51
|
Meng X, Zeng P, Lin S, Bao H, Wu M, Yang L, Jing G, Han H, Zhang C, Jiang X, Wang S, Ding W, Sun W. Removal of chemical oxygen demand and ammonia nitrogen from high salinity tungsten smelting wastewater by one-step electrochemical oxidation: From bench-scale test, pilot-scale test, to industrial test. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117983. [PMID: 37116419 DOI: 10.1016/j.jenvman.2023.117983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
In recent years, electrochemical oxidation (EO) shows the characteristics of green and high efficiency in removing chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) from wastewater, which has been favored by researchers. However, at present, most of current studies on EO remain in laboratory stage, reports about pilot-scale or even industrial tests with large treatment capacity are few, which slowing down the use of the advanced technology to practical application. In this study, bench-scale tests, pilot-scale tests (treatment capacity 200-500 L/h), and industrial tests (treatment capacity 100 m3/h) were carried out by EO technology in view of the characteristics of tungsten smelting wastewater (TSW) with high salinity (NaCl), COD, and NH3-N. Results showed that the removal of COD and NH3-N was a competitive reaction in the EO process, and COD could be removed more preferentially than NH3-N. When NH3-N content was low, the influent pH had a minimal effect on its removal, and when NH3-N content was high, increasing the influent pH was beneficial to its removal. Industrial tests showed that the one-step removal of COD and NH3-N in TSW met the standard, and the power consumption per cubic meter of wastewater was only 4.2 kW h, and the treatment cost was much lower than the two-step process of "breaking point chlorination to remove NH3-N and adding oxidant to remove COD". This study has successfully realized industrial application of EO technology in TSW treatment for the first time and provided a successful case, which is helpful to accelerate the popularization and application of this technology in the field of high salinity organic ammonia nitrogen wastewater treatment.
Collapse
Affiliation(s)
- Xiangsong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China; State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ping Zeng
- Changsha Hasky Environmental Protection Technology Development Co., Ltd, Changsha, 410205, China
| | - Shangyong Lin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China.
| | - Huanjun Bao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China
| | - Meirong Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China
| | - Lei Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China
| | - Gaogui Jing
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China
| | - Haisheng Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China
| | - Chenyang Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China
| | - Xiaoyun Jiang
- Changsha Hasky Environmental Protection Technology Development Co., Ltd, Changsha, 410205, China
| | - Songlin Wang
- Jiangxi Xiushui Ganbei Tungsten Industry Co., Ltd, Xiushui, 332499, China
| | - Wei Ding
- Jiangxi Xiushui Ganbei Tungsten Industry Co., Ltd, Xiushui, 332499, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, China; Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha, 410083, China.
| |
Collapse
|
52
|
Priyadarshini M, Ahmad A, Das I, Ghangrekar MM, Dutta BK. Efficacious degradation of ethylene glycol by ultraviolet activated persulphate: reaction kinetics, transformation mechanisms, energy demand, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85071-85086. [PMID: 37227630 DOI: 10.1007/s11356-023-27596-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Ethylene glycol or 1,2-ethanediol (EG) is a persistent and toxic substance in the environment and extensively applied in petrochemical, surfactants, antifreeze, asphalt emulsion paints, cosmetics, plastics, and polyester fiber industries. Degradation of EG by using ultraviolet (UV) activated hydrogen peroxide (H2O2) and persulfate (PS) or persulfate anion (S2O82-) based advanced oxidation processes (AOPs) were explored. The result obtained demonstrate that UV/PS (85.7 ± 2.5%) has exhibited improved degradation efficiency of EG as compared to UV/H2O2 (40.4 ± 3.2%) at optimal operating conditions of 24 mM of EG concentration, 5 mM of H2O2, 5 mM of PS, 1.02 mW cm-2 of UV fluence, and pH of 7.0. Impacts of operating factors, including initial EG concentration, oxidant dosage, reaction duration, and the impact of different water quality parameters, were also explored in this present investigation. The degradation of EG in Milli-Q® water followed pseudo - first order reaction kinetics in both methods having a rate constant of about 0.070 min-1 and 0.243 min-1 for UV/H2O2 and UV/PS, respectively, at optimum operating conditions. Additionally, an economic assessment was also conducted under optimal experimental conditions, and the electrical energy per order and total operational cost for treating per m3 of EG-laden wastewater was observed to be about 0.042 kWh m-3 order-1 and 0.221 $ m-3 order-1, respectively, for UV/PS, which was slightly lower than UV/H2O2 (0.146 kWh m-3 order-1; 0.233 $ m-3 order-1). The potential degradation mechanisms were proposed based on intermediate by-products detected by Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Moreover, real petrochemical effluent containing EG was also treated by UV/PS, demonstrating 74.7 ± 3.8% of EG and 40.7 ± 2.6% of total organic carbon removal at 5 mM of PS and 1.02 mW cm-2 of UV fluence. A toxicity tests on Escherichia coli (E. coli) and Vigna radiata (green gram) confirmed non-toxic nature of UV/PS treated water.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Indrasis Das
