51
|
Miller M, Kludjian G, Mohrien K, Morita K. Decreased isavuconazole trough concentrations in the treatment of invasive aspergillosis in an adult patient receiving extracorporeal membrane oxygenation support. Am J Health Syst Pharm 2022; 79:1245-1249. [PMID: 35377411 PMCID: PMC9305536 DOI: 10.1093/ajhp/zxac043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE We present the case of a 56-year-old man with stage IV sarcoidosis on veno-venous extracorporeal membrane oxygenation (VV-ECMO) support for the management of respiratory failure receiving treatment with isavuconazole for invasive aspergillosis. SUMMARY VV-ECMO is an increasingly utilized life support therapy for patients with cardiac and/or respiratory failure, but its impact on medication dosing is poorly understood. In our patient with invasive Aspergillus infection receiving VV-ECMO, because of difficulty achieving therapeutic serum concentrations of voriconazole, we administered isavuconazole 372 mg intravenously (IV) every 8 hours for 6 doses followed by 372 mg IV once daily. Isavuconazole has a favorable pharmacokinetic and safety profile compared to other azole antifungal agents, but its high protein binding and lipophilicity raise concerns about drug sequestration in the VV-ECMO circuit. To optimize the efficacy and safety of this treatment, the isavuconazole trough concentration was measured at days 5 and 17, at which time it was 1.7 and 0.7 μg/mL, respectively. The dose was subsequently increased to 744 mg IV once daily, and serum trough concentrations were measured 5 and 8 days after dose adjustment, corresponding to 3.7 and 2.9 μg/mL, respectively. To our knowledge, this is the third report to describe inadequate isavuconazole trough concentrations during VV-ECMO support when utilizing standard doses. CONCLUSION In the case described here, standard-dose isavuconazole (372 mg every 8 hours for 6 doses followed by 372 mg daily) did not achieve target trough concentrations in a patient receiving concomitant ECMO support.
Collapse
Affiliation(s)
- Michelle Miller
- Department of Pharmacy, Temple University Hospital, Philadelphia, PA,USA
| | - Geena Kludjian
- Department of Pharmacy, Temple University Hospital, Philadelphia, PA,USA
| | - Kerry Mohrien
- Department of Pharmacy, Temple University Hospital, Philadelphia, PA,USA
| | - Kazumi Morita
- Department of Pharmacy, Temple University Hospital, Philadelphia, PA,USA
| |
Collapse
|
52
|
Population Pharmacokinetics and Dosing Simulations of Ceftriaxone in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation (An ASAP ECMO Study). Clin Pharmacokinet 2022; 61:847-856. [PMID: 35253107 PMCID: PMC9249724 DOI: 10.1007/s40262-021-01106-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
Background Despite the surge in use of extracorporeal membrane oxygenation (ECMO) in the adult intensive care unit, little guidance is available on the appropriate dosing of antimicrobials in this setting. Ceftriaxone is an antimicrobial with a high affinity to plasma protein, a property identified in the literature as susceptible to sequestration into extracorporeal circuits and hypothesised to require dosage adjustments in this setting. Objective The aim of this study was to describe the pharmacokinetics of ceftriaxone and identify the best dosing regimen for critically ill adult patients receiving ECMO. Methods Serial blood samples were taken from patients receiving both ECMO and ceftriaxone. Total and unbound drug concentrations were measured in plasma by chromatographic assay and analysed using a population pharmacokinetic approach with Pmetrics®. Dosing simulations were performed to identify the optimal dosing strategy: 60 and 100% of time with free (unbound) drug concentration exceeding the minimum inhibitory concentration (fT>MIC). Results In total, 14 patients were enrolled, of which three were receiving renal replacement therapy (RRT). Total and unbound ceftriaxone was best described in a two-compartment model with total body weight, serum albumin concentrations, creatinine clearance (CrCL), and the presence of RRT included as significant predictors of pharmacokinetics. Patients not on RRT generated a mean renal clearance of 0.90 L/h, non-renal clearance of 0.33 L/h, and central volume of distribution of 7.94 L. Patients on RRT exhibited a mean total clearance of 1.18 L/h. ECMO variables were not significant predictors of ceftriaxone pharmacokinetics. Steady-state dosing simulations found that dosages of 1 g every 12 h and 2 g every 24 h achieved >90% probabilities of target attainment in patients with CrCL of 0 mL/min with RRT and 30 and 100 mL/min and various serum albumin concentrations (17 and 26 g/L). Conclusions Dosing recommendations for critically ill adult patients not on ECMO appear to be sufficient for patients on ECMO. Patients exhibiting augmented renal clearance (> 130 mL/min) or treatment of less susceptible pathogens may require higher doses, which requires further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-021-01106-x.
Collapse
|
53
|
Gomez F, Veita J, Laudanski K. Antibiotics and ECMO in the Adult Population-Persistent Challenges and Practical Guides. Antibiotics (Basel) 2022; 11:338. [PMID: 35326801 PMCID: PMC8944696 DOI: 10.3390/antibiotics11030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is an emerging treatment modality associated with a high frequency of antibiotic use. However, several covariables emerge during ECMO implementation, potentially jeopardizing the success of antimicrobial therapy. These variables include but are not limited to: the increased volume of distribution, altered clearance, and adsorption into circuit components, in addition to complex interactions of antibiotics in critical care illness. Furthermore, ECMO complicates the assessment of antibiotic effectiveness as fever, or other signs may not be easily detected, the immunogenicity of the circuit affects procalcitonin levels and other inflammatory markers while disrupting the immune system. We provided a review of pharmacokinetics and pharmacodynamics during ECMO, emphasizing practical application and review of patient-, illness-, and ECMO hardware-related factors.
Collapse
Affiliation(s)
- Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65021, USA;
| | - Jesyree Veita
- Society for Healthcare Innovation, Philadelphia, PA 19146, USA;
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19146, USA
- Leonard Davis Institute for HealthCare Economics, University of Pennsylvania, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19146, USA
| |
Collapse
|
54
|
Population Pharmacokinetics of Amikacin in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation. Pharmaceutics 2022; 14:pharmaceutics14020289. [PMID: 35214022 PMCID: PMC8879580 DOI: 10.3390/pharmaceutics14020289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) support leads to complex pharmacokinetic alterations, whereas adequate drug dosing is paramount for efficacy and absence of toxicity in critically ill patients. Amikacin is a major antibiotic used in nosocomial sepsis, especially for these patients. We aimed to describe amikacin pharmacokinetics on V-A ECMO support and to determine relevant variables to improve its dosing. All critically ill patients requiring empirical antimicrobial therapy, including amikacin for nosocomial sepsis supported or not by V-A ECMO, were included in a prospective population pharmacokinetic study. This population pharmacokinetic analysis was built with a dedicated software, and Monte Carlo simulations were performed to identify doses achieving therapeutic plasma concentrations. Thirty-nine patients were included (control n = 15, V-A ECMO n = 24); 215 plasma assays were performed and used for the modeling process. Patients received 29 (24–33) and 32 (30–35) mg/kg of amikacin in control and ECMO groups, respectively. Data were best described by a two-compartment model with first-order elimination. Inter-individual variabilities were observed on clearance, central compartment volume (V1), and peripherical compartment volume (V2). Three significant covariates explained these variabilities: Kidney Disease Improving Global Outcomes (KDIGO) stage on amikacin clearance, total body weight on V1, and ECMO support on V2. Our simulations showed that the adequate dosage of amikacin was 40 mg/kg in KDIGO stage 0 patients, while 25 mg/kg in KDIGO stage 3 patients was relevant. V-A ECMO support had only a secondary impact on amikacin pharmacokinetics, as compared to acute kidney injury.
Collapse
|
55
|
Flinspach AN, Booke H, Zacharowski K, Balaban Ü, Herrmann E, Adam EH. Associated Factors of High Sedative Requirements within Patients with Moderate to Severe COVID-19 ARDS. J Clin Med 2022; 11:588. [PMID: 35160040 PMCID: PMC8837042 DOI: 10.3390/jcm11030588] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus pandemic continues to challenge global healthcare. Severely affected patients are often in need of high doses of analgesics and sedatives. The latter was studied in critically ill coronavirus disease 2019 (COVID-19) patients in this prospective monocentric analysis. COVID-19 acute respiratory distress syndrome (ARDS) patients admitted between 1 April and 1 December 2020 were enrolled in the study. A statistical analysis of impeded sedation using mixed-effect linear regression models was performed. Overall, 114 patients were enrolled, requiring unusual high levels of sedatives. During 67.9% of the observation period, a combination of sedatives was required in addition to continuous analgesia. During ARDS therapy, 85.1% (n = 97) underwent prone positioning. Veno-venous extracorporeal membrane oxygenation (vv-ECMO) was required in 20.2% (n = 23) of all patients. vv-ECMO patients showed significantly higher sedation needs (p < 0.001). Patients with hepatic (p = 0.01) or renal (p = 0.01) dysfunction showed significantly lower sedation requirements. Except for patient age (p = 0.01), we could not find any significant influence of pre-existing conditions. Age, vv-ECMO therapy and additional organ failure could be demonstrated as factors influencing sedation needs. Young patients and those receiving vv-ECMO usually require increased sedation for intensive care therapy. However, further studies are needed to elucidate the causes and mechanisms of impeded sedation.
Collapse
Affiliation(s)
- Armin N. Flinspach
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Frankfurt, 60590 Frankfurt/Main, Germany; (H.B.); (K.Z.); (E.H.A.)
| | - Hendrik Booke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Frankfurt, 60590 Frankfurt/Main, Germany; (H.B.); (K.Z.); (E.H.A.)
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Frankfurt, 60590 Frankfurt/Main, Germany; (H.B.); (K.Z.); (E.H.A.)
| | - Ümniye Balaban
- Department of Biostatistics and Mathematical Modelling, Goethe-University Frankfurt, 60590 Frankfurt/Main, Germany; (Ü.B.); (E.H.)
| | - Eva Herrmann
- Department of Biostatistics and Mathematical Modelling, Goethe-University Frankfurt, 60590 Frankfurt/Main, Germany; (Ü.B.); (E.H.)
| | - Elisabeth H. Adam
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Frankfurt, 60590 Frankfurt/Main, Germany; (H.B.); (K.Z.); (E.H.A.)
| |
Collapse
|
56
|
Torbic H, Hohlfelder B, Krishnan S, Tonelli AR. A Review of Pulmonary Arterial Hypertension Treatment in Extracorporeal Membrane Oxygenation: A Case Series of Adult Patients. J Cardiovasc Pharmacol Ther 2022; 27:10742484211069005. [PMID: 35006031 DOI: 10.1177/10742484211069005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Little data is published describing the use of medications prescribed for pulmonary arterial hypertension (PAH) in patients receiving extracorporeal membrane oxygenation (ECMO). Even though many patients with PAH may require ECMO as a bridge to transplant or recovery, little is reported regarding the use of PAH medications in this setting. METHODS This retrospective case series summarizes the clinical experience of 8 patients with PAH receiving ECMO and reviews medication management in the setting of ECMO. RESULTS Eight PAH patients, 5 of whom were female, ranging in age from 21 to 61 years old, were initiated on ECMO. Veno-arterial (VA) ECMO was used in 4 patients, veno-venous (VV) ECMO and hybrid ECMO configurations in 2 patients respectively. Common indications for ECMO included cardiogenic shock, bridge to transplant, and cardiac arrest. All patients were on intravenous (IV) prostacyclin therapy at baseline. Refractory hypotension was noted in 7 patients of whom 5 patients required downtitration or discontinuation of baseline PAH therapies. Three patients had continuous inhaled epoprostenol added during their time on ECMO. In patients who were decannulated from ECMO, PAH therapies were typically resumed or titrated back to baseline dosages. One patient required no adjustment in PAH therapy while on ECMO. Two patients were not able to be decannulated from ECMO. CONCLUSION The treatment of critically ill PAH patients is challenging given a variety of factors that could affect PAH drug concentrations. In particular, PAH patients on prostacyclin analogues placed on VA ECMO appear to have pronounced systemic vasodilation requiring vasopressors which is alleviated by temporarily reducing the intravenous prostacyclin dose. Patients should be closely monitored for potential need for rapid titrations in prostacyclin therapy to maintain hemodynamic stability.
