51
|
Borjabad A, Morgello S, Chao W, Kim SY, Brooks AI, Murray J, Potash MJ, Volsky DJ. Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders. PLoS Pathog 2011; 7:e1002213. [PMID: 21909266 PMCID: PMC3164642 DOI: 10.1371/journal.ppat.1002213] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
Antiretroviral therapy (ART) has reduced morbidity and mortality in HIV-1 infection; however HIV-1-associated neurocognitive disorders (HAND) persist despite treatment. The reasons for the limited efficacy of ART in the brain are unknown. Here we used functional genomics to determine ART effectiveness in the brain and to identify molecular signatures of HAND under ART. We performed genome-wide microarray analysis using Affymetrix U133 Plus 2.0 Arrays, real-time PCR, and immunohistochemistry in brain tissues from seven treated and eight untreated HAND patients and six uninfected controls. We also determined brain virus burdens by real-time PCR. Treated and untreated HAND brains had distinct gene expression profiles with ART transcriptomes clustering with HIV-1-negative controls. The molecular disease profile of untreated HAND showed dysregulated expression of 1470 genes at p<0.05, with activation of antiviral and immune responses and suppression of synaptic transmission and neurogenesis. The overall brain transcriptome changes in these patients were independent of histological manifestation of HIV-1 encephalitis and brain virus burdens. Depending on treatment compliance, brain transcriptomes from patients on ART had 83% to 93% fewer dysregulated genes and significantly lower dysregulation of biological pathways compared to untreated patients, with particular improvement indicated for nervous system functions. However a core of about 100 genes remained similarly dysregulated in both treated and untreated patient brain tissues. These genes participate in adaptive immune responses, and in interferon, cell cycle, and myelin pathways. Fluctuations of cellular gene expression in the brain correlated in Pearson's formula analysis with plasma but not brain virus burden. Our results define for the first time an aberrant genome-wide brain transcriptome of untreated HAND and they suggest that antiretroviral treatment can be broadly effective in reducing pathophysiological changes in the brain associated with HAND. Aberrantly expressed transcripts common to untreated and treated HAND may contribute to neurocognitive changes defying ART.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center and Columbia University, New York, New York, United States of America
| | - Susan Morgello
- Department of Pathology and Neuroscience, The Mount Sinai Medical Center, New York, New York, United States of America
| | - Wei Chao
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center and Columbia University, New York, New York, United States of America
| | - Seon-Young Kim
- Human Genomics Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Andrew I. Brooks
- Department of Genetics, Environmental and Occupational Health Science Institute (EOHSI), Rutgers University, Piscataway, New Jersey, United States of America
| | - Jacinta Murray
- Department of Pathology and Neuroscience, The Mount Sinai Medical Center, New York, New York, United States of America
| | - Mary Jane Potash
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center and Columbia University, New York, New York, United States of America
| | - David J. Volsky
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center and Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
52
|
Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS. MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis 2011; 1:e77. [PMID: 21170291 PMCID: PMC3002786 DOI: 10.1038/cddis.2010.56] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) have important roles in regulating a plethora of physiological and pathophysiogical processes including neurodegeneration. In both human immunodeficiency virus (HIV)-associated dementia in humans and its monkey model simian immunodeficiency virus encephalitis (SIVE), we find miR-21, a miRNA largely known for its link to oncogenesis, to be significantly upregulated in the brain. In situ hybridization of the diseased brain sections revealed induction of miR-21 in neurons. miR-21 can be induced in neurons by prolonged N-methyl--aspartic acid receptor stimulation, an excitotoxic process active in HIV and other neurodegenerative diseases. Introduction of miR-21 into human neurons leads to pathological functional defects. Furthermore, we show that miR-21 specifically targets the mRNA of myocyte enhancer factor 2C (MEF2C), a transcription factor crucial for neuronal function, and reduces its expression. MEF2C is dramatically downregulated in neurons of HIV-associated dementia patients, as well as monkeys with SIVE. Together, this study elucidates a novel role for miR-21 in the brain, not only as a potential signature of neurological disease, but also as a crucial effector of HIV-induced neuronal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- S V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | | | | | |
Collapse
|
53
|
Patrick C, Crews L, Desplats P, Dumaop W, Rockenstein E, Achim CL, Everall IP, Masliah E. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1646-61. [PMID: 21435449 PMCID: PMC3078446 DOI: 10.1016/j.ajpath.2010.12.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/10/2010] [Accepted: 12/16/2010] [Indexed: 12/20/2022]
Abstract
Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE.
Collapse
Affiliation(s)
- Christina Patrick
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Leslie Crews
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Wilmar Dumaop
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Cristian L. Achim
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Ian P. Everall
- Department of Psychiatry, University of California, San Diego, La Jolla, California
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| |
Collapse
|
54
|
Wang L, Huang J, Jiang M, Sun L. MYBPC1 computational phosphoprotein network construction and analysis between frontal cortex of HIV encephalitis (HIVE) and HIVE-control patients. Cell Mol Neurobiol 2011; 31:233-41. [PMID: 21061152 DOI: 10.1007/s10571-010-9613-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/07/2010] [Indexed: 11/26/2022]
Abstract
MYBPC1 computational phosphoprotein network construction and analysis of frontal cortex of HIV encephalitis (HIVE) was very useful to identify novel markers and potential targets for prognosis and therapy. Based on integrated gene regulatory network infer method by linear programming and a decomposition procedure with analysis of the significant function cluster using kappa statistics and fuzzy heuristic clustering from the database for annotation, visualization, and integrated discovery, we identified and constructed significant molecule MYBPC1 phosphoprotein network from 12 frontal cortex of HIVEcontrol patients and 16 HIVE in the same GEO Dataset GDS1726. Our result verified MYBPC1 phosphoprotein module only in the upstream of frontal cortex of HIVEcontrol patients (CREB5, MAPKAPK3 inhibition), whereas in the upstream of frontal cortex of HIVE (CREB5, ZC3HAV1 activation; ROR1 inhibition) and downstream (MAPKAPK3 activation; CFDP1, PDCD4, RBBP6 inhibition). Importantly, we determined that MYBPC1 phosphoprotein cluster of HIVE was involved in signal transduction, transferase, post-translational protein modification, developmental process and glycoprotein (only in HIVE terms), the condition was vital to inflammation and cognition impairment of HIVE. Our result demonstrated that common terms in both HIVE-control patients and HIVE included phosphoprotein, organelle, response to stimulus, nucleic acid binding, primary metabolic process, and biological regulation, and these terms were more relative to inflammation and cognition impairment, therefore, we deduced the stronger MYBPC1 phosphoprotein network in HIVE. It would be necessary of the stronger MYBPC1 phosphoprotein function to inflammation and cognition impairment of HIVE.
