51
|
Tertiary Prevention of HCC in Chronic Hepatitis B or C Infected Patients. Cancers (Basel) 2021; 13:cancers13071729. [PMID: 33917345 PMCID: PMC8038691 DOI: 10.3390/cancers13071729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) recurrence is the major obstacle concerning patients’ survival. Tertiary prevention by antiviral therapies could reduce HCC recurrence rate in both chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infected patients. In chronic hepatitis B (CHB) patients, nucleos(t)ide analogues (Nuc) provide a more effective HCC tertiary prevention effect than an interferon (IFN)-based regimen. In chronic hepatitis C (CHC) patients, the tertiary prevention effect by direct acting antiviral agents (DAAs) was reported non-inferior to that by IFN-based therapy. Chronic hepatitis C patients left untreated had the worst survival benefit as well as shorted recurrence-free interval than those treated by either type of antiviral regimen. Although the risk of HCC recurrence could only be decreased but not diminished by antiviral therapies due to host and microenvironmental factors beyond virus infection, antiviral therapy helps to preserve and improve liver function which makes multi-modality anticancer treatment feasible to improve survival. Abstract Hepatocellular carcinoma (HCC) ranks as a leading cause of common cancer and cancer-related death. The major etiology of HCC is due to chronic hepatitis virus including HBV and HCV infections. Scheduled HCC surveillance in high risk populations improves the early detection rate and the feasibility of curative treatment. However, high HCC recurrence rate still accounts for the poor prognosis of HCC patients. In this article, we critically review the pathogenesis of viral hepatitis-related hepatocellular carcinoma and the evidence of tertiary prevention efficacy by current available antiviral treatment, and discuss the knowledge gap in viral hepatitis-related HCC tertiary prevention.
Collapse
|
52
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
53
|
The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun 2021; 12:1940. [PMID: 33782411 PMCID: PMC8007798 DOI: 10.1038/s41467-021-22173-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 01/15/2023] Open
Abstract
Metabolic enzymes and metabolites display non-metabolic functions in immune cell signalling that modulate immune attack ability. However, whether and how a tumour’s metabolic remodelling contributes to its immune resistance remain to be clarified. Here we perform a functional screen of metabolic genes that rescue tumour cells from effector T cell cytotoxicity, and identify the embryo- and tumour-specific folate cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2). Mechanistically, MTHFD2 promotes basal and IFN-γ-stimulated PD-L1 expression, which is necessary for tumourigenesis in vivo. Moreover, IFN-γ stimulates MTHFD2 through the AKT–mTORC1 pathway. Meanwhile, MTHFD2 drives the folate cycle to sustain sufficient uridine-related metabolites including UDP-GlcNAc, which promotes the global O-GlcNAcylation of proteins including cMYC, resulting in increased cMYC stability and PD-L1 transcription. Consistently, the O-GlcNAcylation level positively correlates with MTHFD2 and PD-L1 in pancreatic cancer patients. These findings uncover a non-metabolic role for MTHFD2 in cell signalling and cancer biology. Metabolites have been reported not only to support the highly-demanding energetic needs of cancer cells but also as signalling regulators. Here, the authors show that the activity of the folate cycle enzyme MTHFD2 stimulates PD-L1 expression impairing T cell-mediated cytotoxicity and promoting tumourigenesis.
Collapse
|
54
|
Hofmann T, Schmidt J, Ciesielski E, Becker S, Rysiok T, Schütte M, Toleikis L, Kolmar H, Doerner A. Intein mediated high throughput screening for bispecific antibodies. MAbs 2021; 12:1731938. [PMID: 32151188 PMCID: PMC7153837 DOI: 10.1080/19420862.2020.1731938] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies comprise extremely diverse architectures enabling complex modes of action, such as effector cell recruitment or conditional target modulation via dual targeting, not conveyed by monospecific antibodies. In recent years, research on bispecific therapeutics has substantially grown. However, evaluation of binding moiety combinations often leads to undesired prolonged development times. While high throughput screening for small molecules and classical antibodies has evolved into a mature discipline in the pharmaceutical industry, dual-targeting antibody screening methodologies lack the ability to fully evaluate the tremendous number of possible combinations and cover only a limited portion of the combinatorial screening space. Here, we propose a novel combinatorial screening approach for bispecific IgG-like antibodies to extenuate screening limitations in industrial scale, expanding the limiting screening space. Harnessing the ability of a protein trans-splicing reaction by the split intein Npu DnaE, antibody fragments were reconstituted within the hinge region in vitro. This method allows for fully automated, rapid one-pot antibody reconstitution, providing biological activity in several biochemical and functional assays. The technology presented here is suitable for automated functional and combinatorial high throughput screening of bispecific antibodies.
Collapse
Affiliation(s)
- Tim Hofmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Johannes Schmidt
- Compound Logistic & Bioassay Automation, Merck KGaA, Darmstadt, Germany
| | - Elke Ciesielski
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Thomas Rysiok
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Mark Schütte
- Global Innovation and Alliance Management, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
55
|
Abstract
NK cells are responsible for defense against viral infections and cancer. Although activated NK cells are armed to combat tumors, the tumor microenvironment (TME) contains ROS, which suppress NK cell antitumor activity. In this issue of the JCI, Yang, Neo, and colleagues explored NK cell resistance to oxidative stress in vitro and in human non-small-cell lung cancer (NSCLC). High surface thiol density and elevated expression of the ROS scavenger thioredoxin (Trx1) protected NK cells from ROS. Trx1 and thiol levels were higher in IL-15- than in IL-2-primed NK cells. Tumor-infiltrating Trx1+ NK cells were present in patients with NSCLC with elevated ROS levels in the tumor. Smokers scored higher for the ROS signature, which predicted poor prognosis, compared with nonsmokers. This study explains how activated NK cells survive in the ROS-rich TME and suggests that smokers with lung cancer may benefit from therapies using IL-15-primed NK cells.
Collapse
|
56
|
Byun HK, Chung SY, Kim KJ, Seong J. Role of Interleukin-7 in the Development of and Recovery from Radiation-Induced Lymphopenia: A Post-hoc Analysis of a Prospective Cohort. Cancer Res Treat 2021; 53:962-972. [PMID: 33540496 PMCID: PMC8524008 DOI: 10.4143/crt.2020.1053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Radiation-induced lymphopenia is associated with worse outcomes in solid tumors. We assessed the impact of interleukin-7 (IL-7), a key cytokine in lymphocyte homeostasis, on radiation-induced lymphopenia. Materials and Methods A post-hoc analysis was performed in a prospective cohort of 98 patients with hepatocellular carcinoma who were treated with radiotherapy in 2016–2018. Blood IL-7 levels were assayed before and at the end of radiotherapy. Acute severe lymphopenia (ASL) was defined as a total lymphocyte count of < 200/μL during radiotherapy. Cox and logistic regression analyses were performed to identify predictors of survival and ASL development, respectively. Results Patients with ASL (n=41) had significantly poorer overall survival than those without (12.0 months vs. 25.3 months, p=0.001). Patients with lymphocyte recovery showed significantly longer overall survival than those without (21.8 months vs. 10.3 months, p=0.042). ASL was an independent predictor of poor survival (hazard ratio, 2.07; p=0.015). Patients with ASL had significantly lower pre-radiotherapy IL-7 levels (2.07 pg/mL vs. 3.01 pg/mL, p=0.010). A high pre-radiotherapy IL-7 level was an independent predictor of a reduced risk of ASL development (hazard ratio, 0.40; p=0.004). IL-7 levels reflected a feedback response to ASL, with a higher ΔIL-7 in patients with ASL and a lower ΔIL-7 in those without ASL (0.48 pg/mL vs. −0.66 pg/mL, p < 0.001). Post-radiotherapy IL-7 levels were significantly positively correlated with the total lymphocyte counts at 2 months. Conclusion IL-7 is associated with the development of and recovery from ASL, which may impact survival. To overcome radiation-induced lymphopenia, a novel strategy using IL-7 may be considered.
Collapse
Affiliation(s)
- Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Yeun Chung
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiation Oncology, Ajou University Medical Center, Suwon, Korea
| | - Kyoung-Jin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
57
|
Fiore PF, Vacca P, Tumino N, Besi F, Pelosi A, Munari E, Marconi M, Caruana I, Pistoia V, Moretta L, Azzarone B. Wilms' Tumor Primary Cells Display Potent Immunoregulatory Properties on NK Cells and Macrophages. Cancers (Basel) 2021; 13:E224. [PMID: 33435455 PMCID: PMC7826641 DOI: 10.3390/cancers13020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The immune response plays a crucial defensive role in cancer growth and metastasis and is a promising target in different tumors. The role of the immune system in Wilm's Tumor (WT), a common pediatric renal malignancy, is still to be explored. The characterization of the immune environment in WT could allow the identification of new therapeutic strategies for targeting possible inhibitory mechanisms and/or lowering toxicity of the current treatments. In this study, we stabilized four WT primary cultures expressing either a blastematous (CD56+/CD133-) or an epithelial (CD56-/CD133+) phenotype and investigated their interactions with innate immune cells, namely NK cells and monocytes. We show that cytokine-activated NK cells efficiently kill WT cells. However, after co-culture with WT primary cells, NK cells displayed an impaired cytotoxic activity, decreased production of IFNγ and expression of CD107a, DNAM-1 and NKp30. Analysis of the effects of the interaction between WT cells and monocytes revealed their polarization towards alternatively activated macrophages (M2) that, in turn, further impaired NK cell functions. In conclusion, we show that both WT blastematous and epithelial components may contribute directly and indirectly to a tumor immunosuppressive microenvironment that is likely to play a role in tumor progression.