Collapse
Affiliation(s)
- Heather Torbic
- 2569Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sudhir Krishnan
- Department of Critical Care Medicine, 2569Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Adriano R Tonelli
- Department of Pulmonary and Critical Care Medicine, 2569Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
57
|
Thibault C, Zuppa AF. Dexmedetomidine in Children on Extracorporeal Membrane Oxygenation: Pharmacokinetic Data Exploration Using Previously Published Models. Front Pediatr 2022; 10:924829. [PMID: 35832579 PMCID: PMC9271626 DOI: 10.3389/fped.2022.924829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Dexmedetomidine is a sedative and analgesic increasingly used in children supported with extracorporeal membrane oxygenation (ECMO). No data is available to describe the pharmacokinetics (PK) of dexmedetomidine in this population. METHODS We performed a single-center prospective PK study. Children <18 years old, supported with ECMO, and on a dexmedetomidine infusion as part of their management were prospectively included. PK samples were collected. Dexmedetomidine dosing remained at the discretion of the clinical team. Six population PK models built in pediatrics were selected. Observed concentrations were compared with population predicted concentrations using the PK models. RESULTS Eight children contributed 30 PK samples. None of the PK models evaluated predicted the concentrations with acceptable precision and bias. Four of the six evaluated models overpredicted the concentrations. The addition of a correction factor on clearance improved models' fit. Two of the evaluated models were not applicable to our whole population age range because of their structure. CONCLUSION Most of the evaluated PK models overpredicted the concentrations, potentially indicating increased clearance on ECMO. Population PK models applicable to a broad spectrum of ages and pathologies are more practical in pediatric critical care settings but challenging to develop.
Collapse
Affiliation(s)
- Céline Thibault
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
58
|
Kim YK, Kim HS, Park S, Kim HI, Lee SH, Lee DH. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1353-1364. [PMID: 35224630 PMCID: PMC9047688 DOI: 10.1093/jac/dkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/05/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyoung Soo Kim
- Department of Thoracic and Cardiovascular Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sunghoon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hwan-il Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sun Hee Lee
- Department of Thoracic and Cardiovascular Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Dong-Hwan Lee
- Department of Clinical Pharmacology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
- Corresponding author. E-mail:
| |
Collapse
|
59
|
Wu F, Li M, Zhang Z, Shang J, Guo Y, Li Y. Sedation, Analgesia, and Muscle Relaxation During VV-ECMO Therapy in Patients With Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2): A Single-Center, Retrospective, Observational Study. Front Med (Lausanne) 2021; 8:762740. [PMID: 34977069 PMCID: PMC8718548 DOI: 10.3389/fmed.2021.762740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The pharmacokinetics and pharmacodynamics of ECMO-supported sedative, analgesic, and muscle relaxants have changed, but there are insufficient data to determine the optimal dosing strategies for these agents. Sedation, analgesia and muscle relaxation therapy for patients with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) receiving ECMO support are more specific and have not been fully reported. This study observed and evaluated the use of sedative and analgesic drugs and muscle relaxants in SARS-CoV-2 patients treated with VV-ECMO.Methods: This study was a single-center, retrospective and observational study. Our study includes 8 SARS-CoV-2 patients treated with VV-ECMO in an intensive care unit at Shanghai Public Health Center from February to June 2020. We collected the demographic data from these patients and the dose and course of sedation, analgesia, and muscle relaxants administered during ECMO treatment.Results: The doses of sedative, analgesic and muscle relaxant drugs used in patients with VV-ECMO were significant. Over time, the doses of drugs that were used were increased, and the course of muscle relaxant treatment was extended.Conclusion: Sedation, analgesia, and muscle relaxant use require individualized titration in patients with SARS-CoV-2 who have respiratory failure and who are receiving VV-ECMO.
Collapse
Affiliation(s)
- Fang Wu
- Department of Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mingna Li
- Department of Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhongwei Zhang
- Department of Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiawei Shang
- Department of Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Guo
- Department of Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Yong Guo
| | - Yingchuan Li
- Department of Critical Care Medicine, Tongji University Affiliated Shanghai Tenth People's Hospital, Shanghai, China
- *Correspondence: Yingchuan Li
| |
Collapse
|
60
|
Wohlford GF, Wickramaratne N, Wallace Van Tassell B, Halquist MS, Xu H, Withers CP, Blakey A, Letts H, Blocher C, Mangino M, Quader M. Effect of Extracorporeal Membrane Oxygenation Support on the Plasma Levels of Commonly Utilized Catecholamines. ASAIO J 2021; 67:e204-e206. [PMID: 33587466 DOI: 10.1097/mat.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- George F Wohlford
- From the School of Pharmacy, Department of Pharmacotherapy, Virginia Commonwealth University, Richmond, Virginia
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Niluka Wickramaratne
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Benjamin Wallace Van Tassell
- From the School of Pharmacy, Department of Pharmacotherapy, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew S Halquist
- From the School of Pharmacy, Department of Pharmacotherapy, Virginia Commonwealth University, Richmond, Virginia
| | - Haoxuan Xu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - C Price Withers
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Adam Blakey
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Holly Letts
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Charles Blocher
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Martin Mangino
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Mohammed Quader
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
61
|
Mazzeffi MA, Rao VK, Dodd-O J, Del Rio JM, Hernandez A, Chung M, Bardia A, Bauer RM, Meltzer JS, Satyapriya S, Rector R, Ramsay JG, Gutsche J. Intraoperative Management of Adult Patients on Extracorporeal Membrane Oxygenation: An Expert Consensus Statement From the Society of Cardiovascular Anesthesiologists-Part II, Intraoperative Management and Troubleshooting. Anesth Analg 2021; 133:1478-1493. [PMID: 34559091 DOI: 10.1213/ane.0000000000005733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the second part of the Society of Cardiovascular Anesthesiologists Extracorporeal Membrane Oxygenation (ECMO) working group expert consensus statement, venoarterial (VA) and venovenous (VV) ECMO management and troubleshooting in the operating room are discussed. Expert consensus statements are provided about intraoperative monitoring, anesthetic drug dosing, and management of intraoperative problems in VA and VV ECMO patients.
Collapse
Affiliation(s)
- Michael A Mazzeffi
- From the Department of Anesthesiology and Critical Care Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Vidya K Rao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alton, California
| | - Jeffrey Dodd-O
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jose Mauricio Del Rio
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mabel Chung
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard University School of Medicine, Boston, Massachusetts
| | - Amit Bardia
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Rebecca M Bauer
- Department of Anesthesiology, University of Massachusetts School of Medicine, Worcester, Massachusetts
| | - Joseph S Meltzer
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles School of Medicine, Los Angeles, California
| | - Sree Satyapriya
- Department of Anesthesiology, Ohio State University School of Medicine, Columbus, Ohio
| | - Raymond Rector
- Department of Surgery, Division of Cardiothoracic Surgery, University of Maryland Medical Center, Baltimore, Maryland
| | - James G Ramsay
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Jacob Gutsche
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
62
|
Mazzeffi MA, Rao VK, Dodd-O J, Del Rio JM, Hernandez A, Chung M, Bardia A, Bauer RM, Meltzer JS, Satyapriya S, Rector R, Ramsay JG, Gutsche J. Intraoperative Management of Adult Patients on Extracorporeal Membrane Oxygenation: an Expert Consensus Statement From the Society of Cardiovascular Anesthesiologists- Part II, Intraoperative Management and Troubleshooting. J Cardiothorac Vasc Anesth 2021; 35:3513-3527. [PMID: 34774253 DOI: 10.1053/j.jvca.2021.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael A Mazzeffi
- Department of Anesthesiology and Critical Care Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
| | - Vidya K Rao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alton, California
| | - Jeffrey Dodd-O
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jose Mauricio Del Rio
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mabel Chung
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard University School of Medicine, Boston, Massachusetts
| | - Amit Bardia
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Rebecca M Bauer
- Department of Anesthesiology, University of Massachusetts School of Medicine, Worcester, Massachusetts
| | - Joseph S Meltzer
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles School of Medicine, Los Angeles, California
| | - Sree Satyapriya
- Department of Anesthesiology, Ohio State University School of Medicine, Columbus, Ohio
| | - Raymond Rector
- Department of Surgery, Division of Cardiothoracic Surgery, University of Maryland Medical Center, Baltimore, Maryland
| | - James G Ramsay
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Jacob Gutsche
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
63
|
Population Pharmacokinetics of Meropenem in Critically Ill Korean Patients and Effects of Extracorporeal Membrane Oxygenation. Pharmaceutics 2021; 13:pharmaceutics13111861. [PMID: 34834278 PMCID: PMC8625191 DOI: 10.3390/pharmaceutics13111861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Limited studies have investigated population pharmacokinetic (PK) models and optimal dosage regimens of meropenem for critically ill adult patients using the probability of target attainment, including patients receiving extracorporeal membrane oxygenation (ECMO). A population PK analysis was conducted using non-linear mixed-effect modeling. Monte Carlo simulation was used to determine for how long the free drug concentration was above the minimum inhibitory concentration (MIC) at steady state conditions in patients with various degrees of renal function. Meropenem PK in critically ill patients was described using a two-compartment model, in which glomerular filtration rate was identified as a covariate for clearance. ECMO did not affect meropenem PK. The simulation results showed that the current meropenem dosing regimen would be sufficient for attaining 40%fT>MIC for Pseudomonas aeruginosa at MIC ≤ 4 mg/L. Prolonged infusion over 3 h or a high-dosage regimen of 2 g/8 h was needed for MIC > 2 mg/L or in patients with augmented renal clearance, for a target of 100%fT>MIC or 100%fT>4XMIC. Our study suggests that clinicians should consider prolonged infusion or a high-dosage regimen of meropenem, particularly when treating critically ill patients with augmented renal clearance or those infected with pathogens with decreased in vitro susceptibility, regardless of ECMO support.
Collapse
|
64
|
Zarragoikoetxea I, Pajares A, Moreno I, Porta J, Koller T, Cegarra V, Gonzalez A, Eiras M, Sandoval E, Sarralde J, Quintana-Villamandos B, Vicente Guillén R. Documento de consenso SEDAR/SECCE sobre el manejo de ECMO. CIRUGIA CARDIOVASCULAR 2021. [DOI: 10.1016/j.circv.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
65
|
Population pharmacokinetics of cefepime in critically ill patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Int J Antimicrob Agents 2021; 58:106466. [PMID: 34688834 DOI: 10.1016/j.ijantimicag.2021.106466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study aimed to describe the population pharmacokinetics (PK) of cefepime during extracorporeal membrane oxygenation (ECMO) and through dosing simulations, identify a maximally effective and safe dosing strategy. METHODS Serial cefepime plasma concentrations were measured in patients on ECMO, and data were analysed using a population PK approach with Pmetrics®. Dosing simulations were used to identify the optimal dosing strategy that achieved target trough concentrations (Cmin) of 8-20 mg/L. Six patients were enrolled, of which one was receiving renal replacement therapy. Cefepime was best described in a two-compartment model, with total body weight and creatinine clearance (CrCL) as significant predictors of PK parameters. The mean clearance and central volume of distribution were 2.42 L/h and 15.09 L, respectively. RESULTS Based on simulations, patients with CrCL of 120 mL/min receiving 1 g 8-hourly dosing achieved a 40-44% probability of efficacy (Cmin > 8 mg/L) and 1-6% toxicity (Cmin > 20 mg/L). Patients with CrCL 30 mL/min and 65 mL/min receiving 1 g 12-hourly dosing achieved an 84-92% and 46-53% probability of efficacy and 8-44% and 1-8% probability of toxicity, respectively. Simulations demonstrated a lower probability of efficacy and higher probability of toxicity with decreasing patient weight. CONCLUSION This study reported reduced cefepime clearance in patients receiving ECMO, resulting in an increased risk of cefepime toxicity. To avoid drug accumulation, modified dosing regimens should be used in critically ill patients on ECMO. Clinicians should adopt therapeutic drug monitoring when treating less susceptible organisms and in patients with reduced renal clearance on ECMO.
