51
|
Park N, Jeon J. Emerging pharmaceuticals and industrial chemicals in Nakdong River, Korea: Identification, quantitative monitoring, and prioritization. CHEMOSPHERE 2021; 263:128014. [PMID: 33297041 DOI: 10.1016/j.chemosphere.2020.128014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
The extensive development and use of new anthropogenic chemicals have inevitably led to their presence in aquatic environments. Surface waters affected by sewage effluents have been exposed to these new substances. In the present study, the occurrence of anthropogenic substances, including pharmaceuticals and industrial chemicals, was investigated in one of the major rivers in Korea, the Nakdong River. Furthermore, seasonal variations in their content were determined via annual monitoring. Through the suspect and non-target screening (SNTS) technique, 58 substances were newly identified in the river and integrated in the quantitative monitoring practice. The results revealed that niflumic acid and melamine exhibited the highest median concentrations, i.e., 320 ng/L and 11,000 ng/L, respectively. The results associated with seasonal change revealed that the concentration of a considerable number of substances increased in winter when the flow rate was low. Conversely, some substances exhibited high concentrations in summer (e.g., polyethylene glycol) and spring (e.g., niflumic acid). This was attributed to the seasonal changes in the consumption, prescriptions, or the application of alternative substances. These changes were also reflected by the risk quotient (RQ) values calculated from the concentration and toxicity values. Pharmaceuticals such as telmisartan and carbamazepine and industrial chemicals such as organophosphorus flame retardants (OPFRs) and melamine accounted for approximately 90% of the total RQ. Major substances prioritized using the production of the RQ value and the detection frequency included OPFRs and telmisartan. It is recommended that these results be reflected in future water quality monitoring plans.
Collapse
Affiliation(s)
- Naree Park
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Department of Smart Ocean Environmental Energy, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
52
|
Barra RO, Chiang G, Saavedra MF, Orrego R, Servos MR, Hewitt LM, McMaster ME, Bahamonde P, Tucca F, Munkittrick KR. Endocrine Disruptor Impacts on Fish From Chile: The Influence of Wastewaters. Front Endocrinol (Lausanne) 2021; 12:611281. [PMID: 33841326 PMCID: PMC8027499 DOI: 10.3389/fendo.2021.611281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022] Open
Abstract
Industrial wastewaters and urban discharges contain complex mixtures of chemicals capable of impacting reproductive performance in freshwater fish, called endocrine-disrupting compounds (EDCs). In Chile, the issue was highlighted by our group beginning over 15 years ago, by analyzing the impacts of pulp and paper mill effluents (PPME) in the Biobio, Itata, and Cruces River basins. All of the rivers studied are important freshwater ecosystems located in the Mediterranean region of Central Chile, each with a unique fish biodiversity. Sequentially, we developed a strategy based on laboratory assays, semicontrolled-field experiments (e.g., caging) and wild fish population assessments to explore the issue of reproductive impacts on both introduced and native fish in Chile. The integration of watershed, field, and laboratory studies was effective at understanding the endocrine responses in Chilean freshwater systems. The studies demonstrated that regardless of the type of treatment, pulp mill effluents can contain compounds capable of impacting endocrine systems. Urban wastewater treatment plant effluents (WWTP) were also investigated using the same integrated strategy. Although not directly compared, PPME and WWTP effluent seem to cause similar estrogenic effects in fish after waterborne exposure, with differing intensities. This body of work underscores the urgent need for further studies on the basic biology of Chilean native fish species, and an improved understanding on reproductive development and variability across Chilean ecosystems. The lack of knowledge of the ontogeny of Chilean fish, especially maturation and sexual development, with an emphasis on associated habitats and landscapes, are impediment factors for their conservation and protection against the threat of EDCs. The assessment of effects on native species in the receiving environment is critical for supporting and designing protective regulations and remediation strategies, and for conserving the unique Chilean fish biodiversity.
Collapse
Affiliation(s)
- Ricardo O. Barra
- Faculty of Environmental Sciences and EULA-Chile Centre, University of Concepción, Concepción, Chile
- *Correspondence: Ricardo O. Barra,
| | - Gustavo Chiang
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Maria Fernanda Saavedra
- Faculty of Environmental Sciences and EULA-Chile Centre, University of Concepción, Concepción, Chile
| | - Rodrigo Orrego
- Natural Science Institute Alexander von Humboldt, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - L. Mark Hewitt
- Water Science and Technology, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Mark E. McMaster
- Water Science and Technology, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Paulina Bahamonde
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados-HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
- Núcleo Milenio INVASAL, Concepción, Chile
| | - Felipe Tucca
- Instituto Tecnológico del Salmón (INTESAL), Puerto Montt, Chile
| | | |
Collapse
|
53
|
Izadi P, Izadi P, Salem R, Papry SA, Magdouli S, Pulicharla R, Brar SK. Non-steroidal anti-inflammatory drugs in the environment: Where were we and how far we have come? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115370. [PMID: 33254637 DOI: 10.1016/j.envpol.2020.115370] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 06/12/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most well-known pharmaceuticals with a broad scope of properties that are widely used in human and veterinary medicine. Because of their extensive utilization, NSAIDs are commonly identified in the environment as trace emerging contaminants. Regardless of vast experience with these drugs, NSAIDs are full of contradictions that trigger major concerns for environmental researchers. A limited understanding on NSAID's occurrence, distribution and eco-toxicological effects have led to an escalated dilemma in the last decade. Thus, a broad-spectrum study covering all aspects of occurrence, detection and removal is required to meet the fundamental levels of knowledge on the effects of NSAIDs in all exposed environmental aspects. Therefore, this paper focuses on classifying the sources and entry points of residual NSAIDs. Further, detecting and regulating their concentrations in both input streams and receiving environments, along with the removal processes of this specific class of emerging compounds, in the direction of developing a management policy is comprehensively reviewed.
Collapse
Affiliation(s)
- Parnian Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Parin Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Rana Salem
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Sifat Azad Papry
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Sara Magdouli
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| | - Rama Pulicharla
- École Supérieure D'aménagement Du Territoire et de Développement Régional, Pavillon Félix-Antoine-Savard, Bureau 1616, 2325, Rue des Bibliothèques, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Satinder Kaur Brar
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| |
Collapse
|
54
|
Lanthanum Nickel Oxide: An Effective Heterogeneous Activator of Sodium Persulfate for Antibiotics Elimination. Catalysts 2020. [DOI: 10.3390/catal10121373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the presence of pharmaceutically active compounds (PhACs) in surface waters and wastewaters has b the effectiveness of conventional water treatment methods. Towards this direction, advanced oxidation processes (AOPs) for the complete elimination of micro pollutants in waters have become an emerging area of research. The present study reports the heterogeneous activation of sodium persulfate (SPS) by LaNiO3 (LNO) perovskite oxide for the degradation of sulfamethoxazole (SMX), an antibiotic agent. LNO was prepared according to a combustion method, and its physicochemical characteristics were identified by means of XRD, BET, TEM, and SEM/EDS. SMX degradation results showed the great efficiency of LNO for SPS activation. Increasing LNO and SPS dosage up to 250 mg/L enhanced the SMX degradation. In contrast, increasing SMX concentration resulted in longer time periods for its degradation. Considering the pH effect, SMX removal was obstructed under basic conditions, while the efficiency was enhanced at near-neutral conditions. The present system’s activity was also tested for piroxicam (PIR) and methylparaben (MeP) degradation, showing promising results. Unfortunately, experiments conducted in real water matrices such as bottled water (BW) and wastewater (WW), showed that SMX removal was limited to less than 25% in both cases. The hindering effects were mainly attributed to bicarbonate ions and organic matter present in aqueous media. The results obtained using suitable radical scavengers revealed the contribution of both hydroxyl and sulfate radicals in degradation reactions. Finally, LNO exhibited good stability under consecutive experimental runs.