Collapse
Affiliation(s)
- Piera Filomena Fiore
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Paola Vacca
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Nicola Tumino
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Francesca Besi
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Andrea Pelosi
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Marcella Marconi
- Department of Pathology, IRCCS Sacro Cuore Don Calabria, Negrar, 37024 Verona, Italy;
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation University Children’s Hospital of Würzburg, 97080 Würzburg, Germany;
| | - Vito Pistoia
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Lorenzo Moretta
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Bruno Azzarone
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| |
Collapse
|
58
|
Stephen ZR, Zhang M. Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer. Adv Healthc Mater 2021; 10:e2001415. [PMID: 33236511 PMCID: PMC8034553 DOI: 10.1002/adhm.202001415] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has demonstrated great clinical success in certain cancers, driven primarily by immune checkpoint blockade and adoptive cell therapies. Immunotherapy can elicit strong, durable responses in some patients, but others do not respond, and to date immunotherapy has demonstrated success in only a limited number of cancers. To address this limitation, combinatorial approaches with chemo- and radiotherapy have been applied in the clinic. Extensive preclinical evidence suggests that hyperthermia therapy (HT) has considerable potential to augment immunotherapy with minimal toxicity. This progress report will provide a brief overview of immunotherapy and HT approaches and highlight recent progress in the application of nanoparticle (NP)-based HT in combination with immunotherapy. NPs allow for tumor-specific targeting of deep tissue tumors while potentially providing more even heating. NP-based HT increases tumor immunogenicity and tumor permeability, which improves immune cell infiltration and creates an environment more responsive to immunotherapy, particularly in solid tumors.
Collapse
Affiliation(s)
- Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
59
|
Sargenti A, Musmeci F, Bacchi F, Delprete C, Cristaldi DA, Cannas F, Bonetti S, Pasqua S, Gazzola D, Costa D, Villa F, Zocchi MR, Poggi A. Physical Characterization of Colorectal Cancer Spheroids and Evaluation of NK Cell Infiltration Through a Flow-Based Analysis. Front Immunol 2020; 11:564887. [PMID: 33424829 PMCID: PMC7786051 DOI: 10.3389/fimmu.2020.564887] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
To improve pathogenetic studies in cancer development and reliable preclinical testing of anti-cancer treatments, three-dimensional (3D) cultures, including spheroids, have been widely recognized as more physiologically relevant in vitro models of in vivo tumor behavior. Currently, the generation of uniformly sized spheroids is still challenging: different 3D cell culture methods produce heterogeneous populations in dimensions and morphology, that may strongly influence readouts reliability correlated to tumor growth rate or antitumor natural killer (NK) cell-mediated cytotoxicity. In this context, an increasing consensus claims the integration of microfluidic technologies within 3D cell culture, as the physical characterization of tumor spheroids is unavoidably demanded to standardize protocols and assays for in vitro testing. In this paper, we employed a flow-based method specifically conceived to measure weight, size and focused onto mass density values of tumor spheroids. These measurements are combined with confocal and digital imaging of such samples. We tested the spheroids of four colorectal cancer (CRC) cell lines that exhibit statistically relevant differences in their physical characteristics, even though starting from the same cell seeding density. These variations are seemingly cell line-dependent and associated with the number of growing cells and the degree of spheroid compaction as well, supported by different adenosine-triphosphate contents. We also showed that this technology can estimate the NK cell killing efficacy by measuring the weight loss and diameter shrinkage of tumor spheroids, alongside with the commonly used cell viability in vitro test. As the activity of NK cells relies on their infiltration rate, the in vitro sensitivity of CRC spheroids proved to be exposure time- and cell line-dependent with direct correlation to the cell viability reduction. All these functional aspects can be measured by the system and are documented by digital image analysis. In conclusion, this flow-based method potentially paves the way towards standardization of 3D cell cultures and its early adoption in cancer research to test antitumor immune response and set up new immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | - Cecilia Delprete
- Laboratory of Human and General Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Villa
- Molecular Oncology and Angiogenesis Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
60
|
Overview of New Treatments with Immunotherapy for Breast Cancer and a Proposal of a Combination Therapy. Molecules 2020; 25:molecules25235686. [PMID: 33276556 DOI: 10.3390/molecules25235686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023] Open
Abstract
According to data from the U.S. National Cancer Institute, cancer is one of the leading causes of death worldwide with approximately 14 million new cases and 8.2 million cancer-related deaths in 2018. More than 60% of the new annual cases in the world occur in Africa, Asia, Central America, and South America, with 70% of cancer deaths in these regions. Breast cancer is the most common cancer in women, with 266,120 new cases in American women and an estimated 40,920 deaths for 2018. Approximately one in six women diagnosed with breast cancer will die in the coming years. Recently, novel therapeutic strategies have been implemented in the fight against breast cancer, including molecules able to block signaling pathways, an inhibitor of poly [ADP-ribose] polymerase (PARP), growth receptor blocker antibodies, or those that reactivate the immune system by inhibiting the activities of inhibitory receptors like cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death protein 1 (PD-1). However, novel targets include reactivating the Th1 immune response, changing tumor microenvironment, and co-activation of other components of the immune response such as natural killer cells and CD8+ T cells among others. In this article, we review advances in the treatment of breast cancer focused essentially on immunomodulatory drugs in targeted cancer therapy. Based on this knowledge, we formulate a proposal for the implementation of combined therapy using an extracorporeal immune response reactivation model and cytokines plus modulating antibodies for co-activation of the Th1- and natural killer cell (NK)-dependent immune response, either in situ or through autologous cell therapy. The implementation of "combination immunotherapy" is new hope in breast cancer treatment. Therefore, we consider the coordinated activation of each cell of the immune response that would probably produce better outcomes. Although more research is required, the results recently achieved by combination therapy suggest that for most, if not all, cancer patients, this tailored therapy may become a realistic approach in the near future.
Collapse
|
61
|
Motta F, Gershwin ME, Selmi C. Mushrooms and immunity. J Autoimmun 2020; 117:102576. [PMID: 33276307 DOI: 10.1016/j.jaut.2020.102576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
In the wide field of nutraceuticals, the effects of mushrooms on immunity, cancer and including autoimmunity have been proposed for centuries but in recent years a growing interest has led scientists to elucidate which specific compounds have bioactive properties and through which mechanisms. Glucans and specific proteins are responsible for most of the biological effects of mushrooms, particularly in terms of immunomodulatory and anti-tumor results. Proteins with bioactive effects include lectins, fungal immunomodulatory proteins (FIPs), ribosome inactivating proteins (RIPs), ribonucleases, laccases, among others. At the present status of knowledge, numerous studies have been performed on cell lines and murine models while only a few clinical trials have been conducted. As in most cases of dietary components, the multitude of variables implicated in the final effect and an inadequate standardization are expected to affect the observed differences, thus making the available evidence insufficient to justify the treatment of human diseases with mushrooms extracts. We will herein provide a comprehensive review and critically discussion the biochemical changes induced by different mushroom compounds as observed in in vitro studies, particularly on macrophages, dendritic cells, T cells, and NK cells, compared to in vivo and human studies. Additional effects are represented by lipids which constitute a minor part of mushrooms but may have a role in reducing serum cholesterol levels or phenols acting as antioxidant and reducing agents. Human studies provide a minority of available data, as well illustrated by a placebo-controlled study of athletes treated with β-glucan from Pleurotus ostreatus. Variables influencing study outcomes include different mushrooms strains, growing conditions, developmental stage, part of mushroom used, extraction method, and storage conditions. We foresee that future rigorous research will be needed to determine the potential of mushroom compounds for human health to reproduce the effects of some compounds such as lentinan which a metaanalysis demonstrated to increase the efficacy of chemotherapy in the treatment of lung cancer and in the improvement of the patients quality of life.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
62
|
Zhu X, Li S, Xu B, Luo H. Cancer evolution: A means by which tumors evade treatment. Biomed Pharmacother 2020; 133:111016. [PMID: 33246226 DOI: 10.1016/j.biopha.2020.111016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Although various methods have been tried to study and treat cancer, the cancer remains a major challenge for human medicine today. One important reason for this is the presence of cancer evolution. Cancer evolution is a process in which tumor cells adapt to the external environment, which can suppress the human immune system's ability to recognize and attack tumors, and also reduce the reproducibility of cancer research. Among them, heterogeneity of the tumor provides intrinsic motivation for this process. Recently, with the development of related technologies such as liquid biopsy, more and more knowledge about cancer evolution has been gained and interest in this topic has also increased. Therefore, starting from the causes of tumorigenesis, this paper introduces several tumorigenesis processes and pathways, as well as treatment options for different targets.
Collapse
Affiliation(s)
- Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Shi Li
- Guangdong Key Laboratory of Urogenital Tumor Systems and Synthetic Biology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China; Shenzhen Key Laboratory of Genitourinary Tumor, Translational Medicine Institute of Shenzhen, The Second People's Hospital of Shenzhen, Shenzhen, China; College of Bioengineering, Chongqing University, Chongqing, China
| | - Bairui Xu
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China.
| |
Collapse
|
63
|
Yuan R, Bhattacharya N, Kenkel JA, Shen J, DiMaio MA, Bagchi S, Prestwood TR, Habtezion A, Engleman EG. Enteric Glia Play a Critical Role in Promoting the Development of Colorectal Cancer. Front Oncol 2020; 10:595892. [PMID: 33282743 PMCID: PMC7691584 DOI: 10.3389/fonc.2020.595892] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Enteric glia are a distinct population of peripheral glial cells in the enteric nervous system that regulate intestinal homeostasis, epithelial barrier integrity, and gut defense. Given these unique attributes, we investigated the impact of enteric glia depletion on tumor development in azoxymethane/dextran sodium sulfate (AOM/DSS)-treated mice, a classical model of colorectal cancer (CRC). Depleting GFAP+ enteric glia resulted in a profoundly reduced tumor burden in AOM/DSS mice and additionally reduced adenomas in the ApcMin /+ mouse model of familial adenomatous polyposis, suggesting a tumor-promoting role for these cells at an early premalignant stage. This was confirmed in further studies of AOM/DSS mice, as enteric glia depletion did not affect the properties of established malignant tumors but did result in a marked reduction in the development of precancerous dysplastic lesions. Surprisingly, the protective effect of enteric glia depletion was not dependent on modulation of anti-tumor immunity or intestinal inflammation. These findings reveal that GFAP+ enteric glia play a critical pro-tumorigenic role during early CRC development and identify these cells as a potential target for CRC prevention.