Collapse
|
66
|
Boeken U, Assmann A, Beckmann A, Schmid C, Werdan K, Michels G, Miera O, Schmidt F, Klotz S, Starck C, Pilarczyk K, Rastan A, Burckhardt M, Nothacker M, Muellenbach R, Zausig Y, Haake N, Groesdonk H, Ferrari M, Buerke M, Hennersdorf M, Rosenberg M, Schaible T, Köditz H, Kluge S, Janssens U, Lubnow M, Flemmer A, Herber-Jonat S, Wessel L, Buchwald D, Maier S, Krüger L, Fründ A, Jaksties R, Fischer S, Wiebe K, Hartog CS, Dzemali O, Zimpfer D, Ruttmann-Ulmer E, Schlensak C, Kelm M, Ensminger S. S3 Guideline of Extracorporeal Circulation (ECLS/ECMO) for Cardiocirculatory Failure. Thorac Cardiovasc Surg 2021; 69:S121-S212. [PMID: 34655070 DOI: 10.1055/s-0041-1735490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Udo Boeken
- Department of Cardiac Surgery, Heinrich-Heine-University Medical School, Duesseldorf, Germany
| | - Alexander Assmann
- Department of Cardiac Surgery, Heinrich-Heine-University Medical School, Duesseldorf, Germany
| | - Andreas Beckmann
- German Society for Thoracic and Cardiovascular Surgery, Langenbeck-Virchow-Haus, Berlin, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Karl Werdan
- Clinic for Internal Medicine III, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Germany
| | - Guido Michels
- Department of Acute and Emergency Care, St Antonius Hospital Eschweiler, Eschweiler, Germany
| | - Oliver Miera
- Department of Congenital Heart Disease-Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Florian Schmidt
- Department of Pediatric Cardiology and Intensive Care Medicine, Medical School Hannover, Hannover, Germany
| | - Stefan Klotz
- Department of Cardiac Surgery, Segeberger Kliniken, Bad Segeberg, Germany
| | - Christoph Starck
- Department of Cardiothoracic and Vascular Surgery, German Heart Centre, Berlin, German
| | - Kevin Pilarczyk
- Department for Intensive Care Medicine, Imland Hospital Rendsburg, Rendsburg, Schleswig-Holstein, Germany
| | - Ardawan Rastan
- Department of Cardiac and Vascular Thoracic Surgery, Philipps-University Hospital Marburg, Marburg, Germany
| | - Marion Burckhardt
- Department of Health Sciences and Management; Baden-Wuerttemberg Cooperative State University (DHBW), Stuttgart, Germany
| | - Monika Nothacker
- Institute for Medical Knowledge Management, Association of the Scientific Medical Societies (AWMF), Universität Marburg, Marburg, Germany
| | - Ralf Muellenbach
- Department of Anaesthesiology and Critical Care Medicine, Campus Kassel of the University of Southampton, Kassel, Germany
| | - York Zausig
- Department of Anesthesiology and Operative Intensive Care Medicine, Aschaffenburg-Alzenau Hospital, Aschaffenburg, Bavaria, Germany
| | - Nils Haake
- Department for Intensive Care Medicine, Imland Hospital Rendsburg, Rendsburg, Schleswig-Holstein, Germany
| | - Heinrich Groesdonk
- Department of Intensive Care Medicine, Helios Clinic Erfurt, Erfurt, Germany
| | - Markus Ferrari
- HSK, Clinic of Internal Medicine I, Helios-Kliniken, Wiesbaden, Germany
| | - Michael Buerke
- Department of Cardiology, Angiology and Intensive Care Medicine, St. Marienkrankenhaus Siegen, Siegen, Germany
| | - Marcus Hennersdorf
- Department of Cardiology, Pneumology, Angiology and Internal Intensive Care Medicine, SLK-Kliniken Heilbronn, Heilbronn, Germany
| | - Mark Rosenberg
- Klinikum Aschaffenburg-Alzenau, Medizinische Klinik 1, Aschaffenburg, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Harald Köditz
- Medical University Children's Hospital, Hannover, Germany
| | - Stefan Kluge
- Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Uwe Janssens
- Medical Clinic and Medical Intensive Care Medicine, St Antonius Hospital, Eschweiler, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Flemmer
- Division of Neonatology, Dr. v. Hauner Children's Hospital and Perinatal Center Munich - Grosshadern, LMU Munich, Munich, Germany
| | - Susanne Herber-Jonat
- Division of Neonatology, Dr. v. Hauner Children's Hospital and Perinatal Center Munich - Grosshadern, LMU Munich, Germany
| | - Lucas Wessel
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Dirk Buchwald
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Sven Maier
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | - Lars Krüger
- Division of Thoracic and Cardiovascular Surgery, Heart- and Diabetescentre NRW, Ruhr-University, Bochum, Germany
| | - Andreas Fründ
- Department of Physiotherapy, Heart- and Diabetescentre NRW, Ruhr-University, Bochum, Germany
| | | | - Stefan Fischer
- Department of Thoracic Surgery and Lung Support, Ibbenbueren General Hospital, Ibbenbueren, Germany
| | - Karsten Wiebe
- Department of Cardiothoracic Surgery, Münster University Hospital, Münster, Germany
| | - Christiane S Hartog
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité Universitätsmedizin Berlin, and Klinik Bavaria, Kreischa
| | - Omer Dzemali
- Department of Cardiac Surgery, Triemli City hospital Zurich, Zurich, Switzerland
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Christian Schlensak
- Department of Cardio-Thoracic and Vascular Surgery, University of Tübingen, Tübingen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Medical School, Duesseldorf, Germany
| | - Stephan Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
67
|
Population pharmacokinetics of vancomycin in critically ill adult patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Antimicrob Agents Chemother 2021; 66:e0137721. [PMID: 34633852 DOI: 10.1128/aac.01377-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our study aimed to describe the population pharmacokinetics (PK) of vancomycin in critically ill patients receiving extracorporeal membrane oxygenation (ECMO), including those receiving concomitant renal replacement therapy (RRT). Dosing simulations were used to recommend maximally effective and safe dosing regimens. Serial vancomycin plasma concentrations were measured and analysed using a population PK approach on Pmetrics®. The final model was used to identify dosing regimens that achieved target exposures of area under the curve (AUC0-24) of 400 - 700 mg·h/L at steady state. Twenty-two patients were enrolled, of which 11 patients received concomitant RRT. In the non-RRT patients, the median creatinine clearance (CrCL) was 75 mL/min and the mean daily dose of vancomycin was 25.5 mg/kg. Vancomycin was well described in a two-compartment model with CrCL, the presence of RRT and total body weight found as significant predictors of clearance and central volume of distribution (Vc). The mean vancomycin renal clearance and Vc were 3.20 L/h and 29.7 L respectively, while the clearance for patients on RRT was 0.15 L/h. ECMO variables did not improve the final covariate model. We found that recommended dosing regimens for critically ill adult patients not on ECMO can be safely and effectively used in those on ECMO. Loading doses of at least 25 mg/kg followed by maintenance doses of 12.5 - 20 mg/kg 12-hourly are associated with a 97 - 98% probability of efficacy and 11 - 12% probability of toxicity, in patients with normal renal function. Therapeutic drug monitoring along with reductions in dosing are warranted for patients with renal impairment and those with concomitant RRT.
Collapse
|
68
|
Zarragoikoetxea I, Pajares A, Moreno I, Porta J, Koller T, Cegarra V, Gonzalez AI, Eiras M, Sandoval E, Aurelio Sarralde J, Quintana-Villamandos B, Vicente Guillén R. SEDAR/SECCE ECMO management consensus document. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2021; 68:443-471. [PMID: 34535426 DOI: 10.1016/j.redare.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/14/2020] [Indexed: 06/13/2023]
Abstract
ECMO is an extracorporeal cardiorespiratory support system whose use has been increased in the last decade. Respiratory failure, postcardiotomy shock, and lung or heart primary graft failure may require the use of cardiorespiratory mechanical assistance. In this scenario perioperative medical and surgical management is crucial. Despite the evolution of technology in the area of extracorporeal support, morbidity and mortality of these patients continues to be high, and therefore the indication as well as the ECMO removal should be established within a multidisciplinary team with expertise in the area. This consensus document aims to unify medical knowledge and provides recommendations based on both the recent bibliography and the main national ECMO implantation centres experience with the goal of improving comprehensive patient care.
Collapse
Affiliation(s)
- I Zarragoikoetxea
- Servicio de Anestesiología y Reanimación, Hospital Universitari i Politècnic La Fe, Valencia, Spain.
| | - A Pajares
- Servicio de Anestesiología y Reanimación, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - I Moreno
- Servicio de Anestesiología y Reanimación, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - J Porta
- Servicio de Anestesiología y Reanimación, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - T Koller
- Servicio de Anestesiología y Reanimación, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - V Cegarra
- Servicio de Anestesiología y Reanimación, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - A I Gonzalez
- Servicio de Anestesiología y Reanimación, Hospital Puerta de Hierro, Madrid, Spain
| | - M Eiras
- Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario de Santiago, La Coruña, Spain
| | - E Sandoval
- Servicio de Cirugía Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
| | - J Aurelio Sarralde
- Servicio de Cirugía Cardiovascular, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - B Quintana-Villamandos
- Servicio de Anestesiología y Reanimación, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - R Vicente Guillén
- Servicio de Anestesiología y Reanimación, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| |
Collapse
|
69
|
de Montmollin E, Timsit JF. How Antibiotics Stewardship Can Be Safely Implemented in Patients with Septic Shock? Semin Respir Crit Care Med 2021; 42:689-697. [PMID: 34544186 DOI: 10.1055/s-0041-1733987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In critically ill patients with sepsis and septic shock, the need for prompt and adequate antibiotic therapy is balanced by the risk of excessive antibiotic exposure that leads to emergence of multidrug-resistant pathogens. As such, antibiotic stewardship programs propose a set of operating rules from antibiotic treatment initiation to de-escalation and finally cessation. In this review, we will describe the rationale for early antibiotic treatment in septic patients, how to optimize initial antibiotic treatment, rules for early treatment discontinuation in pathogen-negative sepsis, and optimal duration of antimicrobial therapy.
Collapse
Affiliation(s)
- Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
70
|
Maharaj AR, Wu H, Zimmerman KO, Muller WJ, Sullivan JE, Sherwin CMT, Autmizguine J, Rathore MH, Hornik CD, Al-Uzri A, Payne EH, Benjamin DK, Hornik CP. Pharmacokinetics of Ceftazidime in Children and Adolescents with Obesity. Paediatr Drugs 2021; 23:499-513. [PMID: 34302290 PMCID: PMC9706343 DOI: 10.1007/s40272-021-00460-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study was to evaluate ceftazidime pharmacokinetics (PK) in a cohort that includes a predominate number of children and adolescents with obesity and assess the efficacy of competing dosing strategies. METHODS A population PK model was developed using opportunistically collected plasma samples. For each dosing strategy, model-based probability of target attainment (PTA) estimates were computed for study participants using empirical Bayes estimates. In addition, the effects of body size and renal function on PTA were evaluated using stochastic model simulations with virtually generated subjects. RESULTS Twenty-nine participants, 24 of whom were obese, contributed data towards the analysis. The median (range) age, body weight, and body mass index of participants were 12.2 years (2.3-20.6), 59.2 kg (8.4-121), and 25.2 kg/m2 (13.8-42.9), respectively. Administration of 50 mg/kg intravenously (IV) every 8 hours (q8h; max 6 g/day) or 40 mg/kg IV q6h (max 6 g/day) resulted in PTA values of ≥ 90% (minimum inhibitory concentration 8 mg/L) for the subset of obese participants with estimated glomerular filtration rates (GFR) ≥ ~ 80 mL/min/1.73 m2. However, for both regimens, stochastic model simulations denoted lower PTA values (< 90%) with increasing body weight for virtual subjects with GFR ≥ 120 mL/min/1.73 m2. Alternatively, permitting for a maximum daily dose of 8 g/day using a 40 mg/kg IV q6h regimen provided PTA values that were near or above target (90%) for virtual subjects between 10 to 120 kg with GFR ≥ 80 mL/min/1.73 m2. CONCLUSION Our analysis suggests administration of 40 mg/kg IV q6h (max 8 g/day) maximizes PTA in children and adolescents with obesity and GFR ≥ 80 mL/min/1.73 m2. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT01431326.