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Makarand Madhao Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Binay K Dutta
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
53
|
Makhoul E, Boulos M, Cretin M, Lesage G, Miele P, Cornu D, Bechelany M. CaCu 3Ti 4O 12 Perovskite Materials for Advanced Oxidation Processes for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2119. [PMID: 37513130 PMCID: PMC10383651 DOI: 10.3390/nano13142119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The many pollutants detected in water represent a global environmental issue. Emerging and persistent organic pollutants are particularly difficult to remove using traditional treatment methods. Electro-oxidation and sulfate-radical-based advanced oxidation processes are innovative removal methods for these contaminants. These approaches rely on the generation of hydroxyl and sulfate radicals during electro-oxidation and sulfate activation, respectively. In addition, hybrid activation, in which these methods are combined, is interesting because of the synergistic effect of hydroxyl and sulfate radicals. Hybrid activation effectiveness in pollutant removal can be influenced by various factors, particularly the materials used for the anode. This review focuses on various organic pollutants. However, it focuses more on pharmaceutical pollutants, particularly paracetamol, as this is the most frequently detected emerging pollutant. It then discusses electro-oxidation, photocatalysis and sulfate radicals, highlighting their unique advantages and their performance for water treatment. It focuses on perovskite oxides as an anode material, with a particular interest in calcium copper titanate (CCTO), due to its unique properties. The review describes different CCTO synthesis techniques, modifications, and applications for water remediation.
Collapse
Affiliation(s)
- Elissa Makhoul
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Madona Boulos
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, 75231 Paris, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Gulf University for Science and Technology (GUST), West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
54
|
Singh A, Chaurasia D, Khan N, Singh E, Chaturvedi Bhargava P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121552. [PMID: 37075921 DOI: 10.1016/j.envpol.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
55
|
Shemer H, Wald S, Semiat R. Challenges and Solutions for Global Water Scarcity. MEMBRANES 2023; 13:612. [PMID: 37367816 DOI: 10.3390/membranes13060612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Climate change, global population growth, and rising standards of living have put immense strain on natural resources, resulting in the unsecured availability of water as an existential resource. Access to high-quality drinking water is crucial for daily life, food production, industry, and nature. However, the demand for freshwater resources exceeds the available supply, making it essential to utilize all alternative water resources such as the desalination of brackish water, seawater, and wastewater. Reverse osmosis desalination is a highly efficient method to increase water supplies and make clean, affordable water accessible to millions of people. However, to ensure universal access to water, various measures need to be implemented, including centralized governance, educational campaigns, improvements in water catchment and harvesting technologies, infrastructure development, irrigation and agricultural practices, pollution control, investments in novel water technologies, and transboundary water cooperation. This paper provides a comprehensive overview of measures for utilizing alternative water sources, with particular emphasis on seawater desalination and wastewater reclamation techniques. In particular, membrane-based technologies are critically reviewed, with a focus on their energy consumption, costs, and environmental impacts.
Collapse
Affiliation(s)
- Hilla Shemer
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shlomo Wald
- Wald Industries, Tor HaAviv 1, Rehovot 7632101, Israel
| | - Raphael Semiat
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
56
|
Azaiza AA, Semiat R, Shemer H. Competitive study of homogeneous and heterogeneous Fenton-like flow-through propoxur oxidation in ROC solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2890-2904. [PMID: 37318930 PMCID: wst_2023_160 DOI: 10.2166/wst.2023.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reverse osmosis is used as a tertiary treatment for wastewater reclamation. However, sustainable management of the concentrate (ROC) is challenging, due to the need for treatment and/or disposal. The objective of this research was to investigate the efficiency of homogeneous and heterogeneous Fenton-like oxidation processes in removing propoxur (PR), a micro-pollutant compound, from synthetic ROC solution in a submerged ceramic membrane reactor operated in a continuous mode. A freshly prepared amorphous heterogeneous catalyst was synthesized and characterized, revealing a layered porous structure of 5-16 nm nanoparticles that formed aggregates (33-49 μm) known as ferrihydrite (Fh). The membrane exhibited a rejection of >99.6% for Fh. The homogeneous catalysis (Fe3+) exhibited better catalytic activity than the Fh in terms of PR removal efficiencies. However, by increasing the H2O2 and Fh concentrations at a constant molar ratio, the PR oxidation efficiencies were equal to those catalyzed by the Fe3+. The ionic composition of the ROC solution had an inhibitory effect on the PR oxidation, whereas increased residence time improved it up to 87% at a residence time of 88 min. Overall, the study highlights the potential of heterogeneous Fenton-like processes catalyzed by Fh in a continuous mode of operation.