Collapse
Affiliation(s)
- Robert Yuan
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| | - Nupur Bhattacharya
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| | - Justin A Kenkel
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| | - Jeanne Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael A DiMaio
- Department of Pathology, Marin Medical Laboratories, Novato, CA, United States
| | - Sreya Bagchi
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| | - Tyler R Prestwood
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| |
Collapse
|
64
|
Vu LT, Gong J, Pham TT, Kim Y, Le MTN. microRNA exchange via extracellular vesicles in cancer. Cell Prolif 2020; 53:e12877. [PMID: 33169503 PMCID: PMC7653238 DOI: 10.1111/cpr.12877] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Cells utilize different means of inter-cellular communication to function properly. Here, we review the crosstalk between cancer cells and their surrounding environment through microRNA (miRNA)-containing extracellular vesicles (EVs). The current findings suggest that the export of miRNAs and uptake of miRNA-containing EVs might be an active process. As post-transcriptional regulators of gene expression, cancer-derived miRNAs that are taken up by normal cells can change the translational profile of the recipient cell towards a transformed proteome. Stromal cells can also deliver miRNAs via EVs to cancer cells to support tumour growth and cancer progression. Therefore, gaining a better understanding of EV-mediated inter-cellular communication in the tumour microenvironment might lead to the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Luyen Tien Vu
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Jinhua Gong
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Thach Tuan Pham
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Yeokyeong Kim
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Minh T. N. Le
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
65
|
Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers (Basel) 2020; 12:cancers12102870. [PMID: 33036192 PMCID: PMC7601592 DOI: 10.3390/cancers12102870] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The response to pharmacological treatments is deeply influenced by the tight interactions between the tumor cells and the microenvironment. In this review we describe, for melanoma, the most important mechanisms of resistance to targeted therapy and immunotherapy mediated by the components of the microenvironment. In addition, we briefly describe the most recent therapeutic advances for this pathology. The knowledge of molecular mechanisms, which are underlying of drug resistance, is fundamental for the development of new therapeutic approaches for the treatment of melanoma patients. Abstract Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase kinase (MEK), v-kit Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.
Collapse
|
66
|
Farcas M, Inngjerdingen M. Natural killer cell–derived extracellular vesicles in cancer therapy. Scand J Immunol 2020; 92:e12938. [DOI: 10.1111/sji.12938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Marius Farcas
- Department of Pharmacology Institute of Clinical Medicine University of Oslo and Oslo University Hospital Oslo Norway
| | - Marit Inngjerdingen
- Department of Pharmacology Institute of Clinical Medicine University of Oslo and Oslo University Hospital Oslo Norway
| |
Collapse
|
67
|
Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G, Donadon M. Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. World J Gastroenterol 2020; 26:4900-4918. [PMID: 32952338 PMCID: PMC7476172 DOI: 10.3748/wjg.v26.i33.4900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Internal Medicine, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| |
Collapse
|
68
|
Zhang D, Teng R, Lv N, Lei L, Wang Y, Williamson RA, Chen P, Gao P, O'Dwyer M, Li A, Hu J. A novel CD2 staining-based flow cytometric assay for assessment of natural killer cell cytotoxicity. J Clin Lab Anal 2020; 34:e23519. [PMID: 32808354 PMCID: PMC7755793 DOI: 10.1002/jcla.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Assessing cytotoxicity is fundamental to studying natural killer (NK) cell function. Various radioactive and non-radioactive cytotoxicity assays measuring target cell death have been developed. Among these methods, the most commonly used 51 Chromium-release assay (CRA) and flow cytometry-based cytotoxicity assays (FCCs) are the major representatives. Nonetheless, several drawbacks, including dye leakage and the potential effects of prior labeling on cells, curb the broad applicability of the FCCs. METHODS Here, we report a rapid FCC for quantifying target cell death after co-incubation with NK cells. In this assay, after 4 hours of NK cell-target cell co-incubation, fluorochrome-conjugated CD2 antibody was used to identify NK cells, and SYTOX Green and Annexin V-FITC were further used to detect target cell death in CD2-negative population. In parallel, both CRA and FCC assay using CFSE/ 7-AAD were performed to validate the reproducibility and replicability. RESULTS We observed that CD2 is exclusively positive on NK cells other than the most common hematological target tumor cells, such as K562, HL60, MOLM13, Raji, NCI-H929, rpmi8226, MM.1S, and KMS11. Assessment of target cell death using the CD2-based FCC shows a significantly higher percent specific lysis of the target cells compared to the standard CRA and the FCC assay using CFSE and 7-AAD. CONCLUSIONS We demonstrated that this CD2-based FCC is a fast, simple, and reliable method for evaluating NK cell cytotoxicity.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rui Teng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Lv
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanmeng Wang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ramone A Williamson
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ping Chen
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peigen Gao
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Michael O'Dwyer
- Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
69
|
Premkumar K, Shankar BS. TGF-βR inhibitor SB431542 restores immune suppression induced by regulatory B–T cell axis and decreases tumour burden in murine fibrosarcoma. Cancer Immunol Immunother 2020; 70:153-168. [DOI: 10.1007/s00262-020-02666-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
|
70
|
Wang Y, Ba HJ, Liu ZC, Deng XB, Zhou M. Prognostic value of immune cell infiltration in bladder cancer: A gene expression-based study. Oncol Lett 2020; 20:1677-1684. [PMID: 32724410 PMCID: PMC7377040 DOI: 10.3892/ol.2020.11750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to analyse the relationship between tumour-infiltrating immune cells (TIICs) and the prognosis of bladder cancer (BC). In the present study, an established computational method (CIBERSORT) was used to analyse the gene expression profile of BC from 409 patients to infer the number of infiltrating immune cells among 22 immune cell subsets. The relationship between each cell type and overall survival (OS) was further analysed. Single-sample GSEA and ESTIMATE algorithms were performed to evaluate the composition of immune microenvironment in each immune cluster. A significant difference in immune cell infiltration between BC and bladder tissue was observed. Increased natural killer and CD8+ T cell infiltration was associated with longer OS, whereas a higher percentage of M0 macrophages among the total immune cells was associated with shorter OS. The number of M0 macrophages increased with increasing BC stage, whereas the percentage of activated memory CD4+ and CD8+ T cells decreased. Patients with BC were divided into three subgroups by hierarchical cluster analysis of immune cells, and each cluster was associated with distinct survival and immune characteristics. The data indicated differences in the cellular composition of TIICs in patients with BC. Moreover, these TIICs were shown to be potential drug targets and reliable prognostic indicators.
Collapse
Affiliation(s)
- Yao Wang
- Medical Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Hong-Jun Ba
- Pediatric Cardiology Department, Heart Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zi-Chuan Liu
- Medical Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xu-Bin Deng
- Medical Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Min Zhou
- Medical Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
71
|
Zhao P, Yang L, Li X, Lu W, Lu F, Wang S, Wang Y, Hua L, Cui C, Dong B, Yu Y, Wang L. Rae1 drives NKG2D binding-dependent tumor development in mice by activating mTOR and STAT3 pathways in tumor cells. Cancer Sci 2020; 111:2234-2247. [PMID: 32333709 PMCID: PMC7385386 DOI: 10.1111/cas.14434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer group 2 member D (NKG2D) ligands (NKG2DLs) on tumor cells engage NKG2D and mediate killing by NKG2D+ immune cells. However, tumor cells with high levels of NKG2DLs are still malignant and proliferate rapidly. We investigated the reason for NKG2DL-expressing cell progression. Tumor cells in mice were assessed for their NKG2DL expression, ability to attract immune cells, tumorigenicity, mTOR, and signal transducer and activator of transcription 3 (STAT3) signaling activation. Antibody blockade was used to determine the effect of NKG2DL-NKG2D interaction on signaling activation in vitro. Retinoic acid early inducible gene 1 (Rae1) was related to the expression of other NKG2DLs, the promotion of tumorigenicity, Mmp2 expression, mTOR and STAT3 phosphorylation in GL261 cells, and the recruitment of NKG2D+ cells in mice. Rae1 also induced NKG2DL expression, mTOR, and STAT3 phosphorylation in GL261 cells and LLC cells, but not in B16 and Pan02 cells, which did not express NKG2DLs, when cocultured with PBMCs; the induced phosphorylation was eliminated by Rae1-NKG2D blockade. Inhibition of mTOR and/or STAT3 decreased PBMC-induced migration and proliferation of GL261 cells in vitro. Rae1, a NKG2DL on tumor cells, plays a driving role in the expression of other NKG2DLs and in tumor development in mice by activating mTOR and STAT3 pathways, relying on its interaction with NKG2D on immune cells.