Collapse
Affiliation(s)
- Anil R Maharaj
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
- Duke Clinical Research Institute, Duke University School of Medicine, 300 West Morgan Street, Box 3850, Durham, NC, 27701, USA
| | - Huali Wu
- Duke Clinical Research Institute, Duke University School of Medicine, 300 West Morgan Street, Box 3850, Durham, NC, 27701, USA
| | - Kanecia O Zimmerman
- Duke Clinical Research Institute, Duke University School of Medicine, 300 West Morgan Street, Box 3850, Durham, NC, 27701, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - William J Muller
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University, Chicago, IL, USA
| | - Janice E Sullivan
- Department of Pediatrics, University of Louisville and Norton Children's Hospital, Louisville, KY, USA
| | - Catherine M T Sherwin
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, Dayton, OH, USA
| | - Julie Autmizguine
- Department of Pharmacology and Pediatrics, Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Mobeen H Rathore
- Division of Pediatric Infectious Diseases and Immunology, University of Florida Center for HIV/AIDS Research, Education, and Service, Wolfson Children's Hospital, Jacksonville, FL, USA
| | - Chi D Hornik
- Duke Clinical Research Institute, Duke University School of Medicine, 300 West Morgan Street, Box 3850, Durham, NC, 27701, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Amira Al-Uzri
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | | | - Daniel K Benjamin
- Duke Clinical Research Institute, Duke University School of Medicine, 300 West Morgan Street, Box 3850, Durham, NC, 27701, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Christoph P Hornik
- Duke Clinical Research Institute, Duke University School of Medicine, 300 West Morgan Street, Box 3850, Durham, NC, 27701, USA.
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
71
|
Acute cardiopulmonary failure in a young woman with high-risk gestational trophoblastic neoplasia: A case of induction chemotherapy during extracorporeal membrane oxygenation. Gynecol Oncol Rep 2021; 37:100849. [PMID: 34458540 PMCID: PMC8379276 DOI: 10.1016/j.gore.2021.100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Early use of extracorporeal membrane oxygenation (ECMO) is valuable when pulmonary tumor burden from GTN is high. Induction chemotherapy of cisplatin and etoposide was administered during ECMO successfully. The induction chemotherapy regimen led to exponential decline in beta-HCG after 1 cycle. Collaboration of subspecialists is necessary to treat coexisting malignancy and cardiopulmonary failure associated with GTN.
Collapse
|
72
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano KI, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). J Intensive Care 2021; 9:53. [PMID: 34433491 PMCID: PMC8384927 DOI: 10.1186/s40560-021-00555-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
Affiliation(s)
- Moritoki Egi
- Department of Surgery Related, Division of Anesthesiology, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ku, Kobe, Hyogo, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Medical School, Yamadaoka 2-15, Suita, Osaka, Japan.
| | - Tomoaki Yatabe
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuaki Atagi
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shigeaki Inoue
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Joji Kotani
- Department of Surgery Related, Division of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University, Kanazawa, Japan
| | - Ryosuke Tsuruta
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, Yamagata, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Hosokawa
- Department of Infectious Diseases, Kameda Medical Center, Kamogawa, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Asako Matsushima
- Department of Advancing Acute Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical College, Osaka, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mai Inada
- Member of Japanese Association for Acute Medicine, Tokyo, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Yusuke Kawai
- Department of Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Support and Practice, Hiroshima University Hospital, Hiroshima, Japan
| | - Chikashi Takeda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takero Terayama
- Department of Psychiatry, School of Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Hideki Hashimoto
- Department of Emergency and Critical Care Medicine/Infectious Disease, Hitachi General Hospital, Hitachi, Japan
| | - Kei Hayashida
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoya Hirose
- Emergency and Critical Care Medical Center, Osaka Police Hospital, Osaka, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomoko Fujii
- Intensive Care Unit, Jikei University Hospital, Tokyo, Japan
| | - Shinya Miura
- The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan
| | - Kohkichi Andoh
- Division of Anesthesiology, Division of Intensive Care, Division of Emergency and Critical Care, Sendai City Hospital, Sendai, Japan
| | - Yuki Iida
- Department of Physical Therapy, School of Health Sciences, Toyohashi Sozo University, Toyohashi, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kentaro Ide
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenta Ito
- Department of General Pediatrics, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yusuke Ito
- Department of Infectious Disease, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yu Inata
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Akemi Utsunomiya
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Unoki
- Department of Acute and Critical Care Nursing, School of Nursing, Sapporo City University, Sapporo, Japan
| | - Koji Endo
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Akira Ouchi
- College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Masayuki Ozaki
- Department of Emergency and Critical Care Medicine, Komaki City Hospital, Komaki, Japan
| | - Satoshi Ono
- Gastroenterological Center, Shinkuki General Hospital, Kuki, Japan
| | | | | | - Yusuke Kawamura
- Department of Rehabilitation, Showa General Hospital, Tokyo, Japan
| | - Daisuke Kudo
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Kubo
- Department of Emergency Medicine and Department of Infectious Diseases, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kiyoyasu Kurahashi
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare School of Medicine, Narita, Japan
| | | | - Akira Shimoyama
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Japan
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Motohiro Sekino
- Division of Intensive Care, Nagasaki University Hospital, Nagasaki, Japan
| | - Nozomi Takahashi
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sei Takahashi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- Department of Cardiology, Steel Memorial Muroran Hospital, Muroran, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Goro Tajima
- Nagasaki University Hospital Acute and Critical Care Center, Nagasaki, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Tani
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Asuka Tsuchiya
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Yusuke Tsutsumi
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Takaki Naito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masaharu Nagae
- Department of Intensive Care Medicine, Kobe University Hospital, Kobe, Japan
| | | | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Tetsuro Nishimura
- Department of Traumatology and Critical Care Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shin Nunomiya
- Department of Anesthesiology and Intensive Care Medicine, Division of Intensive Care, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yasuhiro Norisue
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Hasegawa
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Naoki Hara
- Department of Pharmacy, Yokohama Rosai Hospital, Yokohama, Japan
| | - Naoki Higashibeppu
- Department of Anesthesiology and Nutrition Support Team, Kobe City Medical Center General Hospital, Kobe City Hospital Organization, Kobe, Japan
| | - Nana Furushima
- Department of Anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Hirotaka Furusono
- Department of Rehabilitation, University of Tsukuba Hospital/Exult Co., Ltd., Tsukuba, Japan
| | - Yujiro Matsuishi
- Doctoral program in Clinical Sciences. Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Minematsu
- Department of Clinical Engineering, Osaka University Hospital, Suita, Japan
| | - Ryoichi Miyashita
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Miyatake
- Department of Clinical Engineering, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Megumi Moriyasu
- Division of Respiratory Care and Rapid Response System, Intensive Care Center, Kitasato University Hospital, Sagamihara, Japan
| | - Toru Yamada
- Department of Nursing, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuhei Yoshida
- Nursing Department, Osaka General Medical Center, Osaka, Japan
| | - Jumpei Yoshimura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | | | - Hiroshi Yonekura
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Takeshi Wada
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Eizo Watanabe
- Department of Emergency and Critical Care Medicine, Eastern Chiba Medical Center, Togane, Japan
| | - Makoto Aoki
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Kashihara, Japan
| | - Takakuni Abe
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Naoya Iguchi
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masami Ishikawa
- Department of Anesthesiology, Emergency and Critical Care Medicine, Kure Kyosai Hospital, Kure, Japan
| | - Go Ishimaru
- Department of General Internal Medicine, Soka Municipal Hospital, Soka, Japan
| | - Shutaro Isokawa
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Ryuta Itakura
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hisashi Imahase
- Department of Biomedical Ethics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Kyoto, Japan
- Department of Health Informatics, School of Public Health, Kyoto University, Kyoto, Japan
| | | | - Kenji Uehara
- Department of Anesthesiology, National Hospital Organization Iwakuni Clinical Center, Iwakuni, Japan
| | - Noritaka Ushio
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Yuko Egawa
- Advanced Emergency and Critical Care Center, Saitama Red Cross Hospital, Saitama, Japan
| | - Yuki Enomoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshifumi Ohchi
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Takanori Ohno
- Department of Emergency and Critical Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroyuki Ohbe
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | | | - Nobunaga Okada
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Okada
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromu Okano
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jun Okamoto
- Department of ER, Hashimoto Municipal Hospital, Hashimoto, Japan
| | - Hiroshi Okuda
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Ogura
- Tochigi prefectural Emergency and Critical Care Center, Imperial Gift Foundation Saiseikai, Utsunomiya Hospital, Utsunomiya, Japan
| | - Yu Onodera
- Department of Anesthesiology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yuhta Oyama
- Department of Internal Medicine, Dialysis Center, Kichijoji Asahi Hospital, Tokyo, Japan
| | - Motoshi Kainuma
- Anesthesiology, Emergency Medicine, and Intensive Care Division, Inazawa Municipal Hospital, Inazawa, Japan
| | - Eisuke Kako
- Department of Anesthesiology and Intensive Care Medicine, Nagoya-City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hiromi Kato
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiro Kanaya
- Department of Anesthesiology, Sendai Medical Center, Sendai, Japan
| | - Tadashi Kaneko
- Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Keita Kanehata
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Ken-Ichi Kano
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Hiroyuki Kawano
- Department of Gastroenterological Surgery, Onga Hospital, Fukuoka, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Kikuchi
- Department of Emergency and Critical Care Medicine, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sho Kimura
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroyuki Koami
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, USA
| | - Daisuke Kobashi
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Sakai
- Department of General Medicine Shintakeo Hospital, Takeo, Japan
| | - Ayaka Sakamoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tetsuya Sato
- Tohoku University Hospital Emergency Center, Sendai, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery, Graduate school of Medicine, Chiba University, Chiba, Japan
| | - Manabu Shimoto
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Shimoyama
- Department of Pediatric Cardiology and Intensive Care, Gunma Children's Medical Center, Shibukawa, Japan
| | - Tomohisa Shoko
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yoh Sugawara
- Department of Anesthesiology, Yokohama City University, Yokohama, Japan
| | - Atsunori Sugita
- Department of Acute Medicine, Division of Emergency and Critical Care Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Intensive Care, Okayama University Hospital, Okayama, Japan
| | - Yuji Suzuki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Suhara
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Sonota
- Department of Intensive Care Medicine, Miyagi Children's Hospital, Sendai, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Takashima
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Sho Takahashi
- Department of Cardiology, Fukuyama City Hospital, Fukuyama, Japan
| | - Yoko Takahashi
- Department of General Internal Medicine, Koga General Hospital, Koga, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuuki Tanaka
- Fukuoka Prefectural Psychiatric Center, Dazaifu Hospital, Dazaifu, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Taichiro Tsunoyama
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenichi Tetsuhara
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Kentaro Tokunaga
- Department of Intensive Care Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Tomioka
- Department of Anesthesiology and Intensive Care Unit, Todachuo General Hospital, Toda, Japan
| | - Kentaro Tomita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Tominaga
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Mitsunobu Toyosaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukitoshi Toyoda
- Department of Emergency and Critical Care Medicine, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Nagata
- Intensive Care Unit, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Tadashi Nagato
- Department of Respiratory Medicine, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yoshimi Nakamura
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuki Nakamori
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Isao Nahara
- Department of Anesthesiology and Critical Care Medicine, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Hiromu Naraba
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Chihiro Narita
- Department of Emergency Medicine and Intensive Care Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Norihiro Nishioka
- Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoya Nishimura
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Kei Nishiyama
- Division of Emergency and Critical Care Medicine Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Taiki Haga
- Department of Pediatric Critical Care Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshihiro Hagiwara
- Department of Emergency and Critical Care Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Katsuhiko Hashimoto
- Research Associate of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Hatachi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshiaki Hamasaki
- Department of Emergency Medicine, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Takuya Hayashi
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Minoru Hayashi
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Atsuki Hayamizu
- Department of Emergency Medicine, Saitama Saiseikai Kurihashi Hospital, Kuki, Japan
| | - Go Haraguchi
- Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan
| | - Yohei Hirano
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Ryo Fujii
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Center, Imperial Foundation Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Motoki Fujita
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoyuki Fujimura
- Department of Anesthesiology, St. Mary's Hospital, Our Lady of the Snow Social Medical Corporation, Kurume, Japan
| | - Hiraku Funakoshi
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Masahito Horiguchi
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Jun Maki
- Department of Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Naohisa Masunaga
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency Medical Center, Chiba, Japan
| | - Takuya Mayumi
- Department of Internal Medicine, Kanazawa Municipal Hospital, Kanazawa, Japan
| | - Keisuke Minami
- Ishikawa Prefectual Central Hospital Emergency and Critical Care Center, Kanazawa, Japan
| | - Yuya Miyazaki
- Department of Emergency and General Internal Medicine, Saiseikai Kawaguchi General Hospital, Kawaguchi, Japan
| | - Kazuyuki Miyamoto
- Department of Emergency and Disaster Medicine, Showa University, Tokyo, Japan
| | - Teppei Murata
- Department of Cardiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Machi Yanai
- Department of Emergency Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takao Yano
- Department of Critical Care and Emergency Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Yamada
- Department of Emergency Medicine, University of Fukui Hospital, Fukui, Japan
| | - Tomonori Yamamoto
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shodai Yoshihiro
- Pharmaceutical Department, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
73
|
Fuseya H, Yoshimura T, Tsutsumi M, Nakaya Y, Horiuchi M, Yoshida M, Hayashi Y, Nakao T, Inoue T, Yamane T. Extracorporeal Membrane Oxygenation with rituximab-combined chemotherapy in AIDS-associated primary cardiac lymphoma: A case report. Clin Case Rep 2021; 9:e04704. [PMID: 34466258 PMCID: PMC8385253 DOI: 10.1002/ccr3.4704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022] Open
Abstract
Although effective combination of antiretroviral medications is being developed, the incidence of non-Hodgkin lymphoma (NHL) with human immunodeficiency/acquired immunodeficiency syndrome (HIV/AIDS) still remains significantly higher than that in individuals without infection. Primary cardiac lymphoma (PCL) is an NHL that involves the heart and/or the pericardium. PCL is very rare and often causes serious complications, which can be a diagnostic challenge. To our knowledge, no study has reported the measurement of rituximab concentration under venoarterial extracorporeal membrane oxygenation (VA-ECMO). Herein, we report the case of a 54-year-old male patient with AIDS-associated primary cardiac NHL who developed right ventricular outflow tract obstruction. The patient experienced fatigue and dyspnea on exertion. Contrast-enhanced computed tomography showed a bulky tumor mass in his right atrium and ventricle, and an echocardiogram revealed severe hypokinesis of his heart and poor cardiac output. A biopsy was performed, and immunohistochemistry revealed diffuse large B-cell lymphoma. Therefore, he was treated with rituximab-combined chemotherapy under VA-ECMO. Blood levels of rituximab were measured during chemotherapy with VA-ECMO. Thereafter, he was temporarily discharged from the hospital. This clinical case suggests that VA-ECMO and rituximab-combined chemotherapy are useful in rescuing patients with severe cardiopulmonary failure due to AIDS-associated PCL.
