51
|
CONNOLLY S, CARLSON JM, SCHAEFER M, BERE A, KILEMBE W, ALLEN S, HUNTER E. HLA-associated preadaptation in HIV Vif is associated with higher set point viral load and faster CD4+ decline in Zambian transmission pairs. AIDS 2021; 35:1157-1165. [PMID: 33710015 PMCID: PMC8546905 DOI: 10.1097/qad.0000000000002868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE S We investigated the relationship between human leukocyte antigen (HLA)-associated preadaptation for the entire subtype C HIV-1 proteome of the transmitted founder virus and subsequent HIV-1 disease progression in a cohort of heterosexual linked transmission pairs in Zambia. DESIGN An adaptation model was used to calculate an adaptation score for each virus-HLA combination in order to quantify the degree of preadaptation of the transmitted virus to the linked recipient's HLA alleles. These scores were then assessed for their relationship to viral load and longitudinal CD4+ decline in the recipient. METHODS Viral RNA was extracted from the plasma of the donor partner and the linked recipient near the time of transmission, as well as longitudinally from the linked recipient. Viral adaptation scores were calculated for each individual and each protein in the subtype C HIV-1 proteome. RESULTS The majority of HLA-associated sites were located in Gag, Pol and Nef; however, proportional to protein length, the accessory and regulatory proteins contained a relatively high proportion of HLA-associated sites. Over the course of infection, HLA-mediated immune adaptation increased for all proteins except Vpu and gp120. Preadaptation was positively associated with higher early set point viral load and faster CD4+ decline. When examined by protein, preadaptation in Pol and Vif were statistically significantly associated with these markers of disease progression. CONCLUSION Adaptation in Pol had the greatest impact on viral control. Despite containing a large proportion of HLA-associated sites, Vif was the only regulatory or accessory protein for which preadaptation significantly correlated with disease progression.
Collapse
Affiliation(s)
- Sarah CONNOLLY
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | - Malinda SCHAEFER
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Alfred BERE
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | - Susan ALLEN
- Zambia–Emory HIV Research Project, Lusaka, Zambia
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Eric HUNTER
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Zambia–Emory HIV Research Project, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
52
|
Mechanistic basis of post-treatment control of SIV after anti-α4β7 antibody therapy. PLoS Comput Biol 2021; 17:e1009031. [PMID: 34106916 PMCID: PMC8189501 DOI: 10.1371/journal.pcbi.1009031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Treating macaques with an anti-α4β7 antibody under the umbrella of combination antiretroviral therapy (cART) during early SIV infection can lead to viral remission, with viral loads maintained at < 50 SIV RNA copies/ml after removal of all treatment in a subset of animals. Depletion of CD8+ lymphocytes in controllers resulted in transient recrudescence of viremia, suggesting that the combination of cART and anti-α4β7 antibody treatment led to a state where ongoing immune responses kept the virus undetectable in the absence of treatment. A previous mathematical model of HIV infection and cART incorporates immune effector cell responses and exhibits the property of two different viral load set-points. While the lower set-point could correspond to the attainment of long-term viral remission, attaining the higher set-point may be the result of viral rebound. Here we expand that model to include possible mechanisms of action of an anti-α4β7 antibody operating in these treated animals. We show that the model can fit the longitudinal viral load data from both IgG control and anti-α4β7 antibody treated macaques, suggesting explanations for the viral control associated with cART and an anti-α4β7 antibody treatment. This effective perturbation to the virus-host interaction can also explain observations in other nonhuman primate experiments in which cART and immunotherapy have led to post-treatment control or resetting of the viral load set-point. Interestingly, because the viral kinetics in the various treated animals differed—some animals exhibited large fluctuations in viral load after cART cessation—the model suggests that anti-α4β7 treatment could act by different primary mechanisms in different animals and still lead to post-treatment viral control. This outcome is nonetheless in accordance with a model with two stable viral load set-points, in which therapy can perturb the system from one set-point to a lower one through different biological mechanisms. Some macaques treated with an anti-α4β7 monoclonal antibody along with antiretroviral therapy during the early stages of simian immunodeficiency virus infection had their viral load become undetectable (below 50 SIV RNA copies/ml) after all treatment was stopped, whereas animals not given the antibody all had their viral loads rebound to high levels. Using a mathematical model, we examined four potential ways in which the antibody could have altered the balance between viral growth and immune control to maintain an undetectable viral load. We show that a shift to controlled infection can occur through multiple biologically reasonable mechanisms of action of the anti-α4β7 antibody.
Collapse
|
53
|
Raju S, Xia Y, Daniel B, Yost KE, Bradshaw E, Tonc E, Verbaro DJ, Kometani K, Yokoyama WM, Kurosaki T, Satpathy AT, Egawa T. Identification of a T-bet hi Quiescent Exhausted CD8 T Cell Subpopulation That Can Differentiate into TIM3 +CX3CR1 + Effectors and Memory-like Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:2924-2936. [PMID: 34088768 DOI: 10.4049/jimmunol.2001348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
Persistent Ag induces a dysfunctional CD8 T cell state known as "exhaustion" characterized by PD-1 expression. Nevertheless, exhausted CD8 T cells retain functionality through continued differentiation of progenitor into effector cells. However, it remains ill-defined how CD8 T cell effector responses are sustained in situ. In this study, we show using the mouse chronic lymphocytic choriomeningitis virus infection model that CX3CR1+ CD8 T cells contain a T-bet-dependent TIM3-PD-1lo subpopulation that is distinct from the TIM3+CX3CR1+PD-1+ proliferative effector subset. The TIM3-CX3CR1+ cells are quiescent and express a low but significant level of the transcription factor TCF-1, demonstrating similarity to TCF-1hi progenitor CD8 T cells. Furthermore, following the resolution of lymphocytic choriomeningitis virus viremia, a substantial proportion of TCF-1+ memory-like CD8 T cells show evidence of CX3CR1 expression during the chronic phase of the infection. Our results suggest a subset of the CX3CR1+ exhausted population demonstrates progenitor-like features that support the generation of the CX3CR1+ effector pool from the TCF-1hi progenitors and contribute to the memory-like pool following the resolution of viremia.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Yu Xia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Bence Daniel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Kathryn E Yost
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Elliot Bradshaw
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Elena Tonc
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Daniel J Verbaro
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Kohei Kometani
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Wayne M Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Tomohiro Kurosaki
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan.,Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; and
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA.,Parker Institute for Cancer Immunotherapy, Stanford University School of Medicine, Stanford, CA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
54
|
Jones AD, Khakhina S, Jaison T, Santos E, Smith S, Klase ZA. CD8 + T-Cell Mediated Control of HIV-1 in a Unique Cohort With Low Viral Loads. Front Microbiol 2021; 12:670016. [PMID: 34122382 PMCID: PMC8192701 DOI: 10.3389/fmicb.2021.670016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
A unique population of HIV-1 infected individuals can control infection without antiretroviral therapy. These individuals fall into a myriad of categories based on the degree of control (low or undetectable viral load), the durability of control over time and the underlying mechanism (i.e., possession of protective HLA alleles or the absence of critical cell surface receptors). In this study, we examine a cohort of HIV-1 infected individuals with a documented history of sustained low viral loads in the absence of therapy. Through in vitro analyses of cells from these individuals, we have determined that infected individuals with naturally low viral loads are capable of controlling spreading infection in vitro in a CD8+ T-cell dependent manner. This control is lost when viral load is suppressed by antiretroviral therapy and correlates with a clinical CD4:CD8 ratio of <1. Our results support the conclusion that HIV-1 controllers with low, but detectable viral loads may be controlling the virus due to an effective CD8+ T-cell response. Understanding the mechanisms of control in these subjects may provide valuable understanding that could be applied to induce a functional cure in standard progressors.
Collapse
Affiliation(s)
- Amber D. Jones
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Svetlana Khakhina
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Tara Jaison
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Erin Santos
- The Smith Center for Infectious Diseases and Urban Health, West Orange, NJ, United States
| | - Stephen Smith
- The Smith Center for Infectious Diseases and Urban Health, West Orange, NJ, United States
| | - Zachary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA, United States,*Correspondence: Zachary A. Klase,
| |
Collapse
|
55
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
56
|
Harper J, Huot N, Micci L, Tharp G, King C, Rascle P, Shenvi N, Wang H, Galardi C, Upadhyay AA, Villinger F, Lifson J, Silvestri G, Easley K, Jacquelin B, Bosinger S, Müller-Trutwin M, Paiardini M. IL-21 and IFNα therapy rescues terminally differentiated NK cells and limits SIV reservoir in ART-treated macaques. Nat Commun 2021; 12:2866. [PMID: 34001890 PMCID: PMC8129202 DOI: 10.1038/s41467-021-23189-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Unlike HIV infection, which progresses to AIDS absent suppressive anti-retroviral therapy, nonpathogenic infections in natural hosts, such African green monkeys, are characterized by a lack of gut microbial translocation and robust secondary lymphoid natural killer cell responses resulting in an absence of chronic inflammation and limited SIV dissemination in lymph node B-cell follicles. Here we report, using the pathogenic model of antiretroviral therapy-treated, SIV-infected rhesus macaques that sequential interleukin-21 and interferon alpha therapy generate terminally differentiated blood natural killer cells (NKG2a/clowCD16+) with potent human leukocyte antigen-E-restricted activity in response to SIV envelope peptides. This is in contrast to control macaques, where less differentiated, interferon gamma-producing natural killer cells predominate. The frequency and activity of terminally differentiated NKG2a/clowCD16+ natural killer cells correlates with a reduction of replication-competent SIV in lymph node during antiretroviral therapy and time to viral rebound following analytical treatment interruption. These data demonstrate that African green monkey-like natural killer cell differentiation profiles can be rescued in rhesus macaques to promote viral clearance in tissues.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory Tharp
- Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Colin King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Neeta Shenvi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Hong Wang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Cristin Galardi
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Amit A Upadhyay
- Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Francois Villinger
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Steven Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
57
|
Kula-Pacurar A, Rodari A, Darcis G, Van Lint C. Shocking HIV-1 with immunomodulatory latency reversing agents. Semin Immunol 2021; 51:101478. [PMID: 33972164 DOI: 10.1016/j.smim.2021.101478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The "shock-and-kill" strategy is one of the most explored HIV-1 cure approaches to eliminate latent virus. This strategy is based on HIV-1 reactivation using latency reversing agents (LRAs) to reactivate latent proviruses (the "shock" phase) and to induce subsequent elimination of the reactivated cells by immune responses or virus-induced cytopathic effects (the "kill" phase). Studies using immunomodulatory LRAs such as blockers of immune checkpoint molecules, toll-like receptor agonists, cytokines and CD8+ T cell depleting antibodies showed promising potential as LRAs inducing directly or indirectly cellular pathways known to control HIV transcription. However, the precise molecular mechanisms by which these immunomodulatory LRAs reverse latency remain incompletely understood. Together with the heterogenous nature of HIV-1 latency, this lack of understanding complicates efforts to develop more efficient and safer cure strategies. Hence, deciphering those mechanisms is pivotal in designing approaches to eliminate latent HIV infection.