Collapse
Affiliation(s)
- Peiyan Zhao
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xin Li
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenting Lu
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Fangjie Lu
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shengnan Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ying Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Hua
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Boqi Dong
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
72
|
Therapeutic ISCOMATRIX™ adjuvant vaccine elicits effective anti-tumor immunity in the TRAMP-C1 mouse model of prostate cancer. Cancer Immunol Immunother 2020; 69:1959-1972. [PMID: 32388678 PMCID: PMC7223769 DOI: 10.1007/s00262-020-02597-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Cancer vaccine development has proven challenging with the exception of some virally induced cancers for which prophylactic vaccines exist. Currently, there is only one FDA approved vaccine for the treatment of prostate cancer and as such prostate cancer continues to present a significant unmet medical need. In this study, we examine the effectiveness of a therapeutic cancer vaccine that combines the ISCOMATRIX™ adjuvant (ISCOMATRIX) with the Toll-like receptor 3 agonist, polyinosinic-polycytidylic acid (Poly I:C), and Flt3L, FMS-like tyrosine kinase 3 ligand. We employed the TRAMP-C1 (transgenic adenocarcinoma of the mouse prostate) model of prostate cancer and the self-protein mPAP (prostatic acid phosphatase) as the tumor antigen. ISCOMATRIX™-mPAP-Poly I:C-Flt3L was delivered in a therapeutic prime-boost regime that was consistently able to achieve complete tumor regression in 60% of animals treated and these tumor-free animals were protected upon rechallenge. Investigations into the underlying immunological mechanisms contributing to the effectiveness of this vaccine identified that both innate and adaptive responses are elicited and required. NK cells, CD4+ T cells and interferon-γ were all found to be critical for tumor control while tumor infiltrating CD8+ T cells became disabled by an immunosuppressive microenvironment. There is potential for broader application of this cancer vaccine, as we have been able to demonstrate effectiveness in two additional cancer models; melanoma (B16-OVA) and a model of B cell lymphoma (Eµ-myc-GFP-OVA).
Collapse
|
73
|
Therapeutic Development of Immune Checkpoint Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:619-649. [PMID: 32185726 DOI: 10.1007/978-981-15-3266-5_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immune checkpoint blockade (ICB) has been proven to be an effective strategy for enhancing the effector activity of anti-tumor T cells, and checkpoint blockers targeting CTLA-4, PD-1, and PD-L1 have displayed strong and durable clinical responses in certain cancer patients. The new hope brought by ICB therapy has led to the boost in therapeutic development of ICBs in recent years. Nonetheless, the therapeutic efficacy of ICBs varies substantially among cancer types and patients, and only a proportion of cancer patients could benefit from ICBs. The emerging targets and molecules for enhancing anticancer immunity may bring additional therapeutic opportunities for cancer patients. The current challenges in the ICB therapy have been discussed, aimed to provide further strategies for maximizing the efficacy of ICB therapy.
Collapse
|
74
|
Lui FH, Moosvi Z, Patel A, Hussain S, Duong A, Duong J, Nguyen DL. Decreased risk of hepatocellular carcinoma recurrence with direct-acting antivirals compared with no treatment for hepatitis C: a meta-analysis. Ann Gastroenterol 2020; 33:293-298. [PMID: 32382233 PMCID: PMC7196608 DOI: 10.20524/aog.2020.0470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background Studies investigating the association between direct-acting antivirals (DAAs) and the recurrence of hepatocellular carcinoma (HCC) related to hepatitis C (HCV) have yielded conflicting results. The objective of this meta-analysis was to define the short- and long-term recurrence rates of HCC after DAA treatment. Methods A search of multiple databases was performed, including Scopus, Cochrane, MEDLINE/PubMed and abstracts from gastroenterology meetings. Only studies reporting the recurrence of HCC in patients receiving DAA treatment, compared to HCV controls without DAA treatment, were evaluated. A meta-analysis was completed using the Mantel-Haenszel model. Results A comprehensive literature search resulted in 32 abstracts and papers. Six papers met our inclusion criteria and were included in the analysis. Follow up ranged from 1.25-4 years. Analysis of these 6 studies found a >60% lower risk of HCC recurrence in patients exposed to DAA compared to controls (odds ratio [OR] 0.36, 95% confidence interval [CI] 0.27-0.47; P<0.001; I2=88%). A sensitivity analysis, which excluded studies showing the lowest recurrence rate to reduce heterogeneity, showed that patients receiving DAA still had a 60% lower risk of developing HCC (OR 0.4, 95%CI 0.26-0.61; P<0.0001; I2=39%) and a 66% lower risk of developing HCC beyond 1 year (OR 0.34, 95%CI 0.22-0.54; P<0.00001; I2=0%) compared to controls. Conclusions The use of DAA is associated with a significantly lower risk of HCC development compared to DAA-untreated patients, both overall and beyond 1 year of treatment. Further studies are needed to assess the impact of DAAs on early recurrence.
Collapse
Affiliation(s)
- Felix H Lui
- Department of Gastroenterology and Hepatology (Felix H. Lui, Alex Duong, Jacqueline Duong, Douglas L. Nguyen)
| | - Zain Moosvi
- Department of Internal Medicine (Zain Moosvi, Anish Patel, Samiya Hussain), University of California-Irvine, Orange, CA, USA
| | - Anish Patel
- Department of Internal Medicine (Zain Moosvi, Anish Patel, Samiya Hussain), University of California-Irvine, Orange, CA, USA
| | - Samiya Hussain
- Department of Internal Medicine (Zain Moosvi, Anish Patel, Samiya Hussain), University of California-Irvine, Orange, CA, USA
| | - Alex Duong
- Department of Gastroenterology and Hepatology (Felix H. Lui, Alex Duong, Jacqueline Duong, Douglas L. Nguyen)
| | - Jacqueline Duong
- Department of Gastroenterology and Hepatology (Felix H. Lui, Alex Duong, Jacqueline Duong, Douglas L. Nguyen)
| | - Douglas L Nguyen
- Department of Gastroenterology and Hepatology (Felix H. Lui, Alex Duong, Jacqueline Duong, Douglas L. Nguyen)
| |
Collapse
|
75
|
Shi L, Guo H, Zheng Z, Liu J, Jiang Y, Su Y. Laparoscopic Surgery Versus Open Surgery for Colorectal Cancer: Impacts on Natural Killer Cells. Cancer Control 2020; 27:1073274820906811. [PMID: 32157905 PMCID: PMC7092650 DOI: 10.1177/1073274820906811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Laparoscopic resection is increasingly used in colorectal cancer (CRC). It has been suggested to carry short-term benefits in safety, recovery, and preservation on immune function for patients with CRC. However, the impact of laparoscopic resection on natural killer (NK) cells is largely unclear. METHODS A total of 200 patients with CRC across Dukes A/B/C stages were randomly assigned to laparoscopic or open resection. The blood samples were collected before and after the surgery. The total number of NK cells was quantified by flow cytometer. Lytic units 35 toward K562 was used to quantify NK cells activity. The outcomes between the groups across pathological stages were also analyzed. RESULTS The number and activity of NK cells decreased after the surgery in both groups. The laparoscopic group showed a faster recovery rate of NK cells function than the control group as assessed by cell count and lytic activity. Natural killer cells were impaired in a higher degree in patients at Dukes B/C stages. The recovery of NK cells to baseline level at day 7 postsurgery was observed in the laparoscopic group across all 3 stages. CONCLUSION Generally, laparoscopically assisted surgery resulted in a better preservation on NK cells function. A better outcome was observed in patients with CRC at Dukes B/C stages.
Collapse
Affiliation(s)
- Liangpan Shi
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Hailian Guo
- Department of Gynaecology and Obstetrics, Jinjiang Hospital, Jinjiang, Fujian, China
| | - Zhihua Zheng
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Jiangrui Liu
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yancheng Jiang
- Department of Laboratory Medicine, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yibin Su
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
76
|
Liu Y, Guo J, Huang L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Am J Cancer Res 2020; 10:3099-3117. [PMID: 32194857 PMCID: PMC7053194 DOI: 10.7150/thno.42998] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
Recent advances in the field of immunotherapy have profoundly opened up the potential for improved cancer therapy and reduced side effects. However, the tumor microenvironment (TME) is highly immunosuppressive, therefore, clinical outcomes of currently available cancer immunotherapy are still poor. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. In this review, the immunoregulatory cell types (cells relating to the regulation of immune responses) inside the TME in terms of stimulatory and suppressive roles are described, and the technologies used to identify and quantify these cells are provided. In addition, recent examples of nanomaterial-based cancer immunotherapy are discussed, with particular emphasis on those designed to overcome barriers caused by the complexity and diversity of TME.
Collapse
|
77
|
Yang C, Li Y, Yang Y, Chen Z. Overview of Strategies to Improve Therapy against Tumors Using Natural Killer Cell. J Immunol Res 2020; 2020:8459496. [PMID: 32411806 PMCID: PMC7201677 DOI: 10.1155/2020/8459496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
NK cells are lymphocytes with antitumor properties and can directly lyse tumor cells in a non-MHC-restricted manner. However, the tumor microenvironment affects the immune function of NK cells, which leads to immune evasion. This may be related to the pathogenesis of some diseases. Therefore, great efforts have been made to improve the immunotherapy effect of natural killer cells. NK cells from different sources can meet different clinical needs, in order to minimize the inhibition of NK cells and maximize the response potential of NK cells, for example, modification of NK cells can increase the number of NK cells in tumor target area, change the direction of NK cells, and improve their targeting ability to malignant cells. Checkpoint blocking is also a promising strategy for NK cells to kill tumor cells. Combination therapy is another strategy for improving antitumor ability, especially in combination with oncolytic viruses and nanomaterials. In this paper, the mechanisms affecting the activity of NK cells were reviewed, and the therapeutic potential of different basic NK cell strategies in tumor therapy was focused on. The main strategies for improving the immune function of NK cells were described, and some new strategies were proposed.
