51
|
Wang YQ, Hu LP, Liu GM, Zhang DS, He HJ. Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics. Molecules 2017; 22:E1262. [PMID: 28749430 PMCID: PMC6152293 DOI: 10.3390/molecules22081262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
Chinese kale (Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars and three different edible parts were evaluated, and amino acids, sugars, organic acids, glucosinolates and phenolic compounds were analysed simultaneously. We found that two cultivars, a purple-stem cultivar W1 and a yellow-flower cultivar Y1, had more health-promoting compounds than others. The multivariate statistical analysis results showed that gluconapin was the most important contributor for discriminating both cultivars and edible parts. The purple-stem cultivar W1 had higher levels of some phenolic acids and flavonoids than the green stem cultivars. Compared to stems and leaves, the inflorescences contained more amino acids, glucosinolates and most of the phenolic acids. Meanwhile, the stems had the least amounts of phenolic compounds among the organs tested. Metabolomics is a powerful approach for the comprehensive understanding of vegetable nutritional quality. The results provide the basis for future metabolomics-guided breeding and nutritional quality improvement.
Collapse
Affiliation(s)
- Ya-Qin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Li-Ping Hu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Guang-Min Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - De-Shuang Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Hong-Ju He
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| |
Collapse
|
52
|
Hajipour AR, Abolfathi P. Novel triazole-modified chitosan@nickel nanoparticles: efficient and recoverable catalysts for Suzuki reaction. NEW J CHEM 2017. [DOI: 10.1039/c6nj03789e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The synthesis of triazole-modified chitosan@nickel catalyst through the click reaction of azide-functionalized chitosan with an alkynated imino-thiophene ligand for Suzuki–Miyaura coupling reactions.
Collapse
Affiliation(s)
- Abdol R. Hajipour
- Pharmaceutical Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156
- Islamic Republic of Iran
| | - Parisa Abolfathi
- Pharmaceutical Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156
- Islamic Republic of Iran
| |
Collapse
|
53
|
Quirit JG, Lavrenov SN, Poindexter K, Xu J, Kyauk C, Durkin KA, Aronchik I, Tomasiak T, Solomatin YA, Preobrazhenskaya MN, Firestone GL. Indole-3-carbinol (I3C) analogues are potent small molecule inhibitors of NEDD4-1 ubiquitin ligase activity that disrupt proliferation of human melanoma cells. Biochem Pharmacol 2016; 127:13-27. [PMID: 27979631 DOI: 10.1016/j.bcp.2016.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/09/2016] [Indexed: 11/16/2022]
Abstract
The HECT domain-containing E3 ubiquitin ligase NEDD4-1 (Neural precursor cell Expressed Developmentally Down regulated gene 4-1) is frequently overexpressed in human cancers and displays oncogenic-like properties through the ubiquitin-dependent regulation of multiple protein substrates. However, little is known about small molecule enzymatic inhibitors of HECT domain-containing ubiquitin ligases. We now demonstrate that indole-3-carbinol (I3C), a natural anti-cancer phytochemical derived from cruciferous vegetables such as cabbage and broccoli, represents a new chemical scaffold of small molecule enzymatic inhibitors of NEDD4-1. Using in vitro ubiquitination assays, I3C, its stable synthetic derivative 1-benzyl-I3C and five novel synthetic analogues were shown to directly inhibit NEDD4-1 ubiquitination activity. Compared to I3C, which has an IC50 of 284μM, 1-benzyl-I3C was a significantly more potent NEDD4-1 enzymatic inhibitor with an IC50 of 12.3μM. Compounds 2242 and 2243, the two indolecarbinol analogues with added methyl groups that results in a more nucleophilic benzene ring π system, further enhanced potency with IC50s of 2.71μM and 7.59μM, respectively. Protein thermal shift assays that assess small ligand binding, in combination with in silico binding simulations with the crystallographic structure of NEDD4-1, showed that each of the indolecarbinol compounds bind to the purified catalytic HECT domain of NEDD4-1. The indolecarbinol compounds inhibited human melanoma cell proliferation in a manner that generally correlated with their effectiveness as NEDD4-1 enzymatic inhibitors. Taken together, we propose that I3C analogues represent a novel set of anti-cancer compounds for treatment of human melanomas and other cancers that express indolecarbinol-sensitive target enzymes.
Collapse
Affiliation(s)
- Jeanne G Quirit
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | - Sergey N Lavrenov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, Moscow 119021, Russia.
| | - Kevin Poindexter
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | - Janice Xu
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | - Christine Kyauk
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA
| | - Kathleen A Durkin
- Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley, CA, USA.
| | - Ida Aronchik
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | - Thomas Tomasiak
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| | | | | | - Gary L Firestone
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
54
|
Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 2016; 8:E552. [PMID: 27618095 PMCID: PMC5037537 DOI: 10.3390/nu8090552] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023] Open
Abstract
Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB) demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP)-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract) with vitamin C, amino acids and other micronutrients (EPQ) demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM) also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion, angiogenesis, and cell growth as well as induction of apoptosis. The presence of vitamin C, amino acids and other micronutrients could enhance inhibitory effect of epigallocatechin gallate (EGCG) on secretion of MMPs. In addition, enrichment of NM with quercetin (EPQ mix) enhanced anticancer activity of NM in vivo. In conclusion, polyphenols, especially in combination with other polyphenols or micronutrients, have been shown to be effective against multiple targets in cancer development and progression, and should be considered as safe and effective approaches in cancer prevention and therapy.
Collapse
Affiliation(s)
| | - Mohd Waheed Roomi
- Dr. Rath Research Institute, 1260 Memorex Drive, Santa Clara, CA 95050, USA.
| | - Tatiana Kalinovsky
- Dr. Rath Research Institute, 1260 Memorex Drive, Santa Clara, CA 95050, USA.
| | - Matthias Rath
- Dr. Rath Research Institute, 1260 Memorex Drive, Santa Clara, CA 95050, USA.