Collapse
Affiliation(s)
- Anna Kula-Pacurar
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
58
|
Assis MA, Carranza PG, Ambrosio E. A "Drug-Dependent" Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021; 13:v13050722. [PMID: 33919273 PMCID: PMC8143316 DOI: 10.3390/v13050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Psychostimulant use is a major comorbidity in people living with HIV, which was initially explained by them adopting risky behaviors that facilitate HIV transmission. However, the effects of drug use on the immune system might also influence this phenomenon. Psychostimulants act on peripheral immune cells even before they reach the central nervous system (CNS) and their effects on immunity are likely to influence HIV infection. Beyond their canonical activities, classic neurotransmitters and neuromodulators are expressed by peripheral immune cells (e.g., dopamine and enkephalins), which display immunomodulatory properties and could be influenced by psychostimulants. Immune receptors, like Toll-like receptors (TLRs) on microglia, are modulated by cocaine and amphetamine exposure. Since peripheral immunocytes also express TLRs, they may be similarly affected by psychostimulants. In this review, we will summarize how psychostimulants are currently thought to influence peripheral immunity, mainly focusing on catecholamines, enkephalins and TLR4, and shed light on how these drugs might affect HIV infection. We will try to shift from the classic CNS perspective and adopt a more holistic view, addressing the potential impact of psychostimulants on the peripheral immune system and how their systemic effects could influence HIV infection.
Collapse
Affiliation(s)
- María Amparo Assis
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
- Correspondence:
| | - Pedro Gabriel Carranza
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Santiago del Estero G4206, Argentina
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| |
Collapse
|
59
|
Singh V, Dashti A, Mavigner M, Chahroudi A. Latency Reversal 2.0: Giving the Immune System a Seat at the Table. Curr HIV/AIDS Rep 2021; 18:117-127. [PMID: 33433817 PMCID: PMC7985101 DOI: 10.1007/s11904-020-00540-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW For most people living with HIV (PLWH), treatment with effective antiretroviral therapy (ART) results in suppression of viremia below the limit of detection of clinical assays, immune reconstitution, reduced immune activation, avoidance of opportunistic infections, and progression to AIDS. However, ART alone is not curative, and HIV persists in a non-replicating, latent form. In this review, we provide a historical perspective on non-specific latency reversal approaches (LRA 1.0) and summarize recent advances in latency reversal strategies that target specific signaling pathways within CD4+ T cells or other immune cells to induce expression of latent HIV (immune-based latency reversal, or LRA 2.0). RECENT FINDINGS The HIV reservoir is primarily composed of latently infected CD4+ T cells carrying integrated, replication-competent provirus that can give rise to rebound viremia if ART is stopped. Myeloid lineage cells also contribute to HIV latency in certain tissues; we focus here on CD4+ T cells as a sufficient body of evidence regarding latency reversal in myeloid cells is lacking. The immunomodulatory LRA 2.0 approaches we describe include pattern recognition receptor agonists, immune checkpoint inhibitors, non-canonical NF-kB stimulation, and transient CD8+ lymphocyte depletion, along with promising combination strategies. We highlight recent studies demonstrating robust latency reversal in nonhuman primate models. While significant strides have been made in terms of virus reactivation from latency, initial hopes for latency reversal alone to result in a reduction of infected cells, through viral cytopathic effect or an unboosted immune system, have not been realized and it seems clear that even effective latency reversal strategies will need to be paired with an approach that facilitates immune recognition and clearance of cells containing reactivated virus.
Collapse
Affiliation(s)
- Vidisha Singh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Amir Dashti
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University Atlanta, Atlanta, GA, USA.
| |
Collapse
|
60
|
CD8 lymphocyte depletion enhances the latency reversal activity of the SMAC mimetic AZD5582 in ART-suppressed SIV-infected rhesus macaques. J Virol 2021; 95:JVI.01429-20. [PMID: 33568515 PMCID: PMC8103677 DOI: 10.1128/jvi.01429-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inducing latency reversal to reveal infected cells to the host immune system represents a potential strategy to cure HIV infection. In separate studies, we have previously shown that CD8+ T cells may contribute to the maintenance of viral latency and identified a novel SMAC mimetic/IAP inhibitor (AZD5582) capable of reversing HIV/SIV latency in vivo by activating the non-canonical (nc) NF-κB pathway. Here, we use AZD5582 in combination with antibody-mediated depletion of CD8α+ cells to further evaluate the role of CD8+ T cells in viral latency maintenance. Six rhesus macaques (RM) were infected with SIVmac239 and treated with ART starting at week 8 post-infection. After 84-85 weeks of ART, all animals received a single dose of the anti-CD8α depleting antibody (Ab), MT807R1 (50mg/kg, s.c.), followed by 5 weekly doses of AZD5582 (0.1 mg/kg, i.v.). Following CD8α depletion + AZD5582 combined treatment, 100% of RMs experienced on-ART viremia above 60 copies per ml of plasma. In comparator groups of ART-suppressed SIV-infected RMs treated with AZD5582 only or CD8α depletion only, on-ART viremia was experienced by 56% and 57% of the animals respectively. Furthermore, the frequency of increased viremic episodes during the treatment period was greater in the CD8α depletion + AZD5582 group as compared to other groups. Mathematical modeling of virus reactivation suggested that, in addition to viral dynamics during acute infection, CD8α depletion influenced the response to AZD5582. This work suggests that the latency reversal induced by activation of the ncNF-κB signaling pathway with AZD5582 can be enhanced by CD8α+ cell depletion.
Collapse
|
61
|
Munusamy Ponnan S, Thiruvengadam K, Kathirvel S, Shankar J, Rajaraman A, Mathaiyan M, Dinesha TR, Poongulali S, Saravanan S, Murugavel KG, Swaminathan S, Tripathy SP, Neogi U, Velu V, Hanna LE. Elevated Numbers of HIV-Specific Poly-Functional CD8 + T Cells With Stem Cell-Like and Follicular Homing Phenotypes in HIV-Exposed Seronegative Individuals. Front Immunol 2021; 12:638144. [PMID: 33889151 PMCID: PMC8056154 DOI: 10.3389/fimmu.2021.638144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-specific CD8+ T cells are known to play a key role in viral control during acute and chronic HIV infection. Although many studies have demonstrated the importance of HIV-specific CD8+ T cells in viral control, its correlation with protection against HIV infection remains incompletely understood. To better understand the nature of the immune response that contributes to the early control of HIV infection, we analyzed the phenotype, distribution and function of anti-viral CD8+ T cells in a cohort of HIV-exposed seronegative (HESN) women, and compared them with healthy controls and HIV-infected individuals. Further, we evaluated the in vitro viral inhibition activity of CD8+ T cells against diverse HIV-1 strains. We found that the HESN group had significantly higher levels of CD8+ T cells that express T-stem cell-like (TSCM) and follicular homing (CXCR5+) phenotype with more effector like characteristics as compared to healthy controls. Further, we observed that the HESN population had a higher frequency of HIV-specific poly-functional CD8+ T cells with robust in vitro virus inhibiting capacity against different clades of HIV. Overall, our results demonstrate that the HESN population has elevated levels of HIV-specific poly-functional CD8+ T cells with robust virus inhibiting ability and express elevated levels of markers pertaining to TSCM and follicular homing phenotype. These results demonstrate that future vaccine and therapeutic strategies should focus on eliciting these critical CD8+ T cell subsets.
Collapse
Affiliation(s)
- Sivasankaran Munusamy Ponnan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India.,Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Kannan Thiruvengadam
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Sujitha Kathirvel
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Janani Shankar
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Akshaya Rajaraman
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Manikannan Mathaiyan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | | | - Selvamuthu Poongulali
- Chennai Antiviral Research and Treatment Centre and Clinical Research Site (CART CRS), Infectious Diseases Medical Center, Voluntary Health Services (VHS), Chennai, India
| | | | | | - Soumya Swaminathan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Srikanth Prasad Tripathy
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| |
Collapse
|
62
|
Soper A, Koyanagi Y, Sato K. HIV-1 tracing method of systemic viremia in vivo using an artificially mutated virus pool. Microbiol Immunol 2021; 65:17-27. [PMID: 33230872 DOI: 10.1111/1348-0421.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022]
Abstract
The appearance of human immunodeficiency virus type 1 (HIV-1) plasma viremia is associated with progression to symptomatic disease and CD4+ T cell depletion. To locate the source of systemic viremia, this study employed a novel method to trace HIV-1 infection in vivo. We created JRCSFξnef, a pool of infectious HIV-1 (strain JR-CSF) with highly mutated nef gene regions by random mutagenesis PCR and infected this mutated virus pool into both Jurkat-CCR5 cells and hematopoietic stem cell-transplanted humanized mice. Infection resulted in systemic plasma viremia in humanized mice and viral RNA sequencing helped us to identify multiple lymphoid organs such as spleen, lymph nodes, and bone marrow but not peripheral blood cells as the source of systemic viremia. Our data suggest that this method could be useful for the tracing of viral trafficking in vivo.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Department of Infectious Disease Control, Division of Systems Virology, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
63
|
Mavian C, Ramirez-Mata AS, Dollar JJ, Nolan DJ, Cash M, White K, Rich SN, Magalis BR, Marini S, Prosperi MCF, Amador DM, Riva A, Williams KC, Salemi M. Brain tissue transcriptomic analysis of SIV-infected macaques identifies several altered metabolic pathways linked to neuropathogenesis and poly (ADP-ribose) polymerases (PARPs) as potential therapeutic targets. J Neurovirol 2021; 27:101-115. [PMID: 33405206 PMCID: PMC7786889 DOI: 10.1007/s13365-020-00927-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023]
Abstract
Despite improvements in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders (HAND) remain prevalent in subjects undergoing therapy. HAND significantly affects individuals' quality of life, as well as adherence to therapy, and, despite the increasing understanding of neuropathogenesis, no definitive diagnostic or prognostic marker has been identified. We investigated transcriptomic profiles in frontal cortex tissues of Simian immunodeficiency virus (SIV)-infected Rhesus macaques sacrificed at different stages of infection. Gene expression was compared among SIV-infected animals (n = 11), with or without CD8+ lymphocyte depletion, based on detectable (n = 6) or non-detectable (n = 5) presence of the virus in frontal cortex tissues. Significant enrichment in activation of monocyte and macrophage cellular pathways was found in animals with detectable brain infection, independently from CD8+ lymphocyte depletion. In addition, transcripts of four poly (ADP-ribose) polymerases (PARPs) were up-regulated in the frontal cortex, which was confirmed by real-time polymerase chain reaction. Our results shed light on involvement of PARPs in SIV infection of the brain and their role in SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective novel therapeutic target for HIV-related neuropathology.