Collapse
Affiliation(s)
- Lin Wang
- Biomedical Center, School of Electronics Engineering, Beijing University of Posts and Telecommunications, China.
| | | | | | | |
Collapse
|
55
|
Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E, Levine AJ, Minagar A, Novembre FJ, Somboonwit C, Nath A, Sinnott JT. Editorial neuroAIDS review. AIDS 2011; 25:123-41. [PMID: 21076277 PMCID: PMC4464840 DOI: 10.1097/qad.0b013e328340fd42] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Paul Shapshak
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, Tampa, Florida, USA
- Department of Psychiatry and Behavioral Medicine, University of South Florida, College of Medicine, Tampa, Florida, USA
| | - Pandjassarame Kangueane
- Biomedical Informatics, 17A lrulan Sundai Annex, Pondicherry, India
- AIMST University, Kedha, Malaysia
| | - Robert K. Fujimura
- Geriatric Research Education and Clinical Centers, Veterans Administration, Puget Sound Healthcare System, Seattle, Washington
| | - Deborah Commins
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles
| | | | - Elyse Singer
- Department of Neurology and National Neurological AIDS Bank, UCLA School of Medicine, Westwood, California
| | - Andrew J. Levine
- Department of Neurology and National Neurological AIDS Bank, UCLA School of Medicine, Westwood, California
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | | | - Charurut Somboonwit
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, Tampa, Florida, USA
- Clinical Research Unit, Hillsborough Health Department, Tampa, Florida
| | - Avindra Nath
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John T. Sinnott
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, Tampa, Florida, USA
- Clinical Research Unit, Hillsborough Health Department, Tampa, Florida
| |
Collapse
|
56
|
Mitchell MW. Bias of the Random Forest Out-of-Bag (OOB) Error for Certain Input Parameters. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ojs.2011.13024] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
57
|
CREB5 Computational Regulation Network Construction and Analysis Between Frontal Cortex of HIV Encephalitis (HIVE) and HIVE-Control Patients. Cell Biochem Biophys 2010; 60:199-207. [DOI: 10.1007/s12013-010-9140-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
58
|
Huang JX, Wang L, Jiang MH. TNFRSF11B computational development network construction and analysis between frontal cortex of HIV encephalitis (HIVE) and HIVE-control patients. JOURNAL OF INFLAMMATION-LONDON 2010; 7:50. [PMID: 20920282 PMCID: PMC2959006 DOI: 10.1186/1476-9255-7-50] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND TNFRSF11B computational development network construction and analysis of frontal cortex of HIV encephalitis (HIVE) is very useful to identify novel markers and potential targets for prognosis and therapy. METHODS By integration of gene regulatory network infer (GRNInfer) and the database for annotation, visualization and integrated discovery (DAVID) we identified and constructed significant molecule TNFRSF11B development network from 12 frontal cortex of HIVE-control patients and 16 HIVE in the same GEO Dataset GDS1726. RESULTS Our result verified TNFRSF11B developmental process only in the downstream of frontal cortex of HIVE-control patients (BST2, DGKG, GAS1, PDCD4, TGFBR3, VEZF1 inhibition), whereas in the upstream of frontal cortex of HIVE (DGKG, PDCD4 activation) and downstream (CFDP1, DGKG, GAS1, PAX6 activation; BST2, PDCD4, TGFBR3, VEZF1 inhibition). Importantly, we datamined that TNFRSF11B development cluster of HIVE is involved in T-cell mediated immunity, cell projection organization and cell motion (only in HIVE terms) without apoptosis, plasma membrane and kinase activity (only in HIVE-control patients terms), the condition is vital to inflammation, brain morphology and cognition impairment of HIVE. Our result demonstrated that common terms in both HIVE-control patients and HIVE include developmental process, signal transduction, negative regulation of cell proliferation, RNA-binding, zinc-finger, cell development, positive regulation of biological process and cell differentiation. CONCLUSIONS We deduced the stronger TNFRSF11B development network in HIVE consistent with our number computation. It would be necessary of the stronger TNFRSF11B development function to inflammation, brain morphology and cognition of HIVE.