| |
Collapse
|
55
|
Kim SM. Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer. Int J Mol Sci 2016; 17:ijms17071155. [PMID: 27447608 PMCID: PMC4964527 DOI: 10.3390/ijms17071155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Studies in humans have shown that 3,3′-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER) stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| |
Collapse
|
56
|
Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
57
|
Prabhu B, Sivakumar A, Sundaresan S. Diindolylmethane and Lupeol Modulates Apoptosis and Cell Proliferation in N-Butyl-N-(4-Hydroxybutyl) Nitrosamine Initiated and Dimethylarsinic Acid Promoted rat Bladder Carcinogenesis. Pathol Oncol Res 2016; 22:747-54. [PMID: 27091758 DOI: 10.1007/s12253-016-0054-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
Abstract
Bladder cancer has been shown to resist programmed cell death with altered expression of both pro-apoptotic and anti-apoptotic proteins. To study is to investigate the apoptotic properties of Diindolylmethane (DIM) and Lupeol on N-Butyl-N-(4-hydroxybutyl) Nitrosamine (BBN) initiated and Dimethylarsinic Acid (DMA) promoted urinary bladder cancer. Sixty male Wistar rats were divided into 6 groups. Group I: Control. Group II: Rats were experimentally developed bladder carcinogenesis with BBN and DMA. Group III and IV: DIM and lupeol were administered after BBN treatment for 28 weeks. Group V and VI: DIM and lupeol alone treatment for 36 weeks. All the experimental rats were maintained and euthanized after 36 weeks protocol. Urinary bladder tissues were collected and processed for further investigations. Apoptotis and cell proliferative marker such as Bax, Bcl-2, caspase-3, caspase-9 and PCNA were quantified using immunohistochemical analysis. The Immunohistochemical expression of Bax, Bcl-2, caspase-3, caspase-9 and PCNA were aberrant in BBN + DMA treated tumor group. Administration of DIM and lupeol inhibited the progression of bladder cancer, induced the expression of apoptotic Bax, caspase-3, caspase-9 and inhibited the expression of anti-apoptotic Bcl-2, PCNA in the urinary bladder of rats. Administration of diindolylmethane and lupeol treatment induces apoptosis and cellular proliferation by its anti-carcinogenic properties. From our results DIM and lupeol would be the agent or adjunct for the treatment of bladder carcinogenesis.
Collapse
Affiliation(s)
- Bhoopathy Prabhu
- Department of Medical Research, SRM Medical College Hospital Research Centre, SRM University, Kattankulathur, 603203, Kanchipuram District, Tamilnadu, India
| | - Annamalai Sivakumar
- Department of Medical Research, SRM Medical College Hospital Research Centre, SRM University, Kattankulathur, 603203, Kanchipuram District, Tamilnadu, India
| | - Sivapatham Sundaresan
- Department of Medical Research, SRM Medical College Hospital Research Centre, SRM University, Kattankulathur, 603203, Kanchipuram District, Tamilnadu, India.
| |
Collapse
|
58
|
Klejn D, Luliński P, Maciejewska D. Molecularly imprinted solid phase extraction in an efficient analytical protocol for indole-3-methanol determination in artificial gastric juice. RSC Adv 2016. [DOI: 10.1039/c6ra23593j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecularly imprinted solid phase extraction was employed in separation step of new and efficient analytical protocol for analysis of indole-3-methanol.
Collapse
Affiliation(s)
- Dorota Klejn
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Piotr Luliński
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Dorota Maciejewska
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| |
Collapse
|
59
|
Chen JH, Chen ZC, Zhao H, Zhang T, Wang WJ, Zou Y, Zhang XJ, Yan M. Intramolecular addition of diarylmethanols to imines promoted by KOt-Bu/DMF: a new synthetic approach to indole derivatives. Org Biomol Chem 2016; 14:4071-6. [DOI: 10.1039/c6ob00423g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KOt-Bu/DMF promoted intramolecular addition of diarylmethanols to imines was developed.
Collapse
Affiliation(s)
- Jia-hua Chen
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Zi-cong Chen
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Hong Zhao
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ting Zhang
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wei-juan Wang
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yong Zou
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xue-jing Zhang
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Yan
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
60
|
Ke H, Lisy JM. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6). Phys Chem Chem Phys 2015; 17:25354-64. [PMID: 26397000 DOI: 10.1039/c5cp01565k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.
Collapse
Affiliation(s)
- Haochen Ke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
61
|
Electrosprayed poly(butylene succinate) microspheres loaded with indole derivatives: A system with anticancer activity. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
62
|
Xie G, Raufman JP. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia. Cancers (Basel) 2015; 7:1436-46. [PMID: 26264025 PMCID: PMC4586780 DOI: 10.3390/cancers7030847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022] Open
Abstract
For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Guofeng Xie
- Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
63
|
MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res 2015; 97:104-21. [DOI: 10.1016/j.phrs.2015.04.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 12/19/2022]
|
64
|
Katz E, Nisani S, Yadav BS, Woldemariam MG, Shai B, Obolski U, Ehrlich M, Shani E, Jander G, Chamovitz DA. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:547-55. [PMID: 25758811 DOI: 10.1111/tpj.12824] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 05/21/2023]
Abstract
The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.
Collapse
Affiliation(s)
- Ella Katz
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Sophia Nisani
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Brijesh S Yadav
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | | - Ben Shai
- Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Uri Obolski
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Marcelo Ehrlich
- Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Eilon Shani
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Daniel A Chamovitz
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| |
Collapse
|
65
|
Gertsman I, Gangoiti JA, Nyhan WL, Barshop BA. Perturbations of tyrosine metabolism promote the indolepyruvate pathway via tryptophan in host and microbiome. Mol Genet Metab 2015; 114:431-7. [PMID: 25680927 DOI: 10.1016/j.ymgme.2015.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 11/30/2022]
Abstract
The drug nitisinone (NTBC) is used to treat tyrosinemia type I, and more recently has been also used for the treatment of another disorder of tyrosine metabolism, alkaptonuria. While studying the dose effects of NTBC treatment on alkaptonuria, untargeted metabolomics revealed perturbations in a completely separate pathway, that of tryptophan metabolism. Significant elevations in several indolic compounds associated with the indolepyruvate pathway of tryptophan metabolism were present in NTBC-treated patient sera and correlated with elevations of an intermediate of tyrosine metabolism. Indolic compounds of this pathway have long been associated with commensal bacterial and plant metabolism. These exogenous sources of indoles have been more recently implicated in affecting mammalian cell function and disease. We studied the correlation of these indolic compounds in other disorders of tyrosine metabolism including tyrosinemia types I and II as well as transient tyrosinemia, and demonstrated that 4-hydroxyphenylpyruvate (4-HPP) was directly responsible for the promotion of this pathway. We then investigated the regulation of the indolepyruvate pathway and the role of 4-HPP further in both mammalian cells and intestinal microbial cultures. We demonstrated that several of the indolic products, including indolepyruvate and indolelactate, were in fact generated by human cell metabolism, while the downstream indole metabolite, indolecarboxaldehyde, was produced exclusively by microbial cultures of human gut flora. This study describes a symbiotic perturbation in host and microbiome tryptophan metabolism in response to elevations related to defects of tyrosine metabolism and concomitant drug treatment.