Collapse
Affiliation(s)
- Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Andrea S Ramirez-Mata
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - James Jarad Dollar
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - David J Nolan
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Melanie Cash
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Kevin White
- Biology Department, Boston College, Boston, MD, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Shannan N Rich
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Biology Department, Boston College, Boston, MD, USA
| | - Brittany Rife Magalis
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Biology Department, Boston College, Boston, MD, USA
| | - Mattia C F Prosperi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Biology Department, Boston College, Boston, MD, USA
| | - David Moraga Amador
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Kenneth C Williams
- Biology Department, Boston College, Boston, MD, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
64
|
Chew GM, Padua AJP, Chow DC, Souza SA, Clements DM, Corley MJ, Pang AP, Alejandria MM, Gerschenson M, Shikuma CM, Ndhlovu LC. Effects of Brief Adjunctive Metformin Therapy in Virologically Suppressed HIV-Infected Adults on Polyfunctional HIV-Specific CD8 T Cell Responses to PD-L1 Blockade. AIDS Res Hum Retroviruses 2021; 37:24-33. [PMID: 33019813 DOI: 10.1089/aid.2020.0172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Targeting inhibitory immune checkpoint receptor pathways has shown remarkable success in improving anticancer T cell responses for the elimination of tumors. Such immunotherapeutic strategies are being pursued for HIV remission. Metformin has shown favorable clinical outcomes in enhancing the efficacy of programmed cell death-1 (PD-1) blockade and restoring antitumor T cell immunity. Furthermore, monocytes are known to be a strong predictor of progression-free survival in response to anti-PD-1 immunotherapy. In a single-arm clinical trial, we evaluated the immunological effects over an 8-week course of metformin therapy in seven euglycemic, virally suppressed HIV-infected participants on combination antiretroviral therapy (cART). We assessed changes in peripheral HIV-Gag-specific T cell responses to immune checkpoint blockade (ICB) with anti-PD-L1 and anti-T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) monoclonal antibodies (mAbs) and changes in CD8 T cell and monocyte subsets using flow cytometry. Study participants were all male, 71% (5/7) Caucasian, with a median age of 61 years, CD4 count of 739 cells/μL, and plasma HIV RNA of <50 copies/mL on stable cART for >1 year. Ex vivo polyfunctional HIV-Gag-specific CD8 T cell responses to anti-PD-L1 mAb significantly improved (p < .05) over the 8-week course of metformin therapy. Moreover, frequencies of both intermediate (CD14+CD16+; r = 0.89, p = .01) and nonclassical (CD14lowCD16+; r = 0.92, p = .01) monocytes at entry were predictive of the magnitude of the anti-HIV CD8 T cell responses to PD-L1 blockade. Collectively, these findings highlight that 8-week course of metformin increases the polyfunctionality of CD8 T cells and that baseline monocyte subset frequencies may be a potential determinant of PD-L1 blockade efficacy. These data provide valuable information for HIV remission trials that utilize ICB strategies to enhance anti-HIV CD8 T cell immunity.
Collapse
Affiliation(s)
- Glen M. Chew
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Ana Joy P. Padua
- College of Medicine, University of the Philippines, Manila, Philippines
| | - Dominic C. Chow
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Scott A. Souza
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | | | - Michael J. Corley
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Alina P.S. Pang
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | | | - Mariana Gerschenson
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Cecilia M. Shikuma
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Lishomwa C. Ndhlovu
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| |
Collapse
|
65
|
Zhang C, Hu W, Jin JH, Zhou MJ, Song JW, Deng JN, Huang L, Wang SY, Wang FS. The role of CD8 T cells in controlling HIV beyond the antigen-specific face. HIV Med 2020; 21:692-700. [PMID: 33369032 DOI: 10.1111/hiv.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Understanding the determinants of HIV immune control is important for seeking viable HIV prevention, treatment and curative strategies. The antigen-specific roles of CD8 T cells in controlling primary HIV infection have been well documented, but their abilities to control the latent HIV reservoir is less well studied. METHODS The scientific literature on this issue was searched on PubMed. RESULTS Recent reports have demonstrated that CD8 T cells are also involved in the control of viral replication in HIV-infected individuals receiving antiretroviral therapy (ART). However, based on accumulating evidence, the antiviral role of CD8 T cells in ART patients may not be achieved via an antigen-specific manner as HIV-specific CD8 T cells can sense, but not effectively eliminate, cells harbouring intact provirus without first being activated. Our recent study indicated that virtual memory CD8 T cells, a semi-differentiated component of CD8 T cells, may be involved in the mechanism restraining the HIV DNA reservoir in ART patients. CONCLUSIONS In this review, we summarize recent findings on the role of CD8 T cells in controlling HIV, highlighting differences between conventional antigen-specific and innate-like CD8 T cells. A better understanding of the roles of CD8 T cells during HIV infection should benefit the informed design of immune-based treatment strategies.
Collapse
Affiliation(s)
- C Zhang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - W Hu
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - J H Jin
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - M J Zhou
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - J W Song
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - J N Deng
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - L Huang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - S Y Wang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - F S Wang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China.,Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
66
|
Obregon-Perko V, Bricker KM, Mensah G, Uddin F, Kumar MR, Fray EJ, Siliciano RF, Schoof N, Horner A, Mavigner M, Liang S, Vanderford T, Sass J, Chan C, Berendam SJ, Bar KJ, Shaw GM, Silvestri G, Fouda GG, Permar SR, Chahroudi A. Simian-Human Immunodeficiency Virus SHIV.C.CH505 Persistence in ART-Suppressed Infant Macaques Is Characterized by Elevated SHIV RNA in the Gut and a High Abundance of Intact SHIV DNA in Naive CD4 + T Cells. J Virol 2020; 95:e01669-20. [PMID: 33087463 PMCID: PMC7944446 DOI: 10.1128/jvi.01669-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.
Collapse
Affiliation(s)
| | - Katherine M Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gloria Mensah
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ferzan Uddin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anna Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Liang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas Vanderford
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Julian Sass
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Stella J Berendam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Genevieve G Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
67
|
Meziane O, Alexandrova Y, Olivenstein R, Dupuy FP, Salahuddin S, Thomson E, Orlova M, Schurr E, Ancuta P, Durand M, Chomont N, Estaquier J, Bernard NF, Costiniuk CT, Jenabian MA. Peculiar Phenotypic and Cytotoxic Features of Pulmonary Mucosal CD8 T Cells in People Living with HIV Receiving Long-Term Antiretroviral Therapy. THE JOURNAL OF IMMUNOLOGY 2020; 206:641-651. [PMID: 33318292 DOI: 10.4049/jimmunol.2000916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
People living with HIV have high burdens of chronic lung disease, lung cancers, and pulmonary infections despite antiretroviral therapy (ART). The rates of tobacco smoking by people living with HIV vastly exceed that of the general population. Furthermore, we showed that HIV can persist within the lung mucosa despite long-term ART. As CD8 T cell cytotoxicity is pivotal for controlling viral infections and eliminating defective cells, we explored the phenotypic and functional features of pulmonary versus peripheral blood CD8 T cells in ART-treated HIV+ and uninfected controls. Bronchoalveolar lavage fluid and matched blood were obtained from asymptomatic ART-treated HIV+ smokers (n = 11) and nonsmokers (n = 15) and uninfected smokers (n = 7) and nonsmokers (n = 10). CD8 T cell subsets and phenotypes were assessed by flow cytometry. Perforin/granzyme B content, degranulation (CD107a expression), and cytotoxicity against autologous Gag peptide-pulsed CD4 T cells (Annexin V+) following in vitro stimulation were assessed. In all groups, pulmonary CD8 T cells were enriched in effector memory subsets compared with blood and displayed higher levels of activation (HLA-DR+) and exhaustion (PD1+) markers. Significant reductions in proportions of senescent pulmonary CD28-CD57+ CD8 T cells were observed only in HIV+ smokers. Pulmonary CD8 T cells showed lower perforin expression ex vivo compared with blood CD8 T cells, with reduced granzyme B expression only in HIV+ nonsmokers. Bronchoalveolar lavage CD8 T cells showed significantly less in vitro degranulation and CD4 killing capacity than blood CD8 T cells. Therefore, pulmonary mucosal CD8 T cells are more differentiated, activated, and exhausted, with reduced killing capacity in vitro than blood CD8 T cells, potentially contributing to a suboptimal anti-HIV immune response within the lungs.
Collapse
Affiliation(s)
- Oussama Meziane
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada
| | - Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ronald Olivenstein
- Division of Respirology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Franck P Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Syim Salahuddin
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada
| | - Elaine Thomson
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Marianna Orlova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jérôme Estaquier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nicole F Bernard
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada; .,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
68
|
Combination of CD8β Depletion and Interleukin-15 Superagonist N-803 Induces Virus Reactivation in Simian-Human Immunodeficiency Virus-Infected, Long-Term ART-Treated Rhesus Macaques. J Virol 2020; 94:JVI.00755-20. [PMID: 32669328 PMCID: PMC7495383 DOI: 10.1128/jvi.00755-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The “shock and kill” HIV cure strategy attempts to reverse and eliminate the latent viral infection that prevents eradication of the virus. Latency-reversing agents tested in clinical trials to date have failed to affect the HIV viral reservoir. IL-15 superagonist N-803, currently involved in a clinical trial for HIV cure, was recently shown by our laboratory to induce robust and persistent induction of plasma viremia during ART in three in vivo animal models of HIV infection. These results suggest a substantial role for CD8+ lymphocytes in suppressing the latency reversal effect of N-803 by promoting the maintenance of viral latency. In this study, we tested whether the use of a CD8β-targeting antibody, which would specifically deplete CD8+ T cells, would yield similar levels of virus reactivation. We observed the induction of plasma viremia, which correlated with the efficacy of the CD8 depletion strategy. The “shock and kill” strategy predicates that virus reactivation in latently infected cells is required to eliminate the human immunodeficiency virus (HIV) reservoir. In a recent study, we showed robust and persistent induction of plasma viremia in antiretroviral therapy (ART)-treated simian immunodeficiency virus-infected rhesus macaques (RMs) undergoing CD8α depletion and treated with the interleukin-15 (IL-15) superagonist N-803 (J. B. McBrien et al., Nature 578:154–159, 2020, https://doi.org/10.1038/s41586-020-1946-0). Of note, in that study we used an antibody targeting CD8α, thereby depleting NK cells, NKT cells, and γδ T cells, in addition to CD8+ T cells. In the current proof-of-concept study, we tested whether virus reactivation can be induced by administration of N-803 to simian-human chimeric immunodeficiency virus-infected, ART-treated RMs that are selectively depleted of CD8+ T cells via the CD8β-targeting antibody CD8b255R1. CD8β depletion was performed in five SHIVSF162P3-infected RMs treated with ART for 12 months and with plasma viremia consistently below 3 copies/ml. All animals received four weekly doses of N-803 starting at the time of CD8b255R1 administration. The induction of detectable plasma viremia was observed in three out of five RMs, with the level of virus reactivation seemingly correlated with the frequency of CD8+ T cells following CD8β depletion as well as the level of virus reactivation observed when the same animals underwent CD8α depletion and N-803 administration after 24 weeks of ART. These data indicate that CD8β depletion and N-803 administration can induce virus reactivation in SHIVSF162P3-infected RMs despite suboptimal depletion of CD8+ T cells and profound ART-induced suppression of virus replication, confirming a critical role for these cells in suppressing virus production and/or reactivation in vivo under ART. IMPORTANCE The “shock and kill” HIV cure strategy attempts to reverse and eliminate the latent viral infection that prevents eradication of the virus. Latency-reversing agents tested in clinical trials to date have failed to affect the HIV viral reservoir. IL-15 superagonist N-803, currently involved in a clinical trial for HIV cure, was recently shown by our laboratory to induce robust and persistent induction of plasma viremia during ART in three in vivo animal models of HIV infection. These results suggest a substantial role for CD8+ lymphocytes in suppressing the latency reversal effect of N-803 by promoting the maintenance of viral latency. In this study, we tested whether the use of a CD8β-targeting antibody, which would specifically deplete CD8+ T cells, would yield similar levels of virus reactivation. We observed the induction of plasma viremia, which correlated with the efficacy of the CD8 depletion strategy.
