51
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. Ciprofloxacin and enrofloxacin can cause reproductive toxicity via endocrine signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114049. [PMID: 36063617 DOI: 10.1016/j.ecoenv.2022.114049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (CIP) and enrofloxacin (ENR) are veterinary antibiotics commonly utilized to treat and prevent animal diseases. Environmental and dietary antibiotic residues can directly and indirectly affect the reproductive development of animals and humans. This article investigated the reproductive toxicity of CIP in male zebrafish, showing that it could decrease the spermatogonial weight and damage the spermatogonial tissue. The sex hormone assays showed that CIP decreased fshb and lhb gene expression and plasma testosterone (T). In addition, transcriptome analysis indicated that the effect of CIP on zebrafish might be related to the endocrine signaling pathways. ENR, which was selected for further study, inhibited mouse Leydig (TM3) and Sertoli (TM4) cell proliferation and caused cell cycle arrest. The sperm concentration, serum luteotropic hormone (LH) and follicle-stimulating hormone (FSH), and T levels decreased in adolescent mice after ENR treatment for 30d in vivo. Hematoxylin and eosin (H&E) staining showed that ENR exposure potentially induced testicular injury, while the real-time quantitative PCR (qPCR) results indicated that ENR inhibited the mRNA expression of key genes in the Leydig cells (cyp11a1, 3β-HSD, and 17β-HSD), Sertoli cells (Inhbβ and Gdnf) and spermatogenic cells (Plzf, Stra8 and Dmc1). In conclusion, these findings indicated that ENR exposure might influence the development of the testes of pubescent mice.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
52
|
Exposure to Veterinary Antibiotics via Food Chain Disrupts Gut Microbiota and Drives Increased Escherichia coli Virulence and Drug Resistance in Young Adults. Pathogens 2022; 11:pathogens11091062. [PMID: 36145494 PMCID: PMC9500718 DOI: 10.3390/pathogens11091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to veterinary antibiotics (VAs) and preferred as veterinary antibiotics (PVAs) via the food chain is unavoidable for their extensive use not only for treating bacterial infections, but also for use as growth promoters in livestock and aquaculture. One of the consequences is the disturbance of gut microbiota. However, its impact on the virulence and drug resistance of opportunistic pathogens is still unclear. In this study, a total of 26 antibiotics were detected in the urine of 300 young undergraduates in Anhui Province. We found that excessive intake of milk was positively correlated to high levels of VAs and PVAs. It led to the dysbiosis of gut microbiota characterized by high abundance of Bacteroidetes and Proteobacteria. The increase in Proteobacteria was mainly due to a single operational taxonomic unit (OTU) of Escherichia coli (E. coli). We isolated several E. coli strains from participants and compared their drug resistance and virulence using PCR assay and virulence-related assays. We observed that exposure to high levels of VAs and PVAs induced more resistant genes and drove E. coli strain to become more virulent. At last, we conducted transcriptome analysis to investigate the molecular mechanism of virulent and drug-resistant regulators in the highly virulent E. coli strain. We noted that there were multiple pathways involved in the drug resistance and virulence of the highly virulent strain. Our results demonstrated that participants with high-level VAs and PVAs exposure have a disrupted gut microbiota following the appearance of highly drug-resistant and virulent E. coli and, therefore may be at elevated risk for long-term health complications.
Collapse
|
53
|
Zhang J, Zhang X, Hu T, Xu X, Zhao D, Wang X, Li L, Yuan X, Song C, Zhao S. Polycyclic aromatic hydrocarbons (PAHs) and antibiotics in oil-contaminated aquaculture areas: Bioaccumulation, influencing factors, and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129365. [PMID: 35752046 DOI: 10.1016/j.jhazmat.2022.129365] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollution caused by marine oil spills and antibiotic pollution caused by aquaculture industries were common environmental problems in the Yellow River Estuary, China. But few data are reported on the bioaccumulation and influencing factors of these two types of contaminants in aquaculture simultaneously. This study investigated the occurrence and bioaccumulation of PAHs and antibiotics in aquaculture areas of the Yellow River Estuary, and explored the factors affecting the bioaccumulation. 3-ring PAHs and fluoroquinolones were dominant contaminants in the study area. The concentrations of PAHs and antibiotics in lipid-rich tissues (fish viscus, shrimp head, and crab ovary) was higher than that in muscle. It indicated that the lipid content was an important factor affecting the bioaccumulation capacity. Physicochemical parameters (Kow and Dlipw) and the concentrations of PAHs or antibiotics also affected the bioaccumulation capacity of them. Meanwhile, biotransformation was a factor affecting the bioaccumulation of PAHs and antibiotics. The biotransformation (pyrene to 1-hydroxypyrene and enrofloxacin to ciprofloxacin) might explain the poor correlation between log bioaccumulation factor and log Kow/log Dlipw in fish. Risk assessment indicated that PAHs in mature aquatic products posed carcinogenic risks to human and enoxacin in sea cucumbers posed health risks to human.
Collapse
Affiliation(s)
- Jiachao Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuanrui Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Tao Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xueyan Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Decun Zhao
- Shandong Yellow River Delta National Nature Reserve Administration Committee, Dongying 257091, China
| | - Xiaoli Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Lei Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
54
|
Suryanto ME, Yang CC, Audira G, Vasquez RD, Roldan MJM, Ger TR, Hsiao CD. Evaluation of Locomotion Complexity in Zebrafish after Exposure to Twenty Antibiotics by Fractal Dimension and Entropy Analysis. Antibiotics (Basel) 2022; 11:1059. [PMID: 36009928 PMCID: PMC9404773 DOI: 10.3390/antibiotics11081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are extensively used in aquaculture to prevent bacterial infection and the spread of diseases. Some antibiotics have a relatively longer half-life in water and may induce some adverse effects on the targeted fish species. This study analyzed the potential adverse effects of antibiotics in zebrafish at the behavioral level by a phenomic approach. We conducted three-dimensional (3D) locomotion tracking for adult zebrafish after acute exposure to twenty different antibiotics at a concentration of 100 ppb for 10 days. Their locomotor complexity was analyzed and compared by fractal dimension and permutation entropy analysis. The dimensionality reduction method was performed by combining the data gathered from behavioral endpoints alteration. Principal component and hierarchical analysis conclude that three antibiotics: amoxicillin, trimethoprim, and tylosin, displayed unique characteristics. The effects of these three antibiotics at lower concentrations (1 and 10 ppb) were observed in a follow-up study. Based on the results, these antibiotics can trigger several behavioral alterations in adult zebrafish, even in low doses. Significant changes in locomotor behavioral activity, such as total distance activity, average speed, rapid movement time, angular velocity, time in top/bottom duration, and meandering movement are highly related to neurological motor impairments, anxiety levels, and stress responses were observed. This study provides evidence based on an in vivo experiment to support the idea that the usage of some antibiotics should be carefully addressed since they can induce a significant effect of behavioral alterations in fish.
Collapse
Affiliation(s)
- Michael Edbert Suryanto
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chun-Chuen Yang
- Department of Physics, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Physics, National Central University, Chung-Li 32001, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Ross D. Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines
| | | | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
55
|
Tang Y, Lou X, Yang G, Tian L, Wang Y, Huang X. Occurrence and human health risk assessment of antibiotics in cultured fish from 19 provinces in China. Front Cell Infect Microbiol 2022; 12:964283. [PMID: 35982779 PMCID: PMC9378958 DOI: 10.3389/fcimb.2022.964283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
The occurrence of antibiotics and potential health risk of 300 cultured fish samples from 19 provinces in China were investigated. The levels of 28 antibiotics (15 fluoroquinolones, 4 tetracyclines, 8 macrolides and rifampin) in 8 fish species were measured through liquid chromatography electrospray tandem mass spectrometry. As a result, 10 antibiotics were detected with an overall detection frequency of 24.3%, and the individual detection frequency of antibiotics ranged from 0.33 to 16.7%. The extremely high concentrations (above 100 µg/kg) of doxycycline and erythromycin were found in the samples. Antibiotics with high detection frequency was noticed in largemouth bass (41.2%), followed by snakehead (34.4%) and bream (31.2%). Specifically, Heilongjiang, Xinjiang, Qinghai and Gansu presented high detection frequency values of more than 60%. Moreover, the highest mean concentration was observed in Shandong, and the concentration covered from 34.8 µg/kg to 410 µg/kg. Despite the high detection frequency and levels of antibiotics were found in samples, ingestion of cultured fish was not significantly related to human health risks in China, according to the calculated estimated daily intakes and hazard quotients. These results provided us the actual levels of antibiotics in cultured fish and human health risk assessment of consuming fishery products.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuanyun Huang
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
56
|
Evaluation of Bacillus sp. SW1-1 as a dietary additive in diets for olive flounder Paralichthys olivaceus. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Wang X, Jiao Y, Wang G, Li F, Shao L, Zheng F, Wang L, Chen F, Yang L. Occurrence of quinolones in cultured fish from Shandong Province, China and their health risk assessment. MARINE POLLUTION BULLETIN 2022; 180:113777. [PMID: 35635886 DOI: 10.1016/j.marpolbul.2022.113777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The residue levels of 6 quinolones in 160 cultured fish samples from Shandong Province, China were investigated using UPLC-MS/MS. The detection rate was 43.1% and enrofloxacin had the highest detection rate as well as the highest residue concentration. The violation rates were 2.50% for the sum of enrofloxacin and ciprofloxacin and 1.25% for ofloxacin. Among the 9 fish species, quinolone contamination problems should receive more attention in Carp, Grass carp, Crucian and Catfish. The health risk assessment showed that when calculated by the maximum concentration, the estimated daily intakes (EDIs) of Carp, Grass carp and Crucian for the high consumption group accounted for more than 10% of the acceptable daily intakes (ADIs), indicating that a large intake of these fish species might pose a potential health risk and health risk monitoring of quinolones in cultured fish should be continually performed.