Collapse
Affiliation(s)
- Ilya Gertsman
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States.
| | - Jon A Gangoiti
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States
| | - William L Nyhan
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States
| | - Bruce A Barshop
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States
| |
Collapse
|
66
|
Royston KJ, Tollefsbol TO. The Epigenetic Impact of Cruciferous Vegetables on Cancer Prevention. CURRENT PHARMACOLOGY REPORTS 2015; 1:46-51. [PMID: 25774338 PMCID: PMC4354933 DOI: 10.1007/s40495-014-0003-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The answer to chemoprevention has perhaps been available to the general public since the dawn of time. The epigenetic diet is of extreme interest, for research suggests that cruciferous vegetables are not only an important source of nutrients, but perhaps a key to eliminating cancer as life threatening disease. Cruciferous vegetables such as kale, cabbage, Brussels sprouts, and broccoli sprouts contain chemical components, such as sulforaphane (SFN) and indole-3-carbinol (I3C), which have been revealed to be regulators of microRNAs (miRNAs) and inhibitors of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). The mis-regulation and overexpression of these genes are responsible for the uncontrolled cellular proliferation and viability of various types of cancer cells. The field of epigenetics and its incorporation into modern medicinal investigation is an exponentially growing field of interest and it is becoming increasingly apparent that the incorporation of an epigenetic diet may in fact be the key to chemoprevention.
Collapse
Affiliation(s)
- Kendra J. Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3 Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6 Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
67
|
Movassagh B, Rezaei N. A magnetic porous chitosan-based palladium catalyst: a green, highly efficient and reusable catalyst for Mizoroki–Heck reaction in aqueous media. NEW J CHEM 2015. [DOI: 10.1039/c5nj01337b] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have prepared a highly active and recyclable heterogeneous catalyst for the Heck reaction in aqueous media in high yields.
Collapse
Affiliation(s)
| | - Nasrin Rezaei
- Department of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| |
Collapse
|
68
|
Perez-Chacon G, de los Rios C, Zapata JM. Indole-3-carbinol induces cMYC and IAP-family downmodulation and promotes apoptosis of Epstein–Barr virus (EBV)-positive but not of EBV-negative Burkitt's lymphoma cell lines. Pharmacol Res 2014; 89:46-56. [DOI: 10.1016/j.phrs.2014.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
|
69
|
Zhang MZ, Chen Q, Yang GF. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 2014; 89:421-41. [PMID: 25462257 PMCID: PMC7115707 DOI: 10.1016/j.ejmech.2014.10.065] [Citation(s) in RCA: 561] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
Indole represents one of the most important privileged scaffolds in drug discovery. Indole derivatives have the unique property of mimicking the structure of peptides and to bind reversibly to enzymes, which provide tremendous opportunities to discover novel drugs with different modes of action. There are seven indole-containing commercial drugs in the Top-200 Best Selling Drugs by US Retail Sales in 2012. There are also an amazing number of approved indole-containing drugs in the market as well as compounds currently going through different clinical phases or registration statuses. This review focused on the recent development of indole derivatives as antiviral agents with the following objectives: 1) To present one of the most comprehensive listings of indole antiviral agents, drugs on market or compounds in clinical trials; 2) To focus on recent developments of indole compounds (including natural products) and their antiviral activities, summarize the structure property, hoping to inspire new and even more creative approaches; 3) To offer perspectives on how indole scaffolds as a privileged structure might be exploited in the future.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjing 30071, PR China.
| |
Collapse
|
70
|
Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
71
|
Chen L, Cheng PH, Rao XM, McMasters KM, Zhou HS. Indole-3-carbinol (I3C) increases apoptosis, represses growth of cancer cells, and enhances adenovirus-mediated oncolysis. Cancer Biol Ther 2014; 15:1256-67. [PMID: 24972095 DOI: 10.4161/cbt.29690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epidemiological studies suggest that high intake of cruciferous vegetables is associated with a lower risk of cancer. Experiments have shown that indole-3-carbinol (I3C), a naturally occurring compound derived from cruciferous vegetables, exhibits potent anticarcinogenic properties in a wide range of cancers. In this study, we showed that higher doses of I3C (≥400 μM) induced apoptotic cancer cell death and lower doses of I3C (≤200 μM) repressed cancer cell growth concurrently with suppressed expression of cyclin E and its partner CDK2. Notably, we found that pretreatment with low doses of I3C enhanced Ad-mediated oncolysis and cytotoxicity of human carcinoma cells by synergistic upregulation of apoptosis. Thus, the vegetable compound I3C as a dietary supplement may benefit cancer prevention and improve Ad oncolytic therapies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA
| | - Pei-Hsin Cheng
- Department of Pharmacology and Toxicology; University of Louisville School of Medicine; Louisville, KY USA
| | - Xiao-Mei Rao
- James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA
| | - Kelly M McMasters
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA; Department of Pharmacology and Toxicology; University of Louisville School of Medicine; Louisville, KY USA; James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA
| | - Heshan Sam Zhou
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA; James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA; Department of Microbiology and Immunology; University of Louisville School of Medicine; Louisville, KY USA
| |
Collapse
|
72
|
Scorrano S, Mergola L, Del Sole R, Lazzoi MR, Vasapollo G. A molecularly imprinted polymer as artificial receptor for the detection of indole-3-carbinol. J Appl Polym Sci 2014. [DOI: 10.1002/app.40819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sonia Scorrano
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| | - Lucia Mergola
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| | - Roberta Del Sole
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| | - Maria Rosaria Lazzoi
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| | - Giuseppe Vasapollo
- Department of Engineering for Innovation; University of Salento; 73100 Lecce Italy
| |
Collapse
|
73
|
Zhang WW, Feng Z, Narod SA. Multiple therapeutic and preventive effects of 3,3'-diindolylmethane on cancers including prostate cancer and high grade prostatic intraepithelial neoplasia. J Biomed Res 2014; 28:339-48. [PMID: 25332705 PMCID: PMC4197384 DOI: 10.7555/jbr.28.20140008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/07/2014] [Accepted: 02/22/2014] [Indexed: 12/20/2022] Open
Abstract
Cruciferous vegetables belong to the plant family that has flowers with four equal-sized petals in the pattern of a crucifer cross. These vegetables are an abundant source of dietary phytochemicals, including glucosinolates and their hydrolysis products such as indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM). By 2013, the total number of natural glucosinolates that have been documented is estimated to be 132. Recently, cruciferous vegetable intake has garnered great interest for its multiple health benefits such as anticancer, antiviral infections, human sex hormone regulation, and its therapeutic and preventive effects on prostate cancer and high grade prostatic intraepithelial neoplasia (HGPIN). DIM is a hydrolysis product of glucosinolates and has been used in various trials. This review is to provide an insight into the latest developments of DIM in treating or preventing both prostate cancer and HGPIN.
