51
|
Drukewitz SH, von Reumont BM. The Significance of Comparative Genomics in Modern Evolutionary Venomics. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
52
|
Vivas-Ruiz DE, Gonzalez-Kozlova EE, Delgadillo J, Palermo PM, Sandoval GA, Lazo F, Rodríguez E, Chávez-Olórtegui C, Yarlequé A, Sanchez EF. Biochemical and molecular characterization of the hyaluronidase from Bothrops atrox Peruvian snake venom. Biochimie 2019; 162:33-45. [PMID: 30946947 DOI: 10.1016/j.biochi.2019.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/29/2019] [Indexed: 11/19/2022]
Abstract
Snake venoms are a rich source of enzymes such as metalloproteinases, serine proteinases phospholipases A2 and myotoxins, that have been well characterized structurally and functionally. However, hyaluronidases (E.C.3.2.1.35) have not been studied extensively. In this study, we describe the biochemical and molecular features of a hyaluronidase (Hyal-Ba) isolated from the venom of the Peruvian snake Bothrops atrox. Hyal-Ba was purified by a combination of ion-exchange and gel filtration chromatography. Purified Hyal-Ba is a 69-kDa (SDS-PAGE) monomeric glycoprotein with an N-terminal amino acid sequence sharing high identity with homologous snake venom hyaluronidases. Detected associated carbohydrates were hexoses (16.38%), hexosamines (2.7%) and sialic acid (0.69%). Hyal-Ba selectively hydrolyzed only hyaluronic acid (HA; specific activity = 437.5 U/mg) but it did not hydrolyze chondroitin sulfate or heparin. The optimal pH and temperature for maximum activity were 6.0 and 40 °C, respectively, and its Km was 0.31 μM. Its activity was inhibited by EDTA, iodoacetate, 2-mercaptoethanol, TLCK and dexamethasone. Na+ and K+ (0.2 M) positively affect hyaluronidase activity; while Mg2+, Br2+, Ba2+, Cu2+, Zn2+, and Cd2+ reduced catalytic activity. Hyal-Ba potentiates the hemorrhagic and hemolytic activity of whole venom, but decreased subplantar edema caused by an l-amino acid oxidase (LAAO). The Hyal-Ba cDNA sequence (2020 bp) encodes 449 amino acid residues, including the catalytic site residues (Glu135, Asp133, Tyr206, Tyr253 and Trp328) and three functional motifs for N-linked glycosylation, which are conserved with other snake hyaluronidases. Spatial modeling of Hyal-Ba displayed a TIM-Barrel (α/β) fold and an EGF-like domain in the C-terminal portion. The phylogenetic analysis of Hyal-Ba with other homologous Hyals showed the monophyly of viperids. Further, Hyal-Ba studies may extend our knowledge of B. atrox toxinology and provides insight to improve the neutralizing strategies of therapeutic antivenoms.
Collapse
Affiliation(s)
- Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular-Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru.
| | | | - Julio Delgadillo
- Laboratorio de Biología Molecular-Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Pedro M Palermo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Gustavo A Sandoval
- Laboratorio de Biología Molecular-Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Fanny Lazo
- Laboratorio de Biología Molecular-Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Edith Rodríguez
- Laboratorio de Biología Molecular-Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Inmunología, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Armando Yarlequé
- Laboratorio de Biología Molecular-Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Eladio F Sanchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil
| |
Collapse
|
53
|
Kini RM, Sidhu SS, Laustsen AH. Biosynthetic Oligoclonal Antivenom (BOA) for Snakebite and Next-Generation Treatments for Snakebite Victims. Toxins (Basel) 2018; 10:toxins10120534. [PMID: 30551565 PMCID: PMC6315346 DOI: 10.3390/toxins10120534] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that each year claims the lives of 80,000–140,000 victims worldwide. The only effective treatment against envenoming involves intravenous administration of antivenoms that comprise antibodies that have been isolated from the plasma of immunized animals, typically horses. The drawbacks of such conventional horse-derived antivenoms include their propensity for causing allergenic adverse reactions due to their heterologous and foreign nature, an inability to effectively neutralize toxins in distal tissue, a low content of toxin-neutralizing antibodies, and a complex manufacturing process that is dependent on husbandry and procurement of snake venoms. In recent years, an opportunity to develop a fundamentally novel type of antivenom has presented itself. By using modern antibody discovery strategies, such as phage display selection, and repurposing small molecule enzyme inhibitors, next-generation antivenoms that obviate the drawbacks of existing plasma-derived antivenoms could be developed. This article describes the conceptualization of a novel therapeutic development strategy for biosynthetic oligoclonal antivenom (BOA) for snakebites based on recombinantly expressed oligoclonal mixtures of human monoclonal antibodies, possibly combined with repurposed small molecule enzyme inhibitors.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Sachdev S Sidhu
- Department of Molecular Genetics, The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
54
|
Herrera C, Escalante T, Rucavado A, Fox JW, Gutiérrez JM. Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics. Expert Rev Proteomics 2018; 15:967-982. [DOI: 10.1080/14789450.2018.1538800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA22959, USA
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
55
|
Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) Venoms from Brazil: Differential Biochemistry and Antivenom Efficacy Resulting from Prey-Driven Venom Variation. Toxins (Basel) 2018; 10:toxins10100411. [PMID: 30314373 PMCID: PMC6215258 DOI: 10.3390/toxins10100411] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/10/2023] Open
Abstract
Lancehead pit-vipers (Bothrops genus) are an extremely diverse and medically important group responsible for the greatest number of snakebite envenomations and deaths in South America. Bothrops atrox (common lancehead), responsible for majority of snakebites and related deaths within the Brazilian Amazon, is a highly adaptable and widely distributed species, whose venom variability has been related to several factors, including geographical distribution and habitat type. This study examined venoms from four B. atrox populations (Belterra and Santarém, PA; Pres. Figueiredo, AM and São Bento, MA), and two additional Bothrops species (B. jararaca and B. neuwiedi) from Southeastern region for their coagulotoxic effects upon different plasmas (human, amphibian, and avian). The results revealed inter– and intraspecific variations in coagulotoxicity, including distinct activities between the three plasmas, with variations in the latter two linked to ecological niche occupied by the snakes. Also examined were the correlated biochemical mechanisms of venom action. Significant variation in the relative reliance upon the cofactors calcium and phospholipid were revealed, and the relative dependency did not significantly correlate with potency. Relative levels of Factor X or prothrombin activating toxins correlated with prey type and prey escape potential. The antivenom was shown to perform better in neutralising prothrombin activation activity than neutralising Factor X activation activity. Thus, the data reveal new information regarding the evolutionary selection pressures shaping snake venom evolution, while also having significant implications for the treatment of the envenomed patient. These results are, therefore, an intersection between evolutionary biology and clinical medicine.
Collapse
|
56
|
Antibody Cross-Reactivity in Antivenom Research. Toxins (Basel) 2018; 10:toxins10100393. [PMID: 30261694 PMCID: PMC6215175 DOI: 10.3390/toxins10100393] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Antivenom cross-reactivity has been investigated for decades to determine which antivenoms can be used to treat snakebite envenomings from different snake species. Traditionally, the methods used for analyzing cross-reactivity have been immunodiffusion, immunoblotting, enzyme-linked immunosorbent assay (ELISA), enzymatic assays, and in vivo neutralization studies. In recent years, new methods for determination of cross-reactivity have emerged, including surface plasmon resonance, antivenomics, and high-density peptide microarray technology. Antivenomics involves a top-down assessment of the toxin-binding capacities of antivenoms, whereas high-density peptide microarray technology may be harnessed to provide in-depth knowledge on which toxin epitopes are recognized by antivenoms. This review provides an overview of both the classical and new methods used to investigate antivenom cross-reactivity, the advantages and disadvantages of each method, and examples of studies using the methods. A special focus is given to antivenomics and high-density peptide microarray technology as these high-throughput methods have recently been introduced in this field and may enable more detailed assessments of antivenom cross-reactivity.
Collapse
|
57
|
The Venom of Spectacled Cobra (Elapidae: Naja naja): In Vitro Study from Distinct Geographical Origins in Sri Lanka. J Toxicol 2018; 2018:7358472. [PMID: 30363742 PMCID: PMC6180993 DOI: 10.1155/2018/7358472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/18/2018] [Accepted: 08/11/2018] [Indexed: 11/17/2022] Open
Abstract
Several countries residing envenomation due to Naja naja had revealed a disparity in the venom composition according to their geographic location and Sri Lankan cobra still lacks the evidence to support this. Therefore, the current study was focused on addressing relationship between the histopathological changes according to geographic variation of Sri Lankan N. naja venom. The histopathological changes in vital organs and muscle tissues following intramuscular administration of venom of N. naja were studied using BALB/c mice. The median lethal dose of venom of N. naja in the present study was determined to be 0.55, 0.66, 0.68, 0.62, and 0.7 mg/kg for North (NRP), Central (CRP), Western, Southern, and Sabaragamuwa Regional Population venoms, respectively. Histopathological changes were observed in different levels in vital organs and muscle tissues of mice. NRP accompanied significantly higher infiltration of inflammatory and necrotic cells into skeletal muscle and CRP venom demonstrated high level of cardiotoxic effects comparing to other regions. This study revealed a certain extent of variations in the pathological effects of N. naja venom samples according to their geographical distribution.
Collapse
|
58
|
Carregari VC, Rosa-Fernandes L, Baldasso P, Bydlowski SP, Marangoni S, Larsen MR, Palmisano G. Snake Venom Extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity. Sci Rep 2018; 8:12067. [PMID: 30104604 PMCID: PMC6089973 DOI: 10.1038/s41598-018-30578-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
Proteins constitute almost 95% of snake venom's dry weight and are produced and released by venom glands in a solubilized form during a snake bite. These proteins are responsible for inducing several pharmacological effects aiming to immobilize and initiate the pre-digestion of the prey. This study shows that proteins can be secreted and confined in snake venom extracellular vesicles (SVEVs) presenting a size distribution between 50 nm and 500 nm. SVEVs isolated from lyophilized venoms collected from four different species of snakes (Agkistrodon contortrix contortrix, Crotalus atrox, Crotalus viridis and Crotalus cerberus oreganus) were analyzed by mass spectrometry-based proteomic, which allowed the identification of proteins belonging to eight main functional protein classes such as SVMPs, serine proteinases, PLA2, LAAO, 5'nucleotidase, C-type lectin, CRISP and Disintegrin. Biochemical assays indicated that SVEVs are functionally active, showing high metalloproteinase and fibrinogenolytic activity besides being cytotoxic against HUVEC cells. Overall, this study comprehensively depicts the protein composition of SVEVs for the first time. In addition, the molecular function of some of the described proteins suggests a central role for SVEVs in the cytotoxicity of the snake venom and sheds new light in the envenomation process.
