manuel Häuser
- Institute of Physical Chemistry, University of Muenster, Corrensstraße 28/30, 48149 Münster, Germany
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Münster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Muenster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
93
|
Xu C, Wang P, Zhang J, Tian H, Park K, Chen X. Pulmonary Codelivery of Doxorubicin and siRNA by pH-Sensitive Nanoparticles for Therapy of Metastatic Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4321-33. [PMID: 26136261 DOI: 10.1002/smll.201501034] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/31/2015] [Indexed: 05/11/2023]
Abstract
A pulmonary codelivery system that can simultaneously deliver doxorubicin (DOX) and Bcl2 siRNA to the lungs provides a promising local treatment strategy for lung cancers. In this study, DOX is conjugated onto polyethylenimine (PEI) by using cis-aconitic anhydride (CA, a pH-sensitive linker) to obtain PEI-CA-DOX conjugates. The PEI-CA-DOX/siRNA complex nanoparticles are formed spontaneously via electrostatic interaction between cationic PEI-CA-DOX and anionic siRNA. The drug release experiment shows that DOX releases faster at acidic pH than at pH 7.4. Moreover, PEI-CA-DOX/Bcl2 siRNA complex nanoparticles show higher cytotoxicity and apoptosis induction in B16F10 cells than those treated with either DOX or Bcl2 siRNA alone. When the codelivery systems are directly sprayed into the lungs of B16F10 melanoma-bearing mice, the PEI-CA-DOX/Bcl2 siRNA complex nanoparticles exhibit enhanced antitumor efficacy compared with the single delivery of DOX or Bcl2 siRNA. Compared with systemic delivery, most drug and siRNA show a long-term retention in the lungs via pulmonary delivery, and a considerable number of the drug and siRNA accumulate in tumor tissues of lungs, but rarely in normal lung tissues. The PEI-CA-DOX/Bcl2 siRNA complex nanoparticles are promising for the treatment of metastatic lung cancer by pulmonary delivery with low side effects on the normal tissues.
Collapse
Affiliation(s)
- Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Ping Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Jingpeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University, West Lafayette, IN, 47907, USA
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| |
Collapse
|
94
|
Felice B, Prabhakaran MP, Zamani M, Rodríguez AP, Ramakrishna S. Electrosprayed poly(vinyl alcohol) particles: preparation and evaluation of their drug release profile. POLYM INT 2015. [DOI: 10.1002/pi.4972] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Betiana Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería; Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán; Tucumán Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO); CONICET 4000 Tucumán Argentina
- START - Thrust 3, Create Research Wing 03-08, 1 Create Way; National University of Singapore; Singapore 138602
| | - Molamma P Prabhakaran
- START - Thrust 3, Create Research Wing 03-08, 1 Create Way; National University of Singapore; Singapore 138602
- Department of Mechanical Engineering; National University of Singapore; Singapore
| | - Maedeh Zamani
- START - Thrust 3, Create Research Wing 03-08, 1 Create Way; National University of Singapore; Singapore 138602
- Department of Mechanical Engineering; National University of Singapore; Singapore
| | - Andrea P Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería; Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán; Tucumán Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO); CONICET 4000 Tucumán Argentina
| | - Seeram Ramakrishna
- START - Thrust 3, Create Research Wing 03-08, 1 Create Way; National University of Singapore; Singapore 138602
- Department of Mechanical Engineering; National University of Singapore; Singapore
| |
Collapse
|
95
|
Tadros MI, Al-Mahallawi AM. Long-circulating lipoprotein-mimic nanoparticles for smart intravenous delivery of a practically-insoluble antineoplastic drug: Development, preliminary safety evaluations and preclinical pharmacokinetic studies. Int J Pharm 2015; 493:439-50. [PMID: 26253380 DOI: 10.1016/j.ijpharm.2015.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/17/2015] [Accepted: 08/03/2015] [Indexed: 11/17/2022]
Abstract
Chlorambucil (CHL) is a water-insoluble antineoplastic drug having a short elimination half-life. It suffers from remarkable differences in pharmacokinetics following oral administration. The current work aimed to assess safety and pharmacokinetics of CHL-loaded, lipoprotein-mimic, nanoparticles (NPs) following intravenous administration. The design of NPs was based on complexation between egg yolk lecithin (EYL) and bovine serum albumin (BSA). The NPs were preliminary evaluated via FT-IR, DSC and P-XRD. The NPs were characterized for particle size, zeta potential, morphology and drug entrapment efficiency (EE%). The best achieved NP dispersion (LP6) and CHL solution were challenged for in vitro hemolytic potential, in vivo vascular irritation studies in rabbits and in vivo pharmacokinetics following intravenous administration in rats. The results confirmed that NPs were stabilized by hydrophobic-attractions and hydrogen-bondings between CHL, BSA and EYL. The amorphous dispersion of CHL within NPs was revealed. LP6 dispersion displayed monodispersed nano-spherical particles (144.33 ± 2.17 nm). It possessed the highest negative zeta potential (-30.55 ± 0.24 mV) and the largest EE% (86.35 ± 2.33%). The significantly (P < 0.05) prolonged MRT(0-∞), longer elimination t50% and reduced plasma clearance highlighted the long-circulating characteristics of LP6. The preliminary safety evaluations and the seven-fold increase in bioavailability elucidated potentiality for smart intravenous delivery of CHL.
Collapse
Affiliation(s)
- Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, 11562, Cairo, Egypt.