Collapse
Affiliation(s)
- Ju X Huang
- Biomedical Center, School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - L Wang
- Biomedical Center, School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Ming H Jiang
- Lab of Computational Linguistics, School of Humanities and Social Sciences, Tsinghua Univ., Beijing, 100084, China
| |
Collapse
|
59
|
Behavioral evaluation of transgenic mice with CNS expression of IFN-alpha by elevated plus-maze and Porsolt swim test. Neurosci Lett 2010; 479:287-91. [PMID: 20570603 DOI: 10.1016/j.neulet.2010.05.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022]
Abstract
Chronic IFN-alpha treatment as an antiviral or anti-cancer therapy can lead to severe psychiatric complications, including depression and anxiety in patients. In many animal models of IFN-alpha-induced behavioral dysfunction, the opposite results have frequently been reported. In an attempt to overcome the limitation of pharmacological studies, IFN-alpha-transgenic mice with CNS-targeted expression of the IFN-alpha transgene were used to study depression and anxiety-like behaviors by Porsolt swim and elevated plus-maze assays, respectively. Interestingly, chronic stimulation of IFN-alpha signaling in mouse brains did not cause depression or anxiety as measured by these tests in comparison with wild-type littermates. This observation suggests that factors other than IFN-alpha may be necessary for the development of psychiatric complications following IFN-alpha therapy in patients.
Collapse
|
60
|
Greer KA, Daly P, Murphy KE, Callanan JJ. Analysis of gene expression in brain tissue from Greyhounds with meningoencephalitis. Am J Vet Res 2010; 71:547-54. [DOI: 10.2460/ajvr.71.5.547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
61
|
Tatro ET, Scott ER, Nguyen TB, Salaria S, Banerjee S, Moore DJ, Masliah E, Achim CL, Everall IP. Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-infected brain: novel analysis of retrospective cases. PLoS One 2010; 5:e10337. [PMID: 20436668 PMCID: PMC2859933 DOI: 10.1371/journal.pone.0010337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 03/24/2010] [Indexed: 11/18/2022] Open
Abstract
HIV infection disturbs the central nervous system (CNS) through inflammation and glial activation. Evidence suggests roles for microRNA (miRNA) in host defense and neuronal homeostasis, though little is known about miRNAs' role in HIV CNS infection. MiRNAs are non-coding RNAs that regulate gene translation through post-transcriptional mechanisms. Messenger-RNA profiling alone is insufficient to elucidate the dynamic dance of molecular expression of the genome. We sought to clarify RNA alterations in the frontal cortex (FC) of HIV-infected individuals and those concurrently infected and diagnosed with major depressive disorder (MDD). This report is the first published study of large-scale miRNA profiling from human HIV-infected FC. The goals of this study were to: 1. Identify changes in miRNA expression that occurred in the frontal cortex (FC) of HIV individuals, 2. Determine whether miRNA expression profiles of the FC could differentiate HIV from HIV/MDD, and 3. Adapt a method to meaningfully integrate gene expression data and miRNA expression data in clinical samples. We isolated RNA from the FC (n = 3) of three separate groups (uninfected controls, HIV, and HIV/MDD) and then pooled the RNA within each group for use in large-scale miRNA profiling. RNA from HIV and HIV/MDD patients (n = 4 per group) were also used for non-pooled mRNA analysis on Affymetrix U133 Plus 2.0 arrays. We then utilized a method for integrating the two datasets in a Target Bias Analysis. We found miRNAs of three types: A) Those with many dysregulated mRNA targets of less stringent statistical significance, B) Fewer dysregulated target-genes of highly stringent statistical significance, and C) unclear bias. In HIV/MDD, more miRNAs were downregulated than in HIV alone. Specific miRNA families at targeted chromosomal loci were dysregulated. The dysregulated miRNAs clustered on Chromosomes 14, 17, 19, and X. A small subset of dysregulated genes had many 3′ untranslated region (3′UTR) target-sites for dysregulated miRNAs. We provide evidence that certain miRNAs serve as key elements in gene regulatory networks in HIV-infected FC and may be implicated in neurobehavioral disorder. Finally, our data indicates that some genes may serve as hubs of miRNA activity.
Collapse
Affiliation(s)
- Erick T. Tatro
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Center, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| | - Erick R. Scott
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Timothy B. Nguyen
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Shahid Salaria
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Sugato Banerjee
- HIV Neurobehavioral Research Center, University of California San Diego, San Diego, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - David J. Moore
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Center, University of California San Diego, San Diego, California, United States of America
| | - Eliezer Masliah
- HIV Neurobehavioral Research Center, University of California San Diego, San Diego, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Cristian L. Achim
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Center, University of California San Diego, San Diego, California, United States of America
| | - Ian P. Everall
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
62
|
Borjabad A, Brooks AI, Volsky DJ. Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 2010; 5:44-62. [PMID: 19697136 PMCID: PMC3107560 DOI: 10.1007/s11481-009-9167-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/27/2009] [Indexed: 12/17/2022]
Abstract
Astrocytes are the major cellular component of the central nervous system (CNS), and they play multiple roles in brain development, normal brain function, and CNS responses to pathogens and injury. The functional versatility of astrocytes is linked to their ability to respond to a wide array of biological stimuli through finely orchestrated changes in cellular gene expression. Dysregulation of gene expression programs, generally by chronic exposure to pathogenic stimuli, may lead to dysfunction of astrocytes and contribute to neuropathogenesis. Here, we review studies that employ functional genomics to characterize the effects of HIV-1 and viral pathogenic proteins on cellular gene expression in astrocytes in vitro. We also present the first microarray analysis of primary mouse astrocytes exposed to HIV-1 in culture. In spite of different experimental conditions and microarray platforms used, comparison of the astrocyte array data sets reveals several common gene-regulatory changes that may underlie responses of these cells to HIV-1 and its proteins. We also compared the transcriptional profiles of astrocytes with those obtained in analyses of brain tissues of patients with HIV-1 dementia and macaques infected with simian immunodeficiency virus (SIV). Notably, many of the gene characteristics of responses to HIV-1 in cultured astrocytes were also altered in HIV-1 or SIV-infected brains. Functional genomics, in conjunction with other approaches, may help clarify the role of astrocytes in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, 432 West 58th Street, Antenucci Building, Room 709, New York, NY 10019, USA