Collapse
Affiliation(s)
- Victor Corassolla Carregari
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.,GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Paulo Baldasso
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
59
|
Effects of Heme Modulation on Ovophis and Trimeresurus Venom Activity in Human Plasma. Toxins (Basel) 2018; 10:toxins10080322. [PMID: 30096756 PMCID: PMC6116019 DOI: 10.3390/toxins10080322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Geographic isolation and other factors result in evolution-driven diversity of the enzymatic composition of venom of pit vipers in the same genus. The present investigation sought to characterize venoms obtained from such genetically diverse Ovophis and Trimeresurus pit vipers utilizing thrombelastographic coagulation kinetic analyses. The coagulation kinetics of human plasma were assessed after exposure to venom obtained from two Ovophis and three Trimeresurus species. The potency of each venom was defined (µg/mL required to equivalently change coagulation); additionally, venoms were exposed to carbon monoxide (CO) or a metheme-inducing agent to modulate any enzyme-associated heme. All venoms had fibrinogenolytic activity, with four being CO-inhibitable. While Ovophis venoms had similar potency, one demonstrated the presence of a thrombin-like activity, whereas the other demonstrated a thrombin-generating activity. There was a 10-fold difference in potency and 10-fold different vulnerability to CO inhibition between the Trimeresurus species. Metheme formation enhanced fibrinogenolytic-like activity in both Ovophis species venoms, whereas the three Trimeresurus species venoms had fibrinogenolytic-like activity enhanced, inhibited, or not changed. This novel “venom kinetomic” approach has potential to identify clinically relevant enzymatic activity and assess efficacy of antivenoms between genetically and geographically diverse species.
Collapse
|
60
|
The habu genome reveals accelerated evolution of venom protein genes. Sci Rep 2018; 8:11300. [PMID: 30050104 PMCID: PMC6062510 DOI: 10.1038/s41598-018-28749-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/29/2018] [Indexed: 01/11/2023] Open
Abstract
Evolution of novel traits is a challenging subject in biological research. Several snake lineages developed elaborate venom systems to deliver complex protein mixtures for prey capture. To understand mechanisms involved in snake venom evolution, we decoded here the ~1.4-Gb genome of a habu, Protobothrops flavoviridis. We identified 60 snake venom protein genes (SV) and 224 non-venom paralogs (NV), belonging to 18 gene families. Molecular phylogeny reveals early divergence of SV and NV genes, suggesting that one of the four copies generated through two rounds of whole-genome duplication was modified for use as a toxin. Among them, both SV and NV genes in four major components were extensively duplicated after their diversification, but accelerated evolution is evident exclusively in the SV genes. Both venom-related SV and NV genes are significantly enriched in microchromosomes. The present study thus provides a genetic background for evolution of snake venom composition.
Collapse
|
61
|
Rodrigues CR, Teixeira-Ferreira A, Vargas FFR, Guerra-Duarte C, Costal-Oliveira F, Stransky S, Lopes-de-Souza L, Dutra AAA, Yarlequé A, Bonilla C, Sanchez EF, Perales J, Chávez-Olórtegui C. Proteomic profile, biological activities and antigenic analysis of the venom from Bothriopsis bilineata smaragdina ("loro machaco"), a pitviper snake from Peru. J Proteomics 2018; 187:171-181. [PMID: 30048773 DOI: 10.1016/j.jprot.2018.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 11/28/2022]
Abstract
In order to determine Bothriopsis bilineata smaragdina venom (BbsV) composition, proteomic approaches were performed. Venom components were analyzed by RP-HPLC, SDS- PAGE and nano LC on line with LTQ Orbitrap XL. Results showed a total of 189 identified proteins, grouped into 11 different subgroups, which include snake venom metalloproteinases (SVMPs, 54.67%), snake C-type lectins (Snaclecs, 15.78%), snake venom serine proteinases (SVSPs, 14.69%), cystein-rich secretory proteins (CRISP, 2.61%), phospholipases A2 (PLA2, 1.14%), phosphodiesterase (PDE, 1.17%), venom endothelial growth factor (VEGF, 1.06%) 5'nucleotidases (0.33%), L-amino acid oxidases (LAAOs, 0.28%) and other proteins. In vitro enzymatic activities (SVMP, SVSP, LAAO, Hyal and PLA2) of BbsV were also analyzed. BbsV showed high SVSP activity but low PLA2 activity, when compared to other Bothrops venoms. In vivo, BbsV induced hemorrhage and edema in mice and showed intraperitoneal median lethal dose (LD50) of 92.74 (± 0.15) μg/20 g of mice. Furthermore, BbsV reduced cell viability when incubated with VERO cells. Peruvian and Brazilian bothropic antivenoms recognize BbsV proteins, as detected by ELISA and Western Blotting. Both antivenoms were able to neutralize in vivo edema and hemorrhage. SIGNIFICANCE In Peru, snakebite is a public health problem, especially in the rain forest, as a result of progressive colonization of this geographical area. This country is the second in Latin America, after Brazil, to exhibit the largest variety of venomous snakes. B. atrox and B. b. smaragdina snakes are sympatric species in Peruvian Amazon region and are responsible for approximately 95% of the envenomings reported in this region. B. b. smaragdina may cause a smaller share (3 to 38%) of those accidents, due to its arboreal habits, that make human encounters with these snakes less likely to happen. Despite B. b. smaragdina recognized medical importance, its venom composition and biological activities have been poorly studied. Furthermore, BbsV is not a component of the antigenic pool used to produce the corresponding Peruvian bothropic antivenom (P-BAV). Our results not only provide new insights on BbsV composition and biological activity, but also demonstrate that both P-BAV and B-BAV polyvalent antivenoms have a considerable recognition of proteins from BbsV and, more importantly, neutralized hemorrhage and edema, the main local effects of bothropic envenomation.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - André Teixeira-Ferreira
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, 21040-360, Rio de Janeiro, Brazil
| | | | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Stephanie Stransky
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Alexandre Augusto Assis Dutra
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39803-371, Teófilo Otoni, Minas Gerais, Brasil
| | | | | | - Eladio Flores Sanchez
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, 21040-360, Rio de Janeiro, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
62
|
von Reumont BM. Studying Smaller and Neglected Organisms in Modern Evolutionary Venomics Implementing RNASeq (Transcriptomics)-A Critical Guide. Toxins (Basel) 2018; 10:toxins10070292. [PMID: 30012955 PMCID: PMC6070909 DOI: 10.3390/toxins10070292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Venoms are evolutionary key adaptations that species employ for defense, predation or competition. However, the processes and forces that drive the evolution of venoms and their toxin components remain in many aspects understudied. In particular, the venoms of many smaller, neglected (mostly invertebrate) organisms are not characterized in detail, especially with modern methods. For the majority of these taxa, even their biology is only vaguely known. Modern evolutionary venomics addresses the question of how venoms evolve by applying a plethora of -omics methods. These recently became so sensitive and enhanced that smaller, neglected organisms are now more easily accessible to comparatively study their venoms. More knowledge about these taxa is essential to better understand venom evolution in general. The methodological core pillars of integrative evolutionary venomics are genomics, transcriptomics and proteomics, which are complemented by functional morphology and the field of protein synthesis and activity tests. This manuscript focuses on transcriptomics (or RNASeq) as one toolbox to describe venom evolution in smaller, neglected taxa. It provides a hands-on guide that discusses a generalized RNASeq workflow, which can be adapted, accordingly, to respective projects. For neglected and small taxa, generalized recommendations are difficult to give and conclusions need to be made individually from case to case. In the context of evolutionary venomics, this overview highlights critical points, but also promises of RNASeq analyses. Methodologically, these concern the impact of read processing, possible improvements by perfoming multiple and merged assemblies, and adequate quantification of expressed transcripts. Readers are guided to reappraise their hypotheses on venom evolution in smaller organisms and how robustly these are testable with the current transcriptomics toolbox. The complementary approach that combines particular proteomics but also genomics with transcriptomics is discussed as well. As recently shown, comparative proteomics is, for example, most important in preventing false positive identifications of possible toxin transcripts. Finally, future directions in transcriptomics, such as applying 3rd generation sequencing strategies to overcome difficulties by short read assemblies, are briefly addressed.
Collapse
Affiliation(s)
- Björn Marcus von Reumont
- Justus Liebig University of Giessen, Institute for Insect Biotechnology, Heinrich Buff Ring 58, 35392 Giessen, Germany.