Collapse
|
69
|
Zanoni M, Palesch D, Pinacchio C, Statzu M, Tharp GK, Paiardini M, Chahroudi A, Bosinger SE, Yoon J, Cox B, Silvestri G, Kulpa DA. Innate, non-cytolytic CD8+ T cell-mediated suppression of HIV replication by MHC-independent inhibition of virus transcription. PLoS Pathog 2020; 16:e1008821. [PMID: 32941545 PMCID: PMC7523993 DOI: 10.1371/journal.ppat.1008821] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/29/2020] [Accepted: 07/18/2020] [Indexed: 12/31/2022] Open
Abstract
MHC-I-restricted, virus-specific cytotoxic CD8+ T cells (CTLs) may control human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication via the recognition and killing of productively infected CD4+ T cells. Several studies in SIV-infected macaques suggest that CD8+ T cells may also decrease virus production by suppressing viral transcription. Here, we show that non-HIV-specific, TCR-activated non-cytolytic CD8+ T cells suppress HIV transcription via a virus- and MHC-independent immunoregulatory mechanism that modulates CD4+ T cell proliferation and activation. We also demonstrate that this CD8+ T cell-mediated effect promotes the survival of infected CD4+ T cells harboring integrated, inducible virus. Finally, we used RNA sequencing and secretome analyses to identify candidate cellular pathways that are involved in the virus-silencing mediated by these CD8+ T cells. This study characterizes a previously undescribed mechanism of immune-mediated HIV silencing that may be involved in the establishment and maintenance of the reservoir under antiretroviral therapy and therefore represent a major obstacle to HIV eradication.
Collapse
Affiliation(s)
- Michelle Zanoni
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - David Palesch
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Claudia Pinacchio
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Maura Statzu
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Jack Yoon
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bryan Cox
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
70
|
Bretscher PA, Al-Yassin G. Can interruption/withdrawl of anti-retroviral therapy provide personalized immunotherapy against HIV-1? Scand J Immunol 2020; 92:e12934. [PMID: 32654266 DOI: 10.1111/sji.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
We propose a treatment of HIV-1+ individuals designed to harness protective immunity, lead to viral containment, and so render the individual minimally infectious. A few HIV-infected individuals, 'elite controllers', generate a stable Th1, cytotoxic T lymphocyte response that contains the virus. Most infected individuals, in the absence of therapy, first generate a similarly protective response that evolves with time a Th2 component, associated with antibody production and loss of viral control. Cessation of anti-retroviral treatment after three years results in viral rebound in most, but about one in seven individuals contains the virus, so-called post-treatment controllers. We suggest an understanding, of how the Th1/Th2 phenotype of immune responses is controlled, can explain these different outcomes and leads us to propose a non-invasive, personalized strategy of immunotherapy. We propose that monitoring the relative prevalence of HIV-1 specific IgG1 and IgG2 antibodies can provide a biomarker for deciding when to interrupt/withdraw anti-retroviral therapy to optimally harness protective immunity.
Collapse
Affiliation(s)
- Peter A Bretscher
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ghassan Al-Yassin
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
71
|
Zhang LX, Jiao YM, Zhang C, Song JW, Fan X, Xu RN, Huang HH, Zhang JY, Wang LF, Zhou CB, Jin L, Shi M, Wang FS. HIV Reservoir Decay and CD4 Recovery Associated With High CD8 Counts in Immune Restored Patients on Long-Term ART. Front Immunol 2020; 11:1541. [PMID: 32793212 PMCID: PMC7390854 DOI: 10.3389/fimmu.2020.01541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Whether varying CD8 counts influence the human immunodeficiency virus (HIV) reservoir and CD4 restoration in patients with CD4 counts ≥ 500 cells/μL after long-term antiretroviral therapy (ART) remains unknown. In this study, we analyzed relationships between CD8 levels and viral reservoir decay or CD4 recovery in immune restored patients on long-term ART. Methods: Chronic HIV-infected patients who received 5 years of ART with CD4 counts ≥ 500 cells/μL were grouped according to CD8 counts: CD8 <500 (Group 1), 500–1,000 (Group 2), and ≥1,000 cells/μL (Group 3). CD4 recovery, viral decay, CD8 T-cell function, and their correlations were analyzed during ART among the three groups. Results: Dynamics of viral decay and CD4 recovery were different among the three groups. Both viral decay and CD4 recovery were higher in Group 3 than the other two groups after 5 years of ART, mainly during years 3–5 of ART. Higher expression levels of Ki67 while PD-1 levels were lower on CD8 T-cells in Group 3 compared with the other groups, and Group 3 showed stronger CD8 T-cells functional capacity after 3 years of ART. Reduced HIV DNA levels and increased CD4 counts between years 3 and 5 of ART were positively correlated with CD8 counts and function. Conclusions: High CD8 counts are beneficial for persistent viral decay and CD4 recovery in immune restored patients during long-term ART.
Collapse
Affiliation(s)
- Lu-Xue Zhang
- Peking University 302 Clinical Medical School, Beijing, China
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-Feng Wang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
72
|
Antar AA, Jenike KM, Jang S, Rigau DN, Reeves DB, Hoh R, Krone MR, Keruly JC, Moore RD, Schiffer JT, Nonyane BA, Hecht FM, Deeks SG, Siliciano JD, Ho YC, Siliciano RF. Longitudinal study reveals HIV-1-infected CD4+ T cell dynamics during long-term antiretroviral therapy. J Clin Invest 2020; 130:3543-3559. [PMID: 32191639 PMCID: PMC7324206 DOI: 10.1172/jci135953] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Proliferation of CD4+ T cells harboring HIV-1 proviruses is a major contributor to viral persistence in people on antiretroviral therapy (ART). To determine whether differential rates of clonal proliferation or HIV-1-specific cytotoxic T lymphocyte (CTL) pressure shape the provirus landscape, we performed an intact proviral DNA assay (IPDA) and obtained 661 near-full-length provirus sequences from 8 individuals with suppressed viral loads on ART at time points 7 years apart. We observed slow decay of intact proviruses but no changes in the proportions of various types of defective proviruses. The proportion of intact proviruses in expanded clones was similar to that of defective proviruses in clones. Intact proviruses observed in clones did not have more escaped CTL epitopes than intact proviruses observed as singlets. Concordantly, total proviruses at later time points or observed in clones were not enriched in escaped or unrecognized epitopes. Three individuals with natural control of HIV-1 infection (controllers) on ART, included because controllers have strong HIV-1-specific CTL responses, had a smaller proportion of intact proviruses but a distribution of defective provirus types and escaped or unrecognized epitopes similar to that of the other individuals. This work suggests that CTL selection does not significantly check clonal proliferation of infected cells or greatly alter the provirus landscape in people on ART.
Collapse
Affiliation(s)
- Annukka A.R. Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katharine M. Jenike
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sunyoung Jang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Danielle N. Rigau
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Melissa R. Krone
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Jeanne C. Keruly
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Bareng A.S. Nonyane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
73
|
Ndhlovu ZM, Kazer SW, Nkosi T, Ogunshola F, Muema DM, Anmole G, Swann SA, Moodley A, Dong K, Reddy T, Brockman MA, Shalek AK, Ndung'u T, Walker BD. Augmentation of HIV-specific T cell function by immediate treatment of hyperacute HIV-1 infection. Sci Transl Med 2020; 11:11/493/eaau0528. [PMID: 31118290 DOI: 10.1126/scitranslmed.aau0528] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/31/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
Sustained viremia after acute HIV infection is associated with profound CD4+ T cell loss and exhaustion of HIV-specific CD8+ T cell responses. To determine the impact of combination antiretroviral therapy (cART) on these processes, we examined the evolution of immune responses in acutely infected individuals initiating treatment before peak viremia. Immediate treatment of Fiebig stages I and II infection led to a rapid decline in viral load and diminished magnitude of HIV-specific (tetramer+) CD8+ T cell responses compared to untreated donors. There was a strong positive correlation between cumulative viral antigen exposure before full cART-induced suppression and immune responses measured by MHC class I tetramers, IFN-γ ELISPOT, and CD8+ T cell activation. HIV-specific CD8+ T responses of early treated individuals were characterized by increased CD127 and BCL-2 expression, greater in vitro IFN-γ secretion, and enhanced differentiation into effector memory (Tem) cells. Transcriptional analysis of tetramer+ CD8+ T cells from treated persons revealed reduced expression of genes associated with activation and apoptosis, with concurrent up-regulation of prosurvival genes including BCL-2, AXL, and SRC Early treatment also resulted in robust HIV-specific CD4+ T cell responses compared to untreated HIV-infected individuals. Our data show that limiting acute viremia results in enhanced functionality of HIV-specific CD4+ and CD8+ T cells, preserving key antiviral properties of these cells.
Collapse
Affiliation(s)
- Zaza M Ndhlovu
- Africa Health Research Institute, 4036 Durban, South Africa. .,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Samuel W Kazer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA 02139, USA.,Department of Chemistry and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Thandeka Nkosi
- Africa Health Research Institute, 4036 Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Funsho Ogunshola
- Africa Health Research Institute, 4036 Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Daniel M Muema
- Africa Health Research Institute, 4036 Durban, South Africa
| | - Gursev Anmole
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shayda A Swann
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Amber Moodley
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Krista Dong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Tarylee Reddy
- South Africa Medical Research Council, 4091 Durban, South Africa
| | - Mark A Brockman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA 02139, USA.,Department of Chemistry and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute, 4036 Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 4013 Durban, South Africa.,Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
74
|
Therapeutic vaccination with IDLV-SIV-Gag results in durable viremia control in chronically SHIV-infected macaques. NPJ Vaccines 2020; 5:36. [PMID: 32411399 PMCID: PMC7210278 DOI: 10.1038/s41541-020-0186-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/17/2020] [Indexed: 01/14/2023] Open
Abstract
Despite incredible scientific efforts, there is no cure for HIV infection. While antiretroviral treatment (ART) can help control the virus and prevent transmission, it cannot eradicate HIV from viral reservoirs established before the initiation of therapy. Further, HIV-infected individuals reliably exhibit viral rebound when ART is interrupted, suggesting that the host immune response fails to control viral replication in persistent reservoirs. Therapeutic vaccines are one current approach to improving antiviral host immune responses and enhance long term virus control. In the present study, we used an integrase defective lentiviral vector (IDLV) expressing SIV-Gag to boost anti-Gag specific immune responses in macaques chronically infected with the tier-2 SHIV-1157(QNE)Y173H. A single immunization with IDLV-SIV-Gag induced durable (>20 weeks) virus control in 55% of the vaccinated macaques, correlating with an increased magnitude of SIV-Gag specific CD8+ T-cell responses. IDLV-based therapeutic vaccines are therefore an effective approach to improve virus specific CD8+ T-cell responses and mediate virus control.