| | | | | |
Collapse
|
63
|
Nguyen TP, Soukup VM, Gelman BB. Persistent hijacking of brain proteasomes in HIV-associated dementia. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:893-902. [PMID: 20035054 DOI: 10.2353/ajpath.2010.090390] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunoproteasome induction sustains class 1 antigen presentation and immunological vigilance against HIV-1 in the brain. Investigation of HIV-1-associated alterations in brain protein turnover by the ubiquitin-proteasome system was performed by (1) determining proteasome subunit changes associated with persistent brain inflammation due to HIV-1; (2) determining whether these changes are related to HIV-1 neurocognitive disturbances, encephalitis, and viral loads; and (3) localizing proteasome subunits in brain cells and synapses. On the basis of neurocognitive performance, virological, and immunological measurements obtained within 6 months before death, 153 autopsy cases were selected. Semiquantitative immunoblot analysis performed in the dorsolateral prefrontal cortex revealed up to threefold induction of immunoproteasome subunits LMP7 and PA28alpha in HIV-1-infected subjects and was strongly related to diagnoses of neuropsychological impairment and HIV encephalitis. Low performance on neurocognitive tests specific for dorsolateral prefrontal cortex functioning domains was selectively correlated with immunoproteasome induction. Immunohistochemistry and laser confocal microscopy were then used to localize immunoproteasome subunits to glial and neuronal elements including perikarya, dystrophic axons, and synapses. In addition, HIV loads in brain tissue, cerebrospinal fluid, and blood plasma were robustly correlated to immunoproteasome levels. This persistent "hijacking" of the proteasome by HIV-1-mediated inflammatory response and immunoproteasome induction in the brain is hypothesized to impede turnover of folded proteins in brain cells. This would disrupt neuronal and synaptic protein dynamics, contributing to HIV-1 neurocognitive disturbances.
Collapse
Affiliation(s)
- Trung P Nguyen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | |
Collapse
|
64
|
An integrated systems analysis implicates EGR1 downregulation in simian immunodeficiency virus encephalitis-induced neural dysfunction. J Neurosci 2009; 29:12467-76. [PMID: 19812322 DOI: 10.1523/jneurosci.3180-09.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus (HIV)-associated dementia (HAD) is a syndrome occurring in HIV-infected patients with advanced disease that likely develops as a result of macrophage and microglial activation as well as other immune events triggered by virus in the central nervous system. The most relevant experimental model of HAD, rhesus macaques exhibiting simian immunodeficiency virus (SIV) encephalitis (SIVE), closely reproduces the human disease and has been successfully used to advance our understanding of mechanisms underlying HAD. In this study we integrate gene expression data from uninfected and SIV-infected hippocampus with a human protein interaction network and discover modules of genes whose expression patterns distinguish these two states, to facilitate identification of neuronal genes that may contribute to SIVE/HIV cognitive deficits. Using this approach we identify several downregulated candidate genes and select one, EGR1, a key molecule in hippocampus-related learning and memory, for further study. We show that EGR1 is downregulated in SIV-infected hippocampus and that it can be downregulated in differentiated human neuroblastoma cells by treatment with CCL8, a product of activated microglia. Integration of expression data with protein interaction data to discover discriminatory modules of interacting proteins can be usefully used to prioritize differentially expressed genes for further study. Investigation of EGR1, selected in this manner, indicates that its downregulation in SIVE may occur as a consequence of the host response to infection, leading to deficits in cognition.
Collapse
|
65
|
Yelamanchili SV, Fox HS. Defining larger roles for "tiny" RNA molecules: role of miRNAs in neurodegeneration research. J Neuroimmune Pharmacol 2009; 5:63-9. [PMID: 19757077 DOI: 10.1007/s11481-009-9172-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/25/2009] [Indexed: 12/26/2022]
Abstract
Many facets of transcriptional and translational regulation contribute to the proper functioning of the nervous system. Dysfunctional control of mRNA and protein expression can lead to neurodegenerative conditions. Recently, a new regulatory control element--small noncoding RNAs--has been found to play a significant role in many physiologic systems. Here, we review the microRNA (miRNA) field as it pertains to discovery-based and mechanistic studies on the brain and specifically in neurodegenerative disorders. Understanding the role of miRNAs in the brain will aid to open new avenues to the field of neuroscience and, importantly, neurodegenerative disease research.
Collapse
Affiliation(s)
- Sowmya V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | |
Collapse
|
66
|
Abstract
Interferon-alpha (IFNalpha) is a pleomorphic cytokine produced by nucleated cells in response to viral infection. In patients, treatment with IFNalpha has side effects including cognitive impairment resembling subcortical dementia, which is a hallmark of human immunodeficiency virus (HIV)-associated dementia (HAD). IFNalpha is increased in the CSF of HAD patients compared with HIV patients without dementia. In this study, blocking IFNalpha in a HIV encephalitis (HIVE) mouse model with intraperitoneal injections of IFNalpha neutralizing antibodies (NAbs) significantly improved cognitive function compared with untreated or control antibody-treated HIVE mice during water radial arm maze behavioral testing. Treatment with IFNalpha NAbs significantly decreased microgliosis and prevented loss of dendritic arborization in the brains of HIVE mice. Furthermore, treatment of primary neuron cultures with IFNalpha resulted in dose-dependent loss of dendritic arborization that was blocked with IFNalpha NAb treatment and partially blocked with NMDA antagonists [AP5 and MK801 (dizocilpine maleate)] indicating glutamate signaling is involved in IFNalpha-mediated neuronal damage. These results show that IFNalpha has a major role in the pathogenesis of HIVE in mice and is likely important in the development neurocognitive dysfunction in humans with HIV. Blocking IFNalpha could be important in improving cognitive and pathological developments in HAD patients and may be clinically important in other neuroinflammatory diseases as well.