Collapse
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yaozhang Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| |
Collapse
|
78
|
Wang Y, Hays E, Rama M, Bonavida B. Cell-mediated immune resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:232-251. [PMID: 35310881 PMCID: PMC8932590 DOI: 10.20517/cdr.2019.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022]
Abstract
The genetic and epigenetic aberrations that underlie immune resistance lead to tumors that are refractory to clinically established and experimental immunotherapies, including monoclonal antibodies and T cell-based therapies. From various forms of cytotoxic T cells to small molecule inhibitors that revamp the tumor microenvironment, these therapies have demonstrated notable responses in cancer models and a resistant subset of cancer patients, used both alone and in combination. However, even current approaches, such as those targeting checkpoint molecules, tumor ligands, and involving gene-related therapies, present a challenge in non-responding patients. In this perspective, we discuss the most common mechanisms of immune resistance, including tumor heterogeneity, tumor ligand and major histocompatibility complex modulation, anti-apoptotic pathways, checkpoint inhibitory ligands, immunosuppressive cells and factors in the tumor microenvironment, and activation-induced cell death. In addition, we discuss the strategies designed to circumvent these resistance pathways to showcase the potential of emerging technologies in battling the rise of resistance.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Emily Hays
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Martina Rama
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
79
|
Węgierek K, Pajtasz-Piasecka E. Perspectives for the application of interleukin 15 in anti-cancer therapy. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.7194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL-) 15 plays a crucial role in the preservation of lymphoid cell homeostasis including maintaining a broad repertoire of naïve T, B and NK cells, eliminating effector cells and long-term survival of memory cells. It is an essential causative factor in generating CD8+ T cells of memory. In addition, it selectively promotes not only survival and proliferation, but also the effector function of antigen-specific cytotoxic T lymphocytes, even in the presence of regulatory T cells. Interleukin 15 can thus modulate immune suppression as well as promote an immune activation. All obtained data on the biology and function of IL-15 provide information essential to design the manners of its application in the fight against the solid cancers and myeloproliferative neoplasms and make it a promising therapeutic option provided that its potential is consciously used. In this paper we reviewed on the relationship between the biological properties of IL-15 and its IL-15/IL-15Rα complex and their antitumor potential in the light of recent reports about the possibilities of using these molecules in cancer therapy have been assessed.
Collapse
Affiliation(s)
- Katarzyna Węgierek
- Laboratorium Doświadczalnej Terapii Przeciwnowotworowej, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu
| | - Elżbieta Pajtasz-Piasecka
- Laboratorium Doświadczalnej Terapii Przeciwnowotworowej, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu
| |
Collapse
|
80
|
Shalapour S, Karin M. Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation. Immunity 2019; 51:15-26. [PMID: 31315033 DOI: 10.1016/j.immuni.2019.06.021] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
In many settings, tumor-associated inflammation, supported mainly by innate immune cells, contributes to tumor growth. Initial innate activation triggers secretion of inflammatory, regenerative, and anti-inflammatory cytokines, which in turn shape the adaptive immune response to the tumor. Here, we review the current understanding of the intricate dialog between cancer-associated inflammation and anti-tumor immunity. We discuss the changing nature of these interactions during tumor progression and the impact of the tissue environment on the anti-tumor immune response. In this context, we outline important gaps in current understanding by considering basic research and findings in the clinic. The future of cancer immunotherapy and its utility depend on improved understanding of these interactions and the ability to manipulate them in a predictable and beneficial manner.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
81
|
Martinović KM, Milićević M, Larsen AK, Džodić R, Jurišić V, Konjević G, Vuletić A. Effect of cytokines on NK cell activity and activating receptor expression in high-risk cutaneous melanoma patients. Eur Cytokine Netw 2019; 30:160-167. [PMID: 32096478 DOI: 10.1684/ecn.2019.0440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Stage II melanoma patients have high risk for regional and distant metastases and may benefit from novel therapeutic strategies. To clarify the role of NK cells in Stage II melanoma, we characterized the cytotoxic activity of NK cells and the expression of various activating and inhibitory receptors in high-risk cutaneous melanoma patients (Stages IIB and IIC) compared to low-risk patients (Stage IA). MATERIALS AND METHODS Native and cytokine-treated peripheral blood mononuclear cells were used for functional and phenotypical analyses. RESULTS Compared to Stage IA-B patients, Stage IIB-C patients showed significantly decreased NK cell activity, as well as decreased expression of the activating NKG2D and CD161 receptors, most likely due to increased serum levels of the immunosuppressive cytokine TGF-β1 in these patients. Interestingly, treatment of periperal blood mononuclear cells with IFN-α, IL-2, IL-12 or the combination of IL-12 and IL-18 significantly induced NK cell activity for both groups of melanoma patients. However, only low-risk patients had a significant increase in the expression of the NKG2D receptor after in vitro treatment with IFN-α, as well as an significant increase in the expression of CD161 after treatment with IFN-α or IL-12. Although IL-2 induced the expression of NKG2D in both groups of patients, this increase was significantly lower in high-risk melanoma. CONCLUSION NK cell parameters may be useful as biomarkers of disease progression in localized melanoma patients. Our results further suggest that the use of NK cell-activating cytokines in combination with inhibitors of immunosuppressive factors like TGF-β1 could be a therapeutic option for the treatment of high-risk cutaneous melanoma patients.
Collapse
Affiliation(s)
- Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Milica Milićević
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM U938 and Sorbonne University, Kourilsky building 1st floor, Hôpital Saint-Antoine, 184 rue du Faubourg Saint Antoine, 75571 PARIS Cédex 12 France
| | - Radan Džodić
- Surgical Oncology Clinic, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia, School of Medicine, University of Belgrade, Dr Subotića 8, 11000 Beograd, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, P.BOX 124, 34000 Kragujevac, Serbia
| | - Gordana Konjević
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia, School of Medicine, University of Belgrade, Dr Subotića 8, 11000 Beograd, Serbia
| | - Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
82
|
Roessner PM, Hanna BS, Öztürk S, Schulz R, Llaó Cid L, Yazdanparast H, Scheffold A, Colomer D, Stilgenbauer S, Lichter P, Seiffert M. TBET-expressing Th1 CD4 + T cells accumulate in chronic lymphocytic leukaemia without affecting disease progression in Eµ-TCL1 mice. Br J Haematol 2019; 189:133-145. [PMID: 31724172 DOI: 10.1111/bjh.16316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is associated with alterations in T cell number, subset distribution and function. Among these changes, an increase in CD4+ T cells was reported. CD4+ T cells are a heterogeneous population and distinct subsets have been described to exert pro- and anti-tumour functions. In CLL, controversial reports describing the dominance of IFNγ-expressing Th1 T cells or of IL-4-producing Th2 T cells exist. Our study shows that blood of CLL patients is enriched in Th1 T cells producing high amounts of IFNγ. Moreover, we observed that their frequency remains relatively stable in CLL patients over a time course of five years. Furthermore, we provide evidence for an accumulation of Th1 T cells in the Eµ-TCL1 mouse model of CLL. As TBET (encoded by Tbx21) is a crucial transcription factor for Th1 polarization, we generated Tbx21-/- bone marrow chimaeric mice which showed a lower number of IFNγ-producing Th1 T cells, and used them for adoptive transfer of Eµ-TCL1 leukaemia. Disease development in these mice was, however, comparable to that in wild-type controls, excluding a major role for TBET-expressing Th1 cells in Eµ-TCL1 leukaemia. Collectively, our data highlight that Th1 T cells accumulate in CLL but reducing their number has no impact on disease development.
Collapse
Affiliation(s)
| | - Bola S Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Ralph Schulz
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany.,Faculty of Biosciences, University of Heidelberg, Germany
| | - Laura Llaó Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany.,Faculty of Biosciences, University of Heidelberg, Germany
| | | | | | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Peter Lichter
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| |
Collapse
|
83
|
Lorenzo-Sanz L, Muñoz P. Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. CANCER MICROENVIRONMENT 2019; 12:119-132. [PMID: 31583529 DOI: 10.1007/s12307-019-00232-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
Abstract
In most tumors, cancer cells show the ability to dynamically transit from a non-cancer stem-like cell to a cancer stem-like cell (CSC) state and vice versa. This cell plasticity has been associated with the epithelial-to-mesenchymal transition program (EMT) and can be regulated by tumor cell-intrinsic mechanisms and complex interactions with various tumor microenvironment (TME) components. These interactions favor the generation of a specific "CSC niche" that helps maintain the main properties, phenotypic plasticity and metastatic potential of this subset of tumor cells. For this reason, TME has been recognized as an important promoter of tumor progression and therapy resistance. Tumors have evolved a network of immunosuppressive mechanisms that limits the cytotoxic T cell response to cancer cells. Some key players in this network are tumor-associated macrophages, myeloid-derived suppressor cells and regulatory T cells, which not only favor a pro-tumoral and immunosuppressive environment that supports tumor growth and immune evasion, but also negatively influences immunotherapy. Here, we review the relevance of cytokines and growth factors provided by immunosuppressive immune cells in regulating cancer-cell plasticity. We also discuss how cancer cells remodel their own niche to promote proliferation, stemness and EMT, and escape immune surveillance. A better understanding of CSC-TME crosstalk signaling will enable the development of effective targeted or immune therapies that block tumor growth and metastasis.