Collapse
Affiliation(s)
- William Weiben Zhang
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Steven A Narod
- Department of Public Health Sciences, Women's College Hospital, Women's College Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
74
|
Attenuation of hyperglycemia-mediated oxidative stress by indole-3-carbinol and its metabolite 3, 3′- diindolylmethane in C57BL/6J mice. J Physiol Biochem 2014; 70:525-34. [DOI: 10.1007/s13105-014-0332-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 03/12/2014] [Indexed: 02/07/2023]
|
75
|
Lin HH, Shi MD, Tseng HC, Chen JH. Andrographolide sensitizes the cytotoxicity of human colorectal carcinoma cells toward cisplatin via enhancing apoptosis pathways in vitro and in vivo. Toxicol Sci 2014; 139:108-20. [PMID: 24563380 DOI: 10.1093/toxsci/kfu032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, has been shown to suppress the growth and invasion of human colorectal carcinoma (CRC) Lovo cells, and trigger apoptosis in vitro. The potential of Andro as a chemotherapeutic agent in CRC was evaluated by investigating its cytotoxic effects as a single agent or in coadministration with cisplatin (CDDP). Andro potentiated the cytotoxic effect of CDDP in Lovo cells through apoptosis. The molecular mechanism for these favorable cellular response was further investigated by analyzing the apoptotic profiles, protein levels, and mRNA expression patterns of several key genes after treatments of Andro or/and CDDP. Molecular results indicated that the effect of Andro alone might be mediated via both intrinsic and extrinsic apoptotic pathways in Lovo cells. The addition of Andro to CDDP induced synergistic apoptosis, which could be corroborated to the changes in protein and mRNA levels of Bax and Bcl-2, and the increased Fas/FasL association in these cells, resulting in increased release of cytochrome c, and activation of caspases. Pretreatment of Nok-1 monoclonal antibody, a Fas signaling inhibitor, or Bax inhibitor peptide V5 repressed the Andro-induced cleavage of procaspase and the sensitization to CDDP-induced apoptosis. Finally, the combination therapy of Andro with CDDP was evidenced by its synergistic inhibition on the growth of Lovo cells in xenograft tumor studies. The results indicate that Andro, in combination with chemotherapeutics, is likely to represent a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
76
|
Martin AD, Robinson AB, Mason AF, Wojciechowski JP, Thordarson P. Exceptionally strong hydrogels through self-assembly of an indole-capped dipeptide. Chem Commun (Camb) 2014; 50:15541-4. [DOI: 10.1039/c4cc07941h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A dipeptide bearing an indole capping group forms exceptionally strong, hydrogels, with a storage modulus of ∼0.3 MPa. these hydrogels exhibit a minimal fibre-branching, with strong lateral association of fibrils.
Collapse
Affiliation(s)
- Adam D. Martin
- School of Chemistry
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence for Convergent Bio-Nano Science and Technology
- The University of New South Wales
- Sydney, Australia
| | - Andrew B. Robinson
- School of Chemistry
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence for Convergent Bio-Nano Science and Technology
- The University of New South Wales
- Sydney, Australia
| | - Alexander F. Mason
- School of Chemistry
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence for Convergent Bio-Nano Science and Technology
- The University of New South Wales
- Sydney, Australia
| | - Jonathan P. Wojciechowski
- School of Chemistry
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence for Convergent Bio-Nano Science and Technology
- The University of New South Wales
- Sydney, Australia
| | - Pall Thordarson
- School of Chemistry
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence for Convergent Bio-Nano Science and Technology
- The University of New South Wales
- Sydney, Australia
| |
Collapse
|
77
|
Indole-3-carbinol attenuates the deleterious gestational effects of bisphenol A exposure on the prostate gland of male F1 rats. Reprod Toxicol 2014; 43:56-66. [DOI: 10.1016/j.reprotox.2013.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 10/04/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
|
78
|
Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, Padhye SB, Sarkar FH. Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anticancer Agents Med Chem 2013; 13:1002-13. [PMID: 23272910 DOI: 10.2174/18715206113139990078] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Indole compounds, found in cruciferous vegetables, are potent anti-cancer agents. Studies with indole-3-carbinol (I3C) and its dimeric product, 3,3'-diindolylmethane (DIM) suggest that these compounds have the ability to deregulate multiple cellular signaling pathways, including PI3K/Akt/mTOR signaling pathway. These natural compounds are also effective modulators of downstream transcription factor NF-κB signaling which might help explain their ability to inhibit invasion and angiogenesis, and the reversal of epithelial-to-mesenchymal transition (EMT) phenotype and drug resistance. Signaling through PI3K/Akt/mTOR and NF-κB pathway is increasingly being realized to play important role in EMT through the regulation of novel miRNAs which further validates the importance of this signaling network and its regulations by indole compounds. Here we will review the available literature on the modulation of PI3K/Akt/mTOR/NF-κB signaling by both parental I3C and DIM, as well as their analogs/derivatives, in an attempt to catalog their anticancer activity.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Nicastro HL, Firestone GL, Bjeldanes LF. 3,3'-diindolylmethane rapidly and selectively inhibits hepatocyte growth factor/c-Met signaling in breast cancer cells. J Nutr Biochem 2013; 24:1882-8. [PMID: 23968581 DOI: 10.1016/j.jnutbio.2013.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/31/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
Abstract
3,3'-Diindolylmethane (DIM), an indole derivative from vegetables of the Brassica genus, has antiproliferative activity in breast cancer cells. Part of this activity is thought to be due to DIM inhibition of Akt signaling, but an upstream mechanism of DIM-induced Akt inhibition has not been described. The goals of this study were to investigate the kinetics of inhibition of Akt by physiologically relevant concentrations of DIM and to identify an upstream factor that mediates this effect. Here we report that DIM (5-25 μM) inhibited Akt activation from 30 min to 24h in tumorigenic MDA-MB-231 cells but did not inhibit Akt activation in non-tumorigenic preneoplastic MCF10AT cells. DIM inhibited hepatocyte growth factor (HGF)-induced Akt activation by up to 46%, cell migration by 66% and cell proliferation by up to 54%, but did not inhibit induction of Akt by epidermal growth factor or insulin-like growth factor-1. DIM decreased phosphorylation of the HGF receptor, c-Met, at tyrosines 1234 and 1235, indicating decreased activation of the receptor. This decrease was reversed by pretreatment with inhibitors of p38 or calcineurin. Our results demonstrate the important role of HGF and c-Met in DIM's anti-proliferative effect on breast cancer cells and suggest that DIM could have preventive or clinical value as an inhibitor of c-Met signaling.