- Natural History Museum, Department of Life Sciences, Cromwell Rd, London SW75BD, UK.
| |
Collapse
|
63
|
Venom Ontogeny in the Mexican Lance-Headed Rattlesnake ( Crotalus polystictus). Toxins (Basel) 2018; 10:toxins10070271. [PMID: 29970805 PMCID: PMC6070973 DOI: 10.3390/toxins10070271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
As trophic adaptations, rattlesnake venoms can vary in composition depending on several intrinsic and extrinsic factors. Ontogenetic changes in venom composition have been documented for numerous species, but little is known of the potential age-related changes in many rattlesnake species found in México. In the current study, venom samples collected from adult and neonate Crotalus polystictus from Estado de México were subjected to enzymatic and electrophoretic analyses, toxicity assays (LD50), and MALDI-TOF mass spectrometry, and a pooled sample of adult venom was analyzed by shotgun proteomics. Electrophoretic profiles of adult males and females were quite similar, and only minor sex-based variation was noted. However, distinct differences were observed between venoms from adult females and their neonate offspring. Several prominent bands, including P-I and P-III snake venom metalloproteinases (SVMPs) and disintegrins (confirmed by MS/MS) were present in adult venoms and absent/greatly reduced in neonate venoms. Age-dependent differences in SVMP, kallikrein-like, phospholipase A2 (PLA2), and L-amino acid oxidase (LAAO) activity levels were confirmed by enzymatic activity assays, and like many other rattlesnake species, venoms from adult snakes have higher SVMP activity than neonate venoms. Conversely, PLA2 activity was approximately 2.5 × greater in venoms from neonates, likely contributing to the increased toxicity (neonate venom LD50 = 4.5 μg/g) towards non-Swiss albino mice when compared to adult venoms (LD50 = 5.5 μg/g). Thrombin-like (TLE) and phosphodiesterase activities did not vary significantly with age. A significant effect of sex (between adult male and adult female venoms) was also observed for SVMP, TLE, and LAAO activities. Analysis of pooled adult venom by LC-MS/MS identified 14 toxin protein families, dominated by bradykinin-inhibitory peptides, SVMPs (P-I, P-II and P-III), disintegrins, PLA2s, C-type-lectins, CRiSPs, serine proteinases, and LAAOs (96% of total venom proteins). Neonate and adult C. polystictus in this population consume almost exclusively mammals, suggesting that age-based differences in composition are related to physical differences in prey (e.g., surface-to-volume ratio differences) rather than taxonomic differences between prey. Venoms from adult C. polystictus fit a Type I pattern (high SVMP activity, lower toxicity), which is characteristic of many larger-bodied rattlesnakes of North America.
Collapse
|
64
|
Mutricy R, Heckmann X, Douine M, Marty C, Jolivet A, Lambert V, Perotti F, Boels D, Larréché S, Chippaux JP, Nacher M, Epelboin L. High mortality due to snakebites in French Guiana: Time has come to re-evaluate medical management protocols. PLoS Negl Trop Dis 2018; 12:e0006482. [PMID: 30024888 PMCID: PMC6053130 DOI: 10.1371/journal.pntd.0006482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rémi Mutricy
- CIC Inserm 1424 Antilles Guyane, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Emergency Department, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Xavier Heckmann
- Emergency Department, Centre Hospitalier de l’Ouest Guyanais, Saint-Laurent-du-Maroni, French Guiana
| | - Maylis Douine
- CIC Inserm 1424 Antilles Guyane, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Emergency Department, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, Cayenne, French Guiana
| | | | - Anne Jolivet
- Department of Public Health, Centre Hospitalier de l'Ouest Guyanais, Saint-Laurent-du-Maroni, French Guiana
| | - Véronique Lambert
- Department of Obstetrics and Gynecology, Centre Hospitalier de l'Ouest Guyanais, Saint-Laurent-du-Maroni, French Guiana
| | - Frédérique Perotti
- Pharmacy, Centre Hospitalier de l’Ouest Guyanais, Saint-Laurent-du-Maroni, French Guiana
| | - David Boels
- Poison Control Center, Angers University Hospital, Angers, France
| | - Sébastien Larréché
- Medical Biology Department, Hôpital d'Instruction Des Armées Bégin, Paris, France
| | - Jean-Philippe Chippaux
- CERPAGE, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Bénin
- Mère et enfant face aux infections tropicales and PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Mathieu Nacher
- CIC Inserm 1424 Antilles Guyane, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Department of Obstetrics and Gynecology, Centre Hospitalier de l'Ouest Guyanais, Saint-Laurent-du-Maroni, French Guiana
| | - Loïc Epelboin
- Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, Cayenne, French Guiana
- Infectious and Tropical Diseases Department, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| |
Collapse
|
65
|
Calvete JJ, Rodríguez Y, Quesada-Bernat S, Pla D. Toxin-resolved antivenomics-guided assessment of the immunorecognition landscape of antivenoms. Toxicon 2018; 148:107-122. [PMID: 29704534 DOI: 10.1016/j.toxicon.2018.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 04/22/2018] [Indexed: 01/23/2023]
Abstract
Snakebite envenoming represents a major issue in rural areas of tropical and subtropical regions across sub-Saharan Africa, South to Southeast Asia, Latin America and Oceania. Antivenoms constitute the only scientifically validated therapy for snakebite envenomings, provided they are safe, effective, affordable, accessible and administered appropriately. However, the lack of financial incentives in a technology that has remained relatively unchanged for more than a century, has contributed to some manufacturers leaving the market and others downscaling production or increasing the prices, leading to a decline in the availability and accessibility for these life-saving antidotes to millions of rural poor most at risk from snakebites in low income countries. The shortage of antivenoms can be significantly alleviated by optimizing the use of current antivenoms (through the assessment of their specific and paraspecific efficacy against the different medically relevant homologous and heterologous snake venoms) and by generating novel polyspecific antivenoms exhibiting broad clinical spectrum and wide geographic distribution range. Research on venoms has been continuously enhanced by advances in technology. Particularly, the last decade has witnessed the development of omics strategies for unravelling the toxin composition of venoms ("venomics") and to assess the immunorecognition profile of antivenoms ("antivenomics"). Here, we review recent developments and reflect on near future innovations that promise to revolutionize the mutually enlightening relationship between evolutionary and translational venomics.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Yania Rodríguez
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Sarai Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Davinia Pla
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| |
Collapse
|
66
|
Fry BG. Snakebite: When the Human Touch Becomes a Bad Touch. Toxins (Basel) 2018; 10:E170. [PMID: 29690533 PMCID: PMC5923336 DOI: 10.3390/toxins10040170] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Many issues and complications in treating snakebite are a result of poor human social, economic and clinical intervention and management. As such, there is scope for significant improvements for reducing incidence and increasing patient outcomes. Snakes do not target humans as prey, but as our dwellings and farms expand ever farther and climate change increases snake activity periods, accidental encounters with snakes seeking water and prey increase drastically. Despite its long history, the snakebite crisis is neglected, ignored, underestimated and fundamentally misunderstood. Tens of thousands of lives are lost to snakebites each year and hundreds of thousands of people will survive with some form of permanent damage and reduced work capacity. These numbers are well recognized as being gross underestimations due to poor to non-existent record keeping in some of the most affected areas. These underestimations complicate achieving the proper recognition of snakebite’s socioeconomic impact and thus securing foreign aid to help alleviate this global crisis. Antivenoms are expensive and hospitals are few and far between, leaving people to seek help from traditional healers or use other forms of ineffective treatment. In some cases, cheaper, inappropriately manufactured antivenom from other regions is used despite no evidence for their efficacy, with often robust data demonstrating they are woefully ineffective in neutralizing many venoms for which they are marketed for. Inappropriate first-aid and treatments include cutting the wound, tourniquets, electrical shock, immersion in ice water, and use of ineffective herbal remedies by traditional healers. Even in the developed world, there are fundamental controversies including fasciotomy, pressure bandages, antivenom dosage, premedication such as adrenalin, and lack of antivenom for exotic snakebites in the pet trade. This review explores the myriad of human-origin factors that influence the trajectory of global snakebite causes and treatment failures and illustrate that snakebite is as much a sociological and economic problem as it is a medical one. Reducing the incidence and frequency of such controllable factors are therefore realistic targets to help alleviate the global snakebite burden as incremental improvements across several areas will have a strong cumulative effect.
Collapse
Affiliation(s)
- Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
67
|
Dobson J, Yang DC, Op den Brouw B, Cochran C, Huynh T, Kurrupu S, Sánchez EE, Massey DJ, Baumann K, Jackson TNW, Nouwens A, Josh P, Neri-Castro E, Alagón A, Hodgson WC, Fry BG. Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus. Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:62-69. [PMID: 29074260 PMCID: PMC5825281 DOI: 10.1016/j.cbpc.2017.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
While some US populations of the Mohave rattlesnake (Crotalus scutulatus scutulatus) are infamous for being potently neurotoxic, the Mexican subspecies C. s. salvini (Huamantlan rattlesnake) has been largely unstudied beyond crude lethality testing upon mice. In this study we show that at least some populations of this snake are as potently neurotoxic as its northern cousin. Testing of the Mexican antivenom Antivipmyn showed a complete lack of neutralisation for the neurotoxic effects of C. s. salvini venom, while the neurotoxic effects of the US subspecies C. s. scutulatus were time-delayed but ultimately not eliminated. These results document unrecognised potent neurological effects of a Mexican snake and highlight the medical importance of this subspecies, a finding augmented by the ineffectiveness of the Antivipmyn antivenom. These results also influence our understanding of the venom evolution of Crotalus scutulatus, suggesting that neurotoxicity is the ancestral feature of this species, with the US populations which lack neurotoxicity being derived states.
Collapse
Affiliation(s)
- James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Daryl C Yang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Tam Huynh
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sanjaya Kurrupu
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Daniel J Massey
- Arizona Poison and Drug Information Center, 1295 N Martin Room B308, Tucson, AZ 85721, USA; Banner University Medical Center, 1501 N. Campbell Ave, Tucson, AZ 85745, USA
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Peter Josh
- School of Chemistry and Molecular Biology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Wayne C Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
68
|
Gois PHF, Martines MS, Ferreira D, Volpini R, Canale D, Malaque C, Crajoinas R, Girardi ACC, Massola Shimizu MH, Seguro AC. Allopurinol attenuates acute kidney injury following Bothrops jararaca envenomation. PLoS Negl Trop Dis 2017; 11:e0006024. [PMID: 29155815 PMCID: PMC5714385 DOI: 10.1371/journal.pntd.0006024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/04/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
Snakebites have been recognized as a neglected public health problem in several tropical and subtropical countries. Bothrops snakebites frequently complicate with acute kidney injury (AKI) with relevant morbidity and mortality. To date, the only treatment available for Bothrops envenomation is the intravenous administration of antivenom despite its several limitations. Therefore, the study of novel therapies in Bothrops envenomation is compelling. The aim of this study was to evaluate the protective effect of Allopurinol (Allo) in an experimental model of Bothrops jararaca venom (BJ)-associated AKI. Five groups of Wistar rats were studied: Sham, Allo, BJ, BJ+Allo, BJ+ipAllo. BJ (0.25 mg/kg) was intravenously injected during 40'. Saline at same dose and infusion rate was administered to Sham and Allo groups. Allo and BJ+Allo groups received Allo (300 mg/L) in the drinking water 7 days prior to Saline or BJ infusion respectively. BJ+ipAllo rats received intraperitoneal Allo (25 mg/Kg) 40' after BJ infusion. BJ rats showed markedly reduced glomerular filtration rate (GFR, inulin clearance) associated with intense renal vasoconstriction, hemolysis, hemoglobinuria, reduced glutathione and increased systemic and renal markers of nitro-oxidative stress (Nitrotyrosine). Allo ameliorated GFR, renal blood flow (RBF), renal vascular resistance and arterial lactate levels. In addition, Allo was associated with increased serum glutathione as well as reduced levels of plasma and renal Nitrotyrosine. Our data show that Allo attenuated BJ-associated AKI, reduced oxidative stress, improved renal hemodynamics and organ perfusion. It might represent a novel adjuvant approach for Bothrops envenomation, a new use for an old and widely available drug.