Collapse
|
55
|
Farhadi N, Tabatabaie T, Ramavandi B, Amiri F. Optimization and characterization of zeolite-titanate for ibuprofen elimination by sonication/hydrogen peroxide/ultraviolet activity. ULTRASONICS SONOCHEMISTRY 2020; 67:105122. [PMID: 32276173 DOI: 10.1016/j.ultsonch.2020.105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, a photo-catalyst of titanium oxide was coated on zeolite by the sol-gel method. The generation of the zeolite-titanate photo-catalyst was optimized at conditions of calcination temperature (300, 350, 400 and 500 °C), calcination time (1, 2, 3, and 4 h), and titanate content (0, 2, 4, 6, and 8 mL). The catalyst was used for 'Sonication/UV/H2O2″ activity and finally, eliminating ibuprofen. Physicochemical properties of the as-built photo-catalysts for all optimized conditions were determined using FESEM-EDX-mapping, BET, FTIR, and XRD. The highest percentage of ibuprofen removal (98.9%) was obtained at conditions of zeolite to titanium ratio of 1 g: 2 mL, time in the furnace of 1 h, and temperature of the furnace of 350 °C. The optimum photo-catalytic (namely, Cat-350-1-2) had a surface area value of 39 m2/g and a crystalline size of 4.9 nm. The surface area for all photo-catalysts increased after being used for ibuprofen removal, possibly due to ultrasonic waves. The presence of Ti-O, benzene ring, O-Al-O, O-Si-O, C-H, and O-H in the photo-catalysts structure were confirmed. Growing the calcination time resulted in an increase in the crystallinity of titanium dioxide in the photo-catalysts and, ultimately a reduction in the ibuprofen removal. The consumed energy by the developed system was calculated for the presence (0.094 kJ/g) and absence (17.5 kJ/g) of the ultrasonic wave. The degradation pathway and reaction kinetic are also explored and proposed. The results showed that the ultrasonic-UV-activated H2O2-based technique can be applied as an alternative method for ibuprofen removal from aqueous media.
Collapse
Affiliation(s)
- Narges Farhadi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Taybeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Fazel Amiri
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
56
|
Zhang H, Lin Y, Men Z, Ihara M, Li W, He K. Evaluation of pharmaceutical activities of G-protein coupled receptor targeted pharmaceuticals in Chinese wastewater effluent. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
57
|
Pai CW, Leong D, Chen CY, Wang GS. Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes. CHEMOSPHERE 2020; 256:127002. [PMID: 32445997 DOI: 10.1016/j.chemosphere.2020.127002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) has been of concerns for their potential threats to ecosystems and human's health for decades. PPCPs have been detected in water environments worldwide and have been identified in water sources and finished water. To elucidate the potential exposure of PPCPs in drinking water, this study assessed the occurrences and treatment efficiencies of PPCPs in the drinking water of Taiwan. Raw and finished water samples collected from five main drinking water treatment plants (DWTPs) in February, June, and November 2018 were analyzed. Furthermore, laboratory-scale water treatment processes were conducted to evaluate the treatment efficiencies of these chemicals. Most of the water samples from the DWTPs had a low concentration (<30 ng/L) of PPCPs. Only samples from a DWTP was observed to have higher concentration of ibuprofen (55.6 ng/L), benzophenone (92.5 ng/L), caffeine (390.5 ng/L), and diethyltoluamide (DEET) (434.9 ng/L) in raw water than others. The results of laboratory simulations indicated that the pre-chlorination process was the key step responsible for the removal of PPCPs in conventional water treatment processes, which can remove most of the hormone treatment products, parabens, oxybenzone, and acetaminophen in water sources. However, the filtration process with anthracite as a medium could remove some of the parabens (approximately 11.9%-41.2%), hormones (approximately 18.2%-44.8%), suntan lotions (37.5%-68.8%), and naproxen (30.1%) from Milli-Q water. The removal efficiencies of the aforementioned chemicals were marginally lower in raw water. However, analgesics, caffeine, and DEET cannot be removed effectively through conventional drinking water treatment.
Collapse
Affiliation(s)
- Chih-Wei Pai
- Institute of Environmental and Occupational Health Science, National Taiwan University, Taiwan
| | - Dexter Leong
- Institute of Environmental and Occupational Health Science, National Taiwan University, Taiwan
| | - Chia-Yang Chen
- Institute of Environmental and Occupational Health Science, National Taiwan University, Taiwan; Institute of Food Safety and Health, National Taiwan University, Taiwan
| | - Gen-Shuh Wang
- Institute of Environmental and Occupational Health Science, National Taiwan University, Taiwan; Institute of Food Safety and Health, National Taiwan University, Taiwan.
| |
Collapse
|
58
|
Im JK, Hwang MY, Lee EH, Noh HR, Yu SJ. Pharmaceutical compounds in tributaries of the Han River watershed, South Korea. ENVIRONMENTAL RESEARCH 2020; 188:109758. [PMID: 32534256 DOI: 10.1016/j.envres.2020.109758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The Han River watershed is the largest and most important source of drinking water for the residents of the Seoul metropolitan area and the Gyeonggi province in South Korea. The tributaries of the watershed are vulnerable to contamination by effluents from nearby wastewater treatment plants (WWTPs) and non-point sources. In this study, a one-year monitoring study was performed to investigate the occurrence of 13 pharmaceuticals in 24 tributaries of the Han River watershed in October 2015. From the 13 pharmaceuticals, 12 were found in at least one sample, with the exception of chlortetracycline, which was not detected. The three most frequently detected compounds were clarithromycin (95.8%), carbamazepine (66.7%), and lincomycin (62.5%). Compounds found in high concentrations included clarithromycin (5.2675 μg L-1), ibuprofen (1.9646 μg L-1), and carbamazepine (1.1009 μg L-1). The total concentration of 12 pharmaceuticals in the Seoul metropolitan area (0.7128 μg L-1) was higher than that in the Gyeonggi area (0.3177 μg L-1) possibly due to the large-scale WWTPs located upstream. However, in IHR-3, which is located at the very upstream of the tributary and is not impacted by a WWTP, pharmaceuticals were not detected. This can be explained by the fact that most pharmaceuticals derived from WWTPs are related to human activity. The risk quotients (RQs) for the target pharmaceuticals were calculated on the basis of their presence in tributaries, and all pharmaceuticals presented RQs < 0.01, indicating that potential environmental impacts should be low. These results will be useful to monitor and assess the potential environmental risks of pharmaceuticals in the surface water.
Collapse
Affiliation(s)
- Jong Kwon Im
- National Institute of Environmental Research, Han River Environment Research Center, 42, Dumulmeori-gil 68beon-gil, Yangseo-myeon, Yangpyeong-gun, Gyeonggi-do, 12585, Republic of Korea.
| | - Moon Young Hwang
- Chemical Research Division, National Institute of Environmental Research, 42 Hwangyong-ro, Seogu, Incheon, 22689, Republic of Korea
| | - Eun Hee Lee
- Department of Envionmental Engineering, Sangji University, 83 Sanjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Hye Ran Noh
- National Institute of Environmental Research, Han River Environment Research Center, 42, Dumulmeori-gil 68beon-gil, Yangseo-myeon, Yangpyeong-gun, Gyeonggi-do, 12585, Republic of Korea
| | - Soon Ju Yu
- National Institute of Environmental Research, Han River Environment Research Center, 42, Dumulmeori-gil 68beon-gil, Yangseo-myeon, Yangpyeong-gun, Gyeonggi-do, 12585, Republic of Korea
| |
Collapse
|
59
|
De Filpo G, Pantuso E, Mashin AI, Baratta M, Nicoletta FP. WO 3/Buckypaper Membranes for Advanced Oxidation Processes. MEMBRANES 2020; 10:membranes10070157. [PMID: 32698318 PMCID: PMC7407767 DOI: 10.3390/membranes10070157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/20/2022]
Abstract
Photocatalytic materials, such as WO3, TiO2, and ZnO nanoparticles, are commonly linked onto porous polymer membranes for wastewater treatment, fouling mitigation and permeation enhancement. Buckypapers (BPs) are entanglements of carbon nanotubes, which have been recently proposed as innovative filtration systems thanks to their mechanical, electronic, and thermal properties. In this work, flexible membranes of single wall carbon nanotubes are prepared and characterized as efficient substrates to deposit by chemical vapor deposition thin layers of WO3 and obtain, in such a way, WO3/BP composite membranes for application in advanced oxidation processes. The photocatalytic efficiency of WO3/BP composite membranes is tested against model pollutants in a small continuous flow reactor and compared with the performance of an equivalent homogeneous WO3-based reactor.