Collapse
Affiliation(s)
- Holly L Nicastro
- Department of Nutritional Science & Toxicology, University of California Berkeley, Berkeley, CA 94720-3104.
| | | | | |
Collapse
|
80
|
Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chem 2013; 139:224-30. [DOI: 10.1016/j.foodchem.2013.01.113] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 01/17/2013] [Accepted: 01/28/2013] [Indexed: 01/12/2023]
|
81
|
Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Biomedical importance of indoles. Molecules 2013; 18:6620-62. [PMID: 23743888 PMCID: PMC6270133 DOI: 10.3390/molecules18066620] [Citation(s) in RCA: 831] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022] Open
Abstract
The indole nucleus is an important element of many natural and synthetic molecules with significant biological activity. This review covers some of the relevant and recent achievements in the biological, chemical and pharmacological activity of important indole derivatives in the areas of drug discovery and analysis.
Collapse
Affiliation(s)
- Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
- Authors to whom correspondence should be addressed; E-Mails: (N.K.K); (N.K.); (A.K.V.); (E.H.C.); Tel.: +82-10-4187-8618 (N.K.K.) Fax: +82-940-5664 (N.K.K)
| | - Neha Kaushik
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
- Authors to whom correspondence should be addressed; E-Mails: (N.K.K); (N.K.); (A.K.V.); (E.H.C.); Tel.: +82-10-4187-8618 (N.K.K.) Fax: +82-940-5664 (N.K.K)
| | - Pankaj Attri
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
| | - Naresh Kumar
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
| | - Chung Hyeok Kim
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
| | - Akhilesh Kumar Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Authors to whom correspondence should be addressed; E-Mails: (N.K.K); (N.K.); (A.K.V.); (E.H.C.); Tel.: +82-10-4187-8618 (N.K.K.) Fax: +82-940-5664 (N.K.K)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
- Authors to whom correspondence should be addressed; E-Mails: (N.K.K); (N.K.); (A.K.V.); (E.H.C.); Tel.: +82-10-4187-8618 (N.K.K.) Fax: +82-940-5664 (N.K.K)
| |
Collapse
|
82
|
Zhu B, Yang J, Zhu ZJ. Variation in glucosinolates in pak choi cultivars and various organs at different stages of vegetative growth during the harvest period. J Zhejiang Univ Sci B 2013; 14:309-17. [PMID: 23549848 PMCID: PMC3625527 DOI: 10.1631/jzus.b1200213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 12/04/2012] [Indexed: 11/11/2022]
Abstract
Glucosinolates (GSs) play an important role in plant defense systems and human nutrition. We investigated the content and composition of GSs in the shoots and roots of seven cultivars of pak choi. We found that 'Si Yue Man' had the highest total and aliphatic GS contents in the shoots and the highest benzenic GS content in the roots, 'Shanghai Qing' contained the highest amounts of benzenic and total GS contents in the roots, while 'Nanjing Zhong Gan Bai' had the lowest benzenic, indole, and total GS contents in both the shoots and roots. Therefore, the 'Si Yue Man' cultivar appears to be a good candidate for future breeding. Variation between the shoots and roots was also examined, and a significant correlation among the total, aliphatic, and some individual GSs was found, which is of value in agricultural breeding. GS concentrations of the leaf, petiole, and root increased dramatically during the period of rapid growth of the dry matter of the plant 10 to 20 d after transplantation, reaching peak values on Day 20 and decreasing on Day 25. We conclude that the pak choi should be harvested and consumed from 20 to 25 d after transplantation to take advantages of the high GS content in the plant.
Collapse
Affiliation(s)
- Biao Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jing Yang
- School of Agricultural and Food Science, Zhejiang Agricultural & Forestry University, Hangzhou 311300, China
| | - Zhu-jun Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- School of Agricultural and Food Science, Zhejiang Agricultural & Forestry University, Hangzhou 311300, China
| |
Collapse
|
83
|
Benninghoff AD, Williams DE. The role of estrogen receptor β in transplacental cancer prevention by indole-3-carbinol. Cancer Prev Res (Phila) 2013; 6:339-48. [PMID: 23447562 DOI: 10.1158/1940-6207.capr-12-0311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the present study, the efficacy of indole-3-carbinol (I3C), a key bioactive component of cruciferous vegetables, for prevention of cancer in offspring exposed in utero to the environmental carcinogen dibenzo[def,p]chrysene (DBC) was evaluated using an estrogen receptor β (ERβ) knockout mouse model. I3C was provided either through the maternal diet coincident with carcinogen exposure during pregnancy or directly to offspring postinitiation with DBC. I3C was effective at reducing T-cell acute lymphoblastic lymphoma/leukemia (T-ALL)-related mortality in offspring only if provided via the maternal diet, although a gender difference in the role of ERβ in mediating this response was evident. In female offspring, chemoprevention of T-ALL by maternal dietary I3C required expression of ERβ; survival in Esr2 wild-type and heterozygous female offspring was more than 90% compared with 66% in Esr2 null females. Alternatively, ERβ status did not significantly impact the transplacental chemoprevention by I3C in males. The possible role of ERβ in mediating lung carcinogenesis or chemoprevention by I3C was similarly complicated. Lung tumor incidence was unaltered by either dietary intervention, whereas lung tumor multiplicity was substantially reduced in Esr2 null females on the control diet and marginally lower in Esr2 null males exposed to I3C via the maternal diet compared with their wild-type and heterozygous counterparts. These findings suggest that I3C may act via ERβ to prevent or suppress DBC-initiated transplacental carcinogenesis but that the involvement of this receptor seems to differ depending on the cancer type and gender of the offspring.