Collapse
Affiliation(s)
- Xiaolin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Guoling Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Fenghua Li
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lijun Shao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Fengjia Zheng
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Fangfang Chen
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Luping Yang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China; Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
58
|
He L, Li H, Wang J, Gao Q, Li X. Peroxymonosulfate activation by Co-doped magnetic Mn 3O 4 for degradation of oxytetracycline in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39249-39265. [PMID: 35098476 DOI: 10.1007/s11356-022-18929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Co-doped magnetic Mn3O4 was synthesized by the solvothermal method and adopted as an effective catalyst for the degradation of oxytetracycline (OTC) in water. Synergistic interactions between Co-Mn3O4 and Fe3O4 not only resulted in the enhanced catalytic activity through the activation of peroxymonosulfate (PMS) to degrade OTC but also made Fe3O4/Co-Mn3O4 easy to be separated and recovered from aqueous solution. 94.2% of OTC could be degraded within 60 min at an initial OTC concentration of 10 mg L-1, catalyst dosage of 0.2 g L-1, and PMS concentration of 10 mM. The high efficiency of OTC removal was achieved in a wider pH range of 3.0-10.0. Co (II), Co (III), Fe (II), Fe (III), Mn (II), Mn (III), and Mn (IV) on Fe3O4/Co-Mn3O4 were identified as catalytic sites based on XPS analysis. The free radical quenching experiments showed that O2•- radicals and 1O2 played the main role in the degradation process and the catalytic degradation of OTC involved both free radical and non-free radical reactions. Eventually, the intermediates of OTC degradation were examined, and the possible decomposition pathways were proposed. The excellent catalytic performances of Fe3O4/Co-Mn3O4 came from the fact that the large specific surface area could provide abundant active sites for the activation of PMS and the redistribution of inter-atomic charges accelerated the redox reactions of metal ions. The high degradation efficiency and rate constant of OTC in actual water samples indicated that Fe3O4/Co-Mn3O4 had a good practical application potential.
Collapse
Affiliation(s)
- Liyan He
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Qifei Gao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoli Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
59
|
Bio-active components in medicinal plants: A mechanistic review of their effects on fish growth and physiological parameters. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
World population is increasing at a tremendous rate so is the demand for animal-based protein. Aquaculture is a promising industry that has the potential to supply high quality protein for mankind with minimum environmental impact. In the past decade, aquaculture practices have been shifting from extensive to intensive culture. To achieve maximum production per unit area, high stocking densities are maintained in intensive aquaculture. If not managed properly, this may lead to stress in fish. Fish under stress condition show decreased growth, suppressed appetite, weakened immunity and increased susceptibility to infections. Chemicals, vaccines and antibiotics are used for the treatment of diseased fish. Use of synthetic chemicals, vaccines and antibiotics is not sustainable because pathogens develop resistance against them and they have high residues. Moreover, certain chemicals used for the treatment of fish diseases are not safe for humans therefore, are banned in some countries. Plant parts and their extracts are used in traditional medicines to cure many diseases and to improve health of mankind. In aquaculture industry, use of plants and their derivatives in fish feed to improve health status of fish is increasing. Several plants improve growth and overall health status of fish, some provide protection against pathogens by improving the immune system while others increase appetite by direct action on neuro-endocrine axis of fish. This review provides an in depth and up to date information about use of medicinal plants and their derivatives to improve growth and physiological status of fish and their possible mechanism of action.
Collapse
|
60
|
Zhang L, Du S, Liu D, Dong D, Zhang W, Guo Z. Antibiotics in fish caught from ice-sealed waters: Spatial and species variations, tissue distribution, bioaccumulation, and human health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153354. [PMID: 35085643 DOI: 10.1016/j.scitotenv.2022.153354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are increasingly detected in fish caught in ice-free waters, but information on fish caught in ice-sealed waters is insufficient. The concentrations of 23 antibiotics in the gills, muscles, kidneys, livers, biles, and brains of Cyprinus carpio and Hypophthalmichthys nobilis caught during winter fish-hunting activities in Chagan Lake, Haernao Reservoir, and Shitoukoumen Reservoir were systematically studied to ascertain the variations among fish species and fishing regions, tissue distribution, and bioaccumulation, as well as the potential risk to humans via the consumption of contaminated fish. The results indicated that the individual antibiotic concentration in tissues ranged from undetectable to 35.0 ng/g ww. The total antibiotic concentration in fish muscles from Shitoukoumen Reservoir was lower than that from Chagan Lake and Haernao Reservoir, but showed no significant difference between Cyprinus carpio and Hypophthalmichthys nobilis. Chloramphenicols had a high proportion in most fish tissues ranging from 28.3% to 44.0%, and the antibiotics were mainly distributed in the livers with a total concentration of 54.8 ± 9.9 ng/g ww. The mean values of bioaccumulation factors (BAF) of antibiotics in tissues ranged from 79.4 to 1000 L/kg, with the higher values found in the fish livers. The hazard quotient and hazard index value of antibiotics in the muscles of fish from ice-sealed were less than 1, indicating a negligible risk to human health via the consumption of fish muscles. This study revealed that the total antibiotic concentration in muscles showed spatial variations but not fish species-dependence. The antibiotics mainly accumulated in the livers. In addition, the target antibiotic concentrations in the muscles of fish from ice-sealed waters met the safe for consumption criteria.
Collapse
Affiliation(s)
- Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siying Du
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; State Grid Sichuan Economic Research Institute, Chengdu 610041, China
| | - Deping Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
61
|
Yang X, Zhong Q, Liang S, Li Y, Wang Y, Zhu X, Liu Y. Global Supply Chain Drivers of Agricultural Antibiotic Emissions in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5860-5873. [PMID: 35442028 DOI: 10.1021/acs.est.1c07110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibiotic pollution causes serious environmental and social issues. China is the largest antibiotic producer and user in the world, with a large share of antibiotics used in agriculture. This study quantified agricultural antibiotic emissions of mainland China in 2014 as well as critical drivers in global supply chains. Results show that China's agriculture discharged 4131 tons of antibiotics. Critical domestic supply chain drivers are mainly located in Central China, North China, and East China. Foreign final demand contributes 9% of agricultural antibiotic emissions in mainland China and leads to 5-40% of emissions in each province. Foreign primary inputs (e.g., labor and capital) contribute 5% of agricultural antibiotic emissions in mainland China and lead to 2-63% of emissions in each province. Critical international drivers include the final demand of the United States and Japan for foods and textile products, as well as the primary inputs of the oil seeds sector in Brazil. The results indicate the uniqueness of supply chain drivers for antibiotic emissions compared with other emissions. Our findings reveal supply chain hotspots for multiple-perspective policy decisions to control China's agricultural antibiotic emissions as well as for international cooperation.
Collapse
Affiliation(s)
- Xuechun Yang
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qiumeng Zhong
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sai Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yumeng Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yafei Wang
- School of Statistics, Beijing Normal University, Beijing 100875, China
| | - Xiaobiao Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Liu
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
- School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
62
|
Dong J, Yan D, Mo K, Chen Q, Zhang J, Chen Y, Wang Z. Antibiotics along an alpine river and in the receiving lake with a catchment dominated by grazing husbandry. J Environ Sci (China) 2022; 115:374-382. [PMID: 34969465 DOI: 10.1016/j.jes.2021.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/14/2023]
Abstract
The livestock breeding industries face overuse of antibiotics, which has been intensively studied in recent years. However, the occurrence and fate of antibiotics as well as their potential threats to the aquatic environments in alpine and arid regions remain unclear. This study investigated the relationship of the occurrence and concentrations of antibiotics between the Kaidu River and Bosten Lake in a typical alpine basin in China. Hot spots with antibiotic pollution source were explored. The antibiotic concentrations in river water and suspended sediment (SPS) were 2.20-99.4 ng/L and 1.03-176 ng/g. The dominant antibiotics were tetracyclines, sulphacetamide, and ofloxacin in river water and sulfonamides, clarithromycin, roxithromycin, and ofloxacin in SPS. The apparent differences in pollution sources and landscapes in different reaches led to the obvious spatial patterns of antibiotics in the Kaidu River. Higher partition coefficient of antibiotic between SPS and water phases for sulfonamides than tetracyclines was because that tetracyclines strongly responded to clay contents while sulfonamides significantly responded to organic carbon contents in SPS. There were significant differences in detected antibiotic categories between the river and the lake. Fluoroquinolones (especially ciprofloxacin and enrofloxacin) were detected in the lake while sulphacetamide was only detected in the river. Therefore, the surrounding husbandry and aquaculture around the Bosten Lake was an important antibiotic pollution source in addition to inputs from the Kaidu River. This research suggested that alpine lakes could be an important sink of antibiotics in alpine dry regions, and thus impose greater threats to the aquatic ecosystem.
Collapse
Affiliation(s)
- Jianwei Dong
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dandan Yan
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Kangle Mo
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210029, China.
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210029, China
| | - Yuchen Chen
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210029, China
| |
Collapse
|
63
|
Ahmad A, Kurniawan SB, Abdullah SRS, Othman AR, Hasan HA. Contaminants of emerging concern (CECs) in aquaculture effluent: Insight into breeding and rearing activities, alarming impacts, regulations, performance of wastewater treatment unit and future approaches. CHEMOSPHERE 2022; 290:133319. [PMID: 34922971 DOI: 10.1016/j.chemosphere.2021.133319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The contamination of aquaculture products and effluents by contaminants of emerging concern (CECs) from the direct chemical use in aquaculture activities or surrounding industries is currently an issue of increasing concern as these CECs exert acute and chronic effects on living organisms. CECs have been detected in aquaculture water, sediment, and culture species, and antibiotics, antifoulants, and disinfectants are the commonly detected groups. Through accumulation, CECs can reside in the tissue of aquaculture products and eventually consumed by humans. Currently, effluents containing CECs are discharged to the surrounding environment while producing sediments that eventually contaminate rivers as receiving bodies. The rearing (grow-out) stages of aquaculture activities are issues regarding CECs-contamination in aquaculture covering water, sediment, and aquaculture products. Proper regulations should be imposed on all aquaculturists to control chemical usage and ensure compliance to guidelines for appropriate effluent treatment. Several techniques for treating aquaculture effluents contaminated by CECs have been explored, including adsorption, wetland construction, photocatalysis, filtration, sludge activation, and sedimentation. The challenges imposed by CECs on aquaculture activities are discussed for the purpose of obtaining insights into current issues and providing future approaches for resolving associated problems. Stakeholders, such as researchers focusing on environment and aquaculture, are expected to benefit from the presented results in this article. In addition, the results may be useful in establishing aquaculture-related CECs regulations, assessing toxicity to living biota, and preventing pollution.