Collapse
|
67
|
Crews L, Patrick C, Achim CL, Everall IP, Masliah E. Molecular pathology of neuro-AIDS (CNS-HIV). Int J Mol Sci 2009; 10:1045-1063. [PMID: 19399237 PMCID: PMC2672018 DOI: 10.3390/ijms10031045] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/17/2022] Open
Abstract
The cognitive deficits in patients with HIV profoundly affect the quality of life of people living with this disease and have often been linked to the neuro-inflammatory condition known as HIV encephalitis (HIVE). With the advent of more effective anti-retroviral therapies, HIVE has shifted from a sub-acute to a chronic condition. The neurodegenerative process in patients with HIVE is characterized by synaptic and dendritic damage to pyramidal neurons, loss of calbindin-immunoreactive interneurons and myelin loss. The mechanisms leading to neurodegeneration in HIVE might involve a variety of pathways, and several lines of investigation have found that interference with signaling factors mediating neuroprotection might play an important role. These signaling pathways include, among others, the GSK3beta, CDK5, ERK, Pyk2, p38 and JNK cascades. Of these, GSK3beta has been a primary focus of many previous studies showing that in infected patients, HIV proteins and neurotoxins secreted by immune-activated cells in the brain abnormally activate this pathway, which is otherwise regulated by growth factors such as FGF. Interestingly, modulation of the GSK3beta signaling pathway by FGF1 or GSK3beta inhibitors (lithium, valproic acid) is protective against HIV neurotoxicity, and several pilot clinical trials have demonstrated cognitive improvements in HIV patients treated with GSK3beta inhibitors. In addition to the GSK3beta pathway, the CDK5 pathway has recently been implicated as a mediator of neurotoxicity in HIV, and HIV proteins might activate this pathway and subsequently disrupt the diverse processes that CDK5 regulates, including synapse formation and plasticity and neurogenesis. Taken together, the GSK3beta and CDK5 signaling pathways are important regulators of neurotoxicity in HIV, and modulation of these factors might have therapeutic potential in the treatment of patients suffering from HIVE. In this context, the subsequent sections will focus on reviewing the involvement of the GSK3beta and CDK5 pathways in neurodegeneration in HIV.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Pathology, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
| | - Christina Patrick
- Department of Neurosciences, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
| | - Cristian L. Achim
- Department of Psychiatry, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mails:
(C.A.);
(I.E.)
| | - Ian P. Everall
- Department of Psychiatry, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mails:
(C.A.);
(I.E.)
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
- Department of Neurosciences, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1 (858) 534-8992; Fax: +1 (858) 534-6232
| |
Collapse
|
68
|
Crews L, Lentz MR, Gonzalez RG, Fox HS, Masliah E. Neuronal injury in simian immunodeficiency virus and other animal models of neuroAIDS. J Neurovirol 2009; 14:327-39. [PMID: 18780234 DOI: 10.1080/13550280802132840] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The success of antiretroviral therapy has reduced the incidence of severe neurological complication resulting from human immunodeficiency virus (HIV) infection. However, increased patient survival has been associated with an increased prevalence of protracted forms of HIV encephalitis leading to moderate cognitive impairment. NeuroAIDS remains a great challenge to patients, their families, and our society. Thus development of preclinical models that will be suitable for testing promising new compounds with neurotrophic and neuroprotective capabilities is of critical importance. The simian immunodeficiency virus (SIV)-infected macaque is the premiere model to study HIV neuropathogenesis. This model was central to the seminal work of Dr. Opendra "Bill" Narayan. Similar to patients with HIV encephalitis, in the SIV model there is injury to the synaptodendritic structure of excitatory pyramidal neurons and inhibitory calbindin-immunoreactive interneurons. This article, which is part of a special issue of the Journal of NeuroVirology in honor of Dr. Bill Narayan, discusses the most important neurodegenerative features in preclinical models of neuroAIDS and their potential for treatment development.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0624, USA
| | | | | | | | | |
Collapse
|
69
|
Eletto D, Russo G, Passiatore G, Del Valle L, Giordano A, Khalili K, Gualco E, Peruzzi F. Inhibition of SNAP25 expression by HIV-1 Tat involves the activity of mir-128a. J Cell Physiol 2008; 216:764-70. [PMID: 18381601 DOI: 10.1002/jcp.21452] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRs) are short endogenous RNAs that regulate gene expression by incomplete pairing with messenger RNAs. An increasing number of studies show that mammalian microRNAs play fundamental roles in various aspects of cellular function including differentiation, proliferation, and cell death. Recent findings demonstrating the presence of microRNAs in mature neuronal dendrites suggest their possible involvement in controlling local protein translation and synaptic function. HIV-1 Encephalopathy (HIVE) is a manifestation of HIV-1 infection that often results in neuronal damage and dysfunction. While neurons are rarely, if ever, infected by HIV-1, they are exposed to cytotoxic viral and cellular factors including the HIV-1 transactivating factor Tat. In this study, we show that Tat deregulates expression levels of selected microRNAs, including the neuronal mir-128, in primary cortical neurons. We further show that mir-128a inhibits expression of the pre-synaptic protein SNAP25, whereas the anti-mir-128a partially restores Tat/mir-128a-induced downregulation of SNAP25 expression. Altogether, our data provide a novel mechanism by which HIV-Tat perturbs neuronal activity.
Collapse
Affiliation(s)
- Davide Eletto
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19112, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Although the random forest classification procedure works well in datasets with many features, when the number of features is huge and the percentage of truly informative features is small, such as with DNA microarray data, its performance tends to decline significantly. In such instances, the procedure can be improved by reducing the contribution of trees whose nodes are populated by non-informative features. To some extent, this can be achieved by prefiltering, but we propose a novel, yet simple, adjustment that has demonstrably superior performance: choose the eligible subsets at each node by weighted random sampling instead of simple random sampling, with the weights tilted in favor of the informative features. This results in an 'enriched random forest'. We illustrate the superior performance of this procedure in several actual microarray datasets.