Collapse
Affiliation(s)
- Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA.
| | | |
Collapse
|
84
|
El-Shinnawy NA, Abd-Elmageid SA, Alshailabi EMA. Evaluation of antiulcer activity of indole-3-carbinol and/or omeprazole on aspirin-induced gastric ulcer in rats. Toxicol Ind Health 2012; 30:357-75. [DOI: 10.1177/0748233712457448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present work is an attempt to elucidate the antiulcer activity of indole-3-carbinol (I3C), which is one of the anticarcinogenic phytochemicals found in the vegetables of Cruciferae family such as broccoli and cauliflower, alone or in combination with omeprazole (OMP), a proton pump inhibitor, to diminish the effects of induced acute gastric ulcer by aspirin (ASA) in male albino rats. A total of 48 adult male albino rats were used in the present study. Animals were divided into eight experimental groups (six animals each group). They were given different experimental inductions of ASA at a dose of 500 mg/kg/body weight, OMP at a dose of 20 mg/kg/body weight and I3C at a dose of 20 mg/kg/body weight either alone or in combination with each other orally for a duration of 7 days. Inner stomach features, ulcer index, pH activity, body weight, stomach weight, hematological investigations, serum total protein albumin and reduced glutathione activity were investigated in addition to the histological, histochemical and immunohistochemical stain of cyclooxygenase-2 to the stomach tissue of normal control, ulcerated and treated ulcerated rats. The results of this study revealed that oral administration of ASA to rats produced the expected characteristic mucosal lesions. OMP accelerated ulcer healing but the administration of I3C either alone or in combination with OMP to ASA-ulcerated rats produced a profound protection to the gastric mucosa from injury induced by ASA. Our results suggested that administration of antiulcer natural substances such as I3C in combination with the perused treatment such as OMP is a very important initiative in the development of new strategies in ulcer healing.
Collapse
Affiliation(s)
- Nashwa A El-Shinnawy
- Department of Zoology, Women’s College for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Samira A Abd-Elmageid
- Department of Zoology, Women’s College for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
85
|
Wang J, Jiang YF. Natural compounds as anticancer agents: Experimental evidence. World J Exp Med 2012; 2:45-57. [PMID: 24520533 PMCID: PMC3905583 DOI: 10.5493/wjem.v2.i3.45] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 02/06/2023] Open
Abstract
Cancer prevention research has drawn much attention worldwide. It is believed that some types of cancer can be prevented by following a healthy life style. Cancer chemoprevention by either natural or synthetic agents is a promising route towards lowering cancer incidence. In recent years, the concept of cancer chemoprevention has evolved greatly. Experimental studies in animal models demonstrate that the reversal or suppression of premalignant lesions by chemopreventive agents is achievable. Natural occurring agents such as dietary phytochemicals, tea polyphenols and resveratrol show chemopreventive activity in animal models. Moreover, clinical trials for testing the safety and efficacy of a variety of natural agents in preventing or treating human malignancy have been ongoing. Here, we summarize experimental data on the chemopreventive or tumor suppressive effects of several natural compounds including curcumin, (-)-epigallocatechin-3-gallate, resveratrol, indole-3-carbinol, and vitamin D.
Collapse
Affiliation(s)
- Jiao Wang
- Jiao Wang, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Yang-Fu Jiang
- Jiao Wang, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| |
Collapse
|
86
|
Wang ML, Shih CK, Chang HP, Chen YH. Antiangiogenic activity of indole-3-carbinol in endothelial cells stimulated with activated macrophages. Food Chem 2012; 134:811-20. [PMID: 23107695 DOI: 10.1016/j.foodchem.2012.02.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 09/07/2011] [Accepted: 02/28/2012] [Indexed: 01/18/2023]
Abstract
The effect of indole-3-carbinol (I3C), a major indolic metabolite in cruciferous vegetables, on lipopolysaccharide (LPS)-activated macrophage-induced tube formation and its associated factors in endothelial EA hy926 cells was investigated. LPS significantly enhanced the capillary-like structure of endothelial cells (ECs) co-cultured with macrophages, but no such effect was observed in single-cultured ECs. I3C, on the other hand, suppressed such enhancement in concert with decreased secretions of vascular endothelial growth factor (VEGF), nitric oxide (NO), interleukin-6 (IL-6), and matrix metalloproteinases (MMPs). The results obtained from cultivating ECs with conditioned medium (CM) collected from macrophages suggested that both ECs and macrophages were inactivated by I3C. These results indicate that I3C from cruciferous vegetables may possess potential roles in preventing inflammation-associated angiogenic diseases.
Collapse
Affiliation(s)
- Mei-Lin Wang
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan, ROC
| | | | | | | |
Collapse
|
87
|
Sharma V, Kalia R, Raj T, Gupta VK, Suri N, Saxena AK, Sharma D, Bhella SS, Singh G, Ishar MPS. Synthesis and cytotoxic evaluation of substituted 3-(3′-indolyl-/3′-pyridyl)-isoxazolidines and bis-indoles. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2011.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
88
|
Natural-Agent Mechanisms and Early-Phase Clinical Development. NATURAL PRODUCTS IN CANCER PREVENTION AND THERAPY 2012; 329:241-52. [DOI: 10.1007/128_2012_341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
89
|
Koza G, Balci M. A novel class of compounds: synthesis of 5,5′-carbonyl-bis(5,6-dihydro-4H-furo- and thieno-[2,3-c]pyrrol-4-ones). Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
90
|
Shukla Y, George J. Combinatorial strategies employing nutraceuticals for cancer development. Ann N Y Acad Sci 2011; 1229:162-75. [PMID: 21793852 DOI: 10.1111/j.1749-6632.2011.06104.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is the second leading cause of death worldwide. Therefore, the fight against cancer is one of the most important areas of research in medicine, and one that possibly contributes to the increased interest in chemoprevention as an alternative approach to the control of cancer. Cancer prevention by nutraceuticals present in fruits and vegetables has received considerable attention because of their low cost and wide safety margin. A substantial amount of evidence from human, animal, and cell culture studies has shown cancer chemopreventive effects from these natural products. However, single-agent intervention has failed to produce the expected outcome in clinical trials; therefore, combinations of nutraceuticals are gaining increasing popularity. Thus, combinations of nutraceuticals that mimic real-life situations and are competent in targeting multiple targets with very little or virtually no toxicity are needed. In this review, we summarize the results of those studies that report combinatorial cancer chemopreventive action of various nutraceuticals and their combinations with anticancer drugs.