Collapse
Affiliation(s)
- Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100, Putrajaya, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
64
|
Chen J, Huang L, Wang Q, Zeng H, Xu J, Chen Z. Antibiotics in aquaculture ponds from Guilin, South of China: Occurrence, distribution, and health risk assessment. ENVIRONMENTAL RESEARCH 2022; 204:112084. [PMID: 34563523 DOI: 10.1016/j.envres.2021.112084] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics have been widely used to prevent or treat bacterial infections in aquaculture in the past decades. However, large proportions of these compounds are excreted unchanged in feces and urine of animals, given incomplete metabolism, leading to the residual of unmetabolized compounds, and posing a potential risk to the environment. This study investigated the occurrence and distribution of seven antibiotics in surface water, sediments, fish muscle, and fish feed by high-performance liquid chromatography from the aquaculture areas in Guilin, South of China. The highest concentrations of the target antibiotics in water, sediment, fish muscle, and fish feed were 2047.53 ng/L, 13.32 μg/kg, 35.90 μg/kg, and 2203.97 μg/kg, respectively. In contrast, the most abundant antibiotic was enrofloxacin (ENR), followed by ofloxacin (OFL), sulfadimidine (SMZ), and ciprofloxacin (CIP). In this work, the concentrations of antibiotics were lower than those in other breeding areas. Correlation analyses showed significant relationships between sulfadiazine (SDZ) and TP, TN, and CODCr in water. In sediment, the release of SDZ was significantly related to TN, TP, and organic matter. The risk quotient (RQ) results revealed that sulfamethoxazole (SMX), CIP, and ENR were at high risk to microorganisms in water; while, SMX and NOR were at high risk in sediments. The result from the estimated daily intakes (health risk quotient, HQ < 1) suggested that the antibiotics might not pose a risk to human health by dietary exposure assessment; however, sediments may become an accumulation reservoir of antibiotics and cause secondary pollution, of which the local management should raise awareness.
Collapse
Affiliation(s)
- Jianlin Chen
- College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, China; Coordinated Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, 541004, Guilin, China.
| | - Qian Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| |
Collapse
|
65
|
Pihlaja TLM, Niemissalo SM, Sikanen TM. Cytochrome P450 Inhibition by Antimicrobials and Their Mixtures in Rainbow Trout Liver Microsomes In Vitro. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:663-676. [PMID: 34255900 DOI: 10.1002/etc.5160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobials are ubiquitous in the environment and can bioaccumulate in fish. In the present study, we determined the half-maximal inhibitory concentrations (IC50) of 7 environmentally abundant antimicrobials (ciprofloxacin, clarithromycin, clotrimazole, erythromycin, ketoconazole, miconazole, and sulfamethoxazole) on the cytochrome P450 (CYP) system in rainbow trout (Oncorhynchus mykiss) liver microsomes, using 7-ethoxyresorufin O-deethylation (EROD, CYP1A) and 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylation (BFCOD, CYP3A) as model reactions. Apart from ciprofloxacin and sulfamethoxazole, all antimicrobials inhibited either EROD or BFCOD activities or both at concentrations <500 µM. Erythromycin was the only selective and time-dependent inhibitor of BFCOD. Compared with environmental concentrations, the IC50s of individual compounds were generally high (greater than milligrams per liter); but as mixtures, the antimicrobials resulted in strong, indicatively synergistic inhibitions of both EROD and BFCOD at submicromolar (~micrograms per liter) mixture concentrations. The cumulative inhibition of the BFCOD activity was detectable even at picomolar (~nanograms per liter) mixture concentrations and potentiated over time, likely because of the strong inhibition of CYP3A by ketoconazole (IC50 = 1.7 ± 0.3 µM) and clotrimazole (IC50 = 1.2 ± 0.2 µM). The results suggest that if taken up by fish, the mixtures of these antimicrobials may result in broad CYP inactivation and increase the bioaccumulation risk of any other xenobiotic normally cleared by the hepatic CYPs even at biologically relevant concentrations. Environ Toxicol Chem 2022;41:663-676. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Tea L M Pihlaja
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Sanna M Niemissalo
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Tiina M Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
66
|
Li B, Wang Y, Zhao H, Yin K, Liu Y, Wang D, Zong H, Xing M. Oxidative stress is involved in the activation of NF-κB signal pathway and immune inflammatory response in grass carp gill induced by cypermethrin and/or sulfamethoxazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19594-19607. [PMID: 34718981 DOI: 10.1007/s11356-021-17197-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
At present, the concentration of environmental pollutants, such as pesticides and antibiotics exposed in environment, especially in aquatic environment is increasing. Research on environmental pollutants has exploded in the last few years. However, studies on the combined effects of pesticides and antibiotics on fish are rare, especially the toxic damage to gill tissue is vague. In this paper, cypermethrin (CMN) and sulfamethoxazole (SMZ) were analyzed and found that there was a strong correlation between the pathways affected by the first 30 genes regulated by CMN and SMZ, respectively. Therefore, the toxic effects of CMN (0.651 μg L-1) and/or SMZ (0.3 μg L-1) on grass carp gill were studied in this paper. Histopathology, quantitative real-time PCR, and other methods were used to detect the tissue morphology, oxidative stress level, inflammation, and apoptosis-related indicators of the fish gills after exposure of 42 days. It was found that compared with the single exposure (CMN/SMZ) group, the combined exposure (MIX) group had a more pronounced oxidative stress index imbalance. At the same time, nuclear factor-κB (NF-κB) signal pathway was activated and immuno-inflammatory reaction appeared in MIX group. The expression of tumor necrosis factor (TNF-α) in the rising range is 2.94 times that of the C group, while the expression of interleukin 8 (IL-8) is as high as 32.67 times. This study reveals the harm of CMN and SMZ to fish, and provides a reference and basis for the rational use of pesticides and antibiotics.
Collapse
Affiliation(s)
- Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou, 510000, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
67
|
Huff Chester A, Gordon C, Hartmann HA, Bartell SE, Ansah E, Yan T, Li B, Dampha NK, Edmiston PL, Novak PJ, Schoenfuss HL. Contaminants of Emerging Concern in the Lower Volta River, Ghana, West Africa: The Agriculture, Aquaculture, and Urban Development Nexus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:369-381. [PMID: 34939696 DOI: 10.1002/etc.5279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Contaminants of emerging concern (CECs) are ubiquitous in aquatic environments across all continents and are relatively well known in the developed world. However, few studies have investigated their presence and biological effects in low- and middle-income countries. We provide a survey of CEC presence in the Volta River, Ghana, and examine the microbial consequences of anthropogenic activities along this economically and ecologically important African river. Water and sediment samples were taken by boat or from shore at 14 sites spanning 118 km of river course from the Volta estuary to the Akosombo dam. Sample extracts were prepared for targeted analysis of antimicrobial CECs, N,N-diethyl-meta-toluamide, and per- and polyfluoroalkyl substances (PFAS; water only). Concurrent samples were extracted to characterize the microbial community and antibiotic-resistant genes (ARGs). Antibiotics and PFAS (PFAS, 2-20 ng/L) were found in all water samples; however, their concentrations were usually in the low nanograms per liter range and lower than reported for other African, European, and North American studies. N,N-Diethyl-meta-toluamide was present in all samples. The number of different genes detected (between one and 10) and total ARG concentrations varied in both water (9.1 × 10-6 to 8.2 × 10-3 ) and sediment (2.2 × 10-4 to 5.3 × 10-2 ), with increases in gene variety at sites linked to urban development, sand mining, agriculture, and shellfish processing. Total ARG concentration spikes in sediment samples were associated with agriculture. No correlations between water quality parameters, CEC presence, and/or ARGs were noted. The presence of CECs in the lower Volta River highlights their global reach. The overall low concentrations of CECs detected is encouraging and, coupled with mitigation measures, can stymie future CEC pollution in the Volta River. Environ Toxicol Chem 2022;41:369-381. © 2021 SETAC.
Collapse
Affiliation(s)
- Anndee Huff Chester
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Gordon
- Institute of Environmental and Sanitation Studies, University of Ghana, Legon, Greater Accra, Ghana
| | | | - Stephen E Bartell
- Department of Biology, Normandale Community College, Bloomington, Minnesota, USA
| | - Emmanuel Ansah
- Institute of Environmental and Sanitation Studies, University of Ghana, Legon, Greater Accra, Ghana
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Nfamara K Dampha
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul L Edmiston
- Department of Chemistry, The College of Wooster, Wooster, Ohio, USA
| | - Paige J Novak
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
68
|
Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11054-11075. [PMID: 35028843 DOI: 10.1007/s11356-021-17825-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Aquaculture is remarkably one of the most promising industries among the food-producing industries in the world. Aquaculture production as well as fish consumption per capita have been dramatically increasing over the past two decades. Shifting of culture method from semi-intensive to intensive technique and applying of antibiotics to control the disease outbreak are the major factors for the increasing trend of aquaculture production. Antibiotics are usually present at subtherapeutic levels in the aquaculture environment, which increases the selective pressure to the resistant bacteria and stimulates resistant gene transfer in the aquatic environment. It is now widely documented that antibiotic resistance genes and resistant bacteria are transported from the aquatic environment to the terrestrial environment and may pose adverse effects on human and animal health. However, data related to antibiotic usage and bacterial resistance in aquaculture is very limited or even absent in major aquaculture-producing countries. In particular, residual levels of antibiotics in fish and shellfish are not well documented. Recently, some of the countries have already decided the maximum residue levels (MRLs) of antibiotics in fish muscle or skin; however, many antibiotics are yet not to be decided. Therefore, an urgent universal effort needs to be taken to monitor antibiotic concentration and resistant bacteria particularly multiple antibiotic-resistant bacteria and to assess the associated risks in aquaculture. Finally, we suggest to take an initiative to make a uniform antibiotic registration process, to establish the MRLs for fish/shrimp and to ensure the use of only aquaculture antibiotics in fish and shellfish farming globally.
Collapse
Affiliation(s)
- Anwar Hossain
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ichiro Nagano
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha Ltd, 32-3 Nanakuni 1-Chome, Hacjioji, Tokyo, 192-0991, Japan
| | - Shigeki Masunaga
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| | - Daisuke Kitazawa
- Center for Integrated Underwater Observation Technology, Institute of Industrial Science, The University of Tokyo, Chiba, 277-8574, Japan
| | - Hiroyuki Matsuda
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| |
Collapse
|
69
|
Xue C, Zheng C, Zhao Q, Sun S. Occurrence of antibiotics and antibiotic resistance genes in cultured prawns from rice-prawn co-culture and prawn monoculture systems in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150307. [PMID: 34560447 DOI: 10.1016/j.scitotenv.2021.150307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in the aquatic environment have raised great concerns, as the deleterious effects of residual antibiotics and the emergence of ARGs are challenges to aquaculture. This study analyzed feed, water, sediment and prawns' tissues from six culture ponds (integrated culture: rice-prawn pond; monoculture: prawn pond) in Tianjin, Northeast China. Eighteen types of antibiotics were detected in all ponds, which conferring to four classes of antibiotics including sulfonamides, tetracyclines, fluoroquinolones, macrolides. The mean log bioaccumulation factor (BAF) values for five antibiotics were analyzed in the hepatopancreas, muscle, and plasma, and we found the maximum Log BAF (1.45) for enrofloxacin in prawn plasma. Correlation analysis of antibiotic concentrations between the plasma and the other two tissues indicated that enrofloxacin, norfloxacin, and erythromycin levels in the hepatopancreas and muscle can be predicted by their plasma concentrations. We also conducted a hazard quotient analysis and found that the risk to human health of eating antibiotic-exposed prawns from the two types of aquaculture method was relatively low. Compared with monoculture, rice-prawn co-culture could significantly decrease the abundance of ARGs; additionally, significant correlations were detected among ARGs, antibiotics, and non-antibiotic environmental factors (e.g., total nitrogen, total ammonia nitrogen, and chemical oxygen demand) in prawn. The present study indicated that the rice-prawn co-culture system is more effective than monoculture for mitigating the bioaccumulation of antibiotics and the occurrence of ARGs in prawn.