Collapse
Affiliation(s)
- Hoyuri Fuseya
- Department of HematologyOsaka City General HospitalOsakaJapan
| | | | - Minako Tsutsumi
- Department of HematologyOsaka City General HospitalOsakaJapan
| | - Yosuke Nakaya
- Department of HematologyOsaka City General HospitalOsakaJapan
| | - Mirei Horiuchi
- Department of HematologyOsaka City General HospitalOsakaJapan
| | | | - Yoshiki Hayashi
- Department of HematologyOsaka City General HospitalOsakaJapan
| | - Takafumi Nakao
- Department of HematologyOsaka City General HospitalOsakaJapan
| | - Takeshi Inoue
- Department of PathologyOsaka City General HospitalOsakaJapan
| | - Takahisa Yamane
- Department of HematologyOsaka City General HospitalOsakaJapan
| |
Collapse
|
74
|
Li Y, Wang L, Zhang J, Han H, Liu H, Li C, Guo H, Chen Y, Chen X. Oseltamivir Improved Thrombocytopenia During Veno-Arterial Extracorporeal Membrane Oxygenation in Adults With Refractory Cardiac Failure: A Single-Center Retrospective Real-World Study. Front Cardiovasc Med 2021; 8:645867. [PMID: 34381822 PMCID: PMC8349981 DOI: 10.3389/fcvm.2021.645867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Severe thrombocytopenia is a common complication of extracorporeal membrane oxygenation (ECMO). Oseltamivir can be used to treat infection-associated thrombocytopenia. Objective: To evaluate the effect of oseltamivir on attenuating severe thrombocytopenia during ECMO. Methods: This was a single-center real-world study in critically ill patients supported with venous-arterial extracorporeal membrane oxygenation (VA-ECMO). Patients suspected or confirmed with influenza received oseltamivir according to the Chinese guidelines. Thrombocytopenia and survival were compared between the oseltamivir-treated and untreated group. The factors associated with survival were analyzed by multivariable Cox analysis. Results: A total of 82 patients were included. All patients developed thrombocytopenia after initiating VA-ECMO. Twenty-three patients received oseltamivir (O+ group), and 59 did not use oseltamivir (O− group). During the first 8 days after VA-ECMO initiation, the platelet count in the O+ group was higher than that in the O− group (all P < 0.05). The patients in the O+ group had a higher median nadir platelet count (77,000/μl, 6,000–169,000/μl) compared with the O− group (49,000/μl, 2,000–168,000/μl; P = 0.04). A nadir platelet count of <50,000/μl was seen in 26% of the patients in the O+ group, compared with 53% in the O− group (P = 0.031). No significant difference in survival from cardiac failure was seen between the O+ and O− group (48 vs. 56%, P = 0.508). The Sequential Organ Failure Assessment (SOFA) score on initiation of VA-ECMO were independently associated with survival (OR = 1.12, 95% confidence interval (95% CI): 1.02–1.22, P = 0.015). Conclusions: Oseltamivir could ameliorate VA-ECMO-related thrombocytopenia. These findings suggested the prophylactic potential of oseltamivir on severe thrombocytopenia associated with the initiation of VA-ECMO.
Collapse
Affiliation(s)
- Yuan Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Lin Wang
- Qilu Hospital, Shandong University, Jinan, China
| | | | - Hui Han
- Qilu Hospital, Shandong University, Jinan, China
| | - Han Liu
- Qilu Hospital, Shandong University, Jinan, China
| | - Chaoyang Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Haipeng Guo
- Qilu Hospital, Shandong University, Jinan, China
| | - Yuguo Chen
- Qilu Hospital, Shandong University, Jinan, China
| | - Xiaomei Chen
- Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
75
|
Van Daele R, Brüggemann RJ, Dreesen E, Depuydt P, Rijnders B, Cotton F, Fage D, Gijsen M, Van Zwam K, Debaveye Y, Wauters J, Spriet I. Pharmacokinetics and target attainment of intravenous posaconazole in critically ill patients during extracorporeal membrane oxygenation. J Antimicrob Chemother 2021; 76:1234-1241. [PMID: 33517360 DOI: 10.1093/jac/dkab012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Posaconazole is an antifungal drug used for prophylaxis and treatment of invasive fungal infections. Severe influenza has been identified as a risk factor for invasive pulmonary aspergillosis in critically ill patients. In this population, extracorporeal membrane oxygenation (ECMO) is used as rescue therapy, although little is known about the pharmacokinetics (PK) of posaconazole during ECMO. OBJECTIVES To determine the PK and target attainment of six patients treated with IV posaconazole under ECMO and to develop a population PK model that can be used to simulate the PTA. METHODS Critically ill patients treated with posaconazole and ECMO were included in this study. Plasma samples were collected at several timepoints within one dosing interval on two occasions: an early (Day 2-3) and a late (Day 4-7) sampling day. Daily trough concentrations were measured. RESULTS The median (IQR) AUC0-24, CL and Vd were 34.3 (28.3-37.7) mg·h/L, 8.7 (8.0-10.6) L/h and 389 (314-740) L, if calculated with non-compartmental analysis based on the observed concentrations. All measured trough concentrations were ≥0.7 mg/L and 11/16 were ≥1 mg/L, which are the haematological thresholds for prophylaxis and treatment of invasive aspergillosis, respectively. The targeted PTA (>90%) was attained for prophylaxis but not for treatment. CONCLUSIONS ECMO does not appear to influence posaconazole exposure compared with haematology patients. However, some trough levels were below the lower limit for treatment. An a priori dose adjustment does not appear to be necessary but drug monitoring is recommended.
Collapse
Affiliation(s)
- Ruth Van Daele
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Roger J Brüggemann
- Department of Pharmacy and Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen and Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Depuydt
- Department of Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Bart Rijnders
- Department of Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frédéric Cotton
- Department of Clinical Chemistry, LHUB-ULB, Erasme Hospital and, Université Libre de Bruxelles, Bruxelles, Belgium
| | - David Fage
- Department of Clinical Chemistry, LHUB-ULB, Erasme Hospital and, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Matthias Gijsen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Kenny Van Zwam
- Department of Perfusion, University Hospitals Leuven, Leuven, Belgium
| | - Yves Debaveye
- Intensive Care Unit, University Hospitals Leuven and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven and Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
76
|
Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021; 9:microorganisms9071401. [PMID: 34203510 PMCID: PMC8305961 DOI: 10.3390/microorganisms9071401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
A fundamental step in the successful management of sepsis and septic shock is early empiric antimicrobial therapy. However, for this to be effective, several decisions must be addressed simultaneously: (1) antimicrobial choices should be adequate, covering the most probable pathogens; (2) they should be administered in the appropriate dose, (3) by the correct route, and (4) using the correct mode of administration to achieve successful concentration at the infection site. In critically ill patients, antimicrobial dosing is a common challenge and a frequent source of errors, since these patients present deranged pharmacokinetics, namely increased volume of distribution and altered drug clearance, which either increased or decreased. Moreover, the clinical condition of these patients changes markedly over time, either improving or deteriorating. The consequent impact on drug pharmacokinetics further complicates the selection of correct drug schedules and dosing during the course of therapy. In recent years, the knowledge of pharmacokinetics and pharmacodynamics, drug dosing, therapeutic drug monitoring, and antimicrobial resistance in the critically ill patients has greatly improved, fostering strategies to optimize therapeutic efficacy and to reduce toxicity and adverse events. Nonetheless, delivering adequate and appropriate antimicrobial therapy is still a challenge, since pathogen resistance continues to rise, and new therapeutic agents remain scarce. We aim to review the available literature to assess the challenges, impact, and tools to optimize individualization of antimicrobial dosing to maximize exposure and effectiveness in critically ill patients.
Collapse
|
77
|
Jaruratanasirikul S, Boonpeng A, Nawakitrangsan M, Samaeng M. NONMEM population pharmacokinetics and Monte Carlo dosing simulations of imipenem in critically ill patients with life-threatening severe infections during support with or without extracorporeal membrane oxygenation in an intensive care unit. Pharmacotherapy 2021; 41:572-597. [PMID: 34080708 DOI: 10.1002/phar.2597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
STUDY OBJECTIVES The objectives of this study were (i) to determine the population pharmacokinetic (PK) of imipenem in critically ill patients with life-threatening severe infections, (ii) to investigate the impact of extracorporeal membrane oxygenation (ECMO) on the population PK of imipenem during support with ECMO compared to those without ECMO support, and (iii) to assess the probability of target attainment (PTA) for finding the optimal dosage regimens of imipenem in critically ill patients with life-threatening severe infections. DESIGN Open-label, PK study. SETTING Academic tertiary care medical center. PATIENTS Fifty critically ill patients with or without ECMO by pooling data from previously published studiesand unpublished data from 14 patients. INTERVENTION AND MEASUREMENTS The population PK of imipenem was determined using NONMEM and a Monte Carlo simulation was performed to determine the PTAs of achieving 40% and 75% exposure times during which the plasma drug concentrations remained above the MIC. MAIN RESULTS The values of volume of distribution and total clearance were 30.5 L and 13.3 L/h, respectively. The ECMO circuit did not show a significant influence on the PK parameters of imipenem. For pathogens with a MIC of 4 mg/L, the PTA target of 75% fT>MIC in patients with normal renal function was achieved when the imipenem was administered by a 4-h infusion of 1 g q6h. CONCLUSION The ECMO circuit had little effect on enhancing the PK changes of imipenem that had already occurred in these patients. A high dosage of imipenem may be required for achieving the PK/pharmacodynamic targets against less susceptible pathogens, however, the dosage regimens in patients with renal impairment may not need to be as high as those required in patients with normal renal function. ClinicalTrials.gov: NCT03858387.