Collapse
Affiliation(s)
- Pedro Henrique França Gois
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
- Royal Brisbane and Women’s Hospital, Nephrology Department, Brisbane, Australia
- * E-mail:
| | - Monique Silva Martines
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Daniela Ferreira
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Rildo Volpini
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Daniele Canale
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Ceila Malaque
- Vital Brazil Hospital, Butantan Institute, Sao Paulo, Brazil
| | - Renato Crajoinas
- Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | | | - Maria Heloisa Massola Shimizu
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Antonio Carlos Seguro
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| |
Collapse
|
69
|
A Review and Database of Snake Venom Proteomes. Toxins (Basel) 2017; 9:toxins9090290. [PMID: 28927001 PMCID: PMC5618223 DOI: 10.3390/toxins9090290] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Advances in the last decade combining transcriptomics with established proteomics methods have made possible rapid identification and quantification of protein families in snake venoms. Although over 100 studies have been published, the value of this information is increased when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical variation, and possible medical implications. This review brings together all compositional studies of snake venom proteomes published in the last decade. Compositional studies were identified for 132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers), 65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately 90% of their total venom composition consisted of eight protein families for elapids, 11 protein families for viperines and ten protein families for crotalines. There were four dominant protein families: phospholipase A2s (the most common across all front-fanged snakes), metalloproteases, serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich secretory proteins, l-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A2s and viper venoms metalloproteases, phospholipase A2s and serine proteases. Although 63 protein families were identified, more than half were present in <5% of snake species studied and always in low abundance. The importance of these minor component proteins remains unknown.
Collapse
|
70
|
Teixeira-Araújo R, Castanheira P, Brazil-Más L, Pontes F, Leitão de Araújo M, Machado Alves ML, Zingali RB, Correa-Netto C. Antivenomics as a tool to improve the neutralizing capacity of the crotalic antivenom: a study with crotamine. J Venom Anim Toxins Incl Trop Dis 2017; 23:28. [PMID: 28507562 PMCID: PMC5427561 DOI: 10.1186/s40409-017-0118-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background Snakebite treatment requires administration of an appropriate antivenom that should contain antibodies capable of neutralizing the venom. To achieve this goal, antivenom production must start from a suitable immunization protocol and proper venom mixtures. In Brazil, antivenom against South American rattlesnake (Crotalus durissus terrificus) bites is produced by public institutions based on the guidelines defined by the regulatory agency of the Brazilian Ministry of Health, ANVISA. However, each institution uses its own mixture of rattlesnake venom antigens. Previous works have shown that crotamine, a toxin found in Crolatus durissus venom, shows marked individual and populational variation. In addition, serum produced from crotamine-negative venoms fails to recognize this molecule. Methods In this work, we used an antivenomics approach to assess the cross-reactivity of crotalic antivenom manufactured by IVB towards crotamine-negative venom and a mixture of crotamine-negative/crotamine-positive venoms. Results We show that the venom mixture containing 20% crotamine and 57% crotoxin produced a strong immunogenic response in horses. Antivenom raised against this venom mixture reacted with most venom components including crotamine and crotoxin, in contrast to the antivenom raised against crotamine-negative venom. Conclusions These results indicate that venomic databases and antivenomics analysis provide a useful approach for choosing the better venom mixture for antibody production and for the subsequent screening of antivenom cross-reactivity with relevant snake venom components.
Collapse
Affiliation(s)
- Ricardo Teixeira-Araújo
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brasil.,Departamento de Antígenos e Cultivo Celular, Instituto Vital Brazil, Niterói, RJ Brasil
| | - Patrícia Castanheira
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brasil
| | - Leonora Brazil-Más
- Departamento de Antígenos e Cultivo Celular, Instituto Vital Brazil, Niterói, RJ Brasil
| | - Francisco Pontes
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brasil.,Departamento de Antígenos e Cultivo Celular, Instituto Vital Brazil, Niterói, RJ Brasil
| | - Moema Leitão de Araújo
- Núcleo Regional de Ofiologia de Porto Alegre (NOPA), Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Avenida Dr. Salvador França, 1427, Porto Alegre, RS Brasil
| | - Maria Lucia Machado Alves
- Núcleo Regional de Ofiologia de Porto Alegre (NOPA), Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Avenida Dr. Salvador França, 1427, Porto Alegre, RS Brasil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brasil
| | - Carlos Correa-Netto
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brasil.,Departamento de Antígenos e Cultivo Celular, Instituto Vital Brazil, Niterói, RJ Brasil
| |
Collapse
|
71
|
Claunch NM, Holding ML, Escallón C, Vernasco B, Moore IT, Taylor EN. Good vibrations: Assessing the stability of snake venom composition after researcher-induced disturbance in the laboratory. Toxicon 2017; 133:127-135. [PMID: 28487160 DOI: 10.1016/j.toxicon.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 01/13/2023]
Abstract
Phenotypic plasticity contributes to intraspecific variation in traits of many animal species. Venom is an integral trait to the success and survival of many snake species, and potential plasticity in venom composition is important to account for in the context of basic research as well as in human medicine for treating the various symptoms of snakebite and producing effective anti-venoms. Researchers may unknowingly induce changes in venom variation by subjecting snakes to novel disturbances and potential stressors. We explored phenotypic plasticity in snake venom composition over time in captive Pacific rattlesnakes (Crotalus oreganus) exposed to vibration treatment, compared to an undisturbed control group. Venom composition did not change significantly in response to vibration, nor was there a detectable effect of overall time in captivity, even though snakes re-synthesized venom stores while subjected to novel disturbance in the laboratory. This result indicates that venom composition is a highly repeatable phenotype over short time spans and that the composition of venom within adult individuals may be resistant to or unaffected by researcher-induced disturbance. On the other hand, the change in venom composition, measured as movement along the first principle component of venom phenotype space, was associated with baseline corticosterone (CORT) levels in the snakes. While differential forms of researcher-induced disturbance may not affect venom composition, significant changes in baseline CORT, or chronic stress, may affect the venom phenotype, and further investigations will be necessary to assess the nature of the relationship between CORT and venom protein expression.
Collapse
Affiliation(s)
- Natalie M Claunch
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Matthew L Holding
- Department of Evolution, Ecology, and Evolutionary Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Camilo Escallón
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ben Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Emily N Taylor
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
72
|
Caro D, Ocampo Y, Castro J, Barrios L, Salas R, Franco LA. Protective effect of Dracontium dubium against Bothrops asper venom. Biomed Pharmacother 2017; 89:1105-1114. [DOI: 10.1016/j.biopha.2017.02.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 01/26/2023] Open
|
73
|
Sousa LF, Portes-Junior JA, Nicolau CA, Bernardoni JL, Nishiyama-Jr MY, Amazonas DR, Freitas-de-Sousa LA, Mourão RHV, Chalkidis HM, Valente RH, Moura-da-Silva AM. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon. J Proteomics 2017; 159:32-46. [DOI: 10.1016/j.jprot.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
|
74
|
Santos Barreto GNL, de Oliveira SS, dos Anjos IV, Chalkidis HDM, Mourão RHV, Moura-da-Silva AM, Sano-Martins IS, Gonçalves LRDC. Experimental Bothrops atrox envenomation: Efficacy of antivenom therapy and the combination of Bothrops antivenom with dexamethasone. PLoS Negl Trop Dis 2017; 11:e0005458. [PMID: 28306718 PMCID: PMC5371371 DOI: 10.1371/journal.pntd.0005458] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/29/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
Bothrops atrox snakes are the leading cause of snake bites in Northern Brazil. The venom of this snake is not included in the antigen pool used to obtain the Bothrops antivenom. There are discrepancies in reports on the effectiveness of this antivenom to treat victims bitten by B. atrox snakes. However, these studies were performed using a pre-incubation of the venom with the antivenom and, thus, did not simulate a true case of envenomation treatment. In addition, the local lesions induced by Bothrops venoms are not well resolved by antivenom therapy. Here, we investigated the efficacy of the Bothrops antivenom in treating the signs and symptoms caused by B. atrox venom in mice and evaluated whether the combination of dexamethasone and antivenom therapy enhanced the healing of local lesions induced by this envenomation. In animals that were administered the antivenom 10 minutes after the envenomation, we observed an important reduction of edema, dermonecrosis, and myonecrosis. When the antivenom was given 45 minutes after the envenomation, the edema and myonecrosis were reduced, and the fibrinogen levels and platelet counts were restored. The groups treated with the combination of antivenom and dexamethasone had an enhanced decrease in edema and a faster recovery of the damaged skeletal muscle. Our results show that Bothrops antivenom effectively treats the envenomation caused by Bothrops atrox and that the use of dexamethasone as an adjunct to the antivenom therapy could be useful to improve the treatment of local symptoms observed in envenomation caused by Bothrops snakes. Bothrops atrox is the dominant species responsible for accidental human snake bites in Northern Brazil. The efficacy of antivenom therapy to correct the systemic disturbances, including hemostatic disorders, caused by Brazilian Bothrops is well known. However, two fundamental issues need to be addressed in this region. (1) There are concerns regarding the effectiveness of the antivenom to treat Bothrops snake bites in this region since Bothrops atrox venom is not used as an antigen to obtain the Bothrops antivenom in Brazil, and (2) the efficacy of the antivenom therapy in reversing local injuries induced by Bothrops venoms is low. Thus, our study aimed to assess the effectiveness of antivenom therapy alone or in combination with dexamethasone to treat experimental envenomation induced by Bothrops atrox venom in mice. Our results showed that the Brazilian Bothrops antivenom effectively reversed the systemic disturbances caused by this envenomation and combining the antivenom therapy with dexamethasone accelerated the regression of inflammatory edema and the regeneration of skeletal muscle that was damaged by the venom.