Collapse
Affiliation(s)
- Cheng Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Cheng Zheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Qianqian Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
70
|
Wang X, Lin Y, Zheng Y, Meng F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118541. [PMID: 34800588 DOI: 10.1016/j.envpol.2021.118541] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are widely applied to prevent and treat diseases occurred in mariculture. The often-open nature of mariculture production systems has led to antibiotic residue accumulation in the culturing and adjacent environments, which can adversely affect aquatic ecosystems, and even human. This review summarizes the occurrence, environmental behavior, and ecological effects of antibiotics in mariculture systems based on peer-reviewed papers. Forty-five different antibiotics (categorized into ten groups) have been detected in mariculture systems around the world, which is far greater than the number officially allowed. Indiscriminate use of antibiotics is relatively high among major producing countries in Asia, which highlights the need for stricter enforcement of regulations and policies and effective antibiotic removal methods. Compared with other environmental systems, some environmental characteristics of mariculture systems, such as high salinity and dissolved organic matter (DOM) content, can affect the migration and transformation processes of antibiotics. Residues of antibiotics favor the proliferation of antibiotic resistance genes (ARGs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as posing threats to marine organisms and human health. This review may provide a valuable summary of the effects of antibiotics on mariculture systems.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Yang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
71
|
Carrizo JC, Griboff J, Bonansea RI, Nimptsch J, Valdés ME, Wunderlin DA, Amé MV. Different antibiotic profiles in wild and farmed Chilean salmonids. Which is the main source for antibiotic in fish? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149516. [PMID: 34391145 DOI: 10.1016/j.scitotenv.2021.149516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Fish from both aquaculture and wild capture are exposed to veterinary and medicinal antibiotics (ABs). This study explored the occurrence and probable source of 46 antibiotic residues in muscle of farmed salmon and wild trout from Chile. Results showed that at least one AB was detected in all studied samples. Diverse patterns were observed between farmed and wild specimens, with higher ABs concentrations in wild fish. Considering antimicrobial resistance, detected ABs corresponded to the categories B (Restrict), C (Caution) and D (Prudence) established by Antimicrobial Advice Ad Hoc Expert Group (European Medicines Agency). Multivariate statistic was used to verify differences between farmed and wild populations, looking for the probable source of ABs as well. Principal components analysis (PCA) revealed that ciprofloxacin, moxifloxacin, enrofloxacin, amoxicillin, penicillin G, oxolinic acid, sulfamethoxazole, trimethoprim and clarithromycin were associated with wild samples, collected during the cold season. Conversely, norfloxacin, sulfaquinoxaline, sulfadimethoxine, nitrofurantoin, nalidixic acid, penicillin V, doxycycline, flumequine, oxacillin, pipemidic acid and sulfamethizole were associated with wild samples collected during the warm season. All farmed salmon samples were associated with ofloxacin, tetracycline, cephalexin, erythromycin, azithromycin, roxithromycin, sulfabenzamide, sulfamethazine, sulfapyridine, sulfisomidin, and sulfaguanidine. In addition, linear discriminant analysis showed that the AB profile in wild fish differ from farmed ones. Most samples showed ABs levels below the EU regulatory limit for edible fish, except for sulfaquinoxaline in one sample. Additionally, nitrofurantoin (banned in EU) was detected in one aquaculture sample. The differences observed between farmed and wild fish raise questions on the probable source of ABs, either aquaculture or urban anthropic activities. Further research is necessary for linking the ABs profile in wild fish with the anthropic source. However, to our knowledge, this is the first report showing differences in the ABs profile between wild and aquaculture salmonids, which could have both environmental and health consequences.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Julieta Griboff
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Rocío Inés Bonansea
- CONICET, ICYTAC and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000 Córdoba, Argentina
| | - Jorge Nimptsch
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - María Eugenia Valdés
- CONICET, ICYTAC and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- CONICET, ICYTAC and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000 Córdoba, Argentina
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina.
| |
Collapse
|
72
|
Zhang X, Zhang J, Han Q, Wang X, Wang S, Yuan X, Zhang B, Zhao S. Antibiotics in mariculture organisms of different growth stages: Tissue-specific bioaccumulation and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117715. [PMID: 34256288 DOI: 10.1016/j.envpol.2021.117715] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Maricultured organisms are chronically exposed to water containing antibiotics but the bioaccumulative behavior of antibiotics in exposed organisms at different growth stages has received little attention. Here, we investigated the concentrations and tissue-specific bioaccumulation characteristics of 19 antibiotics during three growth stages (youth stage, growth stage, and adult stage) of various organisms (Scophthalmus maximus, Penaeus vannamei, Penaeus japonicus, and Apostichopus japonicus) cultivated in typical marine aquaculture regions, and explored the factors that could affect the bioaccumulation of antibiotics. Tetracyclines (TCs) and fluoroquinolones (FQs) were the dominant antibiotics in all organisms, and the total concentrations of the target antibiotics in fish (S. maximus) were significantly higher than those in shrimp (P. vannamei and P. japonicus) and sea cucumber (A. japonicus) (p < 0.01). The bioaccumulation capacity of a class of statistically significant antibiotics in most samples was strongest during the youth stage and weakest during the adult stage. The antibiotics exhibited higher bioaccumulation capacity in lipid-rich tissues (fish liver and shrimp head) or respiratory organs (fish gill) than muscle. Our results also reveal significant metabolic transformation of enrofloxacin in fish. Different from previous studies, the logarithm bioaccumulation factor (log BAF) was positively correlated with log Dlipw in low-biotransformation tissues (fish gill and muscle) rather than lipid-rich tissues (fish liver). Based on the calculated hazard quotients (HQ), doxycycline in fish muscle may pose a distinct risk to human health, which deserves special attention. Overall, these results provide insight into the bioaccumulation patterns of antibiotics during different growth stages and tissues of maricultured organisms.
Collapse
Affiliation(s)
- Xuanrui Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jiachao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qianfan Han
- Qingdao Municipal Bureau of Ecology and Environment, Qingdao, 266003, China
| | - Xiaoli Wang
- Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
73
|
Sadat SA, Salimi L, Ghafourian H, Yadegarian Hadji Abadi L, Sadatipour SM. Study of the performance of improved TiO2/N/S photo-catalyst on the removal of tetracycline from aqueous solutions. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1977924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
| | - Lida Salimi
- Department of Environmental Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ghafourian
- Department of Marin Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Linda Yadegarian Hadji Abadi
- Department of Marin Environment Protection and Pollution, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
74
|
Tian X, Han B, Liang J, Yang F, Zhang K. Tracking antibiotic resistance genes (ARGs) during earthworm conversion of cow dung in northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112538. [PMID: 34325199 DOI: 10.1016/j.ecoenv.2021.112538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Using cow dung to breed earthworms poses a risk of environmental transmission of antibiotic resistance genes (ARGs). The purpose of this study was to address the occurrence, persistence and environmental fate of ARGs during earthworm conversion of cow dung. The results showed that ARGs persisted through the whole process. Notably, earthworm conversion effectively reduced some ARGs in cow dung, but a definite concentration of ARGs still remained in earthworms and vermicompost (up to 10-1 and 10-2 copies/16S copies, respectively). We found that tet-ARGs were the most abundant in 15 earthworm farms (10-6~10-1 copies/16S copies) and some high-risk ARGs (i.e., blaampC, blaOXA-1 and blaTEM-1) were even prevalent in these farms. Interestingly, although ARGs differ widely in cow dung (10-10~10-1 copies/16S copies), the ARGs levels were comparable in vermicompost samples from different farms (10-8~10-2 copies/16S copies). Notably, earthworm conversion effectively reduced some ARGs in cow dung, but significant level of ARGs still remained in earthworms and vermicompost (up to 10-1 and 10-2 copies/16S copies, respectively). Nevertheless, the concentrations of some heavy metals (Cu, Zn and Ni), the abundance of mobile genetic elements (MGEs) and total nitrogen content were confirmed to be correlated to the enrichment of some ARGs. Overall, this study demonstrated the high prevalence of ARGs contamination in earthworm farms, and also highlighted the dissemination risk of ARGs during the earthworm conversion of cow dung.
Collapse
Affiliation(s)
- Xueli Tian
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
75
|
Li H, Jing T, Li T, Huang X, Gao Y, Zhu J, Lin J, Zhang P, Li B, Mu W. Ecotoxicological effects of pyraclostrobin on tilapia (Oreochromis niloticus) via various exposure routes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117188. [PMID: 33957519 DOI: 10.1016/j.envpol.2021.117188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Pyraclostrobin is a widely used and highly efficient fungicide that also has high toxicity to aquatic organisms, especially fish. Although some research has reported the toxic effects of pyraclostrobin on fish, the main toxic pathways of pyraclostrobin in fish remain unclear. The present study has integrated histopathological, biochemical and hematological techniques to reveal the main toxic pathways and mechanisms of pyraclostrobin under different exposure routes. Our results indicated that pyraclostrobin entered fish mainly through the gills. The highest accumulation of pyraclostrobin was observed in the gills and heart compared with accumulation in other tissues and gill tissue showed the most severe damage. Hypoxia symptoms (water jacking, tummy turning and cartwheel formation) in fish were observed throughout the experiment. Taken together, our results suggested that the gills are important target organs. The high pyraclostrobin toxicity to gills might be associated with oxidative damage to the gills, inducing alterations in ventilation frequency, oxygen-carrying substances in blood and disorders of energy metabolism. Our research facilitates a better understanding of the toxic mechanisms of pyraclostrobin in fish, which can promote the ecotoxicological research of agrochemicals on aquatic organisms.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Tongfang Jing
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Tongbin Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xueping Huang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
76
|
Dong J, Xie H, Feng R, Lai X, Duan H, Xu L, Xia X. Transport and fate of antibiotics in a typical aqua-agricultural catchment explained by rainfall events: Implications for catchment management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112953. [PMID: 34102496 DOI: 10.1016/j.jenvman.2021.112953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics receive many concerns since their negative environmental impacts are being revealed, especially in aqua-agricultural areas. Rainfall events are responsible for transferring excess contaminants to receiving waters. However, the understanding of antibiotics transport and fate responding to rainfall events was constrained by limited event-based data and lacking integrated consideration of dissolved and particulate forms. We developed an intensive monitoring strategy to capture responses of fourteen antibiotics to different types of rainfall events and inter-event low flow periods. Pollutant-rich suspended particles, as high as 1471 ng/g, were found in low flow periods while the very heavy rainfall events and consecutive rainfall events stimulated the release of antibiotics from eroded soil particles to river water. Therefore, these rainfall events drove radical increase of dissolved antibiotic concentration up to 592 ng/L and total flux up to 25.0 g/d. Sulfonamides were particularly sensitive to rainfall events because of their residues in manure-applied agricultural lands. Transport dynamics of most antibiotics were accretion whereas only clarithromycin exhibited a dilution pattern by concentration-discharge relationships. Aquaculture ponds were inferred to significantly contribute tetracycline, oxytetracycline, and clarithromycin. Conventional contaminants were compared to discriminate potential sources of antibiotics and imply effective catchment management. The results provided novel insights into event-based drivers and dynamics of antibiotics and could lead to appropriate management strategy.