Collapse
Affiliation(s)
- Dhammika Amaratunga
- Department of Nonclinical Biostatistics, Johnson & Johnson PRD LLC, Raritan, NJ 08869, USA.
| | | | | |
Collapse
|
71
|
HIV-1 activates proinflammatory and interferon-inducible genes in human brain microvascular endothelial cells: putative mechanisms of blood-brain barrier dysfunction. J Cereb Blood Flow Metab 2008; 28:697-711. [PMID: 17940540 DOI: 10.1038/sj.jcbfm.9600567] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanisms underlying blood-brain barrier (BBB) dysfunction seen in human immunodeficiency virus 1 (HIV-1) infection are poorly understood; however, they are believed to be caused by interactions of human brain microvascular endothelial cells (HBMEC) with virus-infected macrophages. Using a transwell system and Affymetrix arrays, we investigated HIV-1-induced genomic changes in HBMEC after coculture with HIV-1-infected or -uninfected monocyte-derived macrophages (MDM). Differentially expressed genes were determined by linear modeling and then were grouped by hierarchical clustering. Compared to HBMEC cocultured with noninfected MDM, 184 probe sets corresponding to 84 genes were differentially expressed in HBMEC cocultured with HIV-infected MDM. Genes activated in HIV-1 MDM-exposed HBMEC included proinflammatory cytokines and chemokines, tumor necrosis factor-alpha-induced proteins, interferon (IFN)-inducible genes, intercellular adhesion molecule-1, transcription factors of the nuclear factor-kappaB family, and signal transducer and activator of transcription 1. Analysis of molecular networks and canonical pathways associated with differentially expressed genes suggest that HIV-1 causes BBB impairment by mechanisms involving inflammation, cytokine, and IFN signaling in HBMEC.
Collapse
|
72
|
Salaria S, Badkoobehi H, Rockenstein E, Crews L, Chana G, Masliah E, Everall IP. Toll-like receptor pathway gene expression is associated with human immunodeficiency virus-associated neurodegeneration. J Neurovirol 2008; 13:496-503. [PMID: 18097881 DOI: 10.1080/13550280701558616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The innate immune system is a significant component of the brain's defense against infection, especially as the blood-brain barrier restricts access of the members of the adaptive immune system, such as T and B cells. The innate immune system includes Toll-like receptors (TLRs) that recognize pathogen-associated molecular patterns. Within the central nervous system, they are expressed on glial cells and their expression can be modulated by pathological states. Although their function is to recognize foreign pathogens and stimulate a protective immune response through the production of cytokines and interferons, there is emerging evidence that activation of these receptors can result in neurodegeneration. In the current study, the authors assessed the expression of TLR-related genes, using a customized Superarray gene chip, and correlated the expression findings with indices of neurodegeneration. We found that, using a stringent threshold for statistical significance to overcome the potential problem of multiple statistical testing, there were significant correlations between the expression of nine TLR-related genes and reduction in dendritic and synaptic staining. Two of these genes, TLR4 and SIGIRR, were validated by quantitative real-time polymerase chain reaction. Additionally, the authors demonstrated in vitro at the protein level that human primary astrocytes exposed to the toxic human immunodeficiency virus (HIV) envelope protein gp120 had a significant increase in TLR4 protein expression. In conclusion, these findings indicate that TLR-related gene expression may contribute to the development of HIV-related neurodegeneration.
Collapse
Affiliation(s)
- Shahid Salaria
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093-0603, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Cognitive dysfunction in HIV encephalitic SCID mice correlates with levels of Interferon-alpha in the brain. AIDS 2007; 21:2151-9. [PMID: 18090041 DOI: 10.1097/qad.0b013e3282f08c2f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Interferon alpha (IFNalpha) is an antiviral cytokine produced in response to viral infection. IFNalpha also acts as a neuromodulatory molecule in the central nervous system (CNS). Elevated IFNalpha in the CNS causes cognitive deficits. OBJECTIVE To determine if elevated levels of IFNalpha in an HIV encephalitis mouse model correlate with cognitive deficits. METHODS C57BL/6J SCID mice were inoculated intracerebrally (i.c.) with HIV infected or uninfected (control) macrophages and cognitively tested in a water escape radial arm maze. After behavioral testing was completed, immunohistochemistry and ELISA were used to examine brain pathology and IFNalpha expression. RESULTS Mice injected i.c. with HIV infected macrophages exhibited significantly more working memory errors, particularly in trials with the highest memory load. Immunohistochemistry indicated increased mouse IFNalpha staining prevalent on neurons and glial cells in the brains of mice with HIV infected macrophages compared to mice with uninfected control macrophages. In addition, IFNalpha levels in the brain correlated directly with working memory errors for mice with HIV infected macrophages. CONCLUSIONS These data suggest that the cognitive deficit noted for the C57BL/6J SCID mice with HIV infected macrophages is mediated by the infection induced increase in IFNalpha.