Collapse
|
75
|
Takahama S, Yamamoto T. Pattern Recognition Receptor Ligands as an Emerging Therapeutic Agent for Latent HIV-1 Infection. Front Cell Infect Microbiol 2020; 10:216. [PMID: 32457851 PMCID: PMC7225283 DOI: 10.3389/fcimb.2020.00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Toll-like receptors (TLRs) were first identified as molecular sensors that transduce signals from specific structural patterns derived from pathogens; their underlying molecular mechanisms of recognition and signal transduction are well-understood. To date, more than 20 pattern-recognition receptors (PRRs) have been reported in humans, some of which are membrane-bound, similar to TLRs, whereas others are cytosolic, including retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and stimulator of interferon genes (STING). Clinically, PRR ligands have been developed as vaccine adjuvants to activate innate immunity and enhance subsequent antigen-specific immune responses. Recently, PRR ligands have been used as direct immunostimulators to enhance immune responses against infectious diseases and cancers. HIV-1 remains one of the world's most significant public health challenges. Without the elimination of HIV-1 latently infected cells, patients require lifelong combination antiretroviral therapy (cART), while research aimed at a functional cure for HIV-1 infection continues. Based on the concept of "shock and kill," a latency-reversing agent (LRA) has been developed to reactivate latently infected cells and induce cell death. However, previous research has shown that LRAs have limited efficacy in the eradication of these reservoirs in vivo. Besides, PRR ligands with anti-retroviral drugs have been developed for use in HIV treatment for these years. This mini-review summarizes the current understanding of the role of PRR ligands in AIDS research, suggests directions for future research, and proposes potential clinical applications.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
76
|
Ren Y, Huang SH, Patel S, Alberto WDC, Magat D, Ahimovic D, Macedo AB, Durga R, Chan D, Zale E, Mota TM, Truong R, Rohwetter T, McCann CD, Kovacs CM, Benko E, Wimpelberg A, Cannon C, Hardy WD, Bosque A, Bollard CM, Jones RB. BCL-2 antagonism sensitizes cytotoxic T cell-resistant HIV reservoirs to elimination ex vivo. J Clin Invest 2020; 130:2542-2559. [PMID: 32027622 PMCID: PMC7191002 DOI: 10.1172/jci132374] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Curing HIV infection will require the elimination of a reservoir of infected CD4+ T cells that persists despite HIV-specific cytotoxic T cell (CTL) responses. Although viral latency is a critical factor in this persistence, recent evidence also suggests a role for intrinsic resistance of reservoir-harboring cells to CTL killing. This resistance may have contributed to negative outcomes of clinical trials, where pharmacologic latency reversal has thus far failed to drive reductions in HIV reservoirs. Through transcriptional profiling, we herein identified overexpression of the prosurvival factor B cell lymphoma 2 (BCL-2) as a distinguishing feature of CD4+ T cells that survived CTL killing. We show that the inducible HIV reservoir was disproportionately present in BCL-2hi subsets in ex vivo CD4+ T cells. Treatment with the BCL-2 antagonist ABT-199 was not sufficient to drive reductions in ex vivo viral reservoirs when tested either alone or with a latency-reversing agent (LRA). However, the triple combination of strong LRAs, HIV-specific T cells, and a BCL-2 antagonist uniquely enabled the depletion of ex vivo viral reservoirs. Our results provide rationale for novel therapeutic approaches targeting HIV cure and, more generally, suggest consideration of BCL-2 antagonism as a means of enhancing CTL immunotherapy in other settings, such as cancer.
Collapse
Affiliation(s)
- Yanqin Ren
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Szu Han Huang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Winiffer D. Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dean Magat
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dughan Ahimovic
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Amanda B. Macedo
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Ryan Durga
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Dora Chan
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Elizabeth Zale
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Talia M. Mota
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ronald Truong
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Thomas Rohwetter
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Chase D. McCann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | | | | | - W. David Hardy
- Whitman-Walker Health, Washington, DC, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
77
|
Pinzone MR, Bertuccio MP, VanBelzen DJ, Zurakowski R, O'Doherty U. Next-Generation Sequencing in a Direct Model of HIV Infection Reveals Important Parallels to and Differences from In Vivo Reservoir Dynamics. J Virol 2020; 94:e01900-19. [PMID: 32051279 PMCID: PMC7163122 DOI: 10.1128/jvi.01900-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) represents a powerful tool to unravel the genetic make-up of the HIV reservoir, but limited data exist on its use in vitro Moreover, most NGS studies do not separate integrated from unintegrated DNA, even though selection pressures on these two forms should be distinct. We reasoned we could use NGS to compare the infection of resting and activated CD4 T cells in vitro to address how the metabolic state affects reservoir formation and dynamics. To address these questions, we obtained HIV sequences 2, 4, and 8 days after NL4-3 infection of metabolically activated and quiescent CD4 T cells (cultured with 2 ng/ml interleukin-7). We compared the composition of integrated and total HIV DNA by isolating integrated HIV DNA using pulsed-field electrophoresis before performing sequencing. After a single-round infection, the majority of integrated HIV DNA was intact in both resting and activated T cells. The decay of integrated intact proviruses was rapid and similar in both quiescent and activated T cells. Defective forms accumulated relative to intact ones analogously to what is observed in vivo Massively deleted viral sequences formed more frequently in resting cells, likely due to lower deoxynucleoside triphosphate (dNTP) levels and the presence of multiple restriction factors. To our surprise, the majority of these deleted sequences did not integrate into the human genome. The use of NGS to study reservoir dynamics in vitro provides a model that recapitulates important aspects of reservoir dynamics. Moreover, separating integrated from unintegrated HIV DNA is important in some clinical settings to properly study selection pressures.IMPORTANCE The major implication of our work is that the decay of intact proviruses in vitro is extremely rapid, perhaps as a result of enhanced expression. Gaining a better understanding of why intact proviruses decay faster in vitro might help the field identify strategies to purge the reservoir in vivo When used wisely, in vitro models are a powerful tool to study the selective pressures shaping the viral landscape. Our finding that massively deleted sequences rarely succeed in integrating has several ramifications. It demonstrates that the total HIV DNA can differ substantially in character from the integrated HIV DNA under certain circumstances. The presence of unintegrated HIV DNA has the potential to obscure selection pressures and confound the interpretation of clinical studies, especially in the case of trials involving treatment interruptions.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Paola Bertuccio
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - D Jake VanBelzen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Ryan Zurakowski
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
78
|
Abstract
A trial of a therapeutic vaccine against HIV induces cellular immunity and, although it provides hope, it highlights the hurdles for the development of such strategies.
Collapse
Affiliation(s)
- Beatriz Mothe
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
- IrsiCaixa AIDS Research Institute, Badalona, Spain.
- Universitat de Vic-Central of Catalonia, Vic, Spain.
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Universitat de Vic-Central of Catalonia, Vic, Spain
- AELIX Therapeutics, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
79
|
Paiardini M, Dhodapkar K, Harper J, Deeks SG, Ahmed R. Editorial: HIV and Cancer Immunotherapy: Similar Challenges and Converging Approaches. Front Immunol 2020; 11:519. [PMID: 32296432 PMCID: PMC7138010 DOI: 10.3389/fimmu.2020.00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Kavita Dhodapkar
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Steven G Deeks
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
80
|
Jin JH, Huang HH, Zhou MJ, Li J, Hu W, Huang L, Xu Z, Tu B, Yang G, Shi M, Jiao YM, Fan X, Song JW, Zhang JY, Zhang C, Wang FS. Virtual memory CD8+ T cells restrain the viral reservoir in HIV-1-infected patients with antiretroviral therapy through derepressing KIR-mediated inhibition. Cell Mol Immunol 2020; 17:1257-1265. [PMID: 32210395 DOI: 10.1038/s41423-020-0408-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
The viral reservoir is the major hurdle in developing and establishing an HIV cure. Understanding factors affecting the size and decay of this reservoir is crucial for the development of therapeutic strategies. Recent work highlighted that CD8+ T cells are involved in the control of viral replication in ART-treated HIV-1-infected individuals, but how CD8+ T cells sense and restrict the HIV reservoir are not fully understood. Here, we demonstrate that a population of unconventional CD45RA+, PanKIR+, and/or NKG2A+ virtual memory CD8+ T cells (TVM cells), which confer rapid and robust protective immunity against pathogens, plays an important role in restraining the HIV DNA reservoir in HIV-1-infected patients with effective ART. In patients undergoing ART, TVM cells negatively correlate with HIV DNA and positively correlate with circulating IFN-α2 and IL-15. Moreover, TVM cells constitutively express high levels of cytotoxic granule components, including granzyme B, perforin and granulysin, and demonstrate the capability to control HIV replication through both cytolytic and noncytolytic mechanisms. Furthermore, by using an ex vivo system, we showed that HIV reactivation is effectively suppressed by TVM cells through KIR-mediated recognition. This study suggests that TVM cells are a promising target to predict posttreatment virological control and to design immune-based interventions to reduce the reservoir size in ART-treated HIV-1-infected individuals.
Collapse
Affiliation(s)
- Jie-Hua Jin
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Jing Li
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Wei Hu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Guang Yang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China. .,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current knowledge on the role of CD4+ T lymphocytes leading to HIV assault and persistence in the central nervous system (CNS) and the elimination of HIV-infected CNS resident cells by CD8+ T lymphocytes. RECENT FINDINGS HIV targets the CNS early in infection, and HIV-infected individuals suffer from mild forms of neurological impairments even under antiretroviral therapy (ART). CD4+ T cells and monocytes mediate HIV entry into the brain and constitute a source for HIV persistence and neuronal damage. HIV-specific CD8+ T cells are also massively recruited in the CNS in acute infection to control viral replication but cannot eliminate HIV-infected cells within the CNS. This review summarizes the involvement of CD4+ T cells in seeding and maintaining HIV infection in the brain and describes the involvement of CD8+ T cells in HIV neuropathogenesis, playing a role still to be deciphered, either beneficial in eliminating HIV-infected cells or deleterious in releasing inflammatory cytokines.
Collapse
|
82
|
|
83
|
McBrien JB, Mavigner M, Franchitti L, Smith SA, White E, Tharp GK, Walum H, Busman-Sahay K, Aguilera-Sandoval CR, Thayer WO, Spagnuolo RA, Kovarova M, Wahl A, Cervasi B, Margolis DM, Vanderford TH, Carnathan DG, Paiardini M, Lifson JD, Lee JH, Safrit JT, Bosinger SE, Estes JD, Derdeyn CA, Garcia JV, Kulpa DA, Chahroudi A, Silvestri G. Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8 + cells. Nature 2020; 578:154-159. [PMID: 31969705 PMCID: PMC7580846 DOI: 10.1038/s41586-020-1946-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
Abstract
Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1-4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection.
Collapse
Affiliation(s)
- Julia Bergild McBrien
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lavinia Franchitti
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - S Abigail Smith
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Erick White
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hasse Walum
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Christian R Aguilera-Sandoval
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William O Thayer
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rae Ann Spagnuolo
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martina Kovarova
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara Cervasi
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - David M Margolis
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- University of North Carolina HIV Cure Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas H Vanderford
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Diane G Carnathan
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Steven E Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Cynthia A Derdeyn
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Deanna A Kulpa
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory + Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
84
|
Nixon CC, Mavigner M, Sampey GC, Brooks AD, Spagnuolo RA, Irlbeck DM, Mattingly C, Ho PT, Schoof N, Cammon CG, Tharp GK, Kanke M, Wang Z, Cleary RA, Upadhyay AA, De C, Wills SR, Falcinelli SD, Galardi C, Walum H, Schramm NJ, Deutsch J, Lifson JD, Fennessey CM, Keele BF, Jean S, Maguire S, Liao B, Browne EP, Ferris RG, Brehm JH, Favre D, Vanderford TH, Bosinger SE, Jones CD, Routy JP, Archin NM, Margolis DM, Wahl A, Dunham RM, Silvestri G, Chahroudi A, Garcia JV. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature 2020; 578:160-165. [PMID: 31969707 PMCID: PMC7111210 DOI: 10.1038/s41586-020-1951-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/16/2019] [Indexed: 01/27/2023]
Abstract
Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2-9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow-liver-thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal-in combination with appropriate tools for systemic clearance of persistent HIV infection-greatly increases opportunities for HIV eradication.