Collapse
Affiliation(s)
- Sutep Jaruratanasirikul
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Apinya Boonpeng
- School of Pharmaceutical Sciences, University of Phayao, Muang, Thailand
| | - Monchana Nawakitrangsan
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Maseetoh Samaeng
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
78
|
Suk P, Šrámek V, Čundrle I. Extracorporeal Membrane Oxygenation Use in Thoracic Surgery. MEMBRANES 2021; 11:membranes11060416. [PMID: 34072713 PMCID: PMC8227574 DOI: 10.3390/membranes11060416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022]
Abstract
This narrative review is focused on the application of extracorporeal membrane oxygenation (ECMO) in thoracic surgery, exclusive of lung transplantation. Although the use of ECMO in this indication is still rare, it allows surgery to be performed in patients where conventional ventilation is not feasible-especially in single lung patients, sleeve lobectomy or pneumonectomy and tracheal or carinal reconstructions. Comparisons with other techniques, various ECMO configurations, the management of anticoagulation, anesthesia, hypoxemia during surgery and the use of ECMO in case of postoperative respiratory failure are reviewed and supported by two cases of perioperative ECMO use, and an overview of published case series.
Collapse
Affiliation(s)
- Pavel Suk
- International Clinical Research Center, St. Anne’s University Hospital Brno, 65691 Brno, Czech Republic
- Department of Anesthesiology and Intensive Care, St. Anne’s University Hospital Brno, 65691 Brno, Czech Republic;
- Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (P.S.); (I.Č.J.)
| | - Vladimír Šrámek
- Department of Anesthesiology and Intensive Care, St. Anne’s University Hospital Brno, 65691 Brno, Czech Republic;
- Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Ivan Čundrle
- International Clinical Research Center, St. Anne’s University Hospital Brno, 65691 Brno, Czech Republic
- Department of Anesthesiology and Intensive Care, St. Anne’s University Hospital Brno, 65691 Brno, Czech Republic;
- Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (P.S.); (I.Č.J.)
| |
Collapse
|
79
|
Hydromorphone Compared to Fentanyl in Patients Receiving Extracorporeal Membrane Oxygenation. ASAIO J 2021; 67:443-448. [PMID: 33770000 DOI: 10.1097/mat.0000000000001253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fentanyl is commonly used in critically ill patients receiving extracorporeal membrane oxygenation (ECMO). Fentanyl's lipophilicity and protein binding may contribute to a sequestration of the drug in the ECMO circuit. Hydromorphone lacks these characteristics potentially leading to a more predictable drug delivery and improved pain and sedation management among ECMO patients. This study compared hydromorphone to fentanyl in patients receiving ECMO. This retrospective study included adult patients receiving ECMO for ≥48 hours. Patients were excluded if they required neuromuscular blockade, received both fentanyl and hydromorphone during therapy, or had opioid use before hospitalization. Baseline characteristics included patient demographics, ECMO indication and settings, and details regarding mechanical ventilation. The primary outcome was opioid requirements at 48 hours post cannulation described in morphine milligram equivalent (MME). Secondary endpoints included 24-hour opioid requirements, concurrent sedative use, and differences in pain and sedation scores. No differences were noted between the patients receiving fentanyl (n = 32) or hydromorphone (n = 20). Patients receiving hydromorphone required lower MME compared to fentanyl at 24 hours (88 [37-121] vs. 131 [137-227], p < 0.01) and 48 hours (168 [80-281] vs. 325 [270-449], p < 0.01). The proportion of within-goal pain and sedation scores between groups was similar at 24 and 48 hours. Sedative requirements did not differ between the groups. Patients receiving hydromorphone required less MME compared to fentanyl without any differences in sedative requirements, or agitation-sedation scores at 48 hours. Prospective studies should be completed to validate these findings.
Collapse
|
80
|
Wang J, Huang J, Hu W, Cai X, Hu W, Zhu Y. Risk factors and prognosis of nosocomial pneumonia in patients undergoing extracorporeal membrane oxygenation: a retrospective study. J Int Med Res 2021; 48:300060520964701. [PMID: 33086927 PMCID: PMC7585896 DOI: 10.1177/0300060520964701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective We aimed to examine the risk factors and prognosis of nosocomial pneumonia (NP) during extracorporeal membrane oxygenation (ECMO). Methods We retrospectively analyzed data of patients who received ECMO at the Affiliated Hangzhou Hospital of Nanjing Medical University between January 2013 and August 2019. The primary outcome was the survival-to-discharge rate. Results Sixty-nine patients who received ECMO were enrolled, median age 42 years and 26 (37.7%) women; 14 (20.3%) patients developed NP. The NP incidence was 24.7/1000 ECMO days. Patients with NP had a higher proportion receiving veno-venous (VV) ECMO (50% vs. 7.3%); longer ECMO support duration (276 vs. 140 hours), longer ventilator support duration before ECMO weaning (14.5 vs. 6 days), lower ECMO weaning success rate (50.0% vs. 81.8%), and lower survival-to-discharge rate (28.6% vs. 72.7%) than patients without NP. Multivariable analysis showed independent risk factors that predicted NP during ECMO were ventilator support duration before ECMO weaning (odds ratio [OR] = 1.288; 95% confidence interval [CI]: 1.111–1.494) and VV ECMO mode (OR = 10.970; 95% CI: 1.758–68.467). Conclusion NP during ECMO was associated with ventilator support duration before ECMO weaning and VV ECMO mode. Clinicians should shorten the respiratory support duration for patients undergoing ECMO to prevent NP.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Critical Care Medicine, The Affiliated Hangzhou Hospital of Nanjing Medical University, Zhejiang, China
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Zhejiang, China
| | - Wei Hu
- Department of Critical Care Medicine, The Affiliated Hangzhou Hospital of Nanjing Medical University, Zhejiang, China
| | - Xueying Cai
- Department of Critical Care Medicine, The Affiliated Hangzhou Hospital of Nanjing Medical University, Zhejiang, China
| | - Weihang Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Zhejiang, China
| | - Ying Zhu
- Department of Critical Care Medicine, The Affiliated Hangzhou Hospital of Nanjing Medical University, Zhejiang, China
| |
Collapse
|
81
|
Chiarini G, Cho SM, Whitman G, Rasulo F, Lorusso R. Brain Injury in Extracorporeal Membrane Oxygenation: A Multidisciplinary Approach. Semin Neurol 2021; 41:422-436. [PMID: 33851392 DOI: 10.1055/s-0041-1726284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) represents an established technique to provide temporary cardiac and/or pulmonary support. ECMO, in veno-venous, veno-arterial or in extracorporeal carbon dioxide removal modality, is associated with a high rate of brain injuries. These complications have been reported in 7 to 15% of adults and 20% of neonates, and are associated with poor survival. Thromboembolic events, loss of cerebral autoregulation, alteration of the blood-brain barrier, and hemorrhage related to anticoagulation represent the main causes of severe brain injury during ECMO. The most frequent forms of acute neurological injuries in ECMO patients are intracranial hemorrhage (2-21%), ischemic stroke (2-10%), seizures (2-6%), and hypoxic-ischemic brain injury; brain death may also occur in this population. Other frequent complications are infarction (1-8%) and cerebral edema (2-10%), as well as neuropsychological and psychiatric sequelae, including posttraumatic stress disorder.
Collapse
Affiliation(s)
- Giovanni Chiarini
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Division of Anesthesiology, Intensive Care and Emergency Medicine, Spedali Civili University, Affiliated Hospital of Brescia, Brescia, Italy
| | - Sung-Min Cho
- Departments of Neurology, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Glenn Whitman
- Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank Rasulo
- Division of Anesthesiology, Intensive Care and Emergency Medicine, Spedali Civili University, Affiliated Hospital of Brescia, Brescia, Italy
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
82
|
Kapoor PM, Sharan S, Choudhury M. TIVA for ECMO and VAD. JOURNAL OF CARDIAC CRITICAL CARE TSS 2021. [DOI: 10.1055/s-0041-1728228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn recent decades, the use of temporary and permanent use of mechanical assist devices is on the rise for patients with end-stage cardiac failure. These support strategies hold inherently different risks in the face of noncardiac critical illness and require multidisciplinary treatment strategies. The main issues with all mechanical devices whether extracorporeal membrane oxygenation (ECMO) or ventricular assist device (VAD), are related to thrombosis, anticoagulation, infection, avoiding hypertension and thus use of intravenous drugs, which requires intense monitoring, to circumvent further renal, ischemic or neurological injury and prevent complication.
Collapse
Affiliation(s)
| | - Sandeep Sharan
- Department of Cardiac Anaesthesia, CTC, AIIMS, New Delhi, India
| | | |
Collapse
|
83
|
Jayaram R. Analgesia and Sedation in Critically Ill Adult Patients Admitted to a COVID-19 Intensive Care Unit. JOURNAL OF CARDIAC CRITICAL CARE TSS 2021. [DOI: 10.1055/s-0041-1726172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the COVID-19 has spread globally, prompting world health organization (WHO) to declare COVID-19 a pandemic. As of January 2, 2021, about 82,579,768 laboratory-confirmed COVID-19 cases had been reported to the WHO with 1,818,849 deaths (https://covid19.who.int). The pandemic has severely impacted health care systems around the world, resulting in a vast number of surgical procedures being cancelled or postponed and an unprecedented burden on intensive care units (ICU). A critical component of the perioperative or ICU services delivery is the provision of analgesia and sedation. Volatile inhalational anesthetics combined with opioids are widely used in an operating room, whereas in ICUs, intravenous drugs are used for this purpose. Although target-controlled infusions are not routinely used in ICUs, in the context of the thematic series on total intravenous anesthesia during COVID-19 pandemic, this article will focus on key aspects of intravenous sedation and analgesia in the management of critically ill patients admitted to an ICU following positive swab test for SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Raja Jayaram
- Department of Adult Intensive Care Medicine and Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
84
|
Shoskes A, Whitman G, Cho SM. Neurocritical Care of Mechanical Circulatory Support Devices. Curr Neurol Neurosci Rep 2021; 21:20. [PMID: 33694065 DOI: 10.1007/s11910-021-01107-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Mechanical circulatory support (MCS) devices have demonstrated improved survival outcomes in otherwise refractory cardiopulmonary failure but are associated with significant neurologic morbidity and mortality. This review aims to characterize MCS-associated brain injury and discuss the neurocritical care of this population. RECENT FINDINGS We found no practice guidelines or specific management strategies for the neurocritical care of patients with MCS devices. Acute brain injury was commonly observed in short-term and durable MCS devices. There is emerging evidence that a standardized neurological monitoring and management algorithm for MCS device-associated brain injury is feasible and potentially improves neurological outcomes. While MCS devices are associated with significant neurologic morbidity and mortality, there is scant evidence regarding optimal neuromonitoring and neurocritical care. With the increase in use of MCS devices for both short-term and durable applications, improved outcomes will depend on early identification and intervention of neurologic complications and further research into their pathophysiology.