Collapse
Affiliation(s)
- Laura Lorenzo-Sanz
- Aging and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Vía de L'Hospitalet 199-203, 08908, Barcelona, Spain
| | - Purificación Muñoz
- Aging and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Vía de L'Hospitalet 199-203, 08908, Barcelona, Spain.
| |
Collapse
|
84
|
Gulei D, Raduly L, Broseghini E, Ferracin M, Berindan-Neagoe I. The extensive role of miR-155 in malignant and non-malignant diseases. Mol Aspects Med 2019; 70:33-56. [PMID: 31558293 DOI: 10.1016/j.mam.2019.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have rapidly emerged as key molecules in cancer initiation and development, showing the capability to regulate pivotal oncogenic pathways. MiR-155 has gathered an increased attention especially in oncology, but also in non-malignanat pathologies. Nowadays, this noncoding RNA is one of the most important miRNAs in cancer, due to the extensive signaling network associated with it, implication in immune system regulation and also deregulation in disease states. Therefore, numerous research protocols are focused on preclinical modulation of miR-155 for therapeutic purposes, or investigation of its dynamic expression for diagnostic/prognostic assessments, with the final intention of bringing this miRNA into the clinical setting. This review comprehensively presents the extended role of miR-155 in cancer and other pathologies, where its expression is dysregulated. Finally, we assess the future steps toward miR-155 based therapeutics.
Collapse
Affiliation(s)
- Diana Gulei
- MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania; Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuţă", Cluj-Napoca, 400015, Romania.
| |
Collapse
|
85
|
Schmidt L, Eskiocak B, Kohn R, Dang C, Joshi NS, DuPage M, Lee DY, Jacks T. Enhanced adaptive immune responses in lung adenocarcinoma through natural killer cell stimulation. Proc Natl Acad Sci U S A 2019; 116:17460-17469. [PMID: 31409707 PMCID: PMC6717259 DOI: 10.1073/pnas.1904253116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Natural killer (NK) cells inhibit tumor development in mouse models and their presence in tumors correlates with patient survival. However, tumor-associated NK cells become dysfunctional; thus, stimulation of NK cells in cancer is emerging as an attractive immunotherapeutic strategy. In a mouse model of lung adenocarcinoma, NK cells localized to tumor stroma with immature phenotypes and low functional capacity. To test their responsiveness within established disease, we engineered a system for inducible expression of activating ligands in tumors. After stimulation, NK cells localized inside tumors, with increased cytokine production capacity. Strikingly, T cells were also recruited to tumors in an NK cell-dependent manner, and exhibited higher functionality. In neoantigen-expressing tumors, NK cell stimulation enhanced the number and function of tumor-specific T cells and, in long-term settings, reduced tumor growth. Thus, even in established disease NK cells can be activated to contribute to antitumor immunity, supporting their potential as an important target in cancer immunotherapy.
Collapse
Affiliation(s)
- Leah Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Banu Eskiocak
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ryan Kohn
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Celeste Dang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nikhil S Joshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michel DuPage
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Da-Yae Lee
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
86
|
Chen X, Chen X, Gao J, Yang H, Duan Y, Feng Y, He X, Gong X, Wang H, Wu X, Chang J. Astragaloside III Enhances Anti-Tumor Response of NK Cells by Elevating NKG2D and IFN-γ. Front Pharmacol 2019; 10:898. [PMID: 31456687 PMCID: PMC6701288 DOI: 10.3389/fphar.2019.00898] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells play an irreplaceable role in the development of colon cancer, in which antitumor function of NK cells was impaired. Astragaloside III is a natural compound from Astragalus that has been shown to have immunomodulatory effects in various systems. However, few studies have evaluated the antitumor effects of Astragaloside III through stimulating systemic immunity and regulating NK cells. In this study, flow cytometry, immunohistochemical analysis, and immunofunctional assays were performed to elucidate the functions of Astragaloside III in restoring antitumor function of NK cells. We demonstrated that Astragaloside III significantly elevated the expression of natural killer group 2D (NKG2D), Fas, and interferon-γ (IFN-γ) production in NK cells, leading to increased tumor-killing ability. Experiments in cell co-culture assays and CT26-bearing mice model further confirmed that Astragaloside III could effectively impede tumor growth by increasing infiltration of NK cells into tumor and upregulating the antitumor response of NK cells. We further revealed that Astragaloside III increased IFN-γ secretion of NK cells by enhancing the expression of transcription factor T-bet. In conclusion, the effective anti-tumor function of Astragaloside III was achieved through up-regulation of the immune response of NK cells and elevation of NKG2D, Fas, and IFN-γ production.
Collapse
Affiliation(s)
- Xingmeng Chen
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junxiao Gao
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Han Yang
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yue Duan
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yuxin Feng
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqun Gong
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Hanjie Wang
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoli Wu
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Jin Chang
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
87
|
Gong BS, Wang R, Xu HX, Miao MY, Yao ZZ. Nanotherapy Targeting the Tumor Microenvironment. Curr Cancer Drug Targets 2019; 19:525-533. [DOI: 10.2174/1568009619666181220103714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 01/24/2023]
Abstract
Cancer is characterized by high mortality and low curability. Recent studies have shown
that the mechanism of tumor resistance involves not only endogenous changes to tumor cells, but
also to the tumor microenvironment (TME), which provides the necessary conditions for the growth,
invasion, and metastasis of cancer cells, akin to Stephen Paget’s hypothesis of “seed and soil.”
Hence, the TME is a significant target for cancer therapy via nanoparticles, which can carry different
kinds of drugs targeting different types or stages of tumors. The key step of nanotherapy is the
achievement of accurate active or passive targeting to trigger drugs precisely at tumor cells, with less
toxicity and fewer side effects. With deepened understanding of the tumor microenvironment and
rapid development of the nanomaterial industry, the mechanisms of nanotherapy could be individualized
according to the specific TME characteristics, including low pH, cancer-associated fibroblasts
(CAFs), and increased expression of metalloproteinase. However, some abnormal features of the
TME limit drugs from reaching all tumor cells in lethal concentrations, and the characteristics of tumors
vary in numerous ways, resulting in great challenges for the clinical application of nanotherapy.
In this review, we discuss the essential role of the tumor microenvironment in the genesis and
development of tumors, as well as the measures required to improve the therapeutic effects of tumor
microenvironment-targeting nanoparticles and ways to reduce damage to normal tissue.
Collapse
Affiliation(s)
- Bo-Shen Gong
- Administration Office for Undergraduates, Second Military Medical University, Shanghai, 200433, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, 200433, China
| | - Hong-Xia Xu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Ming-Yong Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, 200433, China
| | - Zhen-Zhen Yao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
88
|
Cheung LH, Zhao Y, Alvarez-Cienfuegos A, Mohamedali KA, Cao YJ, Hittelman WN, Rosenblum MG. Development of a human immuno-oncology therapeutic agent targeting HER2: targeted delivery of granzyme B. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:332. [PMID: 31362764 PMCID: PMC6668111 DOI: 10.1186/s13046-019-1333-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/21/2019] [Indexed: 01/24/2023]
Abstract
Background Immunotherapeutic approaches designed to augment T and B cell mediated killing of tumor cells has met with clinical success in recent years suggesting tremendous potential for treatment in a broad spectrum of tumor types. After complex recognition of target cells by T and B cells, delivery of the serine protease granzyme B (GrB) to tumor cells comprises the cytotoxic insult resulting in a well-characterized, multimodal apoptotic cascade. Methods We designed a recombinant fusion construct, GrB-Fc-4D5, composed of a humanized anti-HER2 scFv fused to active GrB for recognition of tumor cells and internal delivery of GrB, simulating T and B cell therapy. We assessed the construct’s antigen-binding specificity and GrB enzymatic activity, as well as in vitro cytotoxicity and internalization into target and control cells. We also assessed pharmacokinetic and toxicology parameters in vivo. Results GrB-Fc-4D5 was highly cytotoxic to Her2 positive cells such as SKBR3, MCF7 and MDA-MB-231 with IC50 values of 56, 99 and 27 nM, respectively, and against a panel of HER2+ cell lines regardless of endogenous expression levels of the PI-9 inhibitor. Contemporaneous studies with Kadcyla demonstrated similar levels of in vitro activity against virtually all cells tested. GrB-Fc-4D5 internalized rapidly into target SKOV3 cells within 1 h of exposure rapidly delivering GrB to the cytoplasmic compartment. In keeping with its relatively high molecular weight (160 kDa), the construct demonstrated a terminal-phase serum half-life in mice of 39.2 h. Toxicity studies conducted on BALB/c mice demonstrated no statistically significant changes in SGPT, SGOT or serum LDH. Histopathologic analysis of tissues from treated mice demonstrated no drug-related changes in any tissues examined. Conclusion GrB-Fc-4D5 shows excellent, specific cytotoxicity and demonstrates no significant toxicity in normal, antigen-negative murine models. This construct constitutes a novel approach against HER2-expressing tumors and is an excellent candidate for further development.