Collapse
Affiliation(s)
- Abed-Alhakeem Azaiza
- Rabin Desalination Laboratory, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel E-mail:
| | - Raphael Semiat
- Rabin Desalination Laboratory, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel E-mail:
| | - Hilla Shemer
- Rabin Desalination Laboratory, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel E-mail:
| |
Collapse
|
57
|
Zhang Y, Zhang X, Wang S. Recent advances in the removal of emerging contaminants from water by novel molecularly imprinted materials in advanced oxidation processes-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163702. [PMID: 37105485 DOI: 10.1016/j.scitotenv.2023.163702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Recently, there has been a global focus on effectively treating emerging contaminants (ECs) in water bodies. Advanced oxidation processes (AOPs) are the primary technology used for ECs removal. However, the low concentrations of ECs make it difficult to overcome the interference of background substances in complex water quality, which limits the practical application of AOPs. To address this limitation, many researchers are developing new catalysts with preferential adsorption. Molecular imprinting technology (MIT) combined with conventional catalysts has been found to effectively enhance the selectivity of catalysts for the targeted catalytic degradation of pollutants. This review presents a comprehensive summary of the progress made in research on molecularly imprinted polymers (MIPs) in the selective oxidation of ECs in water. The preparation methods, principles, and control points of novel MIP catalysts are discussed. Furthermore, the performance and mechanism of the catalysts in photocatalytic oxidation, electrocatalytic oxidation, and persulfate activation are analyzed with examples. The possible ecotoxicological risks of MIP catalysts are also discussed. Finally, the challenges and prospects of applying MIP catalysts in AOP are presented along with proposed solutions. This review provides a better understanding of using MIP catalysts in AOPs to target the degradation of ECs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
58
|
Arifin MN, Jusoh R, Abdullah H, Ainirazali N, Setiabudi HD. Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro- and alkyl-phenolic compounds. ENVIRONMENTAL RESEARCH 2023; 229:115936. [PMID: 37080279 DOI: 10.1016/j.envres.2023.115936] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The presence of phenolic compounds in the aquatic environment has posed severe risks due to their toxicity. Among the phenolic families, nitro- and alkyl-phenolic compounds have been categorized as precedence contaminants by the United States Environmental Protection Agency (US EPA). Therefore, efficient treatment methods for wastewater containing nitro- and alkyl-phenolic compounds are urgently needed. Due to the advantages of creating reactive species and generating efficient degradation of hazardous contaminants in wastewater, advanced oxidation processes (AOPs) are well-known in the field of treating toxic contaminants. In this review paper, the recent directions in AOPs, catalysts, mechanisms, and kinetics of AOPs are comprehensively reviewed. Furthermore, the conclusion summarizes the research findings, future prospects, and opportunities for this study. The main direction of AOPs lies on the optimization of catalyst and operating parameters, with industrial applications remain as the main challenge. This review article is expected to present a summary and in-depth understanding of AOPs development; and thus, inspiring scientists to accelerate the evolution of AOPs in industrial applications.
Collapse
Affiliation(s)
- M N Arifin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - R Jusoh
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - H Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - N Ainirazali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - H D Setiabudi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
59
|
Priyadarshini M, Ahmad A, Ghangrekar MM. Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe 3O 4@C incorporated MIL-53(Fe) as a novel electro-Fenton catalyst for the degradation of salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121242. [PMID: 36758930 DOI: 10.1016/j.envpol.2023.121242] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The current research demonstrates the efficiency of a low-cost MIL-53(Fe)-metal-organic framework (MOF) derived Fe3O4@C (MIL-53(Fe)@Fe3O4@C) electrocatalyst in a batch-scale electro-Fenton (EF) process for the degradation of salicylic acid (SA) from wastewater. The electrocatalyst was prepared from the combination of polyethylene terephthalate (PET) and iron scrap wastes. The result showed 91.68 ± 3.61% degradation of 50 mg L-1 of SA under optimum current density of 5.2 mA cm-2, and pH of 7.0 during 180 min of electrolysis time. The degradation of SA from waste catalyst was similar to the chemical-based MIL-53(Fe)-derived Fe3O4@C (cFe) cathode catalyst. The presence of chloride ions (Cl-) in the water matrix has shown a strong inhibitory effect on the elimination of SA, followed by nitrate (NO3-), and bicarbonate (HCO3-) ions. The multiple cyclic voltammetry (CV) analysis and reusability test of waste cathode catalyst showed only 8.03% drop of current density at the end of the 20th cycle and 5% drop of degradation efficiency after 6th cycle with low leaching of iron. The radical scavenging experiment revealed that the HO• generated via electrochemical generation of H2O2 had a prominent contribution in the removal of SA compared to HO2•/O2•-. Besides, possible catalysis mechanism and degradation pathways were deduced. Furthermore, a satisfactory performance in the treatment of SA spiked in real water matrices was also observed by waste-derived Fe3O4@C cathode catalyst (wFe). Additionally, the total operating cost and toxicity analysis showed that the as-synthesized wFe cathode catalyst could be appropriate for removing organic pollutants from wastewater in the large-scale application.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
60
|