Collapse
Affiliation(s)
- Aaron Shoskes
- Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Glenn Whitman
- Division of Cardiac Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Sung-Min Cho
- Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Division of Neuroscience Critical Care, Johns Hopkins University, 600 N. Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA.
| |
Collapse
|
85
|
Prospective Cohort Study of Population Pharmacokinetics and Pharmacodynamic Target Attainment of Vancomycin in Adults on Extracorporeal Membrane Oxygenation. Antimicrob Agents Chemother 2021; 65:AAC.02408-20. [PMID: 33257444 DOI: 10.1128/aac.02408-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to develop a population pharmacokinetics (PK) model for vancomycin and to evaluate its pharmacodynamic target attainment in adults on extracorporeal membrane oxygenation (ECMO). After a single 1,000-mg dose of vancomycin, samples were collected 9 times per patient prospectively. A population PK model was developed using a nonlinear mixed-effect model. The probability of target attainment (PTA) of vancomycin was evaluated for various dosing strategies using Monte Carlo simulation. The ratio of the area under the vancomycin concentration-time curve at steady state over 24 h to the MIC (AUC/MIC ratio) was investigated by applying the vancomycin breakpoint distribution of MICs for methicillin-resistant Staphylococcus aureus A total of 22 adult patients with 194 concentration measurements were included. The population PK was best described by a three-compartment model with a proportional residual error model. Vancomycin clearance and steady-state volume of distribution were 4.01 liters/h (0.0542 liters/h/kg) and 29.6 liters (0.400 liters/kg), respectively. If the treatment target AUC/MIC value was only ≥400, a total daily dose of 3 to 4 g would be optimal (PTA of ≥90%) for patients with normal renal function (estimated glomerular filtration rate [eGFR] = 60 to 120 ml/min/1.73 m2) when the MIC was presumed to be 1 mg/liter. However, AUC/MIC values of 400 to 600 were difficult to attain with any dosing strategy regardless of MIC and eGFR. Thus, it is hard to achieve efficacy and safety targets in patients on ECMO using the population dosing approach with Monte Carlo simulations, and therapeutic drug monitoring should be implemented in these patients.
Collapse
|
86
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano K, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Acute Med Surg 2021; 8:e659. [PMID: 34484801 PMCID: PMC8390911 DOI: 10.1002/ams2.659] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
|
87
|
Paccaud P, Dechamps M, Jacquet L. Feasibility of sedation with sevoflurane inhalation via AnaConDa for Covid-19 patients under venovenous extracorporeal membrane oxygenation. ACTA ANAESTHESIOLOGICA BELGICA 2020. [DOI: 10.56126/71.4.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Critical care centers around the world have faced a shortage of intravenous sedatives caused by the coronavirus pandemic. Many patients infected with SARS-CoV-2 virus develop severe Acute Respiratory Distress syndrome (ARDS) for which some of them are supported by extra corporeal membrane oxygenation. Under these circumstances, the pharmacokinetics of the sedatives is modified. We observed that many of our COVID-19 infected patients receiving Extracorporeal Membrane Oxygenator (ECMO) require high doses of intravenous drugs. Continuous sedation with halogenated gases in the intensive care unit has shown many benefits on systemic inflammation and offers the possibility of a rapid recovery of consciousness. In this article we describe 3 cases that show the feasibility of sedation with sevoflurane via AnaConDa (Sedana Medical AB, Danderyd, Sweden) for Covid-19 patients under ECMO. Halogenated drugs could be considered as an interesting alternative to intravenous sedatives especially in the context of drug shortage.
Collapse
|
88
|
Pharmacokinetics and Monte Carlo Dosing Simulations of Imipenem in Critically Ill Patients with Life-Threatening Severe Infections During Support with Extracorporeal Membrane Oxygenation. Eur J Drug Metab Pharmacokinet 2020; 45:735-747. [PMID: 32886347 PMCID: PMC7471576 DOI: 10.1007/s13318-020-00643-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Extracorporeal membrane oxygenation (ECMO), a cardiopulmonary bypass device, has been found to increase the profound pathophysiological changes associated with life-threatening severe infections in patients with multiple comorbidities, which results in alterations of pharmacokinetic patterns for antibiotics. Objectives The aims of this study were (1) to determine the pharmacokinetics of imipenem and (2) to assess the probability of target attainment (PTA) for imipenem in critically ill patients with life-threatening severe infections during support with ECMO. Methods The pharmacokinetic studies were carried out following administration of 0.5 g of imipenem every 6 h on the 4th dose of drug administration in 10 patients and a Monte Carlo simulation was performed to determine the PTA of achieving 40% exposure time during which the plasma drug concentrations remained above minimum inhibitory concentration (T > MIC) and 80% T > MIC. Results The median values of volume of distribution and total clearance (CL) of imipenem in these patients were 13.98 L and 9.78 L/h, respectively. A high PTA (≥ 90%) for a target of 80% with a MIC of 4 μg/mL in patients with CLCR 60–120 mL/min and flow rate of ECMO circuit 3–5.5 L/min was observed when imipenem was administered by a 4-h infusion of 1 g every 6 h. Conclusions A high dosage regimen such as 1 g every 6 h of imipenem may be required to achieve pharmacodynamic targets against less susceptible pathogens in this patient population. ClinicalTrial.gov Identifier NCT03776305, date of registration: 11 December 2018. Electronic supplementary material The online version of this article (10.1007/s13318-020-00643-3) contains supplementary material, which is available to authorized users.
Collapse
|
89
|
Abstract
Pulmonary infection is one of the main complications occurring in patients suffering from acute respiratory distress syndrome (ARDS). Besides traditional risk factors, dysregulation of lung immune defenses and microbiota may play an important role in ARDS patients. Prone positioning does not seem to be associated with a higher risk of pulmonary infection. Although bacteria associated with ventilator-associated pneumonia (VAP) in ARDS patients are similar to those in patients without ARDS, atypical pathogens (Aspergillus, herpes simplex virus and cytomegalovirus) may also be responsible for infection in ARDS patients. Diagnosing pulmonary infection in ARDS patients is challenging, and requires a combination of clinical, biological and microbiological criteria. The role of modern tools (e.g., molecular methods, metagenomic sequencing, etc.) remains to be evaluated in this setting. One of the challenges of antimicrobial treatment is antibiotics diffusion into the lungs. Although targeted delivery of antibiotics using nebulization may be interesting, their place in ARDS patients remains to be explored. The use of extracorporeal membrane oxygenation in the most severe patients is associated with a high rate of infection and raises several challenges, diagnostic issues and pharmacokinetics/pharmacodynamics changes being at the top. Prevention of pulmonary infection is a key issue in ARDS patients, but there is no specific measure for these high-risk patients. Reinforcing preventive measures using bundles seems to be the best option.
Collapse
|
90
|
Analgesia and sedation in patients with ARDS. Intensive Care Med 2020; 46:2342-2356. [PMID: 33170331 PMCID: PMC7653978 DOI: 10.1007/s00134-020-06307-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is one of the most demanding conditions in an Intensive Care Unit (ICU). Management of analgesia and sedation in ARDS is particularly challenging. An expert panel was convened to produce a "state-of-the-art" article to support clinicians in the optimal management of analgesia/sedation in mechanically ventilated adults with ARDS, including those with COVID-19. Current ICU analgesia/sedation guidelines promote analgesia first and minimization of sedation, wakefulness, delirium prevention and early rehabilitation to facilitate ventilator and ICU liberation. However, these strategies cannot always be applied to patients with ARDS who sometimes require deep sedation and/or paralysis. Patients with severe ARDS may be under-represented in analgesia/sedation studies and currently recommended strategies may not be feasible. With lightened sedation, distress-related symptoms (e.g., pain and discomfort, anxiety, dyspnea) and patient-ventilator asynchrony should be systematically assessed and managed through interprofessional collaboration, prioritizing analgesia and anxiolysis. Adaptation of ventilator settings (e.g., use of a pressure-set mode, spontaneous breathing, sensitive inspiratory trigger) should be systematically considered before additional medications are administered. Managing the mechanical ventilator is of paramount importance to avoid the unnecessary use of deep sedation and/or paralysis. Therefore, applying an "ABCDEF-R" bundle (R = Respiratory-drive-control) may be beneficial in ARDS patients. Further studies are needed, especially regarding the use and long-term effects of fast-offset drugs (e.g., remifentanil, volatile anesthetics) and the electrophysiological assessment of analgesia/sedation (e.g., electroencephalogram devices, heart-rate variability, and video pupillometry). This review is particularly relevant during the COVID-19 pandemic given drug shortages and limited ICU-bed capacity.
Collapse
|
91
|
Influence of the ECMO circuit on the concentration of nutritional supplements. Sci Rep 2020; 10:19275. [PMID: 33159150 PMCID: PMC7648645 DOI: 10.1038/s41598-020-76299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Circulating compounds such as drugs and nutritional components might adhere to the oxygenator fibers and tubing during ECMO support. This study evaluated the amount of nutritional supplements adsorbed to the ECMO circuit under controlled ex vivo conditions. Six identical ECMO circuits were primed with fresh human whole blood and maintained under physiological conditions at 36 °C for 24 h. A dose of nutritional supplement calculated for a 70 kg patient was added. 150 mL volume was drawn from the priming bag for control samples and kept under similar conditions. Blood samples were obtained at predetermined time points and analyzed for concentrations of vitamins, minerals, lipids, and proteins. Data were analyzed using mixed models with robust standard errors. No significant differences were found between the ECMO circuits and the controls for any of the measured variables: cobalamin, folate, vitamin A, glucose, minerals, HDL cholesterol, LDL cholesterol, total cholesterol, triglycerides or total proteins. There was an initial decrease and then an increase in the concentration of cobalamin and folate. Vitamin A concentrations decreased in both groups over time. There was a decrease in concentration of glucose and an increased concentration of lactate dehydrogenase over time in both groups. There were no significant alterations in the concentrations of nutritional supplements in an ex vivo ECMO circuit compared to control samples. The time span of this study was limited, thus, clinical studies over a longer period of time are needed.
Collapse
|
92
|
Kumar A, Keshavamurthy S, Humar R, Gomez Abraham J, Toyoda Y. Successful use of venoarterial extracorporeal membrane oxygenation in acute myocarditis due to necrotizing fasciitis. Chirurgia (Bucur) 2020. [DOI: 10.23736/s0394-9508.19.05033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
93
|
Zeitlinger M, Koch BCP, Bruggemann R, De Cock P, Felton T, Hites M, Le J, Luque S, MacGowan AP, Marriott DJE, Muller AE, Nadrah K, Paterson DL, Standing JF, Telles JP, Wölfl-Duchek M, Thy M, Roberts JA. Pharmacokinetics/Pharmacodynamics of Antiviral Agents Used to Treat SARS-CoV-2 and Their Potential Interaction with Drugs and Other Supportive Measures: A Comprehensive Review by the PK/PD of Anti-Infectives Study Group of the European Society of Antimicrobial Agents. Clin Pharmacokinet 2020; 59:1195-1216. [PMID: 32725382 PMCID: PMC7385074 DOI: 10.1007/s40262-020-00924-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an urgent need to identify optimal antiviral therapies for COVID-19 caused by SARS-CoV-2. We have conducted a rapid and comprehensive review of relevant pharmacological evidence, focusing on (1) the pharmacokinetics (PK) of potential antiviral therapies; (2) coronavirus-specific pharmacodynamics (PD); (3) PK and PD interactions between proposed combination therapies; (4) pharmacology of major supportive therapies; and (5) anticipated drug-drug interactions (DDIs). We found promising in vitro evidence for remdesivir, (hydroxy)chloroquine and favipiravir against SARS-CoV-2; potential clinical benefit in SARS-CoV-2 with remdesivir, the combination of lopinavir/ritonavir (LPV/r) plus ribavirin; and strong evidence for LPV/r plus ribavirin against Middle East Respiratory Syndrome (MERS) for post-exposure prophylaxis in healthcare workers. Despite these emerging data, robust controlled clinical trials assessing patient-centred outcomes remain imperative and clinical data have already reduced expectations with regard to some drugs. Any therapy should be used with caution in the light of potential drug interactions and the uncertainty of optimal doses for treating mild versus serious infections.