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, 11562, Cairo, Egypt
| |
Collapse
|
96
|
Beyer S, Moosmann A, Kahnt AS, Ulshöfer T, Parnham MJ, Ferreirós N, Wagner S, Wacker MG. Drug Release and Targeting: the Versatility of Polymethacrylate Nanoparticles for Peroral Administration Revealed by Using an Optimized In Vitro-Toolbox. Pharm Res 2015. [DOI: 10.1007/s11095-015-1759-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
97
|
Bergs JWJ, Wacker MG, Hehlgans S, Piiper A, Multhoff G, Rödel C, Rödel F. The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochim Biophys Acta Rev Cancer 2015; 1856:130-43. [PMID: 26142869 DOI: 10.1016/j.bbcan.2015.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/29/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Radiation therapy is one of the most commonly used non-surgical interventions in tumor treatment and is often combined with other modalities to enhance its efficacy. Despite recent advances in radiation oncology, treatment responses, however, vary considerably between individual patients. A variety of approaches have been developed to enhance radiation response or to counteract resistance to ionizing radiation. Among them, a relatively novel class of radiation sensitizers comprises nanoparticles (NPs) which are highly efficient and selective systems in the nanometer range. NPs can either encapsulate radiation sensitizing agents, thereby protecting them from degradation, or sensitize cancer cells to ionizing radiation via their physicochemical properties, e.g. high Z number. Moreover, they can be chemically modified for active molecular targeting and the imaging of tumors. In this review we will focus on recent developments in nanotechnology, different classes and modifications of NPs and their radiation sensitizing properties.
Collapse
Affiliation(s)
- Judith W J Bergs
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany
| | - Matthias G Wacker
- Fraunhofer-Institute for Molecular Biology and Applied Ecology, Department of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Albrecht Piiper
- Department of Medicine I, Goethe-University, Frankfurt am Main, Germany
| | - Gabriele Multhoff
- German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany; Department of Radiation Oncology, Technische Universität München, Ismaninger Str. 22, D-81675 Munich, Germany; Clinical Cooperation Group (CCG) "Innate Immunity in Tumor Biology", Helmholtz Zentrum München, German Research Center for Environmental Health Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
98
|
Xie L, Beyer S, Vogel V, Wacker MG, Mäntele W. Assessing the drug release from nanoparticles: Overcoming the shortcomings of dialysis by using novel optical techniques and a mathematical model. Int J Pharm 2015; 488:108-19. [DOI: 10.1016/j.ijpharm.2015.03.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022]
|
99
|
Villa Nova M, Janas C, Schmidt M, Ulshoefer T, Gräfe S, Schiffmann S, de Bruin N, Wiehe A, Albrecht V, Parnham MJ, Luciano Bruschi M, Wacker MG. Nanocarriers for photodynamic therapy-rational formulation design and medium-scale manufacture. Int J Pharm 2015; 491:250-60. [PMID: 26123822 DOI: 10.1016/j.ijpharm.2015.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 01/27/2023]
Abstract
The development and manufacture of novel nanocarriers for drug delivery has proved challenging with regards to scale-up and pharmaceutical quality. Polymeric nanocarriers composed of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-PEG) were prepared and the photosensitizer meso-tetrakis(3-hydroxyphenyl) chlorin (mTHPC) was effectively encapsulated. Furthermore, the interplay of various process and formulation parameters and their impact on the most important product specifications were investigated by using a factorial design and a central composite design in a microfluidic manufacturing process. These nanoparticles for intravenous administration with a size of 97 ± 0.13 nm, narrow size distribution, and an encapsulation efficiency of more than 80% were produced at high throughput. In vitro stability and in vitro drug release testing were applied for quality control purposes. Finally, the toxicity of the photosensitizer was tested in vitro. The cytotoxicity was successfully reduced while the efficacy of the formulation was maintained. First observations using in vivo imaging suggest effective distribution of the nanocarrier system after injection into rodents. Thus, further in vivo testing of the beneficial effects of nanoencapsulation into the matrix system and its formulation will be considered for the delivery of mTHPC to tumor tissues during photodynamic therapy.
Collapse
Affiliation(s)
- Mônica Villa Nova
- Laboratory of R&D of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná, Brazil
| | - Christine Janas
- Institute of Pharmaceutical Technology, Goethe University, 60438 Frankfurt (Main), Germany
| | - Mike Schmidt
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group for Translational Medicine & Pharmacology (TMP), 60596 Frankfurt/ Main, Germany
| | - Thomas Ulshoefer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group for Translational Medicine & Pharmacology (TMP), 60596 Frankfurt/ Main, Germany
| | - Susanna Gräfe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group for Translational Medicine & Pharmacology (TMP), 60596 Frankfurt/ Main, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group for Translational Medicine & Pharmacology (TMP), 60596 Frankfurt/ Main, Germany
| | - Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Volker Albrecht
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group for Translational Medicine & Pharmacology (TMP), 60596 Frankfurt/ Main, Germany
| | - Marcos Luciano Bruschi
- Laboratory of R&D of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná, Brazil
| | - Matthias G Wacker
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group for Translational Medicine & Pharmacology (TMP), 60596 Frankfurt/ Main, Germany.
| |
Collapse
|
100
|
Pradal J, Zuluaga MF, Maudens P, Waldburger JM, Seemayer CA, Doelker E, Gabay C, Jordan O, Allémann E. Intra-articular bioactivity of a p38 MAPK inhibitor and development of an extended-release system. Eur J Pharm Biopharm 2015; 93:110-7. [DOI: 10.1016/j.ejpb.2015.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/27/2015] [Accepted: 03/09/2015] [Indexed: 12/23/2022]
|