Collapse
Affiliation(s)
- Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy;
- Correspondence: (G.D.F.); (F.P.N.); Tel.: +39-0984-492095 (G.D.F.); +39-0984-493194 (F.P.N.)
| | - Elvira Pantuso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy;
| | - Aleksander I. Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod, Russia;
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy;
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy;
- Correspondence: (G.D.F.); (F.P.N.); Tel.: +39-0984-492095 (G.D.F.); +39-0984-493194 (F.P.N.)
| |
Collapse
|
60
|
Screening of ionic liquids for the extraction of biologically active compounds using emulsion liquid membrane: COSMO-RS prediction and experiments. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113122] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
61
|
Dionísio R, Daniel D, Arenas F, Campos JC, Costa PC, Nunes B, Correia AT. Effects of pH on salicylic acid toxicity in terms of biomarkers determined in the marine gastropod Gibbula umbilicalis. MARINE ENVIRONMENTAL RESEARCH 2020; 158:104995. [PMID: 32501266 DOI: 10.1016/j.marenvres.2020.104995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Alterations of the physical-chemical properties of the oceans due to anthropogenic activities are, at present, one of the most concerning environmental issues studied by researchers. One of these issues is ocean acidification, mainly caused by overproduction and release of carbon dioxide (CO2) from anthropogenic sources. Another component of environmental degradation is related to the production and release of potential toxic compounds, namely active pharmaceutical ingredients, into the aquatic environment that, combined with oceanic acidification, can cause unpredictable and never before considered deleterious effects on non-target marine organisms. Regarding this issue, the hereby study used predictions of future ocean acidification to simulate realistic scenarios of environmental exposure to a common therapeutic drug, salicylic acid (SA), in the marine gastropod Gibbula umbilicalis under different pH values. This species was exposed to a range of pH values (8.2, 7.9 and 7.6), and to already reported environmentally realistic concentrations (5, 25 and 125 μg/L) of SA. To evaluate the effects of these environmental stressors, key physiological biomarkers (GSTs, CAT, TBARS, AChE and COX) and shell hardness (SH) were quantified. Results from the present study showed that CAT and GSTs activities were enhanced by SA under water acidification; increased lipid peroxidation was also observed in organisms exposed to SA in more acidic media. In addition, the hereby study demonstrated the neurotoxic effects of SA through the inhibition of AChE. Effects were also observed in terms of COX activity, showing that SA absorption may be affected by water acidification. In terms of SH, the obtained data suggest that SA may alter the physical integrity of shells of exposed organisms. It is possible to conclude that the combination of seawater acidification and exposure to toxic xenobiotics (namely to the drug SA) may be strenuous to marine communities, making aquatic biota more susceptible to xenobiotics, and consequently endangering marine life in an unpredictable extent.
Collapse
Affiliation(s)
- Ricardo Dionísio
- Departamento de Biologia da Universidade de Aveiro (DBIO-UA), Campus de Santiago, 3810-193 Aveiro, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - David Daniel
- Departamento de Biologia da Universidade de Aveiro (DBIO-UA), Campus de Santiago, 3810-193 Aveiro, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Francisco Arenas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - João C Campos
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO-REQUIMTE), MedTech - Laboratório de Tecnologia Farmacêutica, Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Paulo C Costa
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO-REQUIMTE), MedTech - Laboratório de Tecnologia Farmacêutica, Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Bruno Nunes
- Departamento de Biologia da Universidade de Aveiro (DBIO-UA), Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS/UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| |
Collapse
|
62
|
Coupling Persulfate-Based AOPs: A Novel Approach for Piroxicam Degradation in Aqueous Matrices. WATER 2020. [DOI: 10.3390/w12061530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activated persulfate degradation of piroxicam, a non-steroidal anti-inflammatory drug (NSAID) belonging to oxicams, was investigated. Persulfate was activated with thermal energy or (UV-A and simulated solar) irradiation. Using 250 mg/L sodium persulfate at 40 °C degraded almost completely 0.5 mg/L of piroxicam in 30 min. Increasing piroxicam concentration from 0.5 to 4.5 mg/L decreased its removal. The observed kinetic constant was increased almost ten times from 0.077 to 0.755 min−1, when the temperature was increased from 40 to 60 °C, respectively. Process efficiency was enhanced at pH 5–7. At ambient conditions and 30 min of irradiation, 94.1% and 89.8% of 0.5 mg/L piroxicam was removed using UV-A LED or simulated solar radiation, respectively. Interestingly, the use of simulated sunlight was advantageous over UV-A light for both secondary effluent, and 20 mg/L of humic acid solution. Unlike other advanced oxidation processes, the presence of bicarbonate or chloride in the range 50–250 mg/L enhanced the degradation rate, while the presence of humic acid delayed the removal of piroxicam. The use of 0.5 and 10 g/L of methanol or tert-butanol as radical scavengers inhibited the reaction. The coupling of thermal and light activation methods in different aqueous matrices showed a high level of synergy. The synergy factor was calculated as 68.4% and 58.4% for thermal activation (40 °C) coupled with either solar light in 20 mg/L of humic acid or UV-A LED light in secondary effluent, respectively.
Collapse
|
63
|
Tak S, Tiwari A, Vellanki BP. Identification of emerging contaminants and their transformation products in a moving bed biofilm reactor (MBBR)-based drinking water treatment plant around River Yamuna in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:365. [PMID: 32409992 DOI: 10.1007/s10661-020-08303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The prevalence of emerging contaminants of concern in water regimes is very common these days. High anthropogenic intervention is leading to occurrence of various types of microcontaminants of concern in drinking water systems. Their removal using conventional form of treatment systems employed in water treatment plants is not widely researched upon. Their fate in the conventional as well as advanced water treatment system needs to be focused upon for efficient and safe water disposal. Some compounds may leave the system unchanged or some might transform into much more toxic byproduct. Moreover, understanding level of occurrence of these emerging contaminants in source water bodies is also quintessential for assessing their fate in treatment plant itself as well as in the final treated water. Here in this study, the occurrence and removal of various classes of emerging contaminants were investigated in a moving bed biofilm reactor (MBBR)-based advanced drinking water treatment plant (ADWTP) alongside one conventional drinking water treatment plant, both of which use River Yamuna as the source of water. Non-target analysis utilizing high-performance liquid chromatography combined with time of flight (HPLC-QToF) identified more than 300 compounds. Pharmaceuticals accounted for a major fraction (58%) of the identified compounds, followed by plasticizers and insecticides. Nine parent compound and their transformation products were additionally identified using solid-phase extraction followed by analysis using gas chromatography mass spectrometry and HPLC-QToF. The degradation pathway of the parent compounds in MBBR-based ADWTP was also analyzed in depth. The efficiency of each unit process of MBBR-based drinking water treatment plant was studied in terms of removal of few emerging contaminants. Pharmaceutical compound like diclofenac supposedly was persistent, even, toward the end of the treatment train. Semi-quantitative analysis revealed ineffective removal of pyridine, hydrochlorothiazide, and diethyl phthalate in the outlet of ADWTP. ADWTP was able to remove a few emerging contaminants, but a few were recalcitrant. Likewise, it was established that although some parent compounds were degraded, much more toxic transformation products were formed and were prevalent at the end of the treatment.
Collapse
Affiliation(s)
- Surbhi Tak
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Aman Tiwari
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Bhanu Prakash Vellanki
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
64
|
Ma R, Qu H, Wang B, Wang F, Yu G. Widespread monitoring of chiral pharmaceuticals in urban rivers reveals stereospecific occurrence and transformation. ENVIRONMENT INTERNATIONAL 2020; 138:105657. [PMID: 32240890 DOI: 10.1016/j.envint.2020.105657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The present work aimed to discuss the enantiomeric occurrence of chiral pharmaceuticals including 5 parent compounds (PCs) metoprolol, propranolol, atenolol, venlafaxine and fluoxetine as well as 6 of their transformation products (TPs) in surface water in Beijing. Among which, 9 out of 11 were detected during the two sampling campaigns with N-O-Didesmethylvenlafaxine (NODDV) and α-hydroxymetoprolol confirmed in the catchment for the first time. Metoprolol acid (MTPA) was the most abundant up to 1508 ng L-1, followed by metoprolol and O-desmethylvenlafaxine (ODV). Most compounds showed 100% detection frequency or nearly, while norfluoxetine (the main metabolite of fluoxetine) and 4-hydroxypropranololone (one TP of propranolol) were not detected. Metoprolol (MTP) and venlafaxine (VFX) did not vary significantly between two sampling periods with mean concentrations of 280.7 and 22.9 ng L-1, respectively. Enantiomeric enrichment was observed for venlafaxine, metoprolol and NODDV, where R-venlafaxine was preferentially biotransformed than the S-form through O-desmethylation. Risk assessment indicated that fluoxetine and atenolol could pose harmful effects to aquatic organisms. This work provides enantiospecific profiles of pharmaceutically active compounds (PhACs), and extended the concept of applying the ratio of TPs vs. parent compound plus their enantiomeric traits for quantitative assessment of in situ biodegradation. Due to the considerable contribution by TPs (64% in present study) as well as the unexpected impacts from enantiomeric existence, the stereoselectivity of chiral pollutants during environmental process should be taken into account in future study. To the best of the authors' knowledge, it is the first comprehensive evaluation of chiral pharmaceuticals and transformation products at enantiomeric level in aquatic environment in China, which would facilitate better understanding of their environmental fate.