Collapse
Affiliation(s)
| | | | | | - Hipocrates de Menezes Chalkidis
- Laboratório de Pesquisas Zoológicas, Faculdades Integradas do Tapajós/Faculdade da Amazônia (FIT/UNAMA), Santarém, Pará, Brazil
| | - Rosa Helena Veras Mourão
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | | | | | | |
Collapse
|
75
|
Venomics: integrative venom proteomics and beyond*. Biochem J 2017; 474:611-634. [DOI: 10.1042/bcj20160577] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023]
Abstract
Venoms are integrated phenotypes that evolved independently in, and are used for predatory and defensive purposes by, a wide phylogenetic range of organisms. The same principles that contribute to the evolutionary success of venoms, contribute to making the study of venoms of great interest in such diverse fields as evolutionary ecology and biotechnology. Evolution is profoundly contingent, and nature also reinvents itself continuosly. Changes in a complex phenotypic trait, such as venom, reflect the influences of prior evolutionary history, chance events, and selection. Reconstructing the natural history of venoms, particularly those of snakes, which will be dealt with in more detail in this review, requires the integration of different levels of knowledge into a meaningful and comprehensive evolutionary framework for separating stochastic changes from adaptive evolution. The application of omics technologies and other disciplines have contributed to a qualitative and quantitative advance in the road map towards this goal. In this review we will make a foray into the world of animal venoms, discuss synergies and complementarities of the different approaches used in their study, and identify current bottlenecks that prevent inferring the evolutionary mechanisms and ecological constraints that molded snake venoms to their present-day variability landscape.
Collapse
|
76
|
Pla D, Sanz L, Sasa M, Acevedo ME, Dwyer Q, Durban J, Pérez A, Rodriguez Y, Lomonte B, Calvete JJ. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J Proteomics 2016; 152:1-12. [PMID: 27777178 DOI: 10.1016/j.jprot.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 01/17/2023]
Abstract
Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA2s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP-rich venom, whereas in B. schlegelii the age-dependent compositional shift generates a PLA2-rich venom. Overall, genus-wide venomics illustrate the high evolvability of palm-pitviper venoms. The integration of the pattern of venom variation across Bothriechis into a phylogenetic and biogeographic framework may lay the foundation for assessing, in future studies, the evolutionary path that led to the present-day variability of the venoms of palm-pitvipers. SIGNIFICANCE Bothriechis represents a monophyletic basal genus of eleven arboreal palm-pitvipers that range from southern Mexico to northern South America. Despite palm-pitvipers' putative status as diet generalists, previous proteomic analyses have revealed remarkable divergence between the venoms of Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. Our current proteomic study of Guatemalan species, B. thalassinus, B. aurifer, and B. bicolor, Honduran B. marchi, and neonate B. lateralis and B. schlegelii from Costa Rica was undertaken to deepen our understanding of the evolutionary pattern of venom proteome diversity across Bothriechis. Ancestral characters are often, but not always, preserved in an organism's development. Venoms of neonate B. lateralis and B. schlegelii are more similar to each other than to adults of their respective species, suggesting that the high evolvability of palm-pitviper venoms may represent an inherent feature of Bothriechis common ancestor. Our genus-wide data identified four nodes of venom phenotype differentiation across the phylogeny of Bothriechis. Integrated into a phylogenetic and biogeographic framework, the pattern of venom variation across Bothriechis may lay the groundwork to establish whether divergence was driven by selection for efficient resource exploitation in arboreal 'islands', thereby contributing to the ecological speciation of the genus.
Collapse
Affiliation(s)
- Davinia Pla
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Libia Sanz
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Manuel E Acevedo
- Centro de Estudios Conservacionistas, Centro de Datos para la Conservacion, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala
| | - Quetzal Dwyer
- Parque Reptilandia, Platanillo between Dominical & San Isidro, 8000 Dominical, Puntarenas, Costa Rica
| | - Jordi Durban
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Alicia Pérez
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Yania Rodriguez
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|
77
|
Picanço LCDS, Bittencourt JAHM, Henriques SVC, da Silva JS, Oliveira JMDS, Ribeiro JR, Sanjay AB, Carvalho JCT, Stien D, Silva JOD. Pharmacological activity of Costus spicatus in experimental Bothrops atrox envenomation. PHARMACEUTICAL BIOLOGY 2016; 54:2103-2110. [PMID: 27306958 DOI: 10.3109/13880209.2016.1145703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
CONTEXT Medicinal plants encompass a rich source of active compounds that can neutralize snake venoms or toxins. Costus spicatus (Jacq.) Sw. (Costaceae) is used by the Amazonian population to treat inflammation, pain and other pathological manifestations. OBJECTIVE To evaluate the influence of C. spicatus aqueous extract on edema, peritonitis, nociception, coagulation, haemorrhage and indirect haemolytic activity induced by Bothrops atrox venom (BAV). MATERIALS AND METHODS Dried and pulverized leaves were extracted with distilled water. Envenoming was induced by administration of B. atrox snake venom in Swiss Webster mice. The experimental groups consisted of BAV (at the minimum dose to induce measurable biological responses) and C. spicatus extract (CSE, 1.25, 2.5, 5.0, 7.5 and 10 mg/kg/25 μl phosphate-buffered saline) administered individually and in combination (BAVCSE). PBS was used as a control. In vitro assays were also conducted in order to evaluate phospholipase A2 coagulant activities (indirect haemolytic method). RESULTS CSE significantly reduced the venom-induced edema and nociception at all concentrations tested and inhibited migration of inflammatory cells at the three least concentrations (5.0, 7.5 and 10 mg/kg/25 μl PBS). CSE was not effective in inhibiting coagulant, haemorrhagic and indirect haemolytic activities of the venom. DISCUSSION AND CONCLUSION The data suggest that CSE could exhibit a central mechanism for pain inhibition, and may also inhibit prostaglandin synthesis. These findings corroborate the traditional administration of C. spicatus decoction to treat inflammatory disorders, including those caused by B. atrox envenomation.
Collapse
Affiliation(s)
| | | | | | - Juliane Silva da Silva
- a Toxicology Laboratory, Pharmaceutical Science Course , Federal University of Amapá , Macapa , Brazil
| | | | | | - Antony-Babu Sanjay
- c Department of Food Science and Technology , University of Nebraska-Lincoln , Lincoln , NE , USA
| | | | - Didier Stien
- e Laboratoire De Biodiversité Et Biotechnologies Microbiennes, Observatoire Océanologique , Sorbonne Universités, UPMC Univ Paris 06, CNRS , Banyuls-sur-Mer , France
| | | |
Collapse
|
78
|
Sintiprungrat K, Chaisuriya P, Watcharatanyatip K, Ratanabanangkoon K. Immunoaffinity chromatography in antivenomics studies: Various parameters that can affect the results. Toxicon 2016; 119:129-39. [DOI: 10.1016/j.toxicon.2016.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/22/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
|
79
|
Margres MJ, Walls R, Suntravat M, Lucena S, Sánchez EE, Rokyta DR. Functional characterizations of venom phenotypes in the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for expression-driven divergence in toxic activities among populations. Toxicon 2016; 119:28-38. [PMID: 27179420 DOI: 10.1016/j.toxicon.2016.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 01/12/2023]
Abstract
Phenotypes frequently vary across and within species. The connection between specific phenotypic effects and function, however, is less understood despite being essential to our understanding of the adaptive process. Snake venoms are ideal for identifying functionally important phenotypic variation because venom variation is common, and venoms can be functionally characterized through simple assays and toxicity measurements. Previous work with the eastern diamondback rattlesnake (Crotalus adamanteus) used multivariate statistical approaches to identify six unique venom phenotypes. We functionally characterized hemolytic, gelatinase, fibrinogenolytic, and coagulant activity for all six phenotypes, as well as one additional venom, to determine if the statistically significant differences in toxin expression levels previously documented corresponded to differences in venom activity. In general, statistical differences in toxin expression predicted the identified functional differences, or lack thereof, in toxic activity, demonstrating that the statistical approach used to characterize C. adamanteus venoms was a fair representation of biologically meaningful differences. Minor differences in activity not accounted for by the statistical model may be the result of amino-acid differences and/or post-translational modifications, but overall we were able to link variation in protein expression levels to variation in function as predicted by multivariate statistical approaches.
Collapse
Affiliation(s)
- Mark J Margres
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Robert Walls
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Sara Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA; Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
80
|
Moreira V, Teixeira C, Borges da Silva H, D'Império Lima MR, Dos-Santos MC. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon 2016; 118:121-8. [PMID: 27109323 DOI: 10.1016/j.toxicon.2016.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 01/04/2023]
Abstract
Envenomation by snakes of the species Bothrops atrox induces local and systemic effects. Local effects include drastic tissue damage and a marked inflammatory response as a result of the synthesis and release of a variety of protein and lipid mediators. Toll-like receptor (TLR) signaling pathways can play an important role in this response, leading to synthesis of these inflammatory mediators. This study investigated the influence of TLR2 on the acute inflammatory response induced by Bothrops atrox venom. Wild-type C57BL/6 mice (WT) and TLR2 gene knockout mice (TLR2(-/-)) were injected with Bothrops atrox venom (BaV), and the following responses to the venom were assessed in peritoneal exudate: leukocyte accumulation; release of mediators, including CCL-2, IL-10, IL-1β, IL-6 and LTB4; protein expression of COX-1 and COX-2; and quantification of their products PGE2 and TXA2. After injection with BaV, the TLR2(-/-) mice (TLR2(-/-)BaV) had higher levels of IL-6 and CCL-2 than WT animals kept under the same conditions (WTBaV), together with an accumulation of polymorphonuclear leukocytes (PMNs), inhibition of IL-1β and LTB4 and reduced mononuclear leukocyte influx. However, no significant differences in COX-2 protein expression or PGE2, TXA2 and IL-10 production between the TLR2(-/-)BaV and WTBav animals were observed. Together, these results indicate that the signaling pathway activated by TLR2 acts by modulating the induced inflammatory response to BaV through the direct action of venom-associated molecular patterns (VAMPs) or indirectly by forming damage-associated molecular patterns (DAMPs) and that this may have important therapeutic implications.