Chen S, Zhu M, Guo X, Yang B, Zhuo R. Coupling of Fenton reaction and white rot fungi for the degradation of organic pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114697. [PMID: 36889210 DOI: 10.1016/j.ecoenv.2023.114697] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Advanced oxidation processes (AOPs) are a class of highly efficient pollution remediation technologies that produce oxidising radicals under specific conditions to degrade organic pollutants. The Fenton reaction is a commonly applied AOP. To combine the advantages of AOPs and biodegradation in the remediation of organic pollutants, some studies have developed coupled systems between Fenton AOPs and white rot fungi (WRF) for environmental organic pollutant remediation and have achieved some success. Moreover, a promising system, termed as advanced bio-oxidation processes (ABOPs), mediated by the quinone redox cycling of WRF, has attracted increasing attention in the field. In this ABOP system, the radicals and H2O2 produced through the quinone redox cycling of WRF can strengthen Fenton reaction. Meanwhile, in this process, the reduction of Fe3+ to Fe2+ ensures the maintenance of Fenton reaction, leading to a promising application potential for the remediation of environmental organic pollutants. ABOPs combine the advantages of bioremediation and advanced oxidation remediation. Further understanding the coupling of Fenton reaction and WRF in the degradation of organic pollutants will be of great significance for the remediation of organic pollutants. Therefore, in this study, we reviewed recent remediation techniques for organic pollutants involving the coupled application of WRF and the Fenton reaction, focusing on the application of new ABOPs mediated by WRF, and discussed the reaction mechanism and conditions of ABOPs. Finally, we discussed the application prospects and future research directions of the joint application of WRF and advanced oxidation technologies for the remediation of environmental organic pollutants.
Collapse
Affiliation(s)
- Shuxian Chen
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Mingdong Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Changsha 410125, PR China
| | - Xiayu Guo
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, PR China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha 410205, PR China.
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
61
|
Oladipo AA, Mustafa FS. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:291-321. [PMID: 36895441 PMCID: PMC9989679 DOI: 10.3762/bjnano.14.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A serious threat to human health and the environment worldwide, in addition to the global energy crisis, is the increasing water pollution caused by micropollutants such as antibiotics and persistent organic dyes. Nanostructured semiconductors in advanced oxidation processes using photocatalysis have recently attracted a lot of interest as a promising green and sustainable wastewater treatment method for a cleaner environment. Due to their narrow bandgaps, distinctive layered structures, plasmonic, piezoelectric and ferroelectric properties, and desirable physicochemical features, bismuth-based nanostructure photocatalysts have emerged as one of the most prominent study topics compared to the commonly used semiconductors (TiO2 and ZnO). In this review, the most recent developments in the use of photocatalysts based on bismuth (e.g., BiFeO3, Bi2MoO6, BiVO4, Bi2WO6, Bi2S3) to remove dyes and antibiotics from wastewater are thoroughly covered. The creation of Z-schemes, Schottky junctions, and heterojunctions, as well as morphological modifications, doping, and other processes are highlighted regarding the fabrication of bismuth-based photocatalysts with improved photocatalytic capabilities. A discussion of general photocatalytic mechanisms is included, along with potential antibiotic and dye degradation pathways in wastewater. Finally, areas that require additional study and attention regarding the usage of photocatalysts based on bismuth for removing pharmaceuticals and textile dyes from wastewater, particularly for real-world applications, are addressed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| | - Faisal Suleiman Mustafa
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| |
Collapse
|
62
|
Chen X, Mu S, Luo Y. Degradation of petroleum pollutants in oil-based drilling cuttings using an Fe 2+-based Fenton-like advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37669-37678. [PMID: 36574125 DOI: 10.1007/s11356-022-24925-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Oil-based drilling cuttings (OBDC) contain a large amount of total petroleum hydrocarbon (TPH) pollutants, which are hazardous to the environment. In this study, Fe2+-activating hydrogen peroxide (Fe2+/H2O2), peroxymonosulfate (Fe2+/PMS), and peroxydisulfate (Fe2+/PDS) advanced oxidation processes (AOPs) were used to treat OBDC due to the difference in the degradation capacity of TPH caused by the type of free radical generated and effective activation conditions observed for the different oxidants studied. The results showed that the oxidant concentration, Fe2+ dosage, and reaction time in the three AOPs were greatly positively correlated with the TPH removal rate in a certain range. The initial pH value had a significant effect on the Fe2+/H2O2 process, and its TPH removal rate was negatively correlated in the pH range from 3 to 11. However, the Fe2+/PMS and Fe2+/PDS processes only displayed lower TPH removal rates under neutral conditions and tolerated a wider range of pH conditions. The optimal TPH removal rates observed for the Fe2+/H2O2, Fe2+/PMS, and Fe2+/PDS processes were 45.04%, 42.75%, and 44.95%, respectively. Fourier transform infrared spectrometer and gas chromatography-mass spectrometer analysis showed that the alkanes in OBDC could be effectively removed using the three processes studied, and their degradation ability toward straight-chain alkanes was in the order of Fe2+/PMS > Fe2+/PDS > Fe2+/H2O2, among which Fe2+/PMS exhibited the optimal removal effect for aromatic hydrocarbons. Scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction results showed no significant changes in the elemental and mineral composition of OBDC before and after treatment. Therefore, this study provided a theoretical reference for the effective degradation of TPH pollutants in OBDC.