Collapse
Affiliation(s)
- Christopher C Nixon
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gavin C Sampey
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Qura Therapeutics, Chapel Hill, NC, USA
| | - Alyssa D Brooks
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rae Ann Spagnuolo
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Irlbeck
- Qura Therapeutics, Chapel Hill, NC, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Cameron Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Phong T Ho
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Corinne G Cammon
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Greg K Tharp
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Matthew Kanke
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhang Wang
- GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | - Rachel A Cleary
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit A Upadhyay
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Chandrav De
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saintedym R Wills
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Qura Therapeutics, Chapel Hill, NC, USA
| | - Shane D Falcinelli
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cristin Galardi
- Qura Therapeutics, Chapel Hill, NC, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Hasse Walum
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Nathaniel J Schramm
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sherrie Jean
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sean Maguire
- GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | - Baolin Liao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Edward P Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert G Ferris
- Qura Therapeutics, Chapel Hill, NC, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Jessica H Brehm
- Qura Therapeutics, Chapel Hill, NC, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - David Favre
- Qura Therapeutics, Chapel Hill, NC, USA
- GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | | | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jean-Pierre Routy
- Chronic Viral Infection Service, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nancie M Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Margolis
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Qura Therapeutics, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard M Dunham
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Qura Therapeutics, Chapel Hill, NC, USA.
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, NC, USA.
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory + Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
85
|
Fatti G, Grimwood A, Nachega JB, Nelson JA, LaSorda K, van Zyl G, Grobbelaar N, Ayles H, Hayes R, Beyers N, Fidler S, Bock P. Better Virological Outcomes Among People Living With Human Immunodeficiency Virus (HIV) Initiating Early Antiretroviral Treatment (CD4 Counts ≥500 Cells/µL) in the HIV Prevention Trials Network 071 (PopART) Trial in South Africa. Clin Infect Dis 2020; 70:395-403. [PMID: 30877753 PMCID: PMC7768744 DOI: 10.1093/cid/ciz214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND There have been concerns about reduced adherence and human immunodeficiency virus (HIV) virological suppression (VS) among clinically well people initiating antiretroviral therapy (ART) with high pre-ART CD4 cell counts. We compared virological outcomes by pre-ART CD4 count, where universal ART initiation was provided in the HIV Prevention Trials Network 071 (PopART) trial in South Africa prior to routine national and international implementation. METHODS This prospective cohort study included adults initiating ART at facilities providing universal ART since January 2014. VS (<400 copies/mL), confirmed virological failure (VF) (2 consecutive viral loads >1000 copies/mL), and viral rebound were compared between participants in strata of baseline CD4 cell count. RESULTS The sample included 1901 participants. VS was ≥94% among participants with baseline CD4 count ≥500 cells/µL at all 6-month intervals to 30 months. The risk of an elevated viral load (≥400 copies/mL) was independently lower among participants with baseline CD4 count ≥500 cells/µL (3.3%) compared to those with CD4 count 200-499 cells/µL (9.2%) between months 18 and 30 (adjusted relative risk, 0.30 [95% confidence interval, .12-.74]; P = .010). The incidence rate of VF was 7.0, 2.0, and 0.5 per 100 person-years among participants with baseline CD4 count <200, 200-499, and ≥500 cells/µL, respectively (P < .0001). VF was independently lower among participants with baseline CD4 count ≥500 cells/µL (adjusted hazard ratio [aHR], 0.23; P = .045) and 3-fold higher among those with baseline CD4 count <200 cells/µL (aHR, 3.49; P < .0001). CONCLUSIONS Despite previous concerns, participants initiating ART with CD4 counts ≥500 cells/µL had very good virological outcomes, being better than those with CD4 counts 200-499 cells/µL. CLINICAL TRIALS REGISTRATION NCT01900977.
Collapse
Affiliation(s)
- Geoffrey Fatti
- Kheth’Impilo AIDS Free Living, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Jean B Nachega
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
- Department of Epidemiology and International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Medicine and Centre for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | - Jenna A Nelson
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
| | - Kelsea LaSorda
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
| | - Gert van Zyl
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Tygerberg, South Africa
| | | | - Helen Ayles
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, United Kingdom
- Zambart, Ridgeway Campus University of Zambia, Lusaka
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Nulda Beyers
- Desmond Tutu Tuberculosis Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sarah Fidler
- Department of Medicine, Imperial College London and Imperial College National Institute for Health Research Biomedical Research Centre, United Kingdom
| | - Peter Bock
- Desmond Tutu Tuberculosis Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
86
|
Enyindah-Asonye G, Nwankwo A, Rahman MA, Hunegnaw R, Hogge C, Helmold Hait S, Ko EJ, Hoang T, Robert-Guroff M. Overexpression of CD6 and PD-1 Identifies Dysfunctional CD8 + T-Cells During Chronic SIV Infection of Rhesus Macaques. Front Immunol 2020; 10:3005. [PMID: 31998302 PMCID: PMC6961594 DOI: 10.3389/fimmu.2019.03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Effective CD8+ T-cell responses play an important role in determining the course of SIV/HIV viral infection. Here we identified a unique population of dysfunctional CD8+ T-cells in lymphoid tissues and bronchoalveolar lavage (BAL) of rhesus macaques with chronic SIV infection characterized by co-expression of CD6 and PD-1. The frequency of CD6 and PD-1 co-expressing CD8+ T-cells was significantly increased in lymphoid tissues and BAL during chronic SIV infection compared to pre-infection levels. These CD6+PD-1+CD8+ T-cells displayed impaired proliferation, cytokine secretion and cytotoxicity compared to their CD6-PD-1+CD8+ T cell counterparts. The frequency of CD8+PD-1+ and CD8+CD6-PD-1+ T-cells in the lymph node and bone marrow did not correlate with SIV viral load, whereas the frequency of CD8+CD6+PD-1+ T-cells positively correlated with SIV viral load in these tissues highlighting the contribution of CD6 to disease progression. CD6+PD-1+CD8+ T-cells expressed elevated levels of SHP2 phosphatase compared to CD6-PD-1+CD8+ T-cells providing a potential mechanism by which CD6 may induce T-cell dysfunction during chronic SIV infection. Combined targeting of CD6 and PD-1 effectively revived the CD8+ T-cell proliferative response in vitro suggesting a strategy for potential therapeutic benefit.
Collapse
Affiliation(s)
- Gospel Enyindah-Asonye
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Anthony Nwankwo
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mohammad Arif Rahman
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ruth Hunegnaw
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Hogge
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sabrina Helmold Hait
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eun-Ju Ko
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tanya Hoang
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
87
|
Role of Dendritic Cells in Exposing Latent HIV-1 for the Kill. Viruses 2019; 12:v12010037. [PMID: 31905690 PMCID: PMC7019604 DOI: 10.3390/v12010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The development of effective yet nontoxic strategies to target the latent human immunodeficiency virus-1 (HIV-1) reservoir in antiretroviral therapy (ART)-suppressed individuals poses a critical barrier to a functional cure. The ‘kick and kill’ approach to HIV eradication entails proviral reactivation during ART, coupled with generation of cytotoxic T lymphocytes (CTLs) or other immune effectors equipped to eliminate exposed infected cells. Pharmacological latency reversal agents (LRAs) that have produced modest reductions in the latent reservoir ex vivo have not impacted levels of proviral DNA in HIV-infected individuals. An optimal cure strategy incorporates methods that facilitate sufficient antigen exposure on reactivated cells following the induction of proviral gene expression, as well as the elimination of infected targets by either polyfunctional HIV-specific CTLs or other immune-based strategies. Although conventional dendritic cells (DCs) have been used extensively for the purpose of inducing antigen-specific CTL responses in HIV-1 clinical trials, their immunotherapeutic potential as cellular LRAs has been largely ignored. In this review, we discuss the challenges associated with current HIV-1 eradication strategies, as well as the unharnessed potential of ex vivo-programmed DCs for both the ‘kick and kill’ of latent HIV-1.
Collapse
|
88
|
Nguyen S, Deleage C, Darko S, Ransier A, Truong DP, Agarwal D, Japp AS, Wu VH, Kuri-Cervantes L, Abdel-Mohsen M, Del Rio Estrada PM, Ablanedo-Terrazas Y, Gostick E, Hoxie JA, Zhang NR, Naji A, Reyes-Terán G, Estes JD, Price DA, Douek DC, Deeks SG, Buggert M, Betts MR. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8 + T cells. Sci Transl Med 2019; 11:eaax4077. [PMID: 31852798 PMCID: PMC7265335 DOI: 10.1126/scitranslmed.aax4077] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
The functional properties of circulating CD8+ T cells have been associated with immune control of HIV. However, viral replication occurs predominantly in secondary lymphoid tissues, such as lymph nodes (LNs). We used an integrated single-cell approach to characterize effective HIV-specific CD8+ T cell responses in the LNs of elite controllers (ECs), defined as individuals who suppress viral replication in the absence of antiretroviral therapy (ART). Higher frequencies of total memory and follicle-homing HIV-specific CD8+ T cells were detected in the LNs of ECs compared with the LNs of chronic progressors (CPs) who were not receiving ART. Moreover, HIV-specific CD8+ T cells potently suppressed viral replication without demonstrable cytolytic activity in the LNs of ECs, which harbored substantially lower amounts of CD4+ T cell-associated HIV DNA and RNA compared with the LNs of CPs. Single-cell RNA sequencing analyses further revealed a distinct transcriptional signature among HIV-specific CD8+ T cells from the LNs of ECs, typified by the down-regulation of inhibitory receptors and cytolytic molecules and the up-regulation of multiple cytokines, predicted secreted factors, and components of the protein translation machinery. Collectively, these results provide a mechanistic framework to expedite the identification of novel antiviral factors, highlighting a potential role for the localized deployment of noncytolytic functions as a determinant of immune efficacy against HIV.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Duc P Truong
- Department of Mathematics, Southern Methodist University, Dallas, TX 75205, USA
| | - Divyansh Agarwal
- Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Perla M Del Rio Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James A Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Marcus Buggert
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
89
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
90
|
Bender AM, Simonetti FR, Kumar MR, Fray EJ, Bruner KM, Timmons AE, Tai KY, Jenike KM, Antar AAR, Liu PT, Ho YC, Raugi DN, Seydi M, Gottlieb GS, Okoye AA, Del Prete GQ, Picker LJ, Mankowski JL, Lifson JD, Siliciano JD, Laird GM, Barouch DH, Clements JE, Siliciano RF. The Landscape of Persistent Viral Genomes in ART-Treated SIV, SHIV, and HIV-2 Infections. Cell Host Microbe 2019; 26:73-85.e4. [PMID: 31295427 DOI: 10.1016/j.chom.2019.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Evaluation of HIV cure strategies is complicated by defective proviruses that persist in ART-treated patients but are irrelevant to cure. Non-human primates (NHP) are essential for testing cure strategies. However, the persisting proviral landscape in ART-treated NHPs is uncharacterized. Here, we describe viral genomes persisting in ART-treated, simian immunodeficiency virus (SIV)-infected NHPs, simian-human immunodeficiency virus (SHIV)-infected NHPs, and humans infected with HIV-2, an SIV-related virus. The landscapes of persisting SIV, SHIV, and HIV-2 genomes are also dominated by defective sequences. However, there was a significantly higher fraction of intact SIV proviral genomes compared to ART-treated HIV-1 or HIV-2 infected humans. Compared to humans with HIV-1, SIV-infected NHPs had more hypermutated genomes, a relative paucity of clonal SIV sequences, and a lower frequency of deleted genomes. Finally, we report an assay for measuring intact SIV genomes which may have value in cure research.