Collapse
Affiliation(s)
- Vanessa Moreira
- Pharmacology Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | | | - Henrique Borges da Silva
- Immunology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Maria Cristina Dos-Santos
- Immunochemistry Laboratory, Parasitology Department, Institute of Biological Sciences, Federal University of Amazonas, Manaus, AM, Brazil.
| |
Collapse
|
81
|
Santoro ML, do Carmo T, Cunha BHL, Alves AF, Zelanis A, Serrano SMDT, Grego KF, Sant’Anna SS, Barbaro KC, Fernandes W. Ontogenetic Variation in Biological Activities of Venoms from Hybrids between Bothrops erythromelas and Bothrops neuwiedi Snakes. PLoS One 2015; 10:e0145516. [PMID: 26714190 PMCID: PMC4699835 DOI: 10.1371/journal.pone.0145516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/05/2015] [Indexed: 12/29/2022] Open
Abstract
Lance-headed snakes are found in Central and South America, and they account for most snakebites in Brazil. The phylogeny of South American pitvipers has been reviewed, and the presence of natural and non-natural hybrids between different species of Bothrops snakes demonstrates that reproductive isolation of several species is still incomplete. The present study aimed to analyze the biological features, particularly the thrombin-like activity, of venoms from hybrids born in captivity, from the mating of a female Bothrops erythromelas and a male Bothrops neuwiedi, two species whose venoms are known to display ontogenetic variation. Proteolytic activity on azocoll and amidolytic activity on N-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA) were lowest when hybrids were 3 months old, and increased over body growth, reaching values similar to those of the father when hybrids were 12 months old. The clotting activity on plasma diminished as hybrids grew; venoms from 3- and 6-months old hybrids showed low clotting activity on fibrinogen (i.e., thrombin-like activity), like the mother venom, and such activity was detected only when hybrids were older than 1 year of age. Altogether, these results point out that venom features in hybrid snakes are genetically controlled during the ontogenetic development. Despite the presence of the thrombin-like enzyme gene(s) in hybrid snakes, they are silenced during the first six months of life.
Collapse
Affiliation(s)
| | - Thaís do Carmo
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo-SP, Brazil
| | | | | | - André Zelanis
- Laboratório Especial de Toxinologia Aplicada and Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo-SP, Brazil
| | - Solange Maria de Toledo Serrano
- Laboratório Especial de Toxinologia Aplicada and Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo-SP, Brazil
| | | | | | | | - Wilson Fernandes
- Laboratório de Herpetologia, Instituto Butantan, São Paulo-SP, Brazil
| |
Collapse
|
82
|
Snake Venomics and Antivenomics of Bothrops diporus, a Medically Important Pitviper in Northeastern Argentina. Toxins (Basel) 2015; 8:toxins8010009. [PMID: 26712790 PMCID: PMC4728531 DOI: 10.3390/toxins8010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
Snake species within genus Bothrops are responsible for more than 80% of the snakebites occurring in South America. The species that cause most envenomings in Argentina, B. diporus, is widely distributed throughout the country, but principally found in the Northeast, the region with the highest rates of snakebites. The venom proteome of this medically relevant snake was unveiled using a venomic approach. It comprises toxins belonging to fourteen protein families, being dominated by PI- and PIII-SVMPs, PLA2 molecules, BPP-like peptides, L-amino acid oxidase and serine proteinases. This toxin profile largely explains the characteristic pathophysiological effects of bothropic snakebites observed in patients envenomed by B. diporus. Antivenomic analysis of the SAB antivenom (Instituto Vital Brazil) against the venom of B. diporus showed that this pentabothropic antivenom efficiently recognized all the venom proteins and exhibited poor affinity towards the small peptide (BPPs and tripeptide inhibitors of PIII-SVMPs) components of the venom.
Collapse
|
83
|
Sanchez EF, Richardson M, Gremski LH, Veiga SS, Yarleque A, Niland S, Lima AM, Estevao-Costa MI, Eble JA. A novel fibrinolytic metalloproteinase, barnettlysin-I from Bothrops barnetti (Barnett´s pitviper) snake venom with anti-platelet properties. Biochim Biophys Acta Gen Subj 2015; 1860:542-56. [PMID: 26723171 DOI: 10.1016/j.bbagen.2015.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Viperid snake venoms contain active components that interfere with hemostasis. We report a new P-I class snake venom metalloproteinase (SVMP), barnettlysin-I (Bar-I), isolated from the venom of Bothrops barnetti and evaluated its fibrinolytic and antithrombotic potential. METHODS Bar-I was purified using a combination of molecular exclusion and cation-exchange chromatographies. We describe some biochemical features of Bar-I associated with its effects on hemostasis and platelet function. RESULTS Bar-I is a 23.386 kDa single-chain polypeptide with pI of 6.7. Its sequence (202 residues) shows high homology to other members of the SVMPs. The enzymatic activity on dimethylcasein (DMC) is inhibited by metalloproteinase inhibitors e.g. EDTA, and by α2-macroglobulin. Bar-I degrades fibrin and fibrinogen dose- and time-dependently by cleaving their α-chains. Furthermore, it hydrolyses plasma fibronectin but not laminin nor collagen type I. In vitro Bar-I dissolves fibrin clots made either from purified fibrinogen or from whole blood. In contrast to many other P-I SVMPs, Bar-I is devoid of hemorrhagic activity. Also, Bar-I dose- and time-dependently inhibits aggregation of washed human platelets induced by vWF plus ristocetin and collagen (IC50=1.3 and 3.2 μM, respectively), presumably Bar-I cleaves both vWF and GPIb. Thus, it effectively inhibits vWF-induced platelet aggregation. Moreover, this proteinase cleaves the collagen-binding α2-A domain (160 kDa) of α2β1-integrin. This explains why it additionally inhibits collagen-induced platelet activation. CONCLUSION A non-hemorrhagic but fibrinolytic metalloproteinase dissolves fibrin clots in vitro and impairs platelet function. GENERAL SIGNIFICANCE This study provides new opportunities for drug development of a fibrinolytic agent with antithrombotic effect.
Collapse
Affiliation(s)
- Eladio Flores Sanchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil; Faculty of Biological Sciences, Nacional University of San Marcos, Lima-Peru.
| | - Michael Richardson
- Research and Development Center, Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil
| | | | | | - Armando Yarleque
- Faculty of Biological Sciences, Nacional University of San Marcos, Lima-Peru
| | - Stephan Niland
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | - Augusto Martins Lima
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | - Maria Inácia Estevao-Costa
- Research and Development Center, Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | - Johannes Andreas Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| |
Collapse
|
84
|
de Souza RA, Díaz N, Nagem RAP, Ferreira RS, Suárez D. Unraveling the distinctive features of hemorrhagic and non-hemorrhagic snake venom metalloproteinases using molecular simulations. J Comput Aided Mol Des 2015; 30:69-83. [PMID: 26676823 DOI: 10.1007/s10822-015-9889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/13/2015] [Indexed: 11/26/2022]
Abstract
Snake venom metalloproteinases are important toxins that play fundamental roles during envenomation. They share a structurally similar catalytic domain, but with diverse hemorrhagic capabilities. To understand the structural basis for this difference, we build and compare two dynamical models, one for the hemorrhagic atroxlysin-I from Bothrops atrox and the other for the non-hemorraghic leucurolysin-a from Bothrops leucurus. The analysis of the extended molecular dynamics simulations shows some changes in the local structure, flexibility and surface determinants that can contribute to explain the different hemorrhagic activity of the two enzymes. In agreement with previous results, the long Ω-loop (from residue 149 to 177) has a larger mobility in the hemorrhagic protein. In addition, we find some potentially-relevant differences at the base of the S1' pocket, what may be interesting for the structure-based design of new anti-venom agents. However, the sharpest differences in the computational models of atroxlysin-I and leucurolysin-a are observed in the surface electrostatic potential around the active site region, suggesting thus that the hemorrhagic versus non-hemorrhagic activity is probably determined by protein surface determinants.
Collapse
Affiliation(s)
- Raoni Almeida de Souza
- Depto de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, 3010-010, Brazil
| | - Natalia Díaz
- C/ Julián Clavería 8. Dpto. de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain
| | - Ronaldo Alves Pinto Nagem
- Avenida Antônio Carlos 6627, Depto. de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rafaela Salgado Ferreira
- Avenida Antônio Carlos 6627, Depto. de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Dimas Suárez
- C/ Julián Clavería 8. Dpto. de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
85
|
Freitas-de-Sousa L, Amazonas D, Sousa L, Sant'Anna S, Nishiyama M, Serrano S, Junqueira-de-Azevedo I, Chalkidis H, Moura-da-Silva A, Mourão R. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species. Biochimie 2015; 118:60-70. [DOI: 10.1016/j.biochi.2015.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
86
|
Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms. G3-GENES GENOMES GENETICS 2015; 5:2375-82. [PMID: 26358130 PMCID: PMC4632057 DOI: 10.1534/g3.115.020578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein expression is a major link in the genotype–phenotype relationship, and processes affecting protein abundances, such as rates of transcription and translation, could contribute to phenotypic evolution if they generate heritable variation. Recent work has suggested that mRNA abundances do not accurately predict final protein abundances, which would imply that post-transcriptional regulatory processes contribute significantly to phenotypes. Post-transcriptional processes also appear to buffer changes in transcriptional patterns as species diverge, suggesting that the transcriptional changes have little or no effect on the phenotypes undergoing study. We tested for concordance between mRNA and protein expression levels in snake venoms by means of mRNA-seq and quantitative mass spectrometry for 11 snakes representing 10 species, six genera, and three families. In contrast to most previous work, we found high correlations between venom gland transcriptomes and venom proteomes for 10 of our 11 comparisons. We tested for protein-level buffering of transcriptional changes during species divergence by comparing the difference between transcript abundance and protein abundance for three pairs of species and one intraspecific pair. We found no evidence for buffering during divergence of our three species pairs but did find evidence for protein-level buffering for our single intraspecific comparison, suggesting that buffering, if present, was a transient phenomenon in venom divergence. Our results demonstrated that post-transcriptional mechanisms did not contribute significantly to phenotypic evolution in venoms and suggest a more prominent and direct role for cis-regulatory evolution in phenotypic variation, particularly for snake venoms.