Collapse
Affiliation(s)
- Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yuanfeng Luo
- Department of Ecology and Environment of Sichuan Province, Sichuan Academy of Environmental Policy and Planning, Chengdu, 610093, China.
| |
Collapse
|
63
|
Wang L, Liu Y, Hao J, Ma Z, Lu Y, Zhang M, Hou C. Construction of an S-scheme TiOF 2/HTiOF 3 heterostructures with abundant OVs and OH groups: Performance, kinetics and mechanism insight. J Colloid Interface Sci 2023; 640:15-30. [PMID: 36827845 DOI: 10.1016/j.jcis.2023.02.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Developing efficient photocatalysts is of crucial significance for the development of photocatalysis techniques. In this work, an S-scheme alkaline-washed TiOF2/HTiOF3(OHTOF) heterostructures with abundant Oxygen vacancies (Ovs) and OH groups was successfully constructed and used to remedy antibiotic wastewater under simulated sunlight. The generation of HTiOF3 was induced by g-C3N4 regulation. The results displayed that OHTOF15 composite possessed the best photocatalytic performance, which could degrade 94.2% tetracyclinehydrochloride (TCH) at a rate speed constant of 1.077 min-1 in 2.5 h. The after-alkali-washing process increased the concentration of OH groups and Ovs defects, and greatly enlarged the surface area. The abundant Ovs and OH groups were conducive to the formation of free radicals' and the transport of charge carriers. Compared with the pristine TiOF2, the absorption sidebands of OHTOF series were greatly red-shifted, which indicated that the increase of OH groups and the etching of the morphology of OHTOF further enhanced its visible-light harvesting ability. Furthermore, the metal cycle of the variable state of Ti4+/Ti3+ in OHTOF15 compensated for the charge balance and promoted the efficient separation of the carriers. Additionally, the apparent quantum efficiency (AQE) of the TCH photodegradation system based on Chemical Oxygen Demand (COD) removal efficiency was calculated to be 0.32%. It was confirmed that the electron transport path in TiOF2/HTiOF3 nanocomposites system followed the S-scheme type, which increased the charge carriers' separation rate and maintained a strong redox capacity. This work could provide some enlightenment for the construction of the semiconducting heterojunction and controllable surface defects engineering.
Collapse
Affiliation(s)
- Liping Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yi Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jing Hao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhichao Ma
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yizhuo Lu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Mingyuan Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chentao Hou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| |
Collapse
|
64
|
Gao L, Zhang S, Dang J, Zhang Q. Mechanistic insight into the degradation of 1H-benzotriazole and 4-methyl-1H-benzotriazole by •OH-based advanced oxidation process and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49150-49161. [PMID: 36773265 DOI: 10.1007/s11356-023-25814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Benzotriazoles (BTs) are highly produced chemicals that are commonly used in the manufacture of aircraft de-icing/antifreeze fluids (ADAFs), coolants, etc. BTs have been detected in a variety of water environments, causing health hazards to aquatic species and humans. In this study, 1H-benzotriazole (BTri) and 4-methyl-1H-benzotriazole (4-TTri) were selected to investigate their degradation mechanisms in the aqueous phase initiated by ·OH using a theoretical calculation method. Addition reactions are the main type of reactions of ·OH with BTri and 4-TTri. The total rate constants for the reactions of BTri and 4-TTri with ·OH at 298 K are 8.26 × 109 M-1 s-1 and 1.81 × 1010 M-1 s-1, respectively. The reaction rate constants increase as the temperature rises, indicating that rising temperatures promote the degradation of BTri and 4-TTri. 7-hydroxy-1H-benzotriazole (1-P1) and 4-hydroxy-benzotriazoles (1-P2) produced via multiple reaction pathways are important transformation products of BTri. After successive reactions with ·OH, 1-P1 and 1-P2 can be successively converted to 4,7-dihydroxy-1H-benzotriazole (1-P7), 4,7-dione-1H-benzotriazole (1-P8), and 1,2,3-triazole-4,5-dicarboxylic acid (1-P9), which is consistent with the product compositions detected in the experiments. The toxicity assessment indicated that the acute toxicity and chronic toxicity of the resulting transformation products are significantly reduced compared to BTri as the degradation process progressed, and ultimately showed no harm to all three aquatic organisms (fish, daphnia, and green algae). Hence, advanced oxidation processes (AOPs) can not only effectively remove BTs from water, but also reduce their toxic effects on aquatic organisms.