Collapse
Affiliation(s)
- Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine M Bruner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine Y Tai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katharine M Jenike
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dana N Raugi
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Moussa Seydi
- Service de Maladies Infectieuses et Tropicales, CHNU-Fann, Dakar, Senegal
| | - Geoffrey S Gottlieb
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Greg M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Accelevir Diagnostics, Baltimore, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
91
|
Differential Dynamics of Regulatory T-Cell and Th17 Cell Balance in Mesenteric Lymph Nodes and Blood following Early Antiretroviral Initiation during Acute Simian Immunodeficiency Virus Infection. J Virol 2019; 93:JVI.00371-19. [PMID: 31315987 PMCID: PMC6744245 DOI: 10.1128/jvi.00371-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
Tregs contribute to SIV/HIV disease progression by inhibition of antiviral specific responses and effector T-cell proliferation. Tregs also cause tissue fibrosis via transforming growth factor β1 production and collagen deposition, which are associated with microbial translocation and generalized immune activation. Early ARV initiation upon viral exposure is recommended globally and results in improved immune function recovery and reduced viral persistence. Here, using an acute SIV infection model of rhesus macaques, we demonstrated for the first time that despite clear improvements in mucosal CD4 T cells, in contrast to blood, Treg frequencies in MLNs remained elevated following early ARV initiation. The particular Th17/Treg balance observed in MLNs can contribute, in part, to the maintenance of mucosal fibrosis during suppressive ARV treatment. Our results provide a better understanding of gut mucosal immune dynamics following early ARV initiation. These findings suggest that Treg-based treatments could serve as a novel immunotherapeutic approach to decrease gut mucosal damage during SIV/HIV infections. Increased frequencies of immunosuppressive regulatory T cells (Tregs) are associated with gut lymphoid tissue fibrosis and dysfunction which, in turn, contribute to disease progression in chronic simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) infection. Mesenteric lymph nodes (MLNs), which drain the large and small intestine, are critical sites for the induction and maintenance of gut mucosal immunity. However, the dynamics of Tregs in MLNs are not well understood due to the lack of accessibility to these tissues in HIV-infected individuals. Here, the dynamics of Tregs in blood and MLNs were assessed in SIV-infected rhesus macaques (RMs) following early antiretroviral drug (ARV) initiation. Early ARV initiation reduced T-cell immune activation, as assessed by HLA-DR/CD39 expression, and prevented the depletion of memory CCR6+ Th17 cells in both blood and MLNs. Untreated animals showed higher frequencies of Tregs, CD39+ Tregs, thymic Tregs, and new memory CD4 populations sharing similarity with Tregs as CTLA4+ PD1– and CTLA4+ PD1– FoxP3+ T cells. Despite early ARV treatment, the frequencies of these Treg subsets remained unchanged within the MLNs and, in contrast to blood normalization, the Th17/Treg ratio remained distorted in MLNs. Furthermore, our results highlighted that the expressions of IDO-1, TGFβ1 and collagen-1 mRNA remained unchanged in MLN of ARV-treated RMs. ARV interruption did not affect T-cell immune activation and Th17/Treg ratios in MLN. Altogether, our data demonstrated that early ARV initiation within the first few days of SIV infection is unable to reduce the frequencies and homing of various subsets of Tregs within the MLNs which, in turn, may result in tissue fibrosis, impairment in MLN function, and HIV persistence. IMPORTANCE Tregs contribute to SIV/HIV disease progression by inhibition of antiviral specific responses and effector T-cell proliferation. Tregs also cause tissue fibrosis via transforming growth factor β1 production and collagen deposition, which are associated with microbial translocation and generalized immune activation. Early ARV initiation upon viral exposure is recommended globally and results in improved immune function recovery and reduced viral persistence. Here, using an acute SIV infection model of rhesus macaques, we demonstrated for the first time that despite clear improvements in mucosal CD4 T cells, in contrast to blood, Treg frequencies in MLNs remained elevated following early ARV initiation. The particular Th17/Treg balance observed in MLNs can contribute, in part, to the maintenance of mucosal fibrosis during suppressive ARV treatment. Our results provide a better understanding of gut mucosal immune dynamics following early ARV initiation. These findings suggest that Treg-based treatments could serve as a novel immunotherapeutic approach to decrease gut mucosal damage during SIV/HIV infections.
Collapse
|
92
|
Frank I, Acharya A, Routhu NK, Aravantinou M, Harper JL, Maldonado S, Sole Cigoli M, Semova S, Mazel S, Paiardini M, Derby N, Byrareddy SN, Martinelli E. A Tat/Rev Induced Limiting Dilution Assay to Measure Viral Reservoirs in Non-Human Primate Models of HIV Infection. Sci Rep 2019; 9:12078. [PMID: 31427605 PMCID: PMC6700126 DOI: 10.1038/s41598-019-48354-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/02/2019] [Indexed: 01/11/2023] Open
Abstract
The establishment of latent infection and poorly characterized viral reservoirs in tissues represent major obstacles to a definitive cure for HIV. Non-human primate (NHP) models of HIV infection are critical to elucidate pathogenic processes and an essential tool to test novel therapeutic strategies. Thus, the availability of novel assays to measure residual viral replication and reservoirs in NHP models may increase their utility in the search for an HIV cure. We developed a tat/rev induced limiting dilution assay to measure the frequency of CD4+ T cells that express multiply-spliced(ms)_SIV RNA in presence and absence of stimulation. We validated the assay using cell lines and cells from blood and lymph nodes of SIV infected macaques. In vitro, SIV/SHIV TILDA detects only cells expressing viral proteins. In SIV/SHIV-infected macaques, CD4+ T cells that express msSIV/SHIV RNA (TILDA data) were detected also in the setting of very low/undetectable viremia. TILDA data were significantly higher after stimulation and correlated with plasma viral load (pVL). Interestingly, TILDA data from early cART initiation correlated with peak and AUC pVL post-cART interruption. In summary, we developed an assay that may be useful in characterizing viral reservoirs and determining the effect of HIV interventions in NHP models.
Collapse
Affiliation(s)
- Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, USA
| | - Nanda K Routhu
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, USA
| | | | - Justin L Harper
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | - Maria Sole Cigoli
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Stanka Semova
- Flow Cytometry Resource Center, Rockefeller University, New York, NY, USA
| | - Svetlana Mazel
- Flow Cytometry Resource Center, Rockefeller University, New York, NY, USA
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, USA.
| |
Collapse
|
93
|
Qin K, Boppana S, Du VY, Carlson JM, Yue L, Dilernia DA, Hunter E, Mailliard RB, Mallal SA, Bansal A, Goepfert PA. CD8 T cells targeting adapted epitopes in chronic HIV infection promote dendritic cell maturation and CD4 T cell trans-infection. PLoS Pathog 2019; 15:e1007970. [PMID: 31398241 PMCID: PMC6703693 DOI: 10.1371/journal.ppat.1007970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/21/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
HIV-1 frequently escapes from CD8 T cell responses via HLA-I restricted adaptation, leading to the accumulation of adapted epitopes (AE). We previously demonstrated that AE compromise CD8 T cell responses during acute infection and are associated with poor clinical outcomes. Here, we examined the impact of AE on CD8 T cell responses and their biological relevance in chronic HIV infection (CHI). In contrast to acute infection, the majority of AE are immunogenic in CHI. Longitudinal analyses from acute to CHI showed an increased frequency and magnitude of AE-specific IFNγ responses compared to NAE-specific ones. These AE-specific CD8 T cells also were more cytotoxic to CD4 T cells. In addition, AE-specific CD8 T cells expressed lower levels of PD1 and CD57, as well as higher levels of CD28, suggesting a more activated and less exhausted phenotype. During CHI, viral sequencing identified AE-encoding strains as the dominant quasispecies. Despite increased CD4 T cell cytotoxicity, CD8 T cells responding to AE promoted dendritic cell (DC) maturation and CD4 T cell trans-infection perhaps explaining why AE are predominant in CHI. Taken together, our data suggests that the emergence of AE-specific CD8 T cell responses in CHI confers a selective advantage to the virus by promoting DC-mediated CD4 T cell trans-infection. HIV-1 infection remains a critical public health threat across the world. Over the past two decades, CD8 T cells have been clearly shown to exert immune pressure on HIV and drive viral adaptation. Previously, our group reported that such HLA-I associated adaptations can predict clinical outcomes and are beneficial to HIV-1 as CD8 T cells are unable to recognize epitopes with adaptation in acute HIV infection. However, it is still unclear how HIV-1 adaptation impacts CD8 T cells during chronic HIV infection. In this study, we observed an enhancement of CD8 T cell responses targeting adapted epitopes in chronic infection. Although these responses were cytotoxic, they also exhibited a “helper” effect by promoting viral infection of CD4 T cells via interaction with dendritic cells. This phenomenon may contribute to the persistence of adapted viruses. In summary, these findings present a novel mechanism of CD8 T cell driven HIV-1 adaptation.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sushma Boppana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victor Y. Du
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | | | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Dario A. Dilernia
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon A. Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (AB); (PAG)
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (AB); (PAG)
| |
Collapse
|
94
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
95
|
Huang SH, McCann CD, Mota TM, Wang C, Lipkin SM, Jones RB. Have Cells Harboring the HIV Reservoir Been Immunoedited? Front Immunol 2019; 10:1842. [PMID: 31447850 PMCID: PMC6691121 DOI: 10.3389/fimmu.2019.01842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Immunoediting is an important concept in oncology, delineating the mechanisms through which tumors are selected for resistance to immune-mediated elimination. The recent emergence of immunotherapies, such as checkpoint inhibitors, as pillars of cancer therapy has intensified interest in immunoediting as a constraint limiting the efficacy of these approaches. Immunoediting manifests at a number of levels for different cancers, for example through the establishment of immunosuppressive microenvironments within solid tumors. Of particular interest to the current review, selection also occurs at the cellular level; and recent studies have revealed novel mechanisms by which tumor cells acquire intrinsic resistance to immune recognition and elimination. While the selection of escape mutations in viral epitopes by HIV-specific T cells, which is a hallmark of chronic HIV infection, can be considered a form of immunoediting, few studies have considered the possibility that HIV-infected cells themselves may parallel tumors in having differential intrinsic susceptibilities to immune-mediated elimination. Such selection, on the level of an infected cell, may not play a significant role in untreated HIV, where infection is propagated by high levels of cell-free virus produced by cells that quickly succumb to viral cytopathicity. However, it may play an unappreciated role in individuals treated with effective antiretroviral therapy where viral replication is abrogated. In this context, an "HIV reservoir" persists, comprising long-lived infected cells which undergo extensive and dynamic clonal expansion. The ability of these cells to persist in infected individuals has generally been attributed to viral latency, thought to render them invisible to immune recognition, and/or to their compartmentalization in anatomical sites that are poorly accessible to immune effectors. Recent data from ex vivo studies have led us to propose that reservoir-harboring cells may additionally have been selected for intrinsic resistance to CD8+ T cells, limiting their elimination even in the context of antigen expression. Here, we draw on knowledge from tumor immunoediting to discuss potential mechanisms by which clones of HIV reservoir-harboring cells may resist elimination by CD8+ T cells. The establishment of such parallels may provide a premise for testing therapeutics designed to sensitize tumor cells to immune-mediated elimination as novel approaches aimed at curing HIV infection.