Collapse
|
74
|
Dios S, Poisa-Beiro L, Figueras A, Novoa B. Suppression subtraction hybridization (SSH) and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus. Mol Immunol 2007; 44:2195-204. [PMID: 17188359 DOI: 10.1016/j.molimm.2006.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 11/12/2006] [Indexed: 12/19/2022]
Abstract
Despite of the impact that viruses have on aquatic organisms, relatively little is known on how fish fight against these infections. In this work, the brain gene expression pattern of sea bream (Sparus aurata) in response to nodavirus infection was investigated. We used the suppression subtractive hybridization (SSH) method to generate a subtracted cDNA library enriched with gene transcripts differentially expressed after 1 day post-infection. Some of the ESTs from the infected tissues fell in gene categories related to stress and immune responses. For the reverse library (ESTs expressed in controls compared with infected tissues) the most abundant transcripts were of ribosomal and mitochondrial nature. Several ESTs potentially induced by virus exposure were selected for in vivo expression studies. We observed a clear difference in expression between infected and control samples for two candidate genes, ubiquitin conjugating enzyme 7 interacting protein, which seems to play an important role in apoptosis and the interferon induced protein with helicase C domain 1 (mda-5) that contributes to apoptosis and regulates the type I IFN production, a key molecule of the antiviral innate response in most organisms.
Collapse
Affiliation(s)
- S Dios
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, CSIC, Eduardo Cabello 6, Vigo 36208, Spain
| | | | | | | |
Collapse
|
75
|
Liu QY, Sooknanan RR, Malek LT, Ribecco-Lutkiewicz M, Lei JX, Shen H, Lach B, Walker PR, Martin J, Sikorska M. Novel subtractive transcription-based amplification of mRNA (STAR) method and its application in search of rare and differentially expressed genes in AD brains. BMC Genomics 2006; 7:286. [PMID: 17090317 PMCID: PMC1637111 DOI: 10.1186/1471-2164-7-286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 11/07/2006] [Indexed: 01/14/2023] Open
Abstract
Background Alzheimer's disease (AD) is a complex disorder that involves multiple biological processes. Many genes implicated in these processes may be present in low abundance in the human brain. DNA microarray analysis identifies changed genes that are expressed at high or moderate levels. Complementary to this approach, we described here a novel technology designed specifically to isolate rare and novel genes previously undetectable by other methods. We have used this method to identify differentially expressed genes in brains affected by AD. Our method, termed Subtractive Transcription-based Amplification of mRNA (STAR), is a combination of subtractive RNA/DNA hybridization and RNA amplification, which allows the removal of non-differentially expressed transcripts and the linear amplification of the differentially expressed genes. Results Using the STAR technology we have identified over 800 differentially expressed sequences in AD brains, both up- and down- regulated, compared to age-matched controls. Over 55% of the sequences represent genes of unknown function and roughly half of them were novel and rare discoveries in the human brain. The expression changes of nearly 80 unique genes were further confirmed by qRT-PCR and the association of additional genes with AD and/or neurodegeneration was established using an in-house literature mining tool (LitMiner). Conclusion The STAR process significantly amplifies unique and rare sequences relative to abundant housekeeping genes and, as a consequence, identifies genes not previously linked to AD. This method also offers new opportunities to study the subtle changes in gene expression that potentially contribute to the development and/or progression of AD.
Collapse
Affiliation(s)
- Qing Yan Liu
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Roy R Sooknanan
- Alethia Biotheraputics Inc., 8475 Christophe-Colomb Avenue, Suite 1000 Montreal, Quebec, H2M 2N9, Canada
| | - Lawrence T Malek
- Osteopharm Inc., Unit 14, 1155 North Service Road, Oakville, Ontario, L6M 3E3, Canada
| | - Maria Ribecco-Lutkiewicz
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Joy X Lei
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Hui Shen
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Boleslaw Lach
- Hamilton Health Sciences, Hamilton General Hospital, Laboratory Medicine, 237 Barton Str East, Hamilton, Ontario, L8L-2X2, Canada
| | - P Roy Walker
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Joel Martin
- Interactive Information Group, Institute for Information Technology, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Marianna Sikorska
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| |
Collapse
|
76
|
Pendyala G, Want EJ, Webb W, Siuzdak G, Fox HS. Biomarkers for NeuroAIDS: The Widening Scope of Metabolomics. J Neuroimmune Pharmacol 2006; 2:72-80. [DOI: 10.1007/s11481-006-9041-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
|
77
|
Goldshmit Y, McLenachan S, Turnley A. Roles of Eph receptors and ephrins in the normal and damaged adult CNS. ACTA ACUST UNITED AC 2006; 52:327-45. [PMID: 16774788 DOI: 10.1016/j.brainresrev.2006.04.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 12/19/2022]
Abstract
Injury to the central nervous system (CNS) usually results in very limited regeneration of lesioned axons, which are inhibited by the environment of the injury site. Factors that have been implicated in inhibition of axonal regeneration include myelin proteins, astrocytic gliosis and cell surface molecules that are involved in axon guidance during development. This review examines the contribution of one such family of developmental guidance molecules, the Eph receptor tyrosine kinases and their ligands, the ephrins in normal adult CNS and following injury or disease. Eph/ephrin signaling regulates axon guidance through contact repulsion during development of the CNS, inducing collapse of neuronal growth cones. Eph receptors and ephrins continue to be expressed in the adult CNS, although usually at lower levels, but are upregulated following neural injury on different cell types, including reactive astrocytes, neurons and oligodendrocytes. This upregulated expression may directly inhibit regrowth of regenerating axons; however, in addition, Eph expression also regulates astrocytic gliosis and formation of the glial scar. Therefore, Eph/ephrin signaling may inhibit regeneration by more than one mechanism and modulation of Eph receptor expression or signaling could prove pivotal in determining the outcome of injury in the adult CNS.