Collapse
Affiliation(s)
- Li'ao Gao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Shibo Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Juan Dang
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
65
|
Xue C, Cao Z, Tong X, Yang P, Li S, Chen X, Liu D, Huang W. Investigation of CuCoFe-LDH as an efficient and stable catalyst for the degradation of acetaminophen in heterogeneous electro-Fenton system: Key operating parameters, mechanisms and pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116787. [PMID: 36442449 DOI: 10.1016/j.jenvman.2022.116787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals, as anthropogenic pollutants in a wide range of water sources, generally require specific treatment methods for degradation. A trimetallic layered double hydroxide (CuCoFe-LDH) was successfully fabricated by coprecipitation and applied as a novel heterogeneous electro-Fenton (EF) catalyst for the degradation of acetaminophen (ACT) from aqueous environments. The EF experiments showed that the CuCoFe-LDH/EF process achieved 100% of ACT degradation efficiency within 60 min at pH = 5, catalyst dosage of 0.50 g/L, current density of 10 mA/cm2 and initial ACT concentration of 20 mg/L. An impressive (>80%) mineralization of ACT was obtained over a wide pH range (pH 3-9) after 180 min. Meanwhile, the role of ·OH and O2.- were certified by radical quenching experiments and electron paramagnetic resonance (EPR) analysis. Through mechanism exploration, the coexistence of Cu and Co on Fe-based LDHs can accelerate the interfacial electron transfer and promote the formation of the reactive oxygen species (ROS), thus facilitating the EF process. Furthermore, the degradation by-products and possible degradation pathways of ACT in the CuCoFe-LDH/EF process were proposed. The reusability test and the treatment of various typical organic pollutants experiments indicated that the CuCoFe-LDH/EF process has excellent stability and broad application prospects. This work provides a valuable reference for the treatment of pharmaceuticals by the heterogeneous EF process in a wide range of pH.
Collapse
Affiliation(s)
- Cheng Xue
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhenhua Cao
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoqin Tong
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peizhen Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Songrong Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xi Chen
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
66
|
Advanced biological and non-biological technologies for carbon sequestration, wastewater treatment, and concurrent valuable recovery: A review. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
67
|
Wu Q, Siddique MS, Wang H, Cui L, Wang H, Pan M, Yan J. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: A review of recent advances. CHEMOSPHERE 2023; 313:137509. [PMID: 36495983 DOI: 10.1016/j.chemosphere.2022.137509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Visible-light-driven heterogeneous photo-Fenton process has emerged as the most promising Fenton-derived technology for wastewater decontamination, owing to its prominent superiorities including the potential utilization of clean energy (solar light), and acceleration of ≡Fe(II)/≡Fe(III) dynamic cycle. As the core constituent, catalysts play a pivotal role in the photocatalytic activation of H2O2 to yield reactive oxidative species (ROS). To date, all types of iron-based heterogeneous photo-Fenton catalysts (Fe-HPFCs) have been extensively reported by the scientific community, and exhibited satisfactory catalytic performance towards pollutants decomposition, sometimes even exceeding the homogeneous counterparts (Fe(II)/H2O2). However, the relevant reviews on Fe-HPFCs, especially from the viewpoint of catalyst-self design are extremely limited. Therefore, this state-of-the-art review focuses on the available Fe-HPFCs in literatures, and gives their classification based on their self-characteristics and modification strategies for the first time. Two classes of representative Fe-HPFCs, conventional inorganic semiconductors of Fe-containing minerals and newly emerging Fe-based metal-organic frameworks (Fe-MOFs) are comprehensively summarized. Moreover, three universal strategies including (i) transition metal (TMs) doping, (ii) construction of heterojunctions with other semiconductors or plasmonic materials, and (iii) combination with supporters were proposed to tackle their inherent defects, viz., inferior light-harvesting capacity, fast recombination of photogenerated carriers, slow mass transfer and low exposure and uneven dispersion of active sites. Lastly, a critical emphasis was also made on the challenges and prospects of Fe-HPFCs in wastewater treatment, providing valuable guidance to researchers for the reasonable construction of high-performance Fe-HPFCs.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mei Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
68
|
Parra-Marfil A, López-Ramón MV, Aguilar-Aguilar A, García-Silva IA, Rosales-Mendoza S, Romero-Cano LA, Bailón-García E, Ocampo-Pérez R. An efficient removal approach for degradation of metformin from aqueous solutions with sulfate radicals. ENVIRONMENTAL RESEARCH 2023; 217:114852. [PMID: 36457238 DOI: 10.1016/j.envres.2022.114852] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Metformin consumption for diabetes treatment is increasing, leading to its presence in wastewater treatment plants where conventional methods cannot remove it. Therefore, this work aims to analyze the performance of advanced oxidation processes using sulfate radicals in the degradation of metformin from water. Experiments were performed in a photoreactor provided with a low-pressure Hg lamp, using K2S2O8 as oxidant and varying the initial metformin concentration (CA0), oxidant concentration (Cox), temperature (T), and pH in a response surface experimental design. The degradation percentages ranged from 26.1 to 87.3%, while the mineralization percentages varied between 15.1 and 64%. Analysis of variance (ANOVA) showed that the output variables were more significantly affected by CA0, Cox, and T. Besides, a reduction of CA0 and an increase of Cox up to 5000 μM maximizes the metformin degradation since the generation of radicals and their interaction with metformin molecules are favored. For the greatest degradation percentage, the first order apparent rate constant achieved was 0.084 min-1. Furthermore, while in acidic pH, temperature benefits metformin degradation, an opposite behavior is obtained in a basic medium because of recombination and inhibition reactions. Moreover, three degradation pathways were suggested based on the six products detected by HPLC-MS: N-cyanoguanidine m/z = 85; N,N-dimethylurea m/z = 89; N,N-dimethyl-cyanamide m/z = 71 N,N-dimethyl-formamide m/z = 74; glicolonitrilo m/z = 58; and guanidine m/z = 60. Finally, it was shown that in general the toxicity of the degradation byproducts was lower than the toxicity of metformin toward Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- A Parra-Marfil
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico; Grupo de Investigación en Materiales del Carbón, Facultad de Ciencias, Universidad de Granada, Campus Fuente Nueva s/n., 18071, Granada, Spain.