Collapse
Affiliation(s)
- Szu-Han Huang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chase D. McCann
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - Talia M. Mota
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chao Wang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| |
Collapse
|
96
|
Sutton MS, Ellis-Connell A, Balgeman AJ, Barry G, Weiler AM, Hetzel SJ, Zhou Y, Lau-Kilby AW, Mason RD, Biris KK, Mascola JR, Sullivan NJ, Roederer M, Friedrich TC, O'Connor SL. CD8β Depletion Does Not Prevent Control of Viral Replication or Protection from Challenge in Macaques Chronically Infected with a Live Attenuated Simian Immunodeficiency Virus. J Virol 2019; 93:e00537-19. [PMID: 31092584 PMCID: PMC6639280 DOI: 10.1128/jvi.00537-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/11/2019] [Indexed: 11/20/2022] Open
Abstract
We evaluated the contribution of CD8αβ+ T cells to control of live-attenuated simian immunodeficiency virus (LASIV) replication during chronic infection and subsequent protection from pathogenic SIV challenge. Unlike previous reports with a CD8α-specific depleting monoclonal antibody (mAb), the CD8β-specific mAb CD8β255R1 selectively depleted CD8αβ+ T cells without also depleting non-CD8+ T cell populations that express CD8α, such as natural killer (NK) cells and γδ T cells. Following infusion with CD8β255R1, plasma viremia transiently increased coincident with declining peripheral CD8αβ+ T cells. Interestingly, plasma viremia returned to predepletion levels even when peripheral CD8αβ+ T cells did not. Although depletion of CD8αβ+ T cells in the lymph node (LN) was incomplete, frequencies of these cells were 3-fold lower (P = 0.006) in animals that received CD8β255R1 than in those that received control IgG. It is possible that these residual SIV-specific CD8αβ+ T cells may have contributed to suppression of viremia during chronic infection. We also determined whether infusion of CD8β255R1 in the LASIV-vaccinated animals increased their susceptibility to infection following intravenous challenge with pathogenic SIVmac239. We found that 7/8 animals infused with CD8β255R1, and 3/4 animals infused with the control IgG, were resistant to SIVmac239 infection. These results suggest that infusion with CD8β255R1 did not eliminate the protection afforded to LASIV vaccination. This provides a comprehensive description of the impact of CD8β255R1 infusion on the immunological composition in cynomolgus macaques, compared to an isotype-matched control IgG, while showing that the control of LASIV viremia and protection from challenge can occur even after CD8β255R1 administration.IMPORTANCE Studies of SIV-infected macaques that deplete CD8+ T cells in vivo with monoclonal antibodies have provided compelling evidence for their direct antiviral role. These studies utilized CD8α-specific mAbs that target both the major (CD8αβ+) and minor (CD8αα+) populations of CD8+ T cells but additionally deplete non-CD8+ T cell populations that express CD8α, such as NK cells and γδ T cells. In the current study, we administered the CD8β-specific depleting mAb CD8β255R1 to cynomolgus macaques chronically infected with a LASIV to selectively deplete CD8αβ+ T cells without removing CD8αα+ lymphocytes. We evaluated the impact on control of virus replication and protection from pathogenic SIVmac239 challenge. These results underscore the utility of CD8β255R1 for studying the direct contribution of CD8αβ+ T cells in various disease states.
Collapse
Affiliation(s)
- Matthew S Sutton
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabrielle Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott J Hetzel
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yan Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Annie W Lau-Kilby
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin K Biris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
97
|
Das AT, Pasternak AO, Berkhout B. On the generation of the MSD-Ѱ class of defective HIV proviruses. Retrovirology 2019; 16:19. [PMID: 31296234 PMCID: PMC6625037 DOI: 10.1186/s12977-019-0481-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
Antiretroviral therapy (ART) can effectively suppress ongoing HIV replication and block disease progression, but the infection is never cured due to the persistence of a small pool of latently infected cells hosting integrated replication-competent HIV proviruses. However, the vast majority of HIV proviruses in ART-treated patients are replication-incompetent due to a variety of genetic defects. Most defective proviruses (around 90%) contain large internal deletions or are G-to-A hypermutated, resulting in destruction of most if not all viral open reading frames, which is consistent with the idea that cytotoxic T cells (CTLs) effectively remove cells that produce viral antigens. An intriguing subclass of defective proviruses (around 10%) that are consistently detected in such patients carry a small deletion or a point mutation in a relatively precise and well conserved region near the 5ʹ end of the HIV genome, in the area that encodes the major splice donor (MSD) site and the packaging signal Ѱ in the viral RNA genome. Why this subclass of proviruses is defective has never been properly understood. We now propose a mechanistic scenario for how these MSD-Ѱ mutations can prevent viral protein expression. Based on ample results in literature, we argue that MSD inactivation triggers the activity of the 5ʹ-polyadenylation site, resulting in the production of ultra-short non-protein-coding HIV transcripts.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands. .,Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
98
|
Laboratory surrogate markers of residual HIV replication among distinct groups of individuals under antiretroviral therapy. PLoS One 2019; 14:e0217502. [PMID: 31206536 PMCID: PMC6576780 DOI: 10.1371/journal.pone.0217502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Residual HIV-1 replication among individuals under antiretroviral therapy (ART) relates to HIV micro-inflammation. OBJECTIVES To determine the levels of residual HIV replication markers among distinct subgroups of antiretroviral-treated individuals. METHODS One hundred sixteen patients were distributed into 5 treatment groups: first-line suppressive ART with a non-nucleoside analog reverse-transcriptase inhibitor (NNRTI) (n = 26), first-line suppressive ART with boosted protease inhibitors (PI-r) (n = 25), salvage therapy using PI-r (n = 27), salvage therapy with PI-r and raltegravir (n = 22) and virologic failure (n = 16). Episomal and total DNA quantitation was evaluated. ELISA was used for HIV antibody and LPS quantitation. RESULTS Episomal DNA was positive in 26% to 38% of individuals under suppressive ART, and it was higher among individuals experiencing ART virologic failure (p = 0.04). The HIV proviral load was higher among patients with detectable episomal DNA (p = 0.01). Individuals receiving initial PI-r treatment presented lower HIV antibody (p = 0.027) and LPS (p = 0.029) levels than individuals receiving NNRTI. There was a negative correlation between episomal DNA quantitation and the duration of suppressive ART (p = 0.04), CD4+ T-cell count (p = 0.08), and CD8+ T-cell count (p = 0.07). CONCLUSIONS Residual HIV replication has been inferred among individuals under suppressive ART according to episomal DNA detection. Residual replication may decrease with longer periods of suppressive ART and higher levels of CD4+ and CD8+ T cells. The relationship between episomal DNA and total DNA suggests there is a replenishment of the proviral reservoir with impacts on HIV persistence. Lower antibody and LPS levels among patients with initial PI-r ART suggest these regimens may more effectively suppress HIV and have a higher capacity to decrease the HIV antigenic component.
Collapse
|
99
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
100
|
Mothe B, Manzardo C, Sanchez-Bernabeu A, Coll P, Morón-López S, Puertas MC, Rosas-Umbert M, Cobarsi P, Escrig R, Perez-Alvarez N, Ruiz I, Rovira C, Meulbroek M, Crook A, Borthwick N, Wee EG, Yang H, Miró JM, Dorrell L, Clotet B, Martinez-Picado J, Brander C, Hanke T. Therapeutic Vaccination Refocuses T-cell Responses Towards Conserved Regions of HIV-1 in Early Treated Individuals (BCN 01 study). EClinicalMedicine 2019; 11:65-80. [PMID: 31312806 PMCID: PMC6610778 DOI: 10.1016/j.eclinm.2019.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Strong and broad antiviral T-cell responses targeting vulnerable sites of HIV-1 will likely be a critical component for any effective cure strategy. METHODS BCN01 trial was a phase I, open-label, non-randomized, multicenter study in HIV-1-positive individuals diagnosed and treated during early HIV-1 infection to evaluate two vaccination regimen arms, which differed in the time (8 versus 24 week) between the ChAdV63.HIVconsv prime and MVA.HIVconsv boost vaccinations. The primary outcome was safety. Secondary endpoints included frequencies of vaccine-induced IFN-γ+ CD8+ T cells, in vitro virus-inhibitory capacity, plasma HIV-1 RNA and total CD4+ T-cells associated HIV-1 DNA. (NCT01712425). FINDINGS No differences in safety, peak magnitude or durability of vaccine-induced responses were observed between long and short interval vaccination arms. Grade 1/2 local and systemic post-vaccination events occurred in 22/24 individuals and resolved within 3 days. Weak responses to conserved HIV-1 regions were detected in 50% of the individuals before cART initiation, representing median of less than 10% of their total HIV-1-specific T cells. All participants significantly elevated these subdominant T-cell responses, which after MVA.HIVconsv peaked at median (range) of 938 (73-6,805) IFN-γ SFU/106 PBMC, representing on average 58% of their total anti-HIV-1 T cells. The decay in the size of the HIV-1 reservoir was consistent with the first year of early cART initiation in both arms. INTERPRETATION Heterologous prime-boost vaccination with ChAdV63-MVA/HIVconsv was well-tolerated and refocused pre-cART T-cell responses towards more protective epitopes, in which immune escape is frequently associated with reduced HIV-1 replicative fitness and which are common to most global HIV-1 variants. FUNDING HIVACAT Catalan research program for an HIV vaccine and Fundació Gloria Soler. Vaccine manufacture was jointly funded by the Medical Research Council (MRC) UK and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreements (G0701669. RESEARCH IN CONTEXT Evidence Before this Study: T cells play an important role in the control of HIV infection and may be particularly useful for HIV-1 cure by killing cells with reactivated HIV-1. Evidence is emerging that not all T-cell responses are protective and mainly only those targeting conserved regions of HIV-1 proteins are effective, but typically immunologically subdominant, while those recognizing hypervariable, easy-to-escape immunodominant 'decoys' do not control viremia and do not protect from a loss of CD4 T cells. We pioneered a vaccine strategy focusing T-cell responses on the most conserved regions of the HIV-1 proteome using an immunogen designated HIVconsv. T cells elicited by the HIVconsv vaccines in HIV-uninfected UK and Kenyan adults inhibited in vitro replication of HIV-1 isolates from 4 major global clades A, B, C and D.Added Value of this Study: The present study demonstrated the concept that epitopes subdominant in natural infection, when taken out of the context of the whole HIV-1 proteome and presented to the immune system by a potent simian adenovirus prime-poxvirus MVA boost regimen, can induce strong responses in patients on antiretroviral treatment and efficiently refocus HIV-1-specific T-cells to the protective epitopes delivered by the vaccine.Implications of all the Available Evidence: Nearly all HIV-1 vaccine strategies currently emphasize induction of broadly neutralizing Abs. The HIVconsv vaccine is one of a very few approaches focussing exclusively on elicitation of T cells and, therefore, can complement antibody induction for better prevention and cure. Given the cross-clade reach on the HIVconsv immunogen design, if efficient, the HIVconsv vaccines could be deployed globally. Effective vaccines will likely be a necessary component in combination with other available preventive measures for halting the HIV-1/AIDS epidemic.
Collapse
Affiliation(s)
- Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Corresponding author at: IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Crta Canyet s/n, 08916, Badalona, Barcelona, Spain.
| | | | | | - Pep Coll
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | - Miriam Rosas-Umbert
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Patricia Cobarsi
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Roser Escrig
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Perez-Alvarez
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Technical University of Catalonia, Barcelona, Spain
| | - Irene Ruiz
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Cristina Rovira
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Alison Crook
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Edmund G. Wee
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Hongbing Yang
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jose M. Miró
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Lucy Dorrell
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- ICREA, Pg. Luis Companys 23, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- ICREA, Pg. Luis Companys 23, Barcelona, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|