Collapse
|
87
|
Menaldo DL, Jacob-Ferreira AL, Bernardes CP, Cintra ACO, Sampaio SV. Purification procedure for the isolation of a P-I metalloprotease and an acidic phospholipase A2 from Bothrops atrox snake venom. J Venom Anim Toxins Incl Trop Dis 2015; 21:28. [PMID: 26273288 PMCID: PMC4535780 DOI: 10.1186/s40409-015-0027-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Snake venoms are complex mixtures of inorganic and organic components, mainly proteins and peptides. Standardization of methods for isolating bioactive molecules from snake venoms is extremely difficult due to the complex and highly variable composition of venoms, which can be influenced by factors such as age and geographic location of the specimen. Therefore, this study aimed to standardize a simple purification methodology for obtaining a P-I class metalloprotease (MP) and an acidic phospholipase A2 (PLA2) from Bothrops atrox venom, and biochemically characterize these molecules to enable future functional studies. Methods To obtain the toxins of interest, a method has been standardized using consecutive isolation steps. The purity level of the molecules was confirmed by RP-HPLC and SDS-PAGE. The enzymes were characterized by determining their molecular masses, isoelectric points, specific functional activity and partial amino acid sequencing. Results The metalloprotease presented molecular mass of 22.9 kDa and pI 7.4, with hemorrhagic and fibrin(ogen)olytic activities, and its partial amino acid sequence revealed high similarity with other P-I class metalloproteases. These results suggest that the isolated metalloprotease is Batroxase, a P-I metalloprotease previously described by our research group. The phospholipase A2 showed molecular mass of 13.7 kDa and pI 6.5, with high phospholipase activity and similarity to other acidic PLA2s from snake venoms. These data suggest that the acidic PLA2 is a novel enzyme from B. atrox venom, being denominated BatroxPLA2. Conclusions The present study successfully standardized a simple methodology to isolate the metalloprotease Batroxase and the acidic PLA2 BatroxPLA2 from the venom of B. atrox, consisting mainly of classical chromatographic processes. These two enzymes will be used in future studies to evaluate their effects on the complement system and the inflammatory process, in addition to the thrombolytic potential of the metalloprotease.
Collapse
Affiliation(s)
- Danilo L Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Anna L Jacob-Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Carolina P Bernardes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| |
Collapse
|
88
|
Margres MJ, Wray KP, Seavy M, McGivern JJ, Sanader D, Rokyta DR. Phenotypic integration in the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus). Mol Ecol 2015; 24:3405-20. [PMID: 25988233 DOI: 10.1111/mec.13240] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 01/29/2023]
Abstract
Selection can vary geographically across environments and temporally over the lifetime of an individual. Unlike geographic contexts, where different selective regimes can act on different alleles, age-specific selection is constrained to act on the same genome by altering age-specific expression. Snake venoms are exceptional traits for studying ontogeny because toxin expression variation directly changes the phenotype; relative amounts of venom components determine, in part, venom efficacy. Phenotypic integration is the dependent relationship between different traits that collectively produce a complex phenotype and, in venomous snakes, may include traits as diverse as venom, head shape and fang length. We examined the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus) across environments and over the lifetime of individuals and used a genotype-phenotype map approach, protein expression data and morphological data to demonstrate that: (i) ontogenetic effects explained more of the variation in toxin expression variation than geographic effects, (ii) both juveniles and adults varied geographically, (iii) toxin expression variation was a result of directional selection and (iv) different venom phenotypes covaried with morphological traits also associated with feeding in temporal (ontogenetic) and geographic (functional) contexts. These data are the first to demonstrate, to our knowledge, phenotypic integration between multiple morphological characters and a biochemical phenotype across populations and age classes. We identified copy number variation as the mechanism driving the difference in the venom phenotype associated with these morphological differences, and the parallel mitochondrial, venom and morphological divergence between northern and southern clades suggests that each clade may warrant classification as a separate evolutionarily significant unit.
Collapse
Affiliation(s)
- Mark J Margres
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - Kenneth P Wray
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - Margaret Seavy
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - James J McGivern
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - Dragana Sanader
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| |
Collapse
|
89
|
Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®. J Proteomics 2015; 121:28-43. [DOI: 10.1016/j.jprot.2015.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 11/22/2022]
|
90
|
Mathé-Hubert H, Gatti JL, Colinet D, Poirié M, Malausa T. Statistical analysis of the individual variability of 1D protein profiles as a tool in ecology: an application to parasitoid venom. Mol Ecol Resour 2015; 15:1120-32. [PMID: 25691098 DOI: 10.1111/1755-0998.12389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 02/03/2023]
Abstract
Understanding the forces that shape eco-evolutionary patterns often requires linking phenotypes to genotypes, allowing characterization of these patterns at the molecular level. DNA-based markers are less informative in this aim compared to markers associated with gene expression and, more specifically, with protein quantities. The characterization of eco-evolutionary patterns also usually requires the analysis of large sample sizes to accurately estimate interindividual variability. However, the methods used to characterize and compare protein samples are generally expensive and time-consuming, which constrains the size of the produced data sets to few individuals. We present here a method that estimates the interindividual variability of protein quantities based on a global, semi-automatic analysis of 1D electrophoretic profiles, opening the way to rapid analysis and comparison of hundreds of individuals. The main original features of the method are the in silico normalization of sample protein quantities using pictures of electrophoresis gels at different staining levels, as well as a new method of analysis of electrophoretic profiles based on a median profile. We demonstrate that this method can accurately discriminate between species and between geographically distant or close populations, based on interindividual variation in venom protein profiles from three endoparasitoid wasps of two different genera (Psyttalia concolor, Psyttalia lounsburyi and Leptopilina boulardi). Finally, we discuss the experimental designs that would benefit from the use of this method.
Collapse
Affiliation(s)
- H Mathé-Hubert
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - J-L Gatti
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - D Colinet
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - M Poirié
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - T Malausa
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| |
Collapse
|
91
|
Yang ZM, Guo Q, Ma ZR, Chen Y, Wang ZZ, Wang XM, Wang YM, Tsai IH. Structures and functions of crotoxin-like heterodimers and acidic phospholipases A2 from Gloydius intermedius venom: Insights into the origin of neurotoxic-type rattlesnakes. J Proteomics 2015; 112:210-23. [DOI: 10.1016/j.jprot.2014.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 01/15/2023]
|
92
|
Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines. Cytotechnology 2014; 68:687-700. [PMID: 25407733 DOI: 10.1007/s10616-014-9820-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022] Open
Abstract
Snake venoms are mixtures of bioactive proteins and peptides that exhibit diverse biochemical activities. This wide array of pharmacologies associated with snake venoms has made them attractive sources for research into potentially novel therapeutics, and several venom-derived drugs are now in use. In the current study we performed a broad screen of a variety of venoms (61 taxa) from the major venomous snake families (Viperidae, Elapidae and "Colubridae") in order to examine cytotoxic effects toward MCF-7 breast cancer cells and A-375 melanoma cells. MTT cell viability assays of cancer cells incubated with crude venoms revealed that most venoms showed significant cytotoxicity. We further investigated venom from the Red-bellied Blacksnake (Pseudechis porphyriacus); venom was fractionated by ion exchange fast protein liquid chromatography and several cytotoxic components were isolated. SDS-PAGE and MALDI-TOF mass spectrometry were used to identify the compounds in this venom responsible for the cytotoxic effects. In general, viper venoms were potently cytotoxic, with MCF-7 cells showing greater sensitivity, while elapid and colubrid venoms were much less toxic; notable exceptions included the elapid genera Micrurus, Naja and Pseudechis, which were quite cytotoxic to both cell lines. However, venoms with the most potent cytotoxicity were often not those with low mouse LD50s, including some dangerously venomous viperids and Australian elapids. This study confirmed that many venoms contain cytotoxic compounds, including catalytic PLA2s, and several venoms also showed significant differential toxicity toward the two cancer cell lines. Our results indicate that several previously uncharacterized venoms could contain promising lead compounds for drug development.