| | - M V López-Ramón
- Grupo de Investigación en Materiales de Carbón y Medio Ambiente, Facultad de Ciencias Experimentales, Campus Las Lagunillas s/n, 23071, Jaén, Spain.
| | - A Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| | - I A García-Silva
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - S Rosales-Mendoza
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| | - L A Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Ciencias Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P. 45129, Zapopan, Jalisco, Mexico.
| | - E Bailón-García
- Grupo de Investigación en Materiales del Carbón, Facultad de Ciencias, Universidad de Granada, Campus Fuente Nueva s/n., 18071, Granada, Spain.
| | - R Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| |
Collapse
|
69
|
Full-Scale O3/Micro-Nano Bubbles System Based Advanced Oxidation as Alternative Tertiary Treatment in WWTP Effluents. Catalysts 2023. [DOI: 10.3390/catal13010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Wastewater treatment plant effluents can be an important source of contamination in agricultural reuse practices, as pharmaceuticals are poorly degraded by conventional treatments and can enter crops, thereby becoming a toxicological risk. Therefore, advanced tertiary treatments are required. Ozone (O3) is a promising alternative due to its capacity to degrade pharmaceutical compounds, together with its disinfecting power. However, mass transfer from the gas to the liquid phase can be a limiting step. A novel alternative for increased ozone efficiency is the combination of micro-nano bubbles (MNBs). However, this is still a fairly unknown method, and there are also many uncertainties regarding their implementation in large-scale systems. In this work, a combined O3/MNBs full-scale system was installed in a WWTP to evaluate the removal efficiency of 12 pharmaceuticals, including COVID-19-related compounds. The results clearly showed that the use of MNBs had a significantly positive contribution to the effects of ozone, reducing energy costs with respect to conventional O3 processes. Workflow and ozone production were key factors for optimizing the system, with the highest efficiencies achieved at 2000 L/h and 15.9 gO3/h, resulting in high agronomic water quality effluents. A first estimation of the transformation products generated was described, jointly with the energy costs required.
Collapse
|
70
|
Tomaz AT, Costa CR, de Lourdes S. Vasconcellos M, Pedicini R, Ribeiro J. Evaluation of Photoelectrocatalysis with Electrode Based on Ti/RuO 2-TiO 2 Modified with Tin and Tantalum Oxides for the Degradation of Indigo Blue Dye. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4301. [PMID: 36500923 PMCID: PMC9737890 DOI: 10.3390/nano12234301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Indigo Blue (IB) is a dye widely used by the textile sector for dyeing cellulose cotton fibers and jeans, being considered a recalcitrant substance, and therefore resistant to traditional treatments. Several methodologies are reported in the literature for the removal or degradation of dyes from the aqueous medium, among which photoelectrocatalysis stands out, which presents promising results in the degradation of dyes when a dimensionally stable anode (DSA) is used as a photoanode. In the present work, we sought to investigate the efficiency of a Ti/RuO2-TiO2 DSA modified with tin and tantalum for the degradation of Indigo Blue dye by photoelectrocatalysis. For this, electrodes were prepared by the thermal decomposition method and then a physical-chemical and electrochemical analysis of the material was carried out. The composition Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) was compared to Ti/RuO2-TiO2 (30:70) in the photocatalysis, electrocatalysis, and photoelectrocatalysis tests. The photocatalysis was able to degrade only 63% of the IB at a concentration of 100 mg L-1 in 3 h, whereas the electrocatalysis and photoelectrocatalysis were able to degrade 100% of the IB at the same initial concentration in 65 and 60 min, respectively.