Collapse
Affiliation(s)
- Yogeshwer Shukla
- Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), Lucknow, Uttar Pradesh, India.
| | | |
Collapse
|
91
|
Aronchik I, Chen T, Durkin KA, Horwitz MS, Preobrazhenskaya MN, Bjeldanes LF, Firestone GL. Target protein interactions of indole-3-carbinol and the highly potent derivative 1-benzyl-I3C with the C-terminal domain of human elastase uncouples cell cycle arrest from apoptotic signaling. Mol Carcinog 2011; 51:881-94. [PMID: 22012859 DOI: 10.1002/mc.20857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/28/2011] [Accepted: 08/19/2011] [Indexed: 12/15/2022]
Abstract
Elastase is the only currently identified target protein for indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin in cruciferous vegetables such as broccoli, cabbage, and Brussels sprouts that induces a cell cycle arrest and apoptosis of human breast cancer cells. In vitro elastase enzymatic assays demonstrated that I3C and at lower concentrations its more potent derivative 1-benzyl-indole-3-carbinol (1-benzyl-I3C) act as non-competitive allosteric inhibitors of elastase activity. Consistent with these results, in silico computational simulations have revealed the first predicted interactions of I3C and 1-benzyl-I3C with the crystal structure of human neutrophil elastase, and identified a potential binding cluster on an external surface of the protease outside of the catalytic site that implicates elastase as a target protein for both indolecarbinol compounds. The Δ205 carboxyterminal truncation of elastase, which disrupts the predicted indolecarbinol binding site, is enzymatically active and generates a novel I3C resistant enzyme. Expression of the wild type and Δ205 elastase in MDA-MB-231 human breast cancer cells demonstrated that the carboxyterminal domain of elastase is required for the I3C and 1-benzyl-I3C inhibition of enzymatic activity, accumulation of the unprocessed form of the CD40 elastase substrate (a tumor necrosis factor receptor family member), disruption of NFκB nuclear localization and transcriptional activity, and induction of a G1 cell cycle arrest. Surprisingly, expression of the Δ205 elastase molecule failed to reverse indolecarbinol stimulated apoptosis, establishing an elastase-dependent bifurcation point in anti-proliferative signaling that uncouples the cell cycle and apoptotic responses in human breast cancer cells.
Collapse
Affiliation(s)
- Ida Aronchik
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Kuttan G, Pratheeshkumar P, Manu KA, Kuttan R. Inhibition of tumor progression by naturally occurring terpenoids. PHARMACEUTICAL BIOLOGY 2011; 49:995-1007. [PMID: 21936626 DOI: 10.3109/13880209.2011.559476] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Cancer is a major public health problem in India and many other parts of the world. Its two main characteristics are uncontrolled cell growth and metastasis. Natural products represent a rich source of compounds that have found many applications in various fields of medicines and therapy including cancer therapy. Effective ingredients in several plant-derived medicinal extracts are terpenoid compounds and many terpenes have biological activities and are used for the treatment of human diseases. OBJECTIVES This review attempted to collect all available published scientific literature of eight naturally occurring terpenoids and their effect on inhibition of tumor progression. METHODS The present review is about eight potent naturally occurring terpenoids that have been studied for their pharmacological properties in our lab and this review includes 130 references compiled from all major databases. RESULTS Literature survey revealed that triterpenoids, such as glycyrrhizic acid, ursolic acid, oleanolic acid, and nomilin, the diterpene andrographolide, and the monoterpenoids like limonene and perillic acid had shown immunomodulatory and antitumor activities. All of them could induce apoptosis in various cancer cells by activating various proapoptotic signaling cascades. Many of these terpenoids found to inhibit metastatic progression and tumor-induced angiogenesis. The molecular mechanisms that involved in these activities include inhibition of various oncogenic and anti-apoptotic signaling pathways and suppression or nuclear translocation of various transcription factors including nuclear factor kappa B (NF-κB). CONCLUSION The chemopreventive and chemoprotective effects of these compounds point toward their possible role in modern anticancer therapies.
Collapse
Affiliation(s)
- Girija Kuttan
- Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala, India.
| | | | | | | |
Collapse
|
93
|
Navarro SL, Li F, Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2011; 2:579-87. [PMID: 21935537 PMCID: PMC3204939 DOI: 10.1039/c1fo10114e] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isothiocyanates (ITC), derived from glucosinolates, are thought to be responsible for the chemoprotective actions conferred by higher cruciferous vegetable intake. Evidence suggests that isothiocyanates exert their effects through a variety of distinct but interconnected signaling pathways important for inhibiting carcinogenesis, including those involved in detoxification, inflammation, apoptosis, and cell cycle and epigenetic regulation, among others. This article provides an update on the latest research on isothiocyanates and these mechanisms, and points out remaining gaps in our understanding of these events. Given the variety of ITC produced from glucosinolates, and the diverse pathways on which these compounds act, a systems biology approach, in vivo, may help to better characterize their integrated role in cancer prevention. In addition, the effects of dose, duration of exposure, and specificity of different ITC should be considered.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Fei Li
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
94
|
Wu TY, Saw CLL, Khor TO, Pung D, Boyanapalli SSS, Kong ANT. In vivo pharmacodynamics of indole-3-carbinol in the inhibition of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: involvement of Nrf2 and cell cycle/apoptosis signaling pathways. Mol Carcinog 2011; 51:761-70. [PMID: 21837756 DOI: 10.1002/mc.20841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/23/2022]
Abstract
Indole-3-carbinol (I3C) found abundantly in crucifers has been shown to possess anti-cancer effects. The present study aims to examine the chemopreventive effects and the molecular mechanism of I3C, particularly the anti-oxidative stress pathway regulated by nuclear erythroid related factor 2 (Nrf2). HepG2-C8-ARE-luciferase cells were used for Nrf2-ARE activity. TRAMP C1 cells were used to investigate the effects of I3C on Nrf2-mediated genes. To test the chemopreventive efficacy of I3C, transgenic adenocarcinoma of mouse prostate (TRAMP) mice were fed with 1% I3C supplemented diet for 12 or 16 wk. The expression of Nrf2 and its downstream target genes, cell cycle and apoptosis genes were investigated using quantitative real-time polymerase chain reaction (qPCR). The protein expressions of these biomarkers were also investigated using Western blotting. I3C induced antioxidant response element (ARE)-luciferase activity in a dose-dependent manner. Treatments of TRAMP C1 cells with I3C also resulted in the induction of Nrf2-mediated genes. I3C significantly suppressed the incidence of palpable tumor and reduced the genitourinary weight in TRAMP mice. Western blots and qPCR analyses of prostate tissues showed that I3C induced the expression of Nrf2, NAD(P)H quinine oxidoreductase 1 (NQO-1) as well as cell cycle and apoptosis related biomarkers in I3C-fed TRAMP mice. This study demonstrated that the effectiveness of I3C as prostate cancer chemoprevention agent via up-regulation of a novel Nrf2-mediated anti-oxidative stress pathway.