Collapse
Affiliation(s)
- Jianwei Dong
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hui Xie
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Ranran Feng
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Xijun Lai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongtao Duan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ligang Xu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xinghui Xia
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
77
|
Inclusion effect of onion peel powder in the diet of African catfish, Clarias gariepinus: Growth, blood chemistry, hepatic antioxidant enzymes activities and SOD mRNA responses. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
78
|
Cheng X, Lu Y, Song Y, Zhang R, ShangGuan X, Xu H, Liu C, Liu H. Analysis of Antibiotic Resistance Genes, Environmental Factors, and Microbial Community From Aquaculture Farms in Five Provinces, China. Front Microbiol 2021; 12:679805. [PMID: 34248893 PMCID: PMC8264556 DOI: 10.3389/fmicb.2021.679805] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
The excessive use of antibiotics speeds up the dissemination and aggregation of antibiotic resistance genes (ARGs) in the environment. The ARGs have been regarded as a contaminant of serious environmental threats on a global scale. The constant increase in aquaculture production has led to extensive use of antibiotics as a means to prevent and treat bacterial infections; there is a universal concern about the environmental risk of ARGs in the aquaculture environment. In this study, a survey was conducted to evaluate the abundance and distributions of 10 ARGs, bacterial community, and environmental factors in sediment samples from aquatic farms distributed in Anhui (AP1, AP2, and AP3), Fujian (FP1, FP2, and FP3), Guangxi (GP1, GP2, and GP3), Hainan (HP1, HP2, and HP3), and Shaanxi (SP1, SP2, and SP3) Province in China. The results showed that the relative abundance of total ARGs was higher in AP1, AP2, AP3, FP3, GP3, HP1, HP2, and HP3 than that in FP1, FP2, GP1, GP2, SP1, SP2, and SP3. The sul1 and tetW genes of all sediment samples had the highest abundance. The class 1 integron (intl1) was detected in all samples, and the result of Pearson correlation analysis showed that the intl1 has a positive correlation with the sul1, sul2, sul3, blaOXA, qnrS, tetM, tetQ, and tetW genes. Correlation analysis of the bacterial community diversity and environmental factors showed that the Ca2+ concentration has a negative correlation with richness and diversity of the bacterial community in these samples. Of the identified bacterial community, Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidota were the predominant phyla in these samples. Redundancy analysis showed that environmental factors (TN, TP, Cl–, and Ca2+) have a positive correlation with the bacterial community (AP1, GP1, GP2, GP3, SP1, SP2, and SP3), and the abundance of ARGs (sul1, tetW, qnrS, and intl1) has a positive correlation with the bacterial community (AP2, AP3, HP1, HP2, and HP3). Based on the network analysis, the ARGs (sul1, sul2, blaCMY, blaOXA, qnrS, tetW, tetQ, tetM, and intl1) were found to co-occur with bacterial taxa from the phyla Chloroflexi, Euryarchaeota, Firmicutes, Halobacterota, and Proteobacteria. In conclusion, this study provides an important reference for understanding the environmental risk associated with aquaculture activities in China.
Collapse
Affiliation(s)
- Xu Cheng
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ruifang Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xinyan ShangGuan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
79
|
Sivakumar K, Kannappan S, Vijayakumar B, Jithendran KP, Balasubramaniam S, Panigrahi A. Molecular docking study of bio-inhibitors extracted from marine macro-alga Ulva fasciata against hemolysin protein of luminescence disease-causing Vibrio harveyi. Arch Microbiol 2021; 203:4243-4258. [PMID: 34097104 DOI: 10.1007/s00203-021-02408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Shrimp grow-out and hatchery systems are being affected by bacterial disease particularly Vibrios. The use of chemotherapeutic agents in aquaculture practices has to lead to the development of resistance among aquatic bacteria. Thus, health management becomes of major importance in aquaculture. Under this situation, progressing bio-inhibitors from marine resources are most appropriate to be considered against pathogenic bacteria. Molecular docking is an appropriate tool in structural biology and computer-assisted drug design to predict and neutralize a target protein of known diseases. In this study, marine macro-alga Ulva fasciata was aimed at developing inhibitors against luminescence disease-causing pathogenic bacteria Vibrio harveyi. U. fasciata was collected from Thoothukudi, Tamil Nadu, India. Extract of U. fasciata was tested against growth and virulence factors of V. harveyi during Penaeus monodon larviculture. Further U. fasciata extract was subjected to GC-MS analysis to identify the biomolecules. The homology modeling of virulent protein, hemolysin of V. harveyi was designed in this study. Hence, it was aimed for molecular docking against the biomolecules identified from U. fasciata extract. During shrimp larviculture, the extract of U. fasciata (200 μg mL-1) exhibited reduction on Cumulative Percentage of Mortality (32.40%) in postlarvae against challenge of V. harveyi infection. Biomolecule Methyl dehydroabietate had showed highest binding affinity among the compounds was evaluated in molecular docking study. Statistical analysis had revealed significant differences (p < 0.05) in trials. Therefore, it was proved that the bio-inhibitors from U. fasciata will be a better option for controlling luminescence disease-causing V. harveyi in shrimp grow-out practices.
Collapse
Affiliation(s)
- Krishnamoorthy Sivakumar
- ICAR-Krishi Vigyan Kendra, Tamil Nadu Veterinary and Animal Sciences University, Kattupakkam, Chennai, Tamil Nadu, 603203, India. .,Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, 600028, India.
| | - Sudalayandi Kannappan
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, 600028, India
| | - Balakrishnan Vijayakumar
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, 600025, India.,McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin At Madison, Madison, WI, 53705, USA
| | | | - Sivamani Balasubramaniam
- Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, 600028, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, 600028, India
| |
Collapse
|
80
|
Hao J, He Y, Hu X, Yin D, Zhang H, Hu S, Shen G. Bioaccessibility evaluation of pharmaceuticals in market fish with in vitro simulated digestion. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125039. [PMID: 33858081 DOI: 10.1016/j.jhazmat.2021.125039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The consumption of pharmaceuticals-contaminated aquatic products could pose risks to human health, and risk assessments considering bioaccessibility can provide better dietary recommendations. In this study, the bioaccessibility of 6 pharmaceuticals (sulfadiazine (SD), sulfapyridine (SPD), roxithromycin (ROX), tylosin (TYL), diclofenac (DIC) and carbamazepine (CMZP)) in several fish species collected from Shanghai markets was evaluated using in vitro simulated digestion. The total mixed pharmaceuticals concentration in freshwater fish were lower than those in marine fish, and statistics showed that the total concentrations of SD, SPD and CMZP in freshwater fish were significantly lower than those of marine fish (p < 0.05). The bioaccessible concentration of each pharmaceutical accounted for 26.3% (TYL) to 101.5% (CMZP) of the total concentration in market fish (n = 70). The bioaccessibility of 6 pharmaceuticals in species of fish was 18.8% (cutlassfish) to 99.6% (bream), which may be related to the physical-chemical properties of the pharmaceutical and the characteristics of the matrix (e.g. lipid content). According to health risk assessments, the consumption of market fish in Shanghai posed no remarkable risk to human health (hazard quotient < 0.099). Ignoring the bioaccessibility of pharmaceuticals in aquatic products might overestimate the human health risks by dietary exposure.
Collapse
Affiliation(s)
- Jiaoyang Hao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yi He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hongchang Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
81
|
Gao Y, Chen Z, Yao W, Li D, Fu X. Gentamicin Combined With Hypoionic Shock Rapidly Eradicates Aquaculture Bacteria in vitro and in vivo. Front Microbiol 2021; 12:641846. [PMID: 33889141 PMCID: PMC8055967 DOI: 10.3389/fmicb.2021.641846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial pathogens are a major cause of infectious diseases in aquatic animals. The abuse of antibiotics in the aquatic industry has led to the proliferation of antibiotic resistance. It is therefore essential to develop more effective and safer strategies to increase the efficacy and extend the life span of the antibiotics used in aquaculture. In this study, we show that six aquaculture bacterial pathogens (i.e., Aeromonas hydrophila, Vibrio alginolyticus, Edwardsiella tarda, Streptococcus iniae, Vibrio harveyi, and Vibrio fluvialis) in the stationary phase can be rapidly killed after immersion in gentamicin- or neomycin-containing, ion-free solutions for a few minutes. Such hypoionic shock treatment enhances the bacterial uptake of gentamicin in an ATP-dependent manner. Importantly, we demonstrate, as a proof of concept, that gentamicin under hypoionic shock conditions can effectively kill A. hydrophila in vivo in a skin infection model of zebrafish (Danio rerio), completely curing the infected fish. Given that pathogenic bacteria generally adhere to the skin surface and gills of aquatic animals, our strategy is of potential significance for bacterial infection control, especially for small-scale economic fish farming and ornamental fish farming. Further, the combined treatment can be completed within 5 min with a relatively small volume of solution, thus minimizing the amount of residual antibiotics in both animals and the environment.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Zhongyu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wei Yao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fuzhou, China.,College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| |
Collapse
|
82
|
Fang L, Huang Z, Fan L, Hu G, Qiu L, Song C, Chen J. Health risks associated with sulfonamide and quinolone residues in cultured Chinese mitten crab (Eriocheir sinensis) in China. MARINE POLLUTION BULLETIN 2021; 165:112184. [PMID: 33621905 DOI: 10.1016/j.marpolbul.2021.112184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of 27 antibiotics (18 sulfonamides and 9 quinolones) in 92 samples of cultured Chinese mitten crab (Eriocheir sinensis) from three provinces (Anhui, Jiangsu and Liaoning) was investigated. These 21 antibiotics were detected at least once in crabs from these provinces with detection frequencies of 3.70-90.91%. Sulfonamides were detected in 53.7% of the samples at concentrations of 0.1-10 μg/kg in Jiangsu, while quinolones were detected with 90.9% of samples containing concentrations of 1-100 μg/kg in Liaoning province. Enroflxacin, ciprofloxacin, sulfaquinoxaline, sulfameter, sulfadoxine, and sulfamethoxazole were the mainly used antibiotics and enroflxacin were present at a high concentration (>100 μg/kg). Dietary assessments showed that residual antibiotics in crabs from China were far below the maximum residue limit (MRL) of total sulfonamides and quinolones, and there was almost no risk associated with crab consumption. These results will provide meaningful indications for the safety of crab consumption.