Collapse
Affiliation(s)
- Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing 100084, China
| | - Han Qu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing 100084, China; Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, AZ 85721, United States
| | - Bin Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Fang Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
65
|
Photocatalytic degradation of ibuprofen and naproxen in water over NS-TiO2 coating on polycarbonate: Process modeling and intermediates identification. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
66
|
Ilyas H, van Hullebusch ED. Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14342-14364. [PMID: 32157544 DOI: 10.1007/s11356-020-08165-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
This paper presents a comprehensive and critical comparison of four types of constructed wetlands (CWs): free water surface CW (FWSCW), vertical flow CW (VFCW), horizontal flow CW (HFCW), and hybrid CW (HCW) for the removal of 29 pharmaceuticals (PhCs) and 19 transformation products (TPs) using a global data compiled for 247 CWs reported in 63 peer-reviewed journal papers. Biodegradation (aerobic being more efficient than anaerobic) is the major removal mechanism for 16 out of 29 PhCs besides the influence of other processes (e.g., adsorption/sorption, plant uptake, and photodegradation). The HCW performed better followed by VFCW, HFCW, and FWSCW. The comparatively better removal in HCW might be due to the coexistence of aerobic and anaerobic conditions and longer hydraulic retention time considering more than one compartment enhances the removal of PhCs (e.g., diclofenac, acetaminophen, sulfamethoxazole, sulfapyridine, trimethoprim, and atenolol), which are removed under both conditions and adsorption/sorption processes. The augmentation in dissolved oxygen by the application of artificial aeration improved the removal of PhCs, which are degraded under aerobic conditions. Furthermore, the better performance of aerated CWs could be due to the establishment of various microenvironments with different physicochemical conditions (aerobic and anaerobic), which facilitated the contribution of both aerobic and anaerobic metabolic pathways in the removal of PhCs. The removal of some of the PhCs takes place by the formation of their TPs and the nature of these TPs (persistent or non-biodegradable/biodegradable) plays a major role in their removal process.
Collapse
Affiliation(s)
- Huma Ilyas
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France.
- Water Treatment and Management Consultancy, B.V, 2289 ED, Rijswijk, The Netherlands.
| | - Eric D van Hullebusch
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
67
|
Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW. A new analytical workflow using HPLC with drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry for the detection of drug-related metabolites in plants. Anal Bioanal Chem 2020; 412:1817-1824. [PMID: 31965248 PMCID: PMC7048865 DOI: 10.1007/s00216-020-02429-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
Investigations into the interaction of xenobiotics with plants (and in particular edible plants) have gained substantial interest, as water scarcity due to climate-change-related droughts requires the more frequent use of reclaimed wastewaters for irrigation in agriculture. Non-steroidal anti-inflammatory drugs are common contaminants found in wastewater treatment plant effluents. For this reason, the interaction of nine edible plants with diclofenac (DCF), a widely used representative of this group of drugs, was investigated. For this purpose, plants were hydroponically grown in a medium containing DCF. For the detection of unknown DCF-related metabolites formed in the plant upon uptake of the parent drug‚ a new workflow based on the use of HPLC coupled to drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry (DTIM QTOF-MS) was developed. Thereby‚ for chromatographic peaks eluting from the HPLC, drift times were recorded, and analytes were subsequently fragmented in the DTIM QTOF-MS to provide significant fragments. All information available (retention times, drift times, fragment spectra, accurate mass) was finally combined‚ allowing the suggestion of molecular formulas for 30 DCF-related metabolites formed in the plant, whereby 23 of them were not yet known from the literature.
Collapse
Affiliation(s)
- Franz Mlynek
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Markus Himmelsbach
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Wolfgang Buchberger
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Christian W Klampfl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| |
Collapse
|
68
|
Oliveira Miranda M, Eulálio Cabral Cavalcanti W, Ivan da Silva F, Rigoti E, Rodríguez-Castellón E, Pergher SBC, Pinheiro Braga T. Photocatalytic degradation of ibuprofen using modified titanium oxide supported on CMK-3: effect of Ti content on the TiO 2 and carbon interaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01167c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TiO2 nanoparticles dispersed in ordered mesoporous CMK-3 carbon with different Ti contents were successfully synthesized and their activity in the photocatalytic degradation of ibuprofen was presented.
Collapse
Affiliation(s)
- Maicon Oliveira Miranda
- Laboratório de Peneiras Moleculares
- Instituto de Química
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | | | | - Eduardo Rigoti
- Laboratório de Peneiras Moleculares
- Instituto de Química
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica
- Cristalografía y Mineralogía
- Facultad de Ciencias
- Universidad de Málaga
- Málaga
| | - Sibele B. C. Pergher
- Laboratório de Peneiras Moleculares
- Instituto de Química
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Tiago Pinheiro Braga
- Laboratório de Peneiras Moleculares
- Instituto de Química
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
69
|
Lan Y, Barthe L, Azais A, Causserand C. Feasibility of a heterogeneous Fenton membrane reactor containing a Fe-ZSM5 catalyst for pharmaceuticals degradation: Membrane fouling control and long-term stability. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Sharma K, Kaushik G, Thotakura N, Raza K, Sharma N, Nimesh S. Enhancement effects of process optimization technique while elucidating the degradation pathways of drugs present in pharmaceutical industry wastewater using Micrococcus yunnanensis. CHEMOSPHERE 2020; 238:124689. [PMID: 31524624 DOI: 10.1016/j.chemosphere.2019.124689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceutical effluents released from industries are accountable to deteriorate the aquatic and soil environment through indirect toxic effects. Microbes are adequately been used to biodegrade pharmaceutical industry wastewater and present study was envisaged to determine biodegradation of pharmaceutical effluent by Micrococcus yunnanensis. The strain showed 42.82% COD (Chemical oxygen demand) reduction before optimization. After applying Taguchi's L8 array as an optimization technique, the biodegradation rate was enhanced by 82.95% at optimum conditions (dextrose- 0.15%, peptone 0.1%, inoculum size 4% (wv-1), rpm 200, pH 8 at 25 °C) within 6 h. The confirmation of pharmaceuticals degradation was done by 1H NMR (Nuclear magnetic resonance) studies followed by elucidation of transformation pathways of probable drugs in the effluent through Q-Tof-MS (Quadrupole Time of Flight- Mass Spectrometry). The cytotoxicity evaluation of treated and untreated wastewater was analyzed on Human Embryonic Kidney (HEK 293) cells using Alamar Blue assay, which showed significant variance.