Collapse
Affiliation(s)
- Yona Goldshmit
- Centre for Neuroscience, The University of Melbourne, Melbourne, Vic 3010, Australia
| | | | | |
Collapse
|
78
|
Liu M, Popper SJ, Rubins KH, Relman DA. Early days: genomics and human responses to infection. Curr Opin Microbiol 2006; 9:312-9. [PMID: 16679048 PMCID: PMC7108404 DOI: 10.1016/j.mib.2006.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/24/2006] [Indexed: 10/26/2022]
Abstract
DNA microarray-based gene transcript-profiling of the responses of primates to infection has begun to yield new insights into host-pathogen interactions; this approach, however, remains plagued by challenges and complexities that have yet to be adequately addressed. The rapidly changing nature over time of acute infectious diseases in a host, and the genetic diversity of microbial pathogens present unique problems for the design and interpretation of functional-genomic studies in this field. In addition, there are the more common problems related to heterogeneity within clinical samples, the complex, non-standardized confounding variables associated with human subjects and the complexities posed by the analysis and validation of highly parallel data. Whereas various approaches have been developed to address each of these issues, there are significant limitations that remain to be overcome. The resolution of these problems should lead to a better understanding of the dialogue between the host and pathogen.
Collapse
Affiliation(s)
- Minghsun Liu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-169, Stanford, CA 94305, USA
| | - Stephen J Popper
- Department of Microbiology and Immunology, Stanford University School of Medicine, 279 Campus Drive, Beckman B403, Stanford, CA 94305, USA
| | - Kathleen H Rubins
- Department of Microbiology and Immunology, Stanford University School of Medicine, 279 Campus Drive, Beckman B403, Stanford, CA 94305, USA
| | - David A Relman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-169, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 279 Campus Drive, Beckman B403, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
79
|
Aprea S, Del Valle L, Mameli G, Sawaya BE, Khalili K, Peruzzi F. Tubulin-mediated binding of human immunodeficiency virus-1 Tat to the cytoskeleton causes proteasomal-dependent degradation of microtubule-associated protein 2 and neuronal damage. J Neurosci 2006; 26:4054-62. [PMID: 16611822 PMCID: PMC6673895 DOI: 10.1523/jneurosci.0603-06.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
One of the hallmarks of human immunodeficiency virus (HIV)-1 associated pathology in the CNS is deterioration of neuronal processes. Although there is mounting evidence of neuronal toxicity and cell death induced by the HIV-1 transactivating factor Tat, the molecular events linked directly to its detrimental effect on neuronal cells remain unclear. In this study, we used rat embryonic cortical neurons and demonstrated that Tat causes rapid degradation of microtubule-associated protein 2 (MAP2) and the collapse of cytoskeletal filaments. The mechanism of Tat action on MAP2 stability involved Tat-mediated translocation of the proteasome to the site of microtubule filaments. Immunohistochemical analysis of clinical samples from patients with HIV encephalopathy further revealed a significant decrease in MAP2 with predominant cytoplasmic 20S in cortical neurons near microglial nodules. These findings indicate a novel mechanism for the action of Tat on neuronal cells. It involves proteasome-mediated MAP2 degradation and may account for the loss of MAP2 and neuronal damage observed in the brain of AIDS patients with neurological dysfunctions.
Collapse
|
80
|
Everall I, Salaria S, Roberts E, Corbeil J, Sasik R, Fox H, Grant I, Masliah E. Methamphetamine stimulates interferon inducible genes in HIV infected brain. J Neuroimmunol 2005; 170:158-71. [PMID: 16249037 DOI: 10.1016/j.jneuroim.2005.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To study the synergism of HIV and methamphetamine. DESIGN AND METHODS We undertook a microarray study using RNA from the frontal cortex of 15 individuals with HIV infection to initially identify genes that are differentially regulated by HIV encephalitis (HIVE). From the analysis of the microarray data, we identified candidate genes to be validated by quantitative real time PCR (qRT-PCR) and to assess if these genes were differentially modulated in individuals with HIVE and documented methamphetamine use. RESULTS Analysis of microarray data revealed that genes involved in several categories were dysregulated in HIVE. We then chose 15 candidate genes for validation by qRT-PCR and analyzed the tissue concentration of these genes across three groups: those with HIV infection and no brain pathology, those with HIVE, and those with both HIVE and a history of methamphetamine use. We noted that there was upregulation of interferon inducible genes in the HIVE with methamphetamine using group, which together as a gene group was highly statistically significant (p=0.0064). CONCLUSION These findings indicate that dysregulation of interferon inducible genes may underlie the pathogenic mechanism resulting in greater neurodegenerative and neurocognitive burden that occurs in methamphetamine using HIV infected individuals.
Collapse
Affiliation(s)
- Ian Everall
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Matarrese P, Malorni W. Human immunodeficiency virus (HIV)-1 proteins and cytoskeleton: partners in viral life and host cell death. Cell Death Differ 2005; 12 Suppl 1:932-41. [PMID: 15818415 DOI: 10.1038/sj.cdd.4401582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoskeletal components play a major role in the human immunodeficiency virus-1 (HIV-1) infection. A wide variety of molecules belonging to the microfilament system, including actin filaments and actin binding proteins, as well as microtubules have a key role in regulating both cell life and death. Cell shape maintenance, cell polarity and cell movements as well as cytoplasmic trafficking of molecules determining cell fate, including apoptosis, are in fact instructed by the cytoskeleton components. HIV infection and viral particle production seem to be controlled by cytoskeleton as well. Furthermore, HIV-associated apoptosis failure can also be regulated by the actin network function. In fact, HIV protein gp120 is able to induce cytoskeleton-driven polarization, thus sensitizing T cells to CD95/Fas-mediated apoptosis. The microfilament system seems thus to be a sort of cytoplasmic supervisor of the viral particle, the host cell and the bystander cell's very fate.
Collapse
Affiliation(s)
- P Matarrese
- Section of Cell Aging and Degeneration, Department of Drug Research and Evaluation, Istituto Superiore di Sanitá, Viale Regina Elena 299, Rome, Italy
| | | |
Collapse
|