Collapse
Affiliation(s)
- Lawrence H Cheung
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yunli Zhao
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Present address: Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ana Alvarez-Cienfuegos
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Khalid A Mohamedali
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Yu J Cao
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Present Address: Shenzhen Graduate School, School of Chemical Biology and Biotechnology, Peking University, Nanshan, Shenzhen, 518055, China
| | - Walter N Hittelman
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Michael G Rosenblum
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
89
|
Wurzer H, Hoffmann C, Al Absi A, Thomas C. Actin Cytoskeleton Straddling the Immunological Synapse between Cytotoxic Lymphocytes and Cancer Cells. Cells 2019; 8:cells8050463. [PMID: 31100864 PMCID: PMC6563383 DOI: 10.3390/cells8050463] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system is a fundamental part of the tumor microenvironment. In particular, cytotoxic lymphocytes, such as cytolytic T cells and natural killer cells, control tumor growth and disease progression by interacting and eliminating tumor cells. The actin cytoskeleton of cytotoxic lymphocytes engaged in an immunological synapse has received considerable research attention. It has been recognized as a central mediator of the formation and maturation of the immunological synapse, and its signaling and cytolytic activities. In comparison, fewer studies have explored the organization and function of actin filaments on the target cancer cell side of the immunological synapse. However, there is growing evidence that the actin cytoskeleton of cancer cells also undergoes extensive remodeling upon cytotoxic lymphocyte attack, and that such remodeling can alter physical and functional interactions at the immunological synapse. In this article, we review the current knowledge of actin organization and functions at both sides of the immunological synapse between cytotoxic lymphocytes and cancer cells, with particular focus on synapse formation, signaling and cytolytic activity, and immune evasion.
Collapse
Affiliation(s)
- Hannah Wurzer
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
- University of Luxembourg, Faculty of Science, Technology and Communication, 2 Avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
| | - Antoun Al Absi
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
- University of Strasbourg, 67081 Strasbourg, France.
| | - Clément Thomas
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
| |
Collapse
|
90
|
Sottile R, Tannazi M, Johansson MH, Cristiani CM, Calabró L, Ventura V, Cutaia O, Chiarucci C, Covre A, Garofalo C, Pontén V, Tallerico R, Frumento P, Micke P, Maio M, Kärre K, Carbone E. NK- and T-cell subsets in malignant mesothelioma patients: Baseline pattern and changes in the context of anti-CTLA-4 therapy. Int J Cancer 2019; 145:2238-2248. [PMID: 31018250 DOI: 10.1002/ijc.32363] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Malignant mesothelioma (MM) is a highly aggressive form of cancer with limited treatment options. Although the role of NK cells has been studied in many solid tumors, the pattern of NK-cell subsets and their recognition of mesothelioma cells remain to be explored. We used RNA expression data of MM biopsies derived from the cancer genome atlas to evaluate the immune cell infiltrates. We characterized the phenotype of circulating NK and T cells of 27 MM patients before and after treatment with an anti-CTLA-4 antibody (tremelimumab). These immune cell profiles were compared to healthy controls. The RNA expression data of the MM biopsies indicated the presence of NK cells in a subgroup of patients. We demonstrated that NK cells recognize MM cell lines and that IL-15 stimulation improved NK cell-mediated lysis in vitro. Using multivariate projection models, we found that MM patients had a perturbed ratio of CD56bright and CD56dim NK subsets and increased serum concentrations of the cytokines IL-10, IL-8 and TNF-α. After tremelimumab treatment, the ratio between the CD56bright and CD56dim subsets shifted back towards physiological levels. Furthermore, the improved overall survival was correlated with low TIM-3+ CD8+ T-cell frequency, high DNAM-1+ CD56dim NK-cell frequency and high expression levels of NKp46 on the CD56dim NK cells before and after immune checkpoint blockade. Together, our observations suggest that NK cells infiltrate MM and that they can recognize and kill mesothelioma cells. The disease is associated with distinct lymphocytes patterns, some of which correlate with prognosis or are affected by treatment with tremelimumab.
Collapse
Affiliation(s)
- Rosa Sottile
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Milad Tannazi
- Department of Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Maria H Johansson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Costanza Maria Cristiani
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luana Calabró
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Valeria Ventura
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Ornella Cutaia
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Carla Chiarucci
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Victor Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Paolo Frumento
- Institute of Environmental Medicine, Unit of Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ennio Carbone
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
91
|
Sanduzzi-Zamparelli M, Boix L, Leal C, Reig M. Hepatocellular Carcinoma Recurrence in HCV Patients Treated with Direct Antiviral Agents. Viruses 2019; 11:E406. [PMID: 31052463 PMCID: PMC6563506 DOI: 10.3390/v11050406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
The risk of hepatocellular carcinoma recurrence is universal regardless of the treatment modality applied, and secondary prevention is still an unmet issue even though the elimination of hepatitis C (HCV) with direct antiviral agents (DAAs) was expected to be one of the new options. Unfortunately, the impact of DAAs on hepatocellular carcinoma (HCC) development (de novo and recurrence) is still controversial. Since the first publication on the subject in 2016, almost all groups worldwide have carried out research in this field with hundreds of publications now available. This revision is focused on the impact of DAAs on HCC recurrence and aims to discuss the potential underlying mechanisms and host factors pointing out the time association phenomenon between DAA treatment and HCC recurrence. Moreover, we comment on the methodological issues that could affect the different interpretations of the published results. In conclusion, this is an area of research with potential in the understanding of the impact of factors not previously considered, and may also help change hepatocarcinogenesis tenets, such as the belief that the elimination of HCV should be used as a second prevention treatment.
Collapse
Affiliation(s)
- Marco Sanduzzi-Zamparelli
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain.
| | - Loreto Boix
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain.
- Centro de Investigación Médica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Cassia Leal
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain.
| | - María Reig
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain.
- Centro de Investigación Médica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
92
|
Meng Q, Zaidi AK, Sedy J, Bensussan A, Popkin DL. Soluble Fc-Disabled Herpes Virus Entry Mediator Augments Activation and Cytotoxicity of NK Cells by Promoting Cross-Talk between NK Cells and Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2057-2068. [PMID: 30770415 PMCID: PMC6424646 DOI: 10.4049/jimmunol.1801449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/20/2019] [Indexed: 11/19/2022]
Abstract
CD160 is highly expressed by NK cells and is associated with cytolytic effector activity. Herpes virus entry mediator (HVEM) activates NK cells for cytokine production and cytolytic function via CD160. Fc-fusions are a well-established class of therapeutics, where the Fc domain provides additional biological and pharmacological properties to the fusion protein including enhanced serum t 1/2 and interaction with Fc receptor-expressing immune cells. We evaluated the specific function of HVEM in regulating CD160-mediated NK cell effector function by generating a fusion of the HVEM extracellular domain with human IgG1 Fc bearing CD16-binding mutations (Fc*) resulting in HVEM-(Fc*). HVEM-(Fc*) displayed reduced binding to the Fc receptor CD16 (i.e., Fc-disabled HVEM), which limited Fc receptor-induced responses. HVEM-(Fc*) functional activity was compared with HVEM-Fc containing the wild type human IgG1 Fc. HVEM-(Fc*) treatment of NK cells and PBMCs caused greater IFN-γ production, enhanced cytotoxicity, reduced NK fratricide, and no change in CD16 expression on human NK cells compared with HVEM-Fc. HVEM-(Fc*) treatment of monocytes or PBMCs enhanced the expression level of CD80, CD83, and CD40 expression on monocytes. HVEM-(Fc*)-enhanced NK cell activation and cytotoxicity were promoted via cross-talk between NK cells and monocytes that was driven by cell-cell contact. In this study, we have shown that soluble Fc-disabled HVEM-(Fc*) augments NK cell activation, IFN-γ production, and cytotoxicity of NK cells without inducing NK cell fratricide by promoting cross-talk between NK cells and monocytes without Fc receptor-induced effects. Soluble Fc-disabled HVEM-(Fc*) may be considered as a research and potentially therapeutic reagent for modulating immune responses via sole activation of HVEM receptors.