Collapse
Affiliation(s)
- Kritika Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India.
| | - Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Nikita Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| |
Collapse
|
71
|
Shende AG, Tiwari CS, Bhoyar TH, Vidyasagar D, Umare SS. BWO nano-octahedron coupled with layered g-C3N4: An efficient visible light active photocatalyst for degradation of cationic/anionic dyes, and N2 reduction. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
72
|
Removal of Organic Micropollutants in Wastewater Treated by Activated Sludge and Constructed Wetlands: A Comparative Study. WATER 2019. [DOI: 10.3390/w11122515] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study is to compare the removal of organic micropollutants (OMPs) in wastewater by activated sludge (AS) and constructed wetlands (CWs). This analysis was carried out in a wastewater treatment plant (WWTP) of a rural community where they implemented two technologies in parallel: AS and a pilot plant of horizontal subsurface flow (HSSF) constructed wetlands. In this case, these systems were fed by the same influent and the removal efficiencies of 14 OMPs, including analgesics/anti-inflammatories, anticonvulsants, stimulants, antifungals, fragrances, plasticizers, and transformation products, were evaluated in each system. Regarding the presence of OMPs in the wastewater, the concentrations of these compounds in the influent ranged from 0.16 to 7.75 µg/L. In general, the removal efficiencies achieved by the AS system were between 10%–95% higher than those values reported by HSSFs with values above 80% for naproxen, ibuprofen, diclofenac, caffeine, triclosan, methyl dihydrojasmonate, bisphenol-A, 2-hydroxyl ibuprofen, and carboxy ibuprofen (p < 0.05). This behavior can be related to the aerobic conditions that promote the AS system with oxidation-reduction potential (ORP) and dissolved oxygen (DO) values above −281 mV and 0.24 mg/L, respectively. However, the removal of galaxolide was greater in HSSF system than in AS with significant difference of 70% (p < 0.05). Despite these results, this study reveals that comparing both technologies, AS had the best removal performance of these OMPs studied.
Collapse
|
73
|
Li Y, Niu X, Yao C, Yang W, Lu G. Distribution, Removal, and Risk Assessment of Pharmaceuticals and Their Metabolites in Five Sewage Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234729. [PMID: 31783493 PMCID: PMC6926846 DOI: 10.3390/ijerph16234729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/29/2023]
Abstract
The extensive use of pharmaceuticals and personal care products (PPCPs) leads to a continuous increase of their presence in urban wastewater. These pollutants are discharged into natural waters and pose a threat to human health and the ecological environment. This study focused on five sewage treatment plants in three cities of China’s Yangtze River Delta as research sites to study the distribution and degradation of drugs and their conversion products in wastewater. The concentration of target compounds in the water ranged from 0 to 510.8 ng/L, and both positive and negative removal rates occurred during the treatment. Acetaminophen (ACE) and ibuprofen (IPF) can be completely removed in the biological treatment stage. The addition of flocculants and sand filtration has a positive effect on the removal of naproxen (NPX) and bezafibrate (BZB). Ultraviolet disinfection is beneficial for the removal of antipyrine (ATP) and diclofenac (DCF). A small amount of PPCPs were found in the sludge and particulate matter, which had little effect on removal. Finally, the risk quotients were used to evaluate the harmfulness of the PPCPs detected in the effluent to the ecological environment, and the results showed that there was little hazard.
Collapse
|
74
|
Koltsakidou Α, Katsiloulis C, Εvgenidou Ε, Lambropoulou DA. Photolysis and photocatalysis of the non-steroidal anti-inflammatory drug Nimesulide under simulated solar irradiation: Kinetic studies, transformation products and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:245-257. [PMID: 31271990 DOI: 10.1016/j.scitotenv.2019.06.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, the degradation of Nimesulide (NIM), a non-steroidal anti-inflammatory drug, using photolysis, heterogeneous (TiO2 in dispersion) and homogeneous (photo-Fenton reactant) photocatalysis, under simulated solar light (SSL) radiation, was investigated. Various parameters affecting the degradation rate of the target compound during the applied processes were optimized. The efficiency of all treatments used (direct photolysis; TiΟ2/SSL; TiΟ2/Η2Ο2/SSL; TiΟ2/S2Ο82-/SSL; Fe3+/H2O2/SSL; Fe3+/S2O82-/SSL and [Fe(C2O4)3]3-/H2O2/SSL) was evaluated by means of initial reaction rate and mineralization. Moreover, the generated transformation products (TPs) by each basic process (photolysis; TiΟ2/SSL and Fe3+/H2O2/SSL) were identified, using liquid chromatography coupled to high resolution mass spectrometry, and their formation kinetic profiles were given. The main transformation routes of NIM were hydroxylation and fragmentation, for all three treatments applied. Finally, toxicity measurements were conducted using Microtox bioassay in order to evaluate the potential risk of NIM and its TPs to aqueous organisms. Although, the acute toxicity increased during the first stages of treatment the final outcome lead to very low toxicity levels even within 60 min of TiO2/SSL treatment. Concluding, the obtained results suggest that the photocatalytic degradation of NIM can lead to its complete elimination and simultaneously to the detoxification of the solution.
Collapse
Affiliation(s)
- Α Koltsakidou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ch Katsiloulis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ε Εvgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - D A Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
75
|
Zhou G, Li N, Rene ER, Liu Q, Dai M, Kong Q. Chemical composition of extracellular polymeric substances and evolution of microbial community in activated sludge exposed to ibuprofen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:267-274. [PMID: 31181475 DOI: 10.1016/j.jenvman.2019.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Ibuprofen (IBU) containing wastewater with a concentration of 1-5 mg/L was treated in an activated sludge sequencing batch reactor (SBR), for 60 days, in order to investigate the overall performance of the SBR, the parameter variations during a typical cycle, the chemical composition and content of extracellular polymeric substances (EPS) and the evolution of microbial community. The average removal efficiencies of COD, NH4+-N and TN were >85%, while >40% of the IBU was removed and the removal efficiencies of TP fluctuated around ~ 75%. The EPS content increased significantly with IBU addition (p < 0.01). Fulvic acid-like substances in the chemical composition of EPS increased during the stable operation phase. Proteobacteria associated with nitrogen removal was the dominant phylum, which can also resist IBU stress. For the denitrifying bacteria, the OTUs of both Rhodobacter and Pseudomonas increased from day 1-30 and reduced on day 60 (p < 0.01), which was opposite to the results observed for Rhodocyclaceae (phosphorus-accumulating bacteria). The OTUs of Acidovorax showed an increasing trend (p < 0.01), whereas the OTUs for Nitrospira (nitrite oxidizers) and Nitrosomonas (ammonia oxidizers) decreased significantly (p < 0.05).
Collapse
Affiliation(s)
- Guangqing Zhou
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China; College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Na Li
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Qi Liu
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China.
| | - Qiang Kong
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China; College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
76
|
Valimaña-Traverso J, Amariei G, Boltes K, García MÁ, Marina ML. Stability and toxicity studies for duloxetine and econazole on Spirodela polyrhiza using chiral capillary electrophoresis. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:203-210. [PMID: 31003121 DOI: 10.1016/j.jhazmat.2019.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Stability and toxicity studies for duloxetine and econazole were achieved using individual solutions and their mixtures. Stability of drugs racemates and enantiomers was investigated under abiotic and biotic conditions. Toxicity was evaluated for the first time on Spirodela polyrhiza. EC50 values were calculated for each individual drug and for their binary mixture. Real (not nominal) concentrations determined by Capillary Electrophoresis were employed in the calculations of toxicity parameters. The use of a 25 mM phosphate buffer (pH 3.0) with 1.5% S-β-CD as chiral selector at a temperature of 30 °C and a separation voltage of -20 kV enabled the simultaneous enantiomeric separation of duloxetine and econazole in 7.5 min with enantiomeric resolutions of 7.9 and 6.5, respectively. For individual solutions, decay percentages under abiotic conditions were higher for duloxetine (80%) than for econazole (60%), while in presence of Spirodela polyrhiza they increased for duloxetine but not for econazole. Econazole showed the highest decay percentages under abiotic or biotic conditions (100%) in binary mixtures. EC50 values for duloxetine and econazole enabled to include both drugs within the group of very toxic compounds although econazole showed a higher toxicity than duloxetine and the binary mixture.
Collapse
Affiliation(s)
- Jesús Valimaña-Traverso
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Georgiana Amariei
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Karina Boltes
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares (Madrid), Spain
| | - Maria Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Ctra, Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Maria Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Ctra, Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
77
|
Costa F, Lago A, Rocha V, Barros Ó, Costa L, Vipotnik Z, Silva B, Tavares T. A Review on Biological Processes for Pharmaceuticals Wastes Abatement-A Growing Threat to Modern Society. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7185-7202. [PMID: 31244068 DOI: 10.1021/acs.est.8b06977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the last decades, the production and consumption of pharmaceuticals and health care products grew manifold, allowing an increase in life expectancy and a better life quality for humans and animals, in general. However, the growth in pharmaceuticals production and consumption comes with an increase in waste production, which creates a number of challenges as well as opportunities for the waste management industries. The conventional current technologies used to treat effluents have shown to be inefficient to remove or just to reduce the concentrations of these types of pollutants to the legal limits. The present review provides a thorough state-of-the-art overview on the use of biological processes in the rehabilitation of ecosystems contaminated with the pharmaceutical compounds most commonly detected in the environment and eventually more studied by the scientific community. Among the different biological processes, special attention is given to biosorption and biodegradation.