Collapse
Affiliation(s)
- Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China
| | - Zhuyu Huang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| |
Collapse
|
83
|
Su H, Xu W, Hu X, Xu Y, Wen G, Cao Y. Spatiotemporal variations and source tracking of antibiotics in an ecological aquaculture farm in Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143022. [PMID: 33131848 DOI: 10.1016/j.scitotenv.2020.143022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Although the occurrence and distribution of antibiotics in aquatic environments and reared organisms have been widely reported, the spatiotemporal variations and sources of antibiotics throughout the rearing period of aquaculture remain unclear. In this study, the concentrations and spatiotemporal variations of antibiotics in water sources, pond water, sediment, feed, and reared shrimp samples during three rearing periods in an ecological shrimp farm in Southern China were investigated. The water, sediment, and feed samples were found to contain twelve, nine, and four types of antibiotics, respectively, and the concentration of erythromycin-H2O was the highest among these antibiotics. No target antibiotics were detected in the reared shrimp samples from this typical shrimp farm, which employed ecological rearing with no antibiotic use throughout the rearing processes. The total concentrations of antibiotics in water source were 1.96-40.58 times higher than those in pond water. A significant decrease in the total antibiotic concentrations of the pond water was observed, while a significant increase was observed in sediment during each rearing period (p < 0.05), suggesting that antibiotics transferred from the water phase to the sediment phase in the farm. Redundancy analysis demonstrated that the chemical oxygen demand was negatively correlated with the concentration of the target antibiotics in the water samples during three rearing periods (p < 0.05). The results of calculations conducted using the concentrations of antibiotics in the water source, pond water, sediment, and feed samples detected in this study indicated that the water source was likely to be the main source of antibiotics in the rearing ponds. This study can provide a better understanding of the spatiotemporal variations and sources of antibiotics in aquaculture.
Collapse
Affiliation(s)
- Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Guoliang Wen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China.
| |
Collapse
|
84
|
Al-Amri I, Kadim IT, AlKindi A, Hamaed A, Al-Magbali R, Khalaf S, Al-Hosni K, Mabood F. Determination of residues of pesticides, anabolic steroids, antibiotics, and antibacterial compounds in meat products in Oman by liquid chromatography/mass spectrometry and enzyme-linked immunosorbent assay. Vet World 2021; 14:709-720. [PMID: 33935417 PMCID: PMC8076474 DOI: 10.14202/vetworld.2021.709-720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIM Meat is a rich source of many nutrients and plays a vital role in human life however, meat safety is one of the top priorities of great concern for consumers today. More than 90% of human exposure to harmful materials is due to consumption of contaminated meat products. This study was designed to compare four valid analytical methods for the determination of organochlorine pesticides 2,4 D (2,4-dichlorophenoxyacetic acid), dichlorodiphenyldichloroethylene/dichlorodiphenyltrichloroethane, alachlor, organophosphate, anabolic steroids (progesterone, testosterone, and estrogen), antibiotics (tetracycline, sulfonamides, gentamycin, and cephalexin), antibacterial compounds (Macrolide, ß-Lactam, Chloramphenicol, Sulphur drugs, and Gentamicin) residues in 135 beef, buffalo, and sheep meat samples (fresh, frozen meats, minced, and sausage samples) of local, regional, and international brands available in Omani markets. MATERIALS AND METHODS Triplicate meat samples from each brand within each species were extracted with acetonitrile and purified with acetonitrile-saturated n-hexane to remove all impurities. To dry the sample after heating, the residue was passed across a Sep-Pak C18 cartridge for sample cleaning before gas chromatography (GC) (Brand GCMS-QP2010 Plus) coupled with different detectors, including a mass spectrometer or GC-electron capture detector (GC-ECD). Liquid chromatography/mass spectrometry (LC-MS) was also employed for the quantification of the residues in meat products. Enzyme-linked immunosorbent assay (ELISA) kits were employed to assess veterinary drug residues, anabolic steroids, and pesticides. The CHARM II instrument was employed to detect chloramphenicol, gentamicin, sulfa-drug, ß-lactam, and macrolide residues in meat and meat product samples. RESULTS A thin-layer chromatographic (TLC) method should be considered as another method of choice to determine concentrations of veterinary drugs and anabolic steroids. The TLC results were validated by LC-MS. The three described methods permit the multi-residue analysis of anabolic steroid residue levels of 0.06-1.89 ppb in meat product samples. There were three violative residues of anabolic steroids in red meat products that were above the maximum residue limits (MRLs). Although, the levels of organochlorine pesticides and antibiotic concentrations in meat products were below the MRLs, the long-term consumption is considered a health hazard and will affect the wellbeing of consumers. CONCLUSION The four techniques (GC, high-performance liquid chromatography, ELISA and CHARM II) provided results that were reliable and precise for the detection of chessssmical residues in meat and meat products.
Collapse
Affiliation(s)
- Issa Al-Amri
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Isam T. Kadim
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Abdulaziz AlKindi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Ahmed Hamaed
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Rabea Al-Magbali
- Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Samera Khalaf
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Khdija Al-Hosni
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
85
|
Alam MM, Haque MM. Presence of antibacterial substances, nitrofuran metabolites and other chemicals in farmed pangasius and tilapia in Bangladesh: Probabilistic health risk assessment. Toxicol Rep 2021; 8:248-257. [PMID: 33552923 PMCID: PMC7844123 DOI: 10.1016/j.toxrep.2021.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
ANCs in pangasius and tilapia, fish feed, pond sediments and water were analysed comprehensively. Residual ANCs except heavy metals were not found in farmed pangasius and tilapia flesh. Residual toxic heavy metals lead and chromium in fish were above the permissible limit. Heavy metals sourced primarily from fish feed with secondary sources such as groundwater. Lead and chromium concentrations in fish flesh pose potential carcinogenic risks to human health.
Intensive feeding and the use of drugs and other chemicals for enhancing yield characterised commercial pangasius and tilapia aquaculture in Bangladesh. The residual presence of prohibited antibacterial substances, nitrofuran metabolites and other chemicals (ANCs) in fish, and their effect on public health are a concern for consumers. This study collected samples from 15 pangasius and 15 tilapia ponds to assess the contamination of ANCs, including pesticides, dyes and heavy metals in fish flesh, and heavy metals in feed, sediments and water. Antibacterial substances, nitrofuran metabolites and dyes in fish flesh were detected using LC–MS/MS. Organochlorine pesticides and heavy metals were detected applying GC–MS and AAS, respectively. We found very low residue of the most ANCs in pangasius and tilapia flesh, however, both species contained heavy metals, particularly lead (Pb) and chromium (Cr). The level of metal contamination was affected by the age of the pond; the highest concentration of Pb was in pangasius from old ponds (> 10 years), and the highest concentration of Cr was found in pangasius from new ponds (< 10 years), and tilapia from old ponds. The feed sampled in this study, particularly the commercial pellet and farm-made feed, were highly contaminated with heavy metals. Pond water and sediments were contaminated by heavy metals; fish, water and sediment samples from older ponds had higher concentrations of heavy metals. The concentration of these heavy metals in fish flesh above regulatory limits poses potential risks to human health. To ensure the production of safe fish for human consumption, commercial aquaculture in Bangladesh requires a functional regulatory framework.
Collapse
Affiliation(s)
- Md Mehedi Alam
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Fishery Resources Conservation and Management, Khulna Agricultural University, Khulna, Bangladesh
| | | |
Collapse
|
86
|
Li JY, Wen J, Chen Y, Wang Q, Yin J. Antibiotics in cultured freshwater products in Eastern China: Occurrence, human health risks, sources, and bioaccumulation potential. CHEMOSPHERE 2021; 264:128441. [PMID: 33032217 DOI: 10.1016/j.chemosphere.2020.128441] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The adverse effects of antibiotics residues on aquaculture ecosystems and humans raised increasing concerns globally. To assess the occurrence, human health risks, sources, and bioaccumulation potential of antibiotics in cultured freshwater products in Eastern China, 12 and 13 aquaculture ponds were selected in 2018 and 2019, respectively, both covering 8 aquatic species. Concentrations of 12 commonly-used antibiotics were measured in muscle tissue of aquaculture products, water, sediment, and suspended particles. At least two antibiotics were found simultaneously in all muscle tissue samples. The concentrations of most antibiotics in freshwater cultured products were at a medium or lower level in comparison with other studies in China and worldwide, but slightly higher than the concentrations in cultured marine products. The potential risks from the intake of these aquatic products were also evaluated. The results showed limited adverse effects due to the consumption of these products with an exception of fluoroquinolone antibiotics. The bioaccumulation potential from water varied widely in different collection years, but the bioaccumulation factor (BAF) values for antibiotics were all <50 L/kg. BSAF values of antibiotics were all far below 1, except for one site in Zhejiang province in 2018, indicating that the bioavailability from surface sediments was low, in a particular pond environment. The low repeatability of BAF and BSAF calculated in two years indicated a relatively unsteady status in terms of bioaccumulation potential of cultured freshwater ponds yearly.