Collapse
Affiliation(s)
- Tien-Yuan Wu
- Center for Cancer Prevention Research and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
95
|
Saati GE, Archer MC. Inhibition of Fatty Acid Synthase and Sp1 Expression by 3,3′-Diindolylmethane in Human Breast Cancer Cells. Nutr Cancer 2011; 63:790-4. [DOI: 10.1080/01635581.2011.570896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
96
|
Marconett CN, Sundar SN, Tseng M, Tin AS, Tran KQ, Mahuron KM, Bjeldanes LF, Firestone GL. Indole-3-carbinol downregulation of telomerase gene expression requires the inhibition of estrogen receptor-alpha and Sp1 transcription factor interactions within the hTERT promoter and mediates the G1 cell cycle arrest of human breast cancer cells. Carcinogenesis 2011; 32:1315-23. [PMID: 21693539 DOI: 10.1093/carcin/bgr116] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin from cruciferous vegetables such as broccoli, cabbage and Brussels sprouts, is an anticancer phytochemical that triggers complementary sets of antiproliferative pathways to induce a cell cycle arrest of estrogen-responsive MCF7 breast cancer cells. I3C strongly downregulated transcript expression of the catalytic subunit of the human telomerase (hTERT) gene, which correlated with the dose-dependent indole-mediated G(1) cell cycle arrest without altering the transcript levels of the RNA template (hTR) for telomerase elongation. Exogenous expression of hTERT driven by a constitutive promoter prevented the I3C-induced cell cycle arrest and rescued the I3C inhibition of telomerase enzymatic activity and activation of cellular senescence. Time course studies showed that I3C downregulated expression of estrogen receptor-alpha (ERα) and cyclin-dependent kinase-6 transcripts levels (which is regulated through the Sp1 transcription factor) prior to the downregulation of hTERT suggesting a mechanistic link. Chromatin immunoprecipitation assays demonstrated that I3C disrupted endogenous interactions of both ERα and Sp1 with an estrogen response element-Sp1 composite element within the hTERT promoter. I3C inhibited 17β-estradiol stimulated hTERT expression and stimulated the production of threonine-phosphorylated Sp1, which inhibits Sp1-DNA interactions. Exogenous expression of both ERα and Sp1, but not either alone, in MCF7 cells blocked the I3C-mediated downregulation of hTERT expression. These results demonstrate that I3C disrupts the combined ERα- and Sp1-driven transcription of hTERT gene expression, which plays a significant role in the I3C-induced cell cycle arrest of human breast cancer cells.
Collapse
Affiliation(s)
- Crystal N Marconett
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Wang TTY, Schoene NW, Milner JA, Kim YS. Broccoli-derived phytochemicals indole-3-carbinol and 3,3'-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: comparison with other cancer preventive phytochemicals. Mol Carcinog 2011; 51:244-56. [PMID: 21520295 DOI: 10.1002/mc.20774] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/01/2011] [Indexed: 12/22/2022]
Abstract
In the present studies, we utilized prostate cancer cell culture models to elucidate the mechanisms of action of broccoli-derived phytochemicals 3,3'-diindolylmethane (DIM) and indole-3-carbinol (I3C). We found DIM and I3C at 1-5 µM inhibited androgen and estrogen-mediated pathways and induced xenobiotic metabolism pathway. By contrast, DIM and I3C induced cyclin inhibitors, indicators of stress/DNA damage, only at ≥25 µM. We also demonstrated that an inhibitory effect of DIM and I3C on cell growth involves inhibition of insulin-like growth factor-1 receptor expression. More importantly, we showed that differences in efficacies and mechanisms existed between DIM and I3C. These included differences in effective concentrations, a differential effect on androgen receptor binding, and a differential effect on xenobiotic metabolic pathway through aryl hydrocarbon receptor-dependent and -independent mechanism. Furthermore we determined that several other diet-derived cancer protective compounds, similar to DIM and I3C, exhibited pleiotrophic effects on signaling pathways that included proliferation, cell cycle, and nuclear receptors-mediated pathways. However, the efficacies and mechanisms of these compounds vary. We also showed that some cellular pathways are not likely to be affected by DIM or I3C when circulating concentration of orally ingested DIM or I3C is considered. Based on our results, a model for cancer protective effects of DIM and I3C was proposed.
Collapse
Affiliation(s)
- Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA
| | | | | | | |
Collapse
|
98
|
Ahmad A, Sakr WA, Rahman KW. Role of Nuclear Factor-kappa B Signaling in Anticancer Properties of Indole Compounds. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2011.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
99
|
Antiobesity activities of indole-3-carbinol in high-fat-diet–induced obese mice. Nutrition 2011; 27:463-70. [DOI: 10.1016/j.nut.2010.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/05/2010] [Accepted: 09/17/2010] [Indexed: 12/31/2022]
|
100
|
Guo Y, Wu XQ, Zhang C, Liao ZX, Wu Y, Xia ZY, Wang H. Effect of indole-3-carbinol on ethanol-induced liver injury and acetaldehyde-stimulated hepatic stellate cells activation using precision-cut rat liver slices. Clin Exp Pharmacol Physiol 2011; 37:1107-13. [PMID: 20880187 DOI: 10.1111/j.1440-1681.2010.05450.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
1. Indole-3-carbinol (I3C), a major indole compound found in high levels in cruciferous vegetables, shows a broad spectrum of biological activities. However, few studies have reported the effect of I3C on alcoholic liver injury. In the present study, we investigated the protective effect of I3C on acute ethanol-induced hepatotoxicity and acetaldehyde-stimulated hepatic stellate cells (HSC) activation using precision-cut liver slices (PCLS). 2. Rat PCLS were incubated with 50 mmol/L ethanol or 350 μmol/L acetaldehyde, and different concentrations (100-400 μmol/L) of I3C were added into the culture system of these two liver injury models, respectively. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde (MDA) content in tissue. Activities of alcoholic enzymes were also determined. α-Smooth muscle actin (α-SMA), transforming growth factor (TGF-β(1) ) and hydroxyproline (HYP) were used as indices to evaluate the activation of HSC. In addition, matrix metalloproteinase-1 (MMP-1) and the tissue inhibitor of metalloproteinase (TIMP-1) were observed to estimate collagen degradation. 3. I3C significantly reduced the enzyme leakage in ethanol-treated slices. In I3C groups, cytochrome P450 (CYP) 2E1 activities were inhibited by 40.9-51.8%, whereas alcohol dehydrogenase (ADH) activity was enhanced 1.6-fold compared with the ethanol-treated group. I3C also showed an inhibitory effect against HSC activation and collagen production stimulated by acetaldehyde. After being incubated with I3C (400 μmol/L), the expression of MMP-1 was markedly enhanced, whereas TIMP-1 was decreased. 4. These results showed that I3C protected PCLS against alcoholic liver injury, which might be associated with the regulation of ethanol metabolic enzymes, attenuation of oxidative injury and acceleration of collagen degradation.
Collapse
Affiliation(s)
- Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|