Collapse
Affiliation(s)
- Filomena Costa
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Ana Lago
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Verónica Rocha
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Óscar Barros
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Lara Costa
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Ziva Vipotnik
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Bruna Silva
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Teresa Tavares
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| |
Collapse
|
78
|
Wust KM, Beck TS, Hennemann BL, Villetti MA, Frizzo CP. Thermal and oxidative decomposition of ibuprofen-based ionic liquids. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
79
|
Liu YJ, Liu HS, Hu CY, Lo SL. Simultaneous aqueous chlorination of amine-containing pharmaceuticals. WATER RESEARCH 2019; 155:56-65. [PMID: 30831424 DOI: 10.1016/j.watres.2019.01.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Amine-containing pharmaceuticals such as acetaminophen, diclofenac, and sulfamethoxazole are the most often detected pharmaceuticals in wastewater and other aquatic environments. Amine-containing pharmaceuticals can be effectively removed by chlorination. These drugs, however, may coexist in wastewater. Thus, they may compete with each other, and their chlorinated products may react with each other to form new products. In this study, competitive effects of the above three amine-containing pharmaceuticals by chlorination and their products were investigated. The priority of chlorination of these compounds was dependent upon the pH of the solution, due to the dissociation of the compounds and hypochlorite. It followed the order of sulfamethoxazole > diclofenac > acetaminophen in an acidic condition, the order of sulfamethoxazole > acetaminophen > diclofenac in a neutral condition, and the order of sulfamethoxazole ≈ acetaminophen > diclofenac in an alkaline condition. Some of the chlorinated products in single- and multiple-compound systems were the same. Dimers of sulfamethoxazole and its chlorinated products, however, were not found, but dimers of sulfamethoxazole and acetaminophen or diclofenac were found in multiple-compound systems. This finding is important because it means that new products may be produced if different amine-containing pharmaceuticals react with free chlorine simultaneously.
Collapse
Affiliation(s)
- Yu-Jung Liu
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| | - Hui-Sz Liu
- School of Public Health, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan, ROC
| | - Ching-Yao Hu
- School of Public Health, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan, ROC.
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| |
Collapse
|
80
|
Pereira JM, Calisto V, Santos SM. Computational optimization of bioadsorbents for the removal of pharmaceuticals from water. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
Uheida A, Mohamed A, Belaqziz M, Nasser WS. Photocatalytic degradation of Ibuprofen, Naproxen, and Cetirizine using PAN-MWCNT nanofibers crosslinked TiO2-NH2 nanoparticles under visible light irradiation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
82
|
Liu YJ, Hu CY, Lo SL. Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:592-605. [PMID: 30576998 DOI: 10.1016/j.jhazmat.2018.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the direct and indirect electro-oxidation of amine-containing pharmaceuticals (acetaminophen (ACT), diclofenac (DIC), and sulfamethoxazole (SMX)) by using graphite electrodes, and to compare the influence by using different electrolytes (Na2SO4 and NaCl). Under the optimum conditions of current (I) at 0.5 A, in direct system, 74.3%, 90.0%, 81.6% of ACT, DIC, and SMX were respectively removed after 60 min (k = 0.023, 0.037, 0.027 min-1), 48.9%, 85.9%, 68.2% of TOC respectively removed after reaction time. In contrast, at the same current intensity, in indirect system, ACT, DIC, and SMX were eliminated within 30 min (k = 0.117, 0.307, 0.170 min-1), 89.6%, 92.6%, 99.6% of TOC respectively removed after reaction time. The results indicated that the dissociated compounds were attracted to the anode due to electrostatic forces and had higher mass transformation rates in the direct electro-oxidation process. According to the cyclic voltammogram, indirect oxidation occurred when active chlorine species were generated from chloride ions anodically to destroy pollutants. Based on intermediates detected during electro-oxidation treatment by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), only oxidized intermediates were found in the direct oxidation system, while both oxidized and chlorinated intermediates were found in the indirect oxidation system.
Collapse
Affiliation(s)
- Yu-Jung Liu
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 10673, Taiwan
| | - Ching-Yao Hu
- School of Public Health, Taipei Medical University, 250, Wu-Xing Street, Taipei 11031, Taiwan
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 10673, Taiwan; NTU Research Center for Future Earth, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
83
|
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev 2019; 119:3510-3673. [DOI: 10.1021/acs.chemrev.8b00299] [Citation(s) in RCA: 827] [Impact Index Per Article: 165.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kamal Kishor
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
84
|
Koltsakidou A, Terzopoulou Z, Kyzas GZ, Bikiaris DN, Lambropoulou DA. Biobased Poly(ethylene furanoate) Polyester/TiO₂ Supported Nanocomposites as Effective Photocatalysts for Anti-inflammatory/Analgesic Drugs. Molecules 2019; 24:E564. [PMID: 30720725 PMCID: PMC6384769 DOI: 10.3390/molecules24030564] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/03/2022] Open
Abstract
In the present study, polymer supported nanocomposites, consisting of bio-based poly(ethylene furanoate) polyester and TiO₂ nanoparticles, were prepared and evaluated as effective photocatalysts for anti-inflammatory/analgesic drug removal. Nanocomposites were prepared by the solvent evaporation method containing 5, 10, 15, and 20 wt% TiO₂ and characterized using Fourier Transform Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Thin films of them have been prepared by the melt press and optimization of the photocatalytic procedure was conducted for the most efficient synthesized photocatalyst. Finally, mineralization was evaluated by means of Total organic carbon (TOC) reduction and ion release, while the transformation products (TPs) generated during the photocatalytic procedure were identified by high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Anastasia Koltsakidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR⁻541 24 Thessaloniki, Greece.
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - George Z Kyzas
- Hephaestus Advanced Laboratory, Eastern Macedonia and Thrace Institute of Technology, GR-654 04 Kavala, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR⁻541 24 Thessaloniki, Greece.
| |
Collapse
|
85
|
Enhanced activation of hydrogen peroxide using nitrogen doped graphene for effective removal of herbicide 2,4-D from water by iron-free electrochemical advanced oxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.196] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
86
|
González Labrada K, Alcorta Cuello DR, Saborit Sánchez I, García Batle M, Manero MH, Barthe L, Jáuregui-Haza UJ. Optimization of ciprofloxacin degradation in wastewater by homogeneous sono-Fenton process at high frequency. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 53:1139-1148. [PMID: 30623707 DOI: 10.1080/10934529.2018.1530177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/22/2018] [Accepted: 04/30/2018] [Indexed: 06/09/2023]
Abstract
Emerging pollutants such as pharmaceuticals have been focusing international attention for a few decades. Ciprofloxacin (CIP) is a common drug that is widely found in hospital and wastewater treatment plants effluents, as well as in rivers. In this work, the feasibility of CIP degradation by ultrasound process at high frequency is discussed and sonolysis, sonolysis with hydrogen peroxide and sono-Fenton are evaluated. The amounts of hydrogen peroxide and ferrous ions (Fe2+) needed were optimized using response surface methodology. Best results were obtained with the sono-Fenton process resulting in a total pharmaceutical degradation within 15 min and a mineralization greater than 60% after 1 h. Optimal conditions were tested on a real matrix from a municipal wastewater treatment plant. Even if the degradation of the pollutants by sono-Fenton was hampered, the removal efficiency of both CIP and total organic carbon (TOC) is interesting as an increase in the biodegradability of the wastewater is found. These results show that sono-Fenton oxidation can be a promising pretreatment process for pharmaceutical-containing wastewaters.