Collapse
Affiliation(s)
- Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | | | | | - Pieter De Cock
- Department of Pharmacy 2, Heymans Institute of Pharmacology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maya Hites
- Clinic of Infectious Diseases, CUB-Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jennifer Le
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Sonia Luque
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Alasdair P MacGowan
- Bristol Centre for Antimicrobial Research and Evaluation, Infection Sciences, Severn Pathology Partnership, North Bristol NHS Trust, Southmead Hospital, Westbury-On-Trym, Bristol, UK
| | - Deborah J E Marriott
- St. Vincent's Hospital, Darlinghurst, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Anouk E Muller
- HaaglandenMC, The Hague and ErasmusMC, Rotterdam, The Netherlands
| | - Kristina Nadrah
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - David L Paterson
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Joseph F Standing
- Infection, Inflammation and Immunity, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Pharmacy, Great Ormond Street Hospital for Children, London, UK
| | - João P Telles
- Department of Infectious Diseases, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Thy
- Infectious Diseases Department and Intensive Care Unit, Hospital Bichat, Paris, France
- EA7323, Evaluation of Perinatal and Paediatric Therapeutics and Pharmacology, University Paris Descartes, Paris, France
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine and Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
- The University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Butterfield St, Herston, QLD, 4029, Australia.
| |
Collapse
|
94
|
Kim SW, Kim DJ, Zang DY, Lee DH. Impact of Sampling Period on Population Pharmacokinetic Analysis of Antibiotics: Why do You Take Blood Samples Following the Fourth Dose? Pharmaceuticals (Basel) 2020; 13:ph13090249. [PMID: 32947890 PMCID: PMC7558941 DOI: 10.3390/ph13090249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
To date, many population pharmacokinetic models of antibiotics have been developed using blood sampling data after the fourth or fifth dose, which represents steady-state levels. However, if a model developed using blood sampled after the first dose is equivalent to that using blood sampled after the fourth dose, it would be advantageous to utilize the former. The aim of this study was to investigate the effect of blood sampling after the first and/or fourth drug administration on the accuracy and precision of parameter estimates. A previously reported robust, two-compartment model of vancomycin was used for simulation to evaluate the performances of the parameter estimates. The parameter estimation performances were assessed using relative bias and relative root mean square error. Performance was investigated in 72 scenarios consisting of a combination of two blood sampling periods (the first and fourth dose), two total clearances, three infusion times, and four sample sizes. The population pharmacokinetic models from data collected at the first dose and those collected at the fourth dose produced parameter estimates that were similar in accuracy and precision. This study will contribute to increasing the efficiency and simplicity of antibiotic pharmacokinetic studies.
Collapse
Affiliation(s)
- So Won Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Dong Jin Kim
- Drug Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea;
| | - Dae Young Zang
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Korea;
| | - Dong-Hwan Lee
- Department of Clinical Pharmacology, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
- Correspondence: ; Tel.: +82-31-380-4778
| |
Collapse
|
95
|
Rapid Increase in Clearance of Phenobarbital in Neonates on Extracorporeal Membrane Oxygenation: A Pilot Retrospective Population Pharmacokinetic Analysis. Pediatr Crit Care Med 2020; 21:e707-e715. [PMID: 32639476 DOI: 10.1097/pcc.0000000000002402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study characterizes the changes in the pharmacokinetics of phenobarbital associated with extracorporeal membrane oxygenation treatment in neonates, to illustrate our findings and provide guidance on dosing. DESIGN Retrospective pilot population pharmacokinetic analysis. SETTING Neonatal ICU. PATIENTS Thirteen critically ill neonates (birth body weight, 3.21 kg [2.65-3.72 kg]; postnatal age at start of treatment: 2 d [0-7 d]; gestational age: 38 wk [38-41 wk]) receiving venovenous or venoarterial extracorporeal membrane oxygenation. INTERVENTIONS Phenobarbital administered in a loading dose of 7.5 mg/kg (8.5-16 mg/kg) and maintenance dose of 6.9 mg/kg/d (4.5-8.5 mg/kg/d). MEASUREMENTS AND MAIN RESULTS Therapeutic drug monitoring data were available, yielding 5, 31, and 19 phenobarbital concentrations before, during, and after extracorporeal membrane oxygenation, respectively. Population pharmacokinetic analysis was performed using NONMEM 7.3.0 (ICON Development Solutions, Ellicott City, MD). Maturation functions for clearance and volume of distribution were obtained from literature. In a one-compartment model, clearance and volume of distribution for a typical neonate off extracorporeal membrane oxygenation and with a median birth body weight (3.21 kg) at median postnatal age (2 d) were 0.0096 L/hr (relative SE = 11%)) and 2.72 L (16%), respectively. During extracorporeal membrane oxygenation, clearance was found to linearly increase with time. Upon decannulation, phenobarbital clearance initially decreased and subsequently increased slowly driven by maturation. Extracorporeal membrane oxygenation-related changes in volume of distribution could not be identified, possibly due to sparse data collection shortly after extracorporeal membrane oxygenation start. According to the model, target attainment is achieved in the first 12 days of extracorporeal membrane oxygenation with a regimen of a loading dose of 20 mg/kg and a maintenance dose of 4 mg/kg/d divided in two doses with an increase of 0.25 mg/kg every 12 hours during extracorporeal membrane oxygenation treatment. CONCLUSIONS We found a time-dependent increase in phenobarbital clearance during the first 12 days of extracorporeal membrane oxygenation treatment in neonates, which results in continuously decreasing phenobarbital exposure and increases the risk of therapeutic failure over time. Due to high unexplained variability, frequent and repeated therapeutic drug monitoring should be considered even with the model-derived regimen.
Collapse
|
96
|
Effectiveness of Vancomycin Dosing Guided by Therapeutic Drug Monitoring in Adult Patients Receiving Extracorporeal Membrane Oxygenation. Antimicrob Agents Chemother 2020; 64:AAC.01179-20. [PMID: 32571814 DOI: 10.1128/aac.01179-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 01/02/2023] Open
Abstract
The clinical situation for patients receiving extracorporeal membrane oxygenation (ECMO) is complex, and drug dosing is complicated by significant pharmacokinetic alterations. We sought to describe the frequency of achievement of therapeutic vancomycin concentrations in critically ill patients receiving ECMO with therapeutic drug monitoring (TDM). In this retrospective observational study, we included all critically ill patients receiving TDM for vancomycin while on ECMO. The primary outcome was the proportion of plasma vancomycin concentrations in the therapeutic range (15 to 20 mg/liter). Factors associated with not achieving therapeutic concentrations were investigated, including ECMO duration and use of renal replacement therapies. Vancomycin TDM was performed for 77 of 116 (66%) patients on ECMO. Median (interquartile range) duration of ECMO support was 7 days (4 to 16 days). The proportion of measurements in the therapeutic range (15 to 20 mg/liter) was 24%, while 46% were subtherapeutic (<15 mg/liter) and 30% were supratherapeutic (>20 mg/liter). The proportion of measures in the therapeutic range was significantly higher on ECMO days for 6 to 13 (incidence rate ratio [IRR], 2.4; 95% confidence interval [CI], 1.2 to 4.6; P = 0.01). Supratherapeutic concentrations were more frequently observed in patients on renal replacement therapy (RRT) (IRR, 2.0; 95% CI, 1.3 to 3.1; P = 0.002). The vancomycin concentrations in patients did not vary with age, gender, or type of ECMO support. Patients receiving vancomycin had suboptimal concentrations early in the course of ECMO. Patients not receiving RRT and those with mild to moderate acute kidney injury (AKI) were at a risk of underdosing, while those with established AKI on RRT were likelier to experience supratherapeutic concentrations.
Collapse
|
97
|
Squiccimarro E, Rociola R, Haumann RG, Grasso S, Lorusso R, Paparella D. Extracorporeal Oxygenation and Coronavirus Disease 2019 Epidemic: Is the Membrane Fail-Safe to Cross Contamination? ASAIO J 2020; 66:841-843. [PMID: 32740340 PMCID: PMC7268868 DOI: 10.1097/mat.0000000000001199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Enrico Squiccimarro
- From the Department of Emergency and Organ Transplant (D.E.T.O.), University of Bari Aldo Moro, Bari, Italy
| | - Ruggiero Rociola
- From the Department of Emergency and Organ Transplant (D.E.T.O.), University of Bari Aldo Moro, Bari, Italy
| | - Renard Gerhardus Haumann
- Department of Cardiothoracic Surgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Salvatore Grasso
- From the Department of Emergency and Organ Transplant (D.E.T.O.), University of Bari Aldo Moro, Bari, Italy
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Domenico Paparella
- From the Department of Emergency and Organ Transplant (D.E.T.O.), University of Bari Aldo Moro, Bari, Italy
- Department of Cardiac Surgery, Santa Maria Hospital, GVM Care & Research, Bari, Italy
| |
Collapse
|
98
|
Abstract
This review focuses on the use of veno-venous extracorporeal membrane oxygenation for respiratory failure across all blood flow ranges. Starting with a short overview of historical development, aspects of the physiology of gas exchange (i.e., oxygenation and decarboxylation) during extracorporeal circulation are discussed. The mechanisms of phenomena such as recirculation and shunt playing an important role in daily clinical practice are explained.Treatment of refractory and symptomatic hypoxemic respiratory failure (e.g., acute respiratory distress syndrome [ARDS]) currently represents the main indication for high-flow veno-venous-extracorporeal membrane oxygenation. On the other hand, lower-flow extracorporeal carbon dioxide removal might potentially help to avoid or attenuate ventilator-induced lung injury by allowing reduction of the energy load (i.e., driving pressure, mechanical power) transmitted to the lungs during mechanical ventilation or spontaneous ventilation. In the latter context, extracorporeal carbon dioxide removal plays an emerging role in the treatment of chronic obstructive pulmonary disease patients during acute exacerbations. Both applications of extracorporeal lung support raise important ethical considerations, such as likelihood of ultimate futility and end-of-life decision-making. The review concludes with a brief overview of potential technical developments and persistent challenges.
Collapse
|
99
|
López-Sánchez M, Moreno-Puigdollers I, Rubio-López MI, Zarragoikoetxea-Jauregui I, Vicente-Guillén R, Argente-Navarro MP. Pharmacokinetics of micafungin in patients treated with extracorporeal membrane oxygenation: an observational prospective study. Rev Bras Ter Intensiva 2020; 32:277-283. [PMID: 32667449 PMCID: PMC7405733 DOI: 10.5935/0103-507x.20200044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/28/2020] [Indexed: 01/19/2023] Open
Abstract
Objective To determine micafungin plasma levels and pharmacokinetic behavior in patients treated with extracorporeal membrane oxygenation. Methods The samples were taken through an access point before and after the membrane in two tertiary hospitals in Spain. The times for the calculation of pharmacokinetic curves were before the administration of the drug and 1, 3, 5, 8, 18 and 24 hours after the beginning of the infusion on days one and four. The area under the curve, drug clearance, volume of distribution and plasma half-life time with a noncompartmental pharmacokinetic data analysis were calculated. Results The pharmacokinetics of the values analyzed on the first and fourth day of treatment did not show any concentration difference between the samples taken before the membrane (Cin) and those taken after the membrane (Cout), and the pharmacokinetic behavior was similar with different organ failures. The area under the curve (AUC) before the membrane on day 1 was 62.1 (95%CI 52.8 - 73.4) and the AUC after the membrane on this day was 63.4 (95%CI 52.4 - 76.7), p = 0.625. The AUC before the membrane on day 4 was 102.4 (95%CI 84.7 - 142.8) and the AUC was 100.9 (95%CI 78.2 - 138.8), p = 0.843. Conclusion The pharmacokinetic parameters of micafungin were not significantly altered.
Collapse
Affiliation(s)
- Marta López-Sánchez
- Departamento de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Espanha
| | | | - Maria Isabel Rubio-López
- Departamento de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Espanha
| | | | - Rosario Vicente-Guillén
- Departamento de Anestesiologia e Reanimação, Hospital Universitario La Fé, Valencia, Espanha
| | | |
Collapse
|
100
|
Extracorporeal Life Support Organization Coronavirus Disease 2019 Interim Guidelines: A Consensus Document from an International Group of Interdisciplinary Extracorporeal Membrane Oxygenation Providers. ASAIO J 2020; 66:707-721. [PMID: 32604322 PMCID: PMC7228451 DOI: 10.1097/mat.0000000000001193] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Extracorporeal Life Support Organization (ELSO) Coronavirus Disease 2019 (COVID-19) Guidelines have been developed to assist existing extracorporeal membrane oxygenation (ECMO) centers to prepare and plan provision of ECMO during the ongoing pandemic. The recommendations have been put together by a team of interdisciplinary ECMO providers from around the world. Recommendations are based on available evidence, existing best practice guidelines, ethical principles, and expert opinion. This is a living document and will be regularly updated when new information becomes available. ELSO is not liable for the accuracy or completeness of the information in this document. These guidelines are not meant to replace sound clinical judgment or specialist consultation but rather to strengthen provision and clinical management of ECMO specifically, in the context of the COVID-19 pandemic.
Collapse
|