Collapse
|
93
|
Salazar-Valenzuela D, Mora-Obando D, Fernández ML, Loaiza-Lange A, Gibbs HL, Lomonte B. Proteomic and toxicological profiling of the venom of Bothrocophias campbelli, a pitviper species from Ecuador and Colombia. Toxicon 2014; 90:15-25. [DOI: 10.1016/j.toxicon.2014.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022]
|
94
|
Laines J, Segura Á, Villalta M, Herrera M, Vargas M, Alvarez G, Gutiérrez JM, León G. Toxicity of Bothrops sp snake venoms from Ecuador and preclinical assessment of the neutralizing efficacy of a polyspecific antivenom from Costa Rica. Toxicon 2014; 88:34-7. [DOI: 10.1016/j.toxicon.2014.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
|
95
|
Schneider FS, Nguyen DL, Castro KL, Cobo S, Machado de Avila RA, Ferreira NDA, Sanchez EF, Nguyen C, Granier C, Galéa P, Chávez-Olortegui C, Molina F. Use of a synthetic biosensor for neutralizing activity-biased selection of monoclonal antibodies against atroxlysin-I, an hemorrhagic metalloproteinase from Bothrops atrox snake venom. PLoS Negl Trop Dis 2014; 8:e2826. [PMID: 24762927 PMCID: PMC3998924 DOI: 10.1371/journal.pntd.0002826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/13/2014] [Indexed: 11/20/2022] Open
Abstract
Background The snake Bothrops atrox is responsible for the majority of envenomings in the northern region of South America. Severe local effects, including hemorrhage, which are mainly caused by snake venom metalloproteinases (SVMPs), are not fully neutralized by conventional serum therapy. Little is known about the immunochemistry of the P-I SVMPs since few monoclonal antibodies (mAbs) against these molecules have been obtained. In addition, producing toxin-neutralizing mAbs remains very challenging. Methodology/Principal Findings Here, we report on the set-up of a functional screening based on a synthetic peptide used as a biosensor to select neutralizing mAbs against SVMPs and the successful production of neutralizing mAbs against Atroxlysin-I (Atr-I), a P-I SVMP from B. atrox. Hybridomas producing supernatants with inhibitory effect against the proteolytic activity of Atr-I towards the FRET peptide Abz-LVEALYQ-EDDnp were selected. Six IgG1 Mabs were obtained (named mAbatr1 to mAbatr6) and also two IgM. mAbatrs1, 2, 3 and 6 were purified. All showed a high specific reactivity, recognizing only Atr-I and B. atrox venom in ELISA and a high affinity, showing equilibrium constants in the nM range for Atr-I. These mAbatrs were not able to bind to Atr-I overlapping peptides, suggesting that they recognize conformational epitopes. Conclusions/Significance For the first time a functional screening based on a synthetic biosensor was successfully used for the selection of neutralizing mAbs against SVMPs. In this work, we propose a new screening strategy to produce monoclonal antibodies against Atr-I, a P-I class SVMP from Bothrops atrox, which is the snake responsible for the majority of the accidents in South America. SVMPs are the main toxic factors in Bothrops venom causing systemic and local hemorrhage, which may evolve to inflammation and/or necrosis. Since the toxic effects of SVMPs are related to their proteolytic activity, we have produced a peptide which was used as a biosensor for Atr-I hydrolysis. Hydrolysis of this substrate was monitored and the clones possessing inhibitory activity against the proteolytic activity of Atr-I upon the peptide were selected. Using our new approach, we have obtained four monoclonal antibodies highly specific and with neutralizing capacity against the hemorrhagic activity of either Atr-I alone or Bothrops atrox whole venom. To the best of the authors' knowledge, this is the first time where a functional screening is used for the selection of neutralizing mAbs against SVMPs. It is also the first description of mAbs anti-Atr-I, with inhibitory potential against its toxic activities which may be useful for diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Francisco Santos Schneider
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | - Karen Larissa Castro
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Sandra Cobo
- SysDiag, UMR3145,CNRS/BioRad, Montpellier, France
| | - Ricardo Andrez Machado de Avila
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Nivia de Assis Ferreira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Eladio Flores Sanchez
- Departamento de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Brasil
| | | | | | | | - Carlos Chávez-Olortegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- * E-mail:
| | | |
Collapse
|
96
|
Gutiérrez JM, Lomonte B, Sanz L, Calvete JJ, Pla D. Immunological profile of antivenoms: preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. J Proteomics 2014; 105:340-50. [PMID: 24583507 DOI: 10.1016/j.jprot.2014.02.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 11/20/2022]
Abstract
UNLABELLED Parenteral administration of animal-derived antivenoms constitutes the mainstay in the treatment of snakebite envenomings. Despite the fact that this therapy has been available for over a century, the detailed understanding of the neutralizing and immunoreactivity profiles of the majority of antivenoms is pending. Currently, a combination of preclinical neutralization tests and 'antivenomics', i.e. a proteomic-based assessment of antivenom immunoreactivity, provides a powerful analytical platform to investigate the preclinical efficacy of antivenoms. In this review, the studies performed on the polyvalent antivenom manufactured by Instituto Clodomiro Picado, Costa Rica, are summarized. This antivenom is prepared by immunizing horses with a mixture of the venoms of Bothrops asper, Crotalus simus and Lachesis stenophrys, and is used in Central America for the treatment of envenomings by viperid species. Overall, the antivenom shows a widespread pattern of immunological reactivity against homologous and heterologous venoms, which correlates with its ability to neutralize lethal, hemorrhagic, myotoxic, coagulant, defibrinogenating, phospholipase A2 and proteinase activities of viperid venoms. At the same time, antivenomics detected several venom components against which the antivenom shows only partial or negligible immunorecognition, such as low molecular mass vasoactive peptides, disintegrins, and some phospholipases A2, P-I metalloproteinases and serine proteinases. Such information can be used to design strategies for enhancing the antibody response of horses against poorly immunogenic, toxicologically-relevant venom components in order to further improve the efficacy of this antivenom. BIOLOGICAL SIGNIFICANCE The timely parenteral administration of an appropriate antivenom remains, more than a century after the development of the first serum antivenimeux by Calmette and Phisalix and Bertrand, the only currently effective treatment for snakebite envenomings. A key technical issue in the generation of novel antivenoms is the design of optimized immunization venom mixtures that ensure that the resulting antidotes will be effective against the highest number of venoms from snakes of medical concern across the geographical range where they will be used. Antivenomics is a proteomics-based protocol developed to complement in vitro and in vivo standard preclinical tests in the qualitative and quantitative characterization of the immunological profile and the extent of cross-reactivity of antivenoms against homologous and heterologous venoms. Antivenomics is translational venomics. The combination of antivenomics and neutralization assays represents a powerful analytical platform to investigate the efficacy of antivenoms at the molecular and preclinical levels. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Spain
| | | | - Davinia Pla
- Instituto de Biomedicina de Valencia, CSIC, Spain.
| |
Collapse
|
97
|
Gao JF, Wang J, He Y, Qu YF, Lin LH, Ma XM, Ji X. Proteomic and biochemical analyses of short-tailed pit viper (Gloydius brevicaudus) venom: age-related variation and composition-activity correlation. J Proteomics 2014; 105:307-22. [PMID: 24487038 DOI: 10.1016/j.jprot.2014.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/11/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED We conducted an in-depth analysis of the proteomic and biochemical profiles of the venom of neonate and adult short-tailed pit vipers (Gloydius brevicaudus). Identified proteins were assigned to a few main toxin families. Disintegrin, phospholipase A2 (PLA2), serine proteinase, cysteine-rich secretory protein, C-type lectin-like protein, l-amino acid oxidase and snake venom metalloproteinase (SVMP) were detected in both venoms, while 5'-nucleotidase was detected only in the adult venom. SVMP was the predominant protein family in both venoms (neonate: 65.7%; adult: 64.4%), followed by PLA2 (neonate: 13.4%; adult: 25.0%). Antivenomic analysis revealed that commercial G. brevicaudus antivenom almost neutralized the chromatographic peaks with medium and high molecular masses in both venoms, but did not completely recognize peaks with low molecular mass. Toxicological and enzymatic activities show remarkable age-related variation in G. brevicaudus venom, probably resulting from variation in venom composition. Our data demonstrate age-related variation across venomics, antivenomics and biochemical profiles of G. brevicaudus venom, and have implications for the management of G. brevicaudus bites, including improving antivenom preparation by combining both venoms. BIOLOGICAL SIGNIFICANCE This study investigates the composition and biochemical activity of neonate and adult Gloydius brevicaudus venoms. We found remarkable age-related variation in venom biological activity, likely the result of variation in venom composition. Antivenomics analysis was used to explore difference in neonate and adult G. brevicaudus venoms. Our findings have implications for the diagnosis and clinical management of G. brevicaudus bites, and the design of venom mixtures that will increase the efficacy of commercial antivenom. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Jian-Fang Gao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Jin Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China
| | - Ying He
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiao-Mei Ma
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| |
Collapse
|
98
|
Fernández Culma M, Andrés Pereañez J, Núñez Rangel V, Lomonte B. Snake venomics of Bothrops punctatus, a semiarboreal pitviper species from Antioquia, Colombia. PeerJ 2014; 2:e246. [PMID: 24498576 PMCID: PMC3912449 DOI: 10.7717/peerj.246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/27/2013] [Indexed: 01/16/2023] Open
Abstract
Bothrops punctatus is an endangered, semi-arboreal pitviper species distributed in Panamá, Colombia, and Ecuador, whose venom is poorly characterized. In the present work, the protein composition of this venom was profiled using the ‘snake venomics’ analytical strategy. Decomplexation of the crude venom by RP-HPLC and SDS-PAGE, followed by tandem mass spectrometry of tryptic digests, showed that it consists of proteins assigned to at least nine snake toxin families. Metalloproteinases are predominant in this secretion (41.5% of the total proteins), followed by C-type lectin/lectin-like proteins (16.7%), bradykinin-potentiating peptides (10.7%), phospholipases A2 (93%), serine proteinases (5.4%), disintegrins (38%), L-amino acid oxidases (3.1%), vascular endothelial growth factors (17%), and cysteine-rich secretory proteins (1.2%). Altogether, 6.6% of the proteins were not identified. In vitro, the venom exhibited proteolytic, phospholipase A2, and L-amino acid oxidase activities, as well as angiotensin-converting enzyme (ACE)-inhibitory activity, in agreement with the obtained proteomic profile. Cytotoxic activity on murine C2C12 myoblasts was negative, suggesting that the majority of venom phospholipases A2 likely belong to the acidic type, which often lack major toxic effects. The protein composition of B. punctatus venom shows a good correlation with toxic activities here and previously reported, and adds further data in support of the wide diversity of strategies that have evolved in snake venoms to subdue prey, as increasingly being revealed by proteomic analyses.
Collapse
Affiliation(s)
| | - Jaime Andrés Pereañez
- Programa de Ofidismo/Escorpionismo , Universidad de Antioquia UdeA , Medellín , Colombia ; Facultad de Química Farmacéutica , Universidad de Antioquia UdeA , Medellín , Colombia
| | - Vitelbina Núñez Rangel
- Programa de Ofidismo/Escorpionismo , Universidad de Antioquia UdeA , Medellín , Colombia ; Escuela de Microbiología , Universidad de Antioquia UdeA , Medellín , Colombia
| | - Bruno Lomonte
- Instituto Clodomiro Picado , Facultad de Microbiología , Universidad de Costa Rica , San José , Costa Rica
| |
Collapse
|
99
|
Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics 2014; 8:739-58. [DOI: 10.1586/epr.11.61] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
100
|
Snake venomics: From the inventory of toxins to biology. Toxicon 2013; 75:44-62. [DOI: 10.1016/j.toxicon.2013.03.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|