Collapse
Affiliation(s)
- Katia González Labrada
- a Universidad Tecnológica de la Habana "José Antonio Echeverría" CUJAE , Marianao, La Habana , Cuba
- b Laboratoire de Génie Chimique, Université de Toulouse, CNRS , Toulouse , France
| | | | - Israel Saborit Sánchez
- c Instituto Superior de Tecnologías y Ciencias Aplicadas , Universidad de La Habana , Quinta de los Molinos , La Habana , Cuba
| | - Marise García Batle
- c Instituto Superior de Tecnologías y Ciencias Aplicadas , Universidad de La Habana , Quinta de los Molinos , La Habana , Cuba
| | - Marie-Hélène Manero
- b Laboratoire de Génie Chimique, Université de Toulouse, CNRS , Toulouse , France
| | - Laurie Barthe
- b Laboratoire de Génie Chimique, Université de Toulouse, CNRS , Toulouse , France
| | - Ulises Javier Jáuregui-Haza
- c Instituto Superior de Tecnologías y Ciencias Aplicadas , Universidad de La Habana , Quinta de los Molinos , La Habana , Cuba
| |
Collapse
|
87
|
Jung KW, Choi BH, Song KG, Choi JW. Statistical optimization of preparing marine macroalgae derived activated carbon/iron oxide magnetic composites for sequestering acetylsalicylic acid from aqueous media using response surface methodologys. CHEMOSPHERE 2019; 215:432-443. [PMID: 30336320 DOI: 10.1016/j.chemosphere.2018.10.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
This study focuses on the optimization of synthetic conditions for preparing marine macroalgae-derived activated carbon/iron oxide magnetic composites (AC/Fe-MC) and its feasibility for the removal of acetylsalicylic acid from aqueous media. Response surface methodology coupled with a 3k Box-Behnken design was applied to determine the optimal conditions (independent variables: impregnation ratio, activation temperature, and activation time) towards two response variables (production yield and adsorption capacity). According to the analysis of variance and numerical desirability function approaches, the optimal conditions were impregnation ratio of 2.62:1, activation temperature of 727 °C, and activation time of 129 min. Physicochemical properties of the prepared composite revealed that AC/Fe-MC possesses a porous structure and superparamagnetic property, which substantially contributed to the effective adsorption capacity and separation from the solution using an external magnetic field. Adsorption kinetics and equilibrium studies delineated that the pseudo-second-order and Sips isotherm models represent the adsorption behavior of AC/Fe-MC accurately. The maximum adsorption capacity of AC/Fe-MC was found to be around 127 mg/g at 10 °C, as fitted by Sips isotherm model, which is higher than that of other adsorbents reported in the literature. Intraparticle diffusion and Boyd models suggested that the adsorption process was mainly controlled by film diffusion mechanism. Lastly, thermodynamic and isosteric heat of adsorption analyses demonstrated that the adsorption process was controlled by physisorption and exothermic mechanisms.
Collapse
Affiliation(s)
- Kyung-Won Jung
- Center for Water Resources Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Brian Hyun Choi
- Center for Water Resources Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environmental Engineering, KIST School, Korea University of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyung Guen Song
- Center for Water Resources Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environmental Engineering, KIST School, Korea University of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Resources Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environmental Engineering, KIST School, Korea University of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
88
|
Sharma A, Ahmad J, Flora SJS. Application of advanced oxidation processes and toxicity assessment of transformation products. ENVIRONMENTAL RESEARCH 2018; 167:223-233. [PMID: 30055452 DOI: 10.1016/j.envres.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Advanced Oxidation Processes (AOPs) are the techniques employed for oxidation of various organic contaminants in polluted water with the objective of making it suitable for human consumption like household and drinking purpose. AOPs use potent chemical oxidants to bring down the contaminant level in the water. In addition to this function, these processes are also capable to kills microbes (as disinfectant) and remove odor as well as improve taste of the drinking water. The non-photochemical AOPs methods include generation of hydroxyl radical in absence of light either by ozonation or through Fenton reaction. The photochemical AOPs methods use UV light along with H2O2, O3 and/or Fe+2 to generate reactive hydroxyl radical. Non-photochemical method is the commonly used whereas, photochemical method is used when conventional O3 and H2O2 cannot completely oxidize organic pollutants. However, the choice of AOPs methods is depended upon the type of contaminant to be removed. AOPs cause loss of biological activity of the pollutant present in drinking water without generation of any toxicity. Conventional ozonation and AOPs can inactivate estrogenic compounds, antiviral compounds, antibiotics, and herbicides. However, the study of different AOPs methods for the treatment of drinking water has shown that oxidation of parent compound can also lead to the generation of a degradation/transformation product having biological activity/chemical toxicity similar to or different from the parent compound. Furthermore, an increased toxicity can also occur in AOPs treated drinking water. This review discusses various methods of AOPs, their merits, its application in drinking water treatment, the related issue of the evolution of toxicity in AOPs treated drinking water, biocatalyst, and analytical methods for identification of pollutants /transformed products and provides future directions to address such an issue.
Collapse
Affiliation(s)
- Abha Sharma
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - Javed Ahmad
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India.
| |
Collapse
|
89
|
Abstract
The azo dye Basic Blue 41 was subjected to photocatalytic and photoelectrocatalytic degradation using nanopararticulate titania films deposited on either glass slides or Fluorine doped Tin Oxide (FTO) transparent electrodes. The degradation was carried out by irradiating titania films with weak ultraviolet (UVA) radiation. The degradation was faster when using FTO as a titania support even without bias and was further accelerated under forward electric bias. This result was explained by enhanced electron-hole separation even in the case of the unbiased titania/FTO combination. This system for organic material photocatalytic degradation was also successfully applied to the degradation of the anti-inflammatory drug piroxicam, which demonstrated a well distinguished degradation behavior in going from a plain glass support to unbiased and biased FTO. The degradation pathway of piroxicam has been additionally studied using liquid chromatography-accurate mass spectrometry analysis.
Collapse
|
90
|
Majewska M, Harshkova D, Guściora M, Aksmann A. Phytotoxic activity of diclofenac: Evaluation using a model green alga Chlamydomonas reinhardtii with atrazine as a reference substance. CHEMOSPHERE 2018; 209:989-997. [PMID: 30114750 DOI: 10.1016/j.chemosphere.2018.06.156] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Human activities have caused increasing inputs of pharmaceuticals to the environment and diclofenac (DF) is one of the most commonly detected in freshwater systems. The aim of this study was to determine the impact of DF on a freshwater green alga as a non-target organism. For DF toxicity evaluation, its effects on a model organism Chlamydomonas reinhardtii were compared with effects caused by the herbicide atrazine (AT). EC50 values were about 135 mg/L for DF and 78 mg/L for AT, respectively. Both toxicants enhanced H2O2 production by the cells (144% and 178% of control for AT and DF, respectively) and stimulated catalase activity (≈200% of control). Activity of ascorbate peroxidase was elevated in AT-cells but not in DF-treated cells. DF did not influence dark respiration of the cells, whereas AT inhibited this process by about 50% compared to the control. Both toxicants caused photosynthesis inhibition. Analysis of parameters of chlorophyll a fluorescence in vivo showed diminishment of a performance index (PI) in both DF- and AT-treated cells (≈50% of control), but the reasons for the changes detected were different. AT diminished the efficiency of electron transport between PS II and PS I without significant inhibition of PS II or PS I reaction centers (RCs). In contrast to AT, DF seemed to influence directly PS II RCs. The fraction of active PS II RCs was lowered in DF-treated cells, but energy flux per active RC increased. Our study indicates that DF phytotoxicity results mainly from photosynthesis inhibition due to "silencing" of a fraction of PS II RCs.
Collapse
Affiliation(s)
- Monika Majewska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Darya Harshkova
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Monika Guściora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
91
|
Dandapat A, Horovitz I, Gnayem H, Sasson Y, Avisar D, Luxbacher T, Mamane H. Solar Photocatalytic Degradation of Trace Organic Pollutants in Water by Bi(0)-Doped Bismuth Oxyhalide Thin Films. ACS OMEGA 2018; 3:10858-10865. [PMID: 31459198 PMCID: PMC6645048 DOI: 10.1021/acsomega.8b00759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 06/10/2023]
Abstract
Herein, we demonstrate the fabrication of Bi(0)-doped bismuth oxyhalide solid solution films for the removal of trace organic pollutants (TrOPs) in water. With the advantage of a viscous AlOOH sol, very high loadings (75 wt %) of bismuth oxyhalides were embedded within the thin films and calcined at 500 °C to develop porous alumina composite coatings. Various concentrations of Bi(0) doping were tested for their photocatalytic activity. Seven TrOPs including iopromide (IPRM), iohexol (IHX), iopamidol (IPMD), sulfamethoxazole (SMX), carbamazepine, venlafaxine, and bezafibrate (BZF) were selected for this study based on their occurrence and detection in effluents and surface waters worldwide. In all tests, with the exception of IPRM, 3% Bi(0)-doped BiOCl0.875Br0.125 showed highest activity, which can be attributed to its unique, highly organized, and compact morphology besides its well-matched energy band positions. Although IPMD, IHX, IPRM, and SMX are susceptible to photolysis, still the photocatalytic activity significantly augmented the removal of all tested compounds. In addition, analysis of the surface charge excluded electrostatic interactions and confirmed the ion-exchange adsorption mechanism for the high degradation rate of BZF in the presence of bismuth oxyhalides.