Collapse
Affiliation(s)
- Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ju Wen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
87
|
Chen T, Li S, Zhao J, Feng Y. Uranium-thorium dating of coral mortality and community shift in a highly disturbed inshore reef (Weizhou Island, northern South China Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141866. [PMID: 32889282 DOI: 10.1016/j.scitotenv.2020.141866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Inshore coral habitats are at high risk of loss due to a combination of climate warming and regional-scale human impacts. As a result, they have undergone significant declines. Direct evidence of acute and chronic disturbance on most inshore coral assemblages is limited. Long-term, periodical surveys and historical baseline data essential for effective management are lacking. Using high-precision uranium-thorium (UTh) dating, we reconstruct a ~100-year-long history of extensive coral loss, changes in coral community structure, and a shifting baseline. The data were collected at Weizhou Island, northern South China Sea (SCS), which has highly disturbed inshore coral habitats that are typical globally. According to our UTh dates, major coral mortalities around Weizhou Island have occurred since the 1950s, with increasing frequency and severity since the 1980s. The extensive loss of branching Acropora and collapse of coral communities with peaks around 1960, 1984, and 1998 are accompanied by a shift toward low coral cover and noncoral-dominated assemblages. Prior to this collapse, the local coral community structure sustained remarkable long-term stability over millennia. The timing of the Acropora loss and massive coral mortalities coincides with multiple acute and chronic, natural and anthropogenic disturbance events. We suggest that priority should be given to directly addressing the causes of degradation and effectively controlling chronic disturbances before attempting to restore reef ecosystems. This is probably the only way to solve the "wicked problem" of sustaining the key functions and ecosystem services of inshore coral habitats such as those of Weizhou Island, northern SCS.
Collapse
Affiliation(s)
- Tianran Chen
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Shu Li
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Jianxin Zhao
- Radiogenic Isotope Facility, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yuexing Feng
- Radiogenic Isotope Facility, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
88
|
Zhang R, Kang Y, Zhang R, Han M, Zeng W, Wang Y, Yu K, Yang Y. Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South China: Storm caused the increase of antibiotics usage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141882. [PMID: 32889286 DOI: 10.1016/j.scitotenv.2020.141882] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic residues in mariculture environments have been detected globally, while little information is available about their dynamic levels, source, behavior, and fate during the whole culture process. In this study, the dynamic occurrence, bioaccumulation, source, fate, and human dietary risk of 19 antibiotics were investigated in different breeding stages of mariculture ponds near the Maowei Sea, South China. Fourteen antibiotics, including three sulfonamides (SAs), five fluoroquinolones (FQs), three macrolides (MLs), and two chloramphenicols (CAPs), were detected in the mariculture ponds, with FQs being the most abundant antibiotics. Significant variations of antibiotic concentration occurred during the whole culture process. Severe weather, especially typhoons and rainstorms, resulted in the average highest levels of ∑19antibiotics (mean: 567 ng L-1) in mariculture ponds. The source apportionment estimated for the mariculture ponds showed that direct application was the primary source of antibiotics (91.2%). The antibiotics in mariculture ponds were mainly discharged through aquaculture wastewater (65.8%) and settling particles (33.8%). The estimated annual input of antibiotics into the Maowei Sea was 2.24 times higher through the two main rivers (48.0 kg a-1) than through the mariculture wastewater (24.1 kg a-1). The apparent bioaccumulation factors (ABAFs) confirmed that young and adult tilapia accumulated more sulfamethoxazole (SMX) and norfloxacin (NOX), respectively. The result from the estimated daily intakes suggested that the antibiotics in the seafood could not pose a risk to human health by dietary exposure assessment. CAPSULE: Big variation of antibiotic concentration occurred during the whole culture process in the mariculture farms, and the storm increased antibiotic application.
Collapse
Affiliation(s)
- Ruiling Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Weibin Zeng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Ying Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
89
|
Wu Q, Pan CG, Wang YH, Xiao SK, Yu KF. Antibiotics in a subtropical food web from the Beibu Gulf, South China: Occurrence, bioaccumulation and trophic transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141718. [PMID: 32889462 DOI: 10.1016/j.scitotenv.2020.141718] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics are of particular concern because of their ubiquity in aquatic environment and long-term adverse effects on aquatic organisms and humans. However, there is no information about the bioaccumulation and trophic magnification of antibiotics in subtropical environments. In this study, we determined the concentrations of 22 antibiotics to investigate their occurrence, bioaccumulation and trophic magnification in a subtropical food web from the Beibu Gulf. The total concentrations of target antibiotics ranged from 52.94-77.76 ng/L in seawater, 9.69-15.43 ng/g dry weight (dw) in sediment, and 0.68-4.75 ng/g wet weight (ww) in marine organisms, respectively. Macrolides were the predominant antibiotics in water, while fluoroquinolones were more abundant in sediment and biota samples. The total concentrations of target antibiotics in examined marine taxa descended in the order: crustacean > cephalopod > fish, with antibiotic profiles displaying distinct difference among taxa. Log BAFs (bioaccumulation factor) for antibiotics in all organisms ranged from -0.50 for erythromycin-H2O (ETM-H2O) to 2.82 for sulfamonomethoxine (SMM). Significantly negative correlation was observed between the log Dow and log BAF values (p < .05), indicating that log Dow is a good predictor of antibiotics bioaccumulation potential in marine organisms. The trophic magnification factors (TMFs) for sulfadiazine (SDZ) and enoxacin (ENX) were greater than unity, suggesting the trophic magnification of these chemicals through the food web. In contrast, enrofloxacin (ENR), ciprofloxacin (CIX), ofloxacin (OFX), norfloxacin (NOX), ETM-H2O and trimethoprim (TMP) were biodiluted in the food web from the Beibu Gulf. This study provides substantial information on the fate and trophic transfer of antibiotics in a subtropical marine ecosystem.
Collapse
Affiliation(s)
- Qi Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Shao-Ke Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
90
|
Wang C, Chen M, Hu Q, Bai H, Wang C, Ma Q. Non-lethal microsampling and rapid identification of multi-residue veterinary drugs in aquacultured fish by direct analysis in real time coupled with quadrupole-Orbitrap high-resolution mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
91
|
Zhou M, Yu S, Hong B, Li J, Han H, Qie G. Antibiotics control in aquaculture requires more than antibiotic-free feeds: A tilapia farming case. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115854. [PMID: 33120148 DOI: 10.1016/j.envpol.2020.115854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Public concern over the health implications of antimicrobials employed in aquaculture has resulted in adoption of strict regulations for their use. This study employed a high-throughput protocol covering 86 compounds in six pharmaceutical groups to screen feed and sediments from 20 tilapia ponds randomly in 18 farms of an aquacultural unit in southern China, one of important tilapia fillet suppliers in the world. Seventeen samples of commercial feeds from manufacturer-sealed bags in the farms were tetracyclines-free but not antibiotic-free. All the sealed-bag feeds contained quinolones and two feeds had sulfonamides (up to 140 μg kg-1). Meanwhile, seven leftover-feeds in opened bags contained added antimicrobials: tetracyclines (570-2790 μg kg-1) in all and florfenicol (20-294 μg kg-1) in four. All the feeds regardless sealed or not had large amounts (221-2642 μg kg-1) of salicylic acid (possible antimicrobial substitute) and caffeine, and one sealed-bag feed even was quantified with medroxyprogesterone. Surface sediments (0-10 cm) from the ponds were detected with 36 compounds and sublayer sediments (10-20) with 8 compounds. Large amounts of salicylic acid were present in both surface and sublayer sediments accounting up to 10% of total pharmaceutical residues. Surface sediments were dominated by antibiotics (5.2-172 μg kg-1), mainly sulfonamides and quinolones, contributing 68% of the total quantitative compound mass. Sublayer sediments were also enriched in quinolones (up to 260 μg kg-1). Surprisingly, all sediments contained progesterone (up to 8.0 μg kg-1) in coincidence to the feed with medroxyprogesterone, perhaps arising from endocrine abuses or cross-contamination. Although high levels of other pharmacologic residues (caffeine) in sediment posed greater than medium ecological risks, antibiotic residues contributed only 2-35% to the risk. These findings suggest that antibiotic-free feed may be insufficient to control antibiotic abuse in aquaculture and that additional regulatory actions may be necessary, such as veterinary prescription as human antibiotic uses.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Juan Li
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Han
- ChinaBlue Sustainability Institute, Haikou, 570208, China
| | - Guang Qie
- ChinaBlue Sustainability Institute, Haikou, 570208, China
| |
Collapse
|
92
|
Zhang H, Chen Q, Niu B. Risk Assessment of Veterinary Drug Residues in Meat Products. Curr Drug Metab 2020; 21:779-789. [PMID: 32838714 DOI: 10.2174/1389200221999200820164650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/04/2023]
Abstract
With the improvement of the global food safety regulatory system, there is an increasing importance for food safety risk assessment. Veterinary drugs are widely used in poultry and livestock products. The abuse of veterinary drugs seriously threatens human health. This article explains the necessity of risk assessment for veterinary drug residues in meat products, describes the principles and functions of risk assessment, then summarizes the risk assessment process of veterinary drug residues, and then outlines the qualitative and quantitative risk assessment methods used in this field. We propose the establishment of a new meat product safety supervision model with a view to improve the current meat product safety supervision system.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| |
Collapse
|
93
|
Sun Y, Zhang L, Zhang X, Chen T, Dong D, Hua X, Guo Z. Enhanced bioaccumulation of fluorinated antibiotics in crucian carp (Carassius carassius): Influence of fluorine substituent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141567. [PMID: 32814302 DOI: 10.1016/j.scitotenv.2020.141567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The negative impact of residual fluorinated antibiotics on the ecosystem and human health are of great concern. However, only a few studies have been conducted on the factors that influence the bioaccumulation of fluorinated antibiotics in aquatic organisms. To investigate the effects of fluorine substituent, environmental concentration of antibiotics, and temperature on the bioaccumulation of florfenicol (FLO), thiamphenicol (TAP), ofloxacin (OFX), and pipemidic acid (PPA), crucian carp (Carassius carassius) were exposed to different concentrations of antibiotics and different temperatures for 21 days. The liver exhibited the highest antibiotic concentrations, with 315.4 ± 13.6 ng g-1 wet weight (ww), followed by the bile (279.4 ± 12.4 ng mL-1), muscle (53.1 ± 4.3 ng g-1 ww), and gills (37.1 ± 2.6 ng g-1 ww). The FLO and OFX containing the fluorine substituent were much easier to accumulate in crucian carp compared with their isonomic TAP and PPA, respectively. The fluorine substituent increased the bioaccumulation of the targeted antibiotics in crucian carp. In addition, the lower levels of antibiotics presented higher bioaccumulation potential, but the temperature had little effect on the bioaccumulation. These findings in the present study can provide further insight into the environmental behaviors and ecological risks of fluorinated antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Yidian Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xun Zhang
