51
|
Chen H, Sun T, Jiang C. Extracellular vesicle-based