Collapse
Affiliation(s)
- Alveriana Tagarro Tomaz
- Laboratorio de Pesquisa e Desenvolvimento em Eletroquímica (LPDE), Department of Chemistry, Center of Exact Sciences, Federal University of Espírito Santo, Campus Goiabeiras, Av. Fernando Ferrari, Vitória 29075-910, Brazil
| | - Carla Regina Costa
- Departamento de Química, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, Brazil
| | - Maria de Lourdes S. Vasconcellos
- Laboratorio de Pesquisa e Desenvolvimento em Eletroquímica (LPDE), Department of Chemistry, Center of Exact Sciences, Federal University of Espírito Santo, Campus Goiabeiras, Av. Fernando Ferrari, Vitória 29075-910, Brazil
| | - Rolando Pedicini
- Instituto di Tecnologia Avanzate per l’Energia “Nicola Giordano” (ITAE), Via S. Lucia Sopra Contesse, 5-98126 Messina, Italy
| | - Josimar Ribeiro
- Laboratorio de Pesquisa e Desenvolvimento em Eletroquímica (LPDE), Department of Chemistry, Center of Exact Sciences, Federal University of Espírito Santo, Campus Goiabeiras, Av. Fernando Ferrari, Vitória 29075-910, Brazil
| |
Collapse
|
71
|
Rizwan K, Bilal M. Developments in advanced oxidation processes for removal of microplastics from aqueous matrices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86933-86953. [PMID: 36279055 DOI: 10.1007/s11356-022-23545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Continuous incorporation of microplastics (MPs) and their fragmented residues into the ecosystem has sparked significant scientific apprehensions about persistence, a multitude of sources, and toxicity impacts on human health and aquatic entities. Overcoming this multifaceted hazard necessitates the development of novel techniques with robust efficiencies to eliminate microplastics from the environmental compartments. Coagulation, flocculation, and membrane filtration are non-destructive techniques but necessitate extra steps for microplastic degradation, whereas biological means have been confirmed less efficient (less than 15% degradation). Recent reports have emphasized advanced oxidation processes (AOPs) as practical treatment alternatives, representing superior catalytic efficacy for microplastic degradation (≈30-95%). Nevertheless, additional investigations should be carried out to evaluate the performance of AOPs in degrading microplastics under real environmental matrices. Moreover, the detection of transformed metabolites, degradation mechanistic insights, and toxicity bioassays are required to substantiate AOP assumption as feasible remediation substitutes. This review focuses on the source, occurrence, discharge, transportation, and associated paramount health risks of microplastics. Advanced oxidation processes-assisted removal of microplastics from the aqueous matrices is thoroughly vetted with up-to-date findings. Factors affecting the degradation of MPs have been discussed in detail. In addition to the generalized mechanistic insights into photocatalytic degradation, the risk assessment of aging intermediates is also comprehended. Finally, the review was concluded by emphasizing current research gaps and incoming research tendencies to provide guidelines for efficiently addressing microplastic pollution.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Ponzan, PL-60695, Poland
| |
Collapse
|
72
|
Saravanan A, Deivayanai VC, Kumar PS, Rangasamy G, Hemavathy RV, Harshana T, Gayathri N, Alagumalai K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. CHEMOSPHERE 2022; 308:136524. [PMID: 36165838 DOI: 10.1016/j.chemosphere.2022.136524] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The presence of several contaminants in waterbodies raises global pollution and creates major risks to mankind, wildlife, as well as other living organisms. Development of an effective, feasible, cost-effective and eco-friendly approach for treating wastewater that is discharged from various industries is important for bringing down the deposition of contaminants into environment. Advanced oxidation process is an efficient technique for treating wastewater owing to its advantages such as high oxidation efficacy and does not produce any secondary pollutants. Advanced oxidation process can be performed through various methods such as ozone, Fenton, electrochemical, photolysis, sonolysis, etc. These methods have been widely utilized for degradation of emerging pollutants that cannot be destroyed using conventional approaches. This review focuses on wastewater treatment using advanced oxidation process. A brief discussion on mechanism involved is provided. In addition, various types of advanced oxidation process and their mechanism are explained in detail. Challenges faced during wastewater treatment process using oxidation, electrochemical, Fenton, photocatalysis and sonolysis are discussed elaborately. Advanced oxidation process can be viewed as potential approach for treating wastewater with certain modifications and solving challenges.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - V C Deivayanai
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - T Harshana
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - N Gayathri
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | | |
Collapse
|
73
|
Wang Y, Zeng X, Shu S. Theoretical study on the degradation mechanism of propranolol in aqueous solution initiated by hydroxyl and sulfate radicals. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
74
|
Catalytic oxidation of methylene blue by using Ni-Fe bimetallic catalyst/NaClO system: Performance, kinetics, mechanism, and DFT calculations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
75
|
Yao K, Fang L, Liao P, Chen H. Ultrasound-activated peracetic acid to degrade tetracycline hydrochloride: Efficiency and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
76
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|