- Changchun Customs District P.R. China, Changchun 130062, China
| | - Tianyi Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
94
|
Li H, Yang S, Li T, Li X, Huang X, Gao Y, Li B, Lin J, Mu W. Determination of pyraclostrobin dynamic residual distribution in tilapia tissues by UPLC-MS/MS under acute toxicity conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111182. [PMID: 32911370 DOI: 10.1016/j.ecoenv.2020.111182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
As a lipophilic fungicide, pyraclostrobin is highly toxic to aquatic organisms, especially to fish. In recent years, research has mainly focused on the pyraclostrobin residue in fish tissues under chronic toxicity, but less is known about its distribution in fish tissues under acute toxicity conditions. In this study, the distribution of pyraclostrobin in fish tissues (blood, liver, muscle and gill) was determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The purification effects of different purification materials [1) mixtures of PSA, C18 and MgSO4; 2) QuEChERS-PC; and 3) Oasis HLB SPE] were compared for the detection of pyraclostrobin in fish tissues. Finally, the quick and easy clean-up tool of the Oasis HLB SPE procedure was selected. Under optimum conditions, the linearities had a good relationship (determination coefficient R2 > 0.999). The mean recoveries of the analyte for all tested concentrations ranged from 86.94% to 108.81% with RSDs of 0.7%-4.9%. The pyraclostrobin residue amount was much different in fish tissues. Furthermore, the pyraclostrobin residue in different fish tissues increased initially and then decreased gradually. The concentrations in each tissue were initially ranked before 120 min in the following order: gill > liver > blood > muscle. These phenomena may be attributed to the stress response of fish under acute poisoning. This is the first study to document the distribution of pyraclostrobin in fish tissues under acute toxicity conditions, and it provides reference for the management of agrochemicals in terms of aquatic ecological risks.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Song Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Tongbin Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiuhuan Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xueping Huang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
95
|
Yang C, Song G, Lim W. A review of the toxicity in fish exposed to antibiotics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108840. [PMID: 32640291 DOI: 10.1016/j.cbpc.2020.108840] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
Antibiotics are widely used in the treatment of human and veterinary diseases and are being used worldwide in the agriculture industry to promote livestock growth. However, a variety of antibiotics that are found in aquatic environments are toxic to aquatic organisms. Antibiotics are not completely removed by wastewater treatment plants and are therefore released into aquatic environments, which raises concern about the destruction of the ecosystem owing to their non-target effects. Since antibiotics are designed to be persistent and work steadily in the body, their chronic toxicity effects have been studied in aquatic microorganisms. However, research on the toxicity of antibiotics in fish at the top of the aquatic food chain is relatively poor. This paper summarizes the current understanding of the reported toxicity studies with antibiotics in fish, including zebrafish, to date. Four antibiotic types; quinolones, sulfonamides, tetracyclines, and macrolides, which are thought to be genetically toxic to fish have been reported to bioaccumulate in fish tissues, as well as in aquatic environments such as rivers and surface water. The adverse effects of these antibiotics are known to cause damage to developmental, cardiovascular, and metabolic systems, as well as in altering anti-oxidant and immune responses, in fish. Therefore, there are serious concerns about the toxicity of antibiotics in fish and further research and strategies are needed to prevent them in different regions of the world.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
96
|
Chen J, Sun R, Pan C, Sun Y, Mai B, Li QX. Antibiotics and Food Safety in Aquaculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11908-11919. [PMID: 32970417 DOI: 10.1021/acs.jafc.0c03996] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotics are widely used in aquaculture. Intensive farming drives indiscriminate use of antibiotics, which results in residues of antibiotics in cultured aquatic products and bacterial resistance. This perspective attempts to present a brief update on usage, regulations, residues, and potential human health risk of antibiotics used in aquaculture. Through the comprehensive literature review, we provide a view that the safety of aquatic products still requires further attention and more rigorous risk assessment. Finally, we make a few suggestions for future research directions: reduce the use of antibiotics to bring down the speed of resistance development and monitor resistant pathogens and genes, strictly manage the environmental sanitation of aquaculture and pay attention to the quality of water bodies introduced into aquaculture, seek international cooperation to establish an information bank of antibiotic residues and antibiotic-resistant genes, and set up a quantitative model to assess the risk of antibiotic resistance associated with the antibiotic residues.
Collapse
Affiliation(s)
- Jiemin Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, People's Republic of China
| | - Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, People's Republic of China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Changgui Pan
- School of Marine Sciences, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yue Sun
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
97
|
Zhu M, Wang Z, Chen J, Xie H, Zhao H, Yuan X. Bioaccumulation, Biotransformation, and Multicompartmental Toxicokinetic Model of Antibiotics in Sea Cucumber ( Apostichopus japonicus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13175-13185. [PMID: 32985863 DOI: 10.1021/acs.est.0c04421] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive application of antibiotics leads to their ubiquitous occurrence in coastal aquatic environments. However, it remains largely unknown whether antibiotics can be bioaccumulated and biotransformed in major mariculture organisms such as sea cucumbers and toxicokinetic models for Echinodermata are lacking. In this study, laboratory exposure experiments on juvenile sea cucumber (Apostichopus japonicus) were performed for seven antibiotics (sulfadiazine, sulfamethoxazole, trimethoprim, enrofloxacin, ofloxacin, clarithromycin, and azithromycin). Field sea cucumber and surrounding seawater samples were also analyzed. Results show that the sea cucumbers tend to accumulate high concentrations of the antibiotics with kinetic bioconcentration factors (BCFs) up to 1719.7 L·kg-1 for ofloxacin. The BCFs determined in the laboratory agree well with those estimated from the field measurements. Seven biotransformation products (BTPs) of the antibiotics were identified, four of which were not reported previously in aquatic organisms. The BTPs were mainly found in the digestive tract, indicating its high capacity in the biotransformation. A multicompartmental toxicokinetic model based on the principles of passive diffusion was developed, which can successfully predict time-course concentrations of the antibiotics in different compartments of the juvenile sea cucumbers. The findings may offer a scientific basis for assessing health risks and guiding healthy mariculture of sea cucumbers.
Collapse
Affiliation(s)
- Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiutang Yuan
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
98
|
Liu S, Su H, Pan YF, Xu XR. Spatial and seasonal variations of antibiotics and antibiotic resistance genes and ecological risks in the coral reef regions adjacent to two typical islands in South China Sea. MARINE POLLUTION BULLETIN 2020; 158:111424. [PMID: 32753208 DOI: 10.1016/j.marpolbul.2020.111424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Although the occurrence of antibiotics and antibiotic resistance genes (ARGs) in aquatic environmental has been widely reported, the distribution and variations of these emerging contaminants in the coral reef regions remain unclear. This study investigated the occurrence of these contaminants, and their spatial and seasonal variations in both coral reef regions and non-coral reef regions adjacent to two typical islands in the South China Sea. Eighteen antibiotics and seven ARGs were detected in the surface water with total concentrations ranging from 43.2 to 441 ng/L, and 2.11 × 104 to 8.00 × 106 copies/L, respectively. Erythromycin-H2O was the most dominant antibiotic in all samples. QnrD was dominant in the dry season, whereas sul1, sul2, and floR were the most abundant in the wet season, indicating obvious seasonal variations. The distribution of ARGs was mainly influenced by changes in salinity caused by anthropogenic activities in wet season.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
99
|
Li T, Wang C, Xu Z, Chakraborty A. A coupled method of on-line solid phase extraction with the UHPLC‒MS/MS for detection of sulfonamides antibiotics residues in aquaculture. CHEMOSPHERE 2020; 254:126765. [PMID: 32330759 DOI: 10.1016/j.chemosphere.2020.126765] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The use of a variety of antibiotics in fish farming raises serious concern about the development of antibiotic resistance. Sulfonamides antibiotics (SAs), which are widely used in aquaculture and generate large eco‒toxicological effects with significant mutagenicity and teratogenic consequences, are still difficult to determine in aquatic organisms. In this study, an automatic technology was developed by coupling on‒line solid phase extraction system (on‒line SPE) with ultra‒high‒performance liquid chromatography spectrometry‒mass spectrometry (UHPLC‒MS/MS). Particularly, using a single on‒line column in the process of sample pretreatment, e.g., HLB or C18, phospholipids that potentially caused the matrix effect cannot be removed form biological sample. We applied a mixed cation exchange column (Oasis® MCX) connected with a hydrophilic lipophilic balance column (Oasis® HLB) in series in on‒line SPE clean‒up to remove interferences and finally obtained a clear and stable eluant. The on‒line SPE working conditions and UHPLC‒MS/MS parameters were optimized for their sensitivity, accuracy, decision limit, and detection capability, which were further calibrated for fish, shrimp and crab. The results showed that the limits of detection and limits of quantification ranged from 1.46 to 15.5 ng/kg, and 4.90-51.6 ng/kg, respectively. Accuracy values covered 71.5%-102% at the three concentration levels (0.1, 0.5, 1.0 μg/kg) for all compounds and average repeatability (relative standard deviation, RSD%) ranged from 3.47% to 14.2%. This on‒line SPE coupled with UHPLC‒MS/MS method is a way forward for an automatic, powerful detection technology for determination of antibiotics from complex matrix.
Collapse
Affiliation(s)
- Tao Li
- Monitoring Bureau of Hydrology and Water Resources of Taihu Basin, China
| | - Ce Wang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Zhaoan Xu
- Monitoring Bureau of Hydrology and Water Resources of Taihu Basin, China
| | - Amit Chakraborty
- School of Mathematics, Statistics, and Computational Sciences, Central University of Rajasthan, India.
| |
Collapse
|
100
|
Multiantibiotic residues in commercial fish from Argentina. The presence of mixtures of antibiotics in edible fish, a challenge to health risk assessment. Food Chem 2020; 332:127380. [PMID: 32603916 DOI: 10.1016/j.foodchem.2020.127380] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
The occurrence of 46 antibiotics (amphenicols, cephalosporins, dihydrofolate reductase inhibitors, fluroquinolones, macrolides, nitrofurans, penicillins, quinolones, sulfamides and tetracyclines) in Argentinean market fish were investigated by UPLC-MS/MS. Veterinary and human antimicrobials enrofloxacin, clarithromycin, roxithromycin, doxycycline and oxytetracycline were detected in 100% of the samples, being to our knowledge the first report of clarithromycin in edible fish muscle. Maximum Residual Limits were exceeded for at least one antibiotic in 82% of pacú, 57% of shad, 57% of trout and 50% of salmon samples. Chloramphenicol, furazolidone and nitrofurantoin (banned compounds in food items) were detected in 41%, 22% and 4% of the samples, respectively. Based on the estimated daily intake calculation, samples do not pose a serious risk to public health. Further investigation on the chronic impact and risk calculation of the mixture of antibiotics on the aquatic environment and human health is urgently needed.
Collapse
|