Collapse
Affiliation(s)
- Qinglai Meng
- Institute of Biomedical Sciences, Shanxi University, Xiaodian District, Taiyuan City, Shanxi Province 030006, China
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Asifa K Zaidi
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - John Sedy
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Armand Bensussan
- INSERM UMR 976, Hôpital Saint-Louis, 75475 Paris Cedex 10, France
| | - Daniel L Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106;
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106; and
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
93
|
Xiao L, Cen D, Gan H, Sun Y, Huang N, Xiong H, Jin Q, Su L, Liu X, Wang K, Yan G, Dong T, Wu S, Zhou P, Zhang J, Liang W, Ren J, Teng Y, Chen C, Xu XH. Adoptive Transfer of NKG2D CAR mRNA-Engineered Natural Killer Cells in Colorectal Cancer Patients. Mol Ther 2019; 27:1114-1125. [PMID: 30962163 DOI: 10.1016/j.ymthe.2019.03.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023] Open
Abstract
By fusing the extracellular domain of the natural killer (NK) cell receptor NKG2D to DAP12, we constructed a chimeric antigen receptor (CAR) to improve NK cell tumor responses. An RNA electroporation approach that provides transient expression of the CAR was adopted as a risk mitigation strategy. Expression of the NKG2D RNA CAR significantly augmented the cytolytic activity of NK cells against several solid tumor cell lines in vitro and provided a clear therapeutic benefit to mice with established solid tumors. Three patients with metastatic colorectal cancer were then treated with local infusion of the CAR-NK cells. Reduction of ascites generation and a marked decrease in number of tumor cells in ascites samples were observed in the first two patients treated with intraperitoneal infusion of low doses of the CAR-NK cells. The third patient with metastatic tumor sites in the liver was treated with ultrasound-guided percutaneous injection, followed by intraperitoneal infusion of the CAR-NK cells. Rapid tumor regression in the liver region was observed with Doppler ultrasound imaging and complete metabolic response in the treated liver lesions was confirmed by positron emission tomography (PET)- computed tomographic (CT) scanning. Our results highlight a promising therapeutic potential of using RNA CAR-modified NK cells to treat metastatic colorectal cancer.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Dongzhi Cen
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Haining Gan
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yan Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Nanqi Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hanzhen Xiong
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Qiongmei Jin
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Liqun Su
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xuejuan Liu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Kejian Wang
- Lin He's Academician Workstation of New Medicine and Clinical Translation at The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Guangrong Yan
- Biomedicine Research Centre, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Tianfa Dong
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Shangbiao Wu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Pengzhi Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Jinshan Zhang
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Weixiang Liang
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junlan Ren
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong Province 510320, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First's People Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Can Chen
- Hangzhou Youshan Biomedical Co., Ltd., 459 Qianmo Road, Hangzhou 310051, China
| | - Xue Hu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
94
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
95
|
Zaghi E, Calvi M, Marcenaro E, Mavilio D, Di Vito C. Targeting NKG2A to elucidate natural killer cell ontogenesis and to develop novel immune-therapeutic strategies in cancer therapy. J Leukoc Biol 2019; 105:1243-1251. [PMID: 30645023 DOI: 10.1002/jlb.mr0718-300r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Natural Killer (NK) cells are innate immune cells with a primary role in the immune surveillance against non-self-cells. NK cell recognition of "self" relies on the surface expression on autologous cells of MHC class I (MHC-I) molecules. Either the absence or the down-modulation of MHC-I on target cells "license" NK cells to kill threatening tumor-transformed or virally infected cells. This phenomenon is controlled by a limited repertoire of activating and inhibitory NK receptors (aNKRs and iNKRs) that tunes NK cell activation and effector functions. Hence, the calibration of NK cell alloreactivity depends on the ability of iNKRs to bind MHC-I complex and these interactions are key in regulating both NK cell differentiation and effector functions. Indeed, the presence of iNKRs specific for self-MHC haplotypes (i) plays a role in the "licensing/education" process that controls the responsiveness of mature NK cells and prevents their activation against the "self" and (ii) is exploited by tumor cells to escape from NK cell cytotoxicity. Herein, we review our current knowledge on function and clinical application of NKG2A, a C-type lectin iNKR that binds specific haplotypes of human leukocyte antigens early during the NK cell maturation process, thus contributing to modulate the terminal maturation of NK cells as potent effectors against cancers cells. These NKG2A-mediated mechanisms are currently being exploited for developing promising immune-therapeutic strategies to improve the prognosis of solid and blood tumors and to ameliorate the clinical outcome of patients undergone allogeneic hematopoietic stem cell transplantation to treat high-risk hematologic malignancies.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DI.ME.S.) and Centro di Eccellenza per le Ricerche Biomediche (CEBR), Università degli Studi di Genova, Genova, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
96
|
MacFawn I, Wilson H, Selth LA, Leighton I, Serebriiskii I, Bleackley RC, Elzamzamy O, Farris J, Pifer PM, Richer J, Frisch SM. Grainyhead-like-2 confers NK-sensitivity through interactions with epigenetic modifiers. Mol Immunol 2018; 105:137-149. [PMID: 30508726 DOI: 10.1016/j.molimm.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Natural Killer (NK) cells suppress tumor initiation and metastasis. Most carcinomas are heterogeneous mixtures of epithelial, mesenchymal and hybrid tumor cells, but the relationships of these phenotypes to NK susceptibility are understood incompletely. Grainyhead-like-2 (GRHL2) is a master programmer of the epithelial phenotype, that is obligatorily down-regulated during experimentally induced Epithelial-Mesenchymal Transition (EMT). Here, we utilize GRHL2 re-expression to discover unifying molecular mechanisms that link the epithelial phenotype with NK-sensitivity. GRHL2 enhanced the expression of ICAM-1, augmenting NK-target cell synaptogenesis and NK killing of target cells. The expression of multiple interferon response genes, including ICAM1, anti-correlated with EMT. We identified two novel GRHL2-interacting proteins, the histone methyltransferases KMT2C and KMT2D. Mesenchymal-epithelial transition, NK-sensitization and ICAM-1 expression were promoted by GRHL2-KMT2C/D interactions and by GRHL2 inhibition of p300, revealing novel and potentially targetable epigenetic mechanisms connecting the epithelial phenotype with target cell susceptibility to NK killing.
Collapse
Affiliation(s)
- Ian MacFawn
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Hannah Wilson
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, South Australia, Australia
| | - Ian Leighton
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; Washington and Jefferson College, 60 S. Lincoln Street, Washington, PA 15301, United States
| | - Ilya Serebriiskii
- Fox Chase Cancer Center, 333 Cottman Ave. Philadelphia, PA 19111, United States
| | - R Christopher Bleackley
- Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Osama Elzamzamy
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; West Virginia Clinical and Translational Sciences Institute, School of Medicine, West Virginia University PO Box 9102, Morgantown, WV 26506-9102, United States
| | - Joshua Farris
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Phillip M Pifer
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Jennifer Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, 31 Aurora, CO 80045, United States
| | - Steven M Frisch
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; Department of Biochemistry, 1 Medical Center Drive, West Virginia University, Morgantown WV, United States.
| |
Collapse
|
97
|
Pahl JHW, Cerwenka A, Ni J. Memory-Like NK Cells: Remembering a Previous Activation by Cytokines and NK Cell Receptors. Front Immunol 2018; 9:2796. [PMID: 30546366 PMCID: PMC6279934 DOI: 10.3389/fimmu.2018.02796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
Natural Killer (NK) cells are cytotoxic innate lymphoid cells serving at the front line against infection and cancer. In inflammatory microenvironments, multiple soluble and contact-dependent signals modulate NK cell responsiveness. Besides their innate cytotoxic and immunostimulatory activity, it has been uncovered in recent years that NK cells constitute a heterogeneous and versatile cell subset. Persistent memory-like NK populations that mount a robust recall response were reported during viral infection, contact hypersensitivity reactions, and after stimulation by pro-inflammatory cytokines or activating receptor pathways. In this review, we highlight recent findings on the generation, functionality, and clinical applicability of memory-like NK cells and describe common features in comparison to other recent concepts of memory NK cells. Understanding of these features will facilitate the conception and design of novel NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Jens H W Pahl
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Jing Ni
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany.,Innate Immunity, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
98
|
Lessons learnt from the Tasmanian devil facial tumour regarding immune function in cancer. Mamm Genome 2018; 29:731-738. [PMID: 30225648 DOI: 10.1007/s00335-018-9782-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
Genetic and genomic technologies have facilitated a greater understanding of the Tasmanian devil immune system and the origins, evolution and spread of devil facial tumour disease (DFTD). DFTD is a contagious cancer that has caused significant declines in devil populations across Tasmania. Immune responses to DFTD are rarely detected, allowing the cancer to pass between individuals and proliferate unimpeded. Early immunosenscence in devils appears to decrease anti-tumour immunity in older animals compared to younger animals, which may increase susceptibility to DFTD and explain high DFTD prevalence in this age group. Devils also have extremely low major histocompatibility complex (MHC) diversity, and multiple alleles are shared with the tumour, lowering histocompatibility barriers which may have contributed to DFTD evolution. DFTD actively evades immune attack by down-regulating cell-surface MHC I molecules, making it effectively invisible to the immune system. Altered MHC I profiles should activate natural killer (NK) cell anti-tumour responses, but these are absent in DFTD infection. Recent immunisation and immunotherapy using modified DFTD cells has induced an anti-DFTD immune response and regression of DFTD in some devils. Knowledge gained from immune responses to a transmissible cancer in devils will ultimately reveal useful insights into immunity to cancer in humans and other species.
Collapse
|
99
|
Toubert A, Turhan A, Guerci-Bresler A, Dulphy N, Réa D. [NK cells: a major role in the antitumoral immunomodulation in CML]. Med Sci (Paris) 2018; 34:540-546. [PMID: 30067206 DOI: 10.1051/medsci/20183406013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Convincing clinical and experimental evidence is converging on the essential role of NK (Natural Killer) cells in the recognition and eradication of tumors. Recent studies emphasized the role of NK cells in the immune control of chronic myeloid leukemia (CML), a malignancy arising from hematopoietic stem cells, and the treatment of which has been revolutionized by the use of tyrosine kinase inhibitors (TKI). Three major findings are emerging: 1) the impairment of the numbers and function of NK cells at diagnosis, 2) the restoration of the NK cell function and numbers during remissions induced with TKI therapies and 3) the potential role of the more mature NK CD56dim cell population in maintaining relapse-free survival after stopping TKI therapy. Immunological control of CML by NK cells which has been suspected for several decades is thus a new field of investigation for future therapies.
Collapse
Affiliation(s)
- Antoine Toubert
- Inserm UMR 1160, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France - Laboratoire d'immunologie et d'histocompatibilité, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France - Institut universitaire d'hématologie, Université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Ali Turhan
- Institut fédératif d'hématologie Paris Sud et service d'hématologie, Hôpitaux Universitaires Paris Sud, Kremlin Bicêtre et Paul Brousse, 94800 Villejuif France - Inserm U935, Campus CNRS, 94800 Villejuif, France
| | - Agnès Guerci-Bresler
- Service d'hématologie, CHRU Brabois, 54500 Vandœuvre-lès-Nancy, France - France intergroupe des leucémies myéloïdes chroniques (Fi-LMC), Institut Bergonié, 33000 Bordeaux, France
| | - Nicolas Dulphy
- Inserm UMR 1160, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France - Laboratoire d'immunologie et d'histocompatibilité, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France - Institut universitaire d'hématologie, Université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Delphine Réa
- Inserm UMR 1160, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France - France intergroupe des leucémies myéloïdes chroniques (Fi-LMC), Institut Bergonié, 33000 Bordeaux, France - Service d'hématologie adulte, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|
100
|
Effect of scar-producing moxibustion at the acupoints Zusanli (ST 36) and Feishu (BL 13) on neutrophil-to-lymphocyte ratio and quality of life in patients with non-small-cell lung cancer: A randomized, controlled trial. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30636-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|