Collapse
Affiliation(s)
- Anirban Dandapat
- Department
of Biotechnology, Bhimtal Campus, Kumaun
University, Nainital, Uttarakhand 263136, India
| | - Inna Horovitz
- School of Mechanical Engineering,
Faculty of Engineering, and The Water Research
Center, School of Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hani Gnayem
- Casali
Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yoel Sasson
- Casali
Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dror Avisar
- School of Mechanical Engineering,
Faculty of Engineering, and The Water Research
Center, School of Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Hadas Mamane
- School of Mechanical Engineering,
Faculty of Engineering, and The Water Research
Center, School of Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
92
|
Wu M, Shi J, Deng H. Metal doped manganese oxide octahedral molecular sieve catalysts for degradation of diclofenac in the presence of peroxymonosulfate. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2018.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
93
|
Stadlmair LF, Letzel T, Drewes JE, Grassmann J. Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection. CHEMOSPHERE 2018; 205:649-661. [PMID: 29723723 DOI: 10.1016/j.chemosphere.2018.04.142] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
At present, the removal of trace organic chemicals such as pharmaceuticals in wastewater treatment plants is often incomplete resulting in a continuous discharge into the aqueous environment. To overcome this issue, bioremediation approaches gained significant importance in recent times, since they might have a lower carbon footprint than chemical or physical treatment methods. In this context, enzyme-based technologies represent a promising alternative since they are able to specifically target certain chemicals. For this purpose, versatile monitoring of enzymatic reactions is of great importance in order to understand underlying transformation mechanisms and estimate the suitability of various enzymes exhibiting different specificities for bioremediation purposes. This study provides a comprehensive review, summarizing research on enzymatic transformation of pharmaceuticals in water treatment applications using traditional and state-of-the-art enzyme screening approaches with a special focus on mass spectrometry (MS)-based and high-throughput tools. MS-based enzyme screening represents an approach that allows a comprehensive mechanistic understanding of enzymatic reactions and, in particular, the identification of transformation products. A critical discussion of these approaches for implementation in wastewater treatment processes is also presented. So far, there are still major gaps between laboratory- and field-scale research that need to be overcome in order to assess the viability for real applications.
Collapse
Affiliation(s)
- Lara F Stadlmair
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748, Garching, Germany
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748, Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748, Garching, Germany
| | - Johanna Grassmann
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748, Garching, Germany.
| |
Collapse
|
94
|
Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 219:189-207. [PMID: 29747102 DOI: 10.1016/j.jenvman.2018.04.103] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 05/03/2023]
Abstract
Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose on-going and potential health and environmental risks. To tackle these emerging contaminants, advanced oxidation processes (AOPs) such as photo-Fenton, sonolysis, electrochemical oxidation, radiation and ozonation etc. have been applied to remove pharmaceuticals. These processes utilize the high reactivity of hydroxyl radicals to progressively oxidize organic compounds to innocuous products. This review provides an overview of the findings from recent studies, which have applied AOPs to degrade pharmaceutical compounds. Included is a discussion that links various factors of TiO2-mediated photocatalytic treatment to its effectiveness in degrading pharmaceutical residues. This review furthermore highlights the success of AOPs in the removal of pharmaceuticals from different water matrices and recommendations for future studies are outlined.
Collapse
Affiliation(s)
- Devagi Kanakaraju
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Beverley D Glass
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Qld 4811, Australia
| | - Michael Oelgemöller
- Discipline of Chemistry, College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|
95
|
Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes. MEMBRANES 2018; 8:membranes8030035. [PMID: 29933602 PMCID: PMC6161011 DOI: 10.3390/membranes8030035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/24/2022]
Abstract
The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF) porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.
Collapse
|
96
|
Reducing DBPs formation in chlorination of Br-containing Diclofenac via Fe-Cu-MCM-41/O3 peroxidation: Efficiency, characterization DBPs precursors and mechanism. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
97
|
Żółtowska-Aksamitowska S, Bartczak P, Zembrzuska J, Jesionowski T. Removal of hazardous non-steroidal anti-inflammatory drugs from aqueous solutions by biosorbent based on chitin and lignin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1223-1233. [PMID: 28892866 DOI: 10.1016/j.scitotenv.2017.09.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The use of chitin modified with kraft lignin as an effective sorbent of ibuprofen and acetaminophen is described for the first time. It was determined how the parameters (contact time, pH, mass of sorbent and temperature) influence the effectiveness of the adsorption process. The adsorption kinetics were calculated using pseudo-first-order, pseudo-second-order (types 1-4) and intra-particle diffusion models, and thermodynamic parameters were determined. The experimental data better correspond to a pseudo-second-order kinetic model of type 1 in the case of both tested pharmaceuticals (r2=0.999). The negative values of ΔH° show the adsorption to be exothermic (-5.515kJ/mol and -5.161kJ/mol for ibuprofen and acetaminophen respectively). Adsorption isotherms, using Langmuir isotherms of types 1-4 and Freundlich model, were also determined. The experimental data better correspond to the Langmuir type 1 model in the case of ibuprofen, and to the Freundlich model in the case of acetaminophen. Desorption tests were carried out to confirm the possibility of reusing the chitin/lignin system. A mechanism of adsorption of ibuprofen and acetaminophen on the chitin/lignin system was also proposed.
Collapse
Affiliation(s)
- Sonia Żółtowska-Aksamitowska
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Przemysław Bartczak
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Joanna Zembrzuska
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, PL-60965 Poznan, Poland
| | - Teofil Jesionowski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
98
|
Razo-Lazcano TA, del Pilar González-Muñoz M, Stambouli M, Pareau D, Hernández-Perales L, Avila-Rodriguez M. Chlorpheniramine recovery from aqueous solutions by emulsion liquid membranes using soy lecithin as carrier. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
99
|
Statistical optimization studies on adsorption of ibuprofen onto Albizialebbeck seed pods activated carbon prepared using microwave irradiation. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2017.11.394] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
100
|
Leone VO, Pereira MC, Aquino SF, Oliveira LCA, Correa S, Ramalho TC, Gurgel LVA, Silva AC. Adsorption of diclofenac on a magnetic adsorbent based on maghemite: experimental and theoretical studies. NEW J CHEM 2018. [DOI: 10.1039/c7nj03214e] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maghemite nanoparticles synthesized by one-pot synthesis adsorb diclofenac efficiently.
Collapse
Affiliation(s)
- V. O. Leone
- Departamento de Química
- Instituto de Ciências Exatas e Biológicas
- Universidade Federal de Ouro Preto
- 35400-000 Ouro Preto
- Brazil
| | - M. C. Pereira
- Instituto de Ciência, Engenharia e Tecnologia
- Universidade Federal dos Vales do Jequitinhonha e Mucuri
- 39803-371 Teófilo Otoni
- Brazil
| | - S. F. Aquino
- Departamento de Química
- Instituto de Ciências Exatas e Biológicas
- Universidade Federal de Ouro Preto
- 35400-000 Ouro Preto
- Brazil
| | - L. C. A. Oliveira
- Departamento de Química
- Universidade Federal de Minas Gerais
- 31270-090 Belo Horizonte
- Brazil
| | - S. Correa
- Departamento de Química
- Universidade Federal de Lavras
- 37200-000 Lavras
- Brazil
| | - T. C. Ramalho
- Departamento de Química
- Universidade Federal de Lavras
- 37200-000 Lavras
- Brazil
| | - L. V. A. Gurgel
- Departamento de Química
- Instituto de Ciências Exatas e Biológicas
- Universidade Federal de Ouro Preto
- 35400-000 Ouro Preto
- Brazil
| | - A. C. Silva
- Departamento de Química
- Instituto de Ciências Exatas e Biológicas
- Universidade Federal de Ouro Preto
- 35400-000 Ouro Preto
- Brazil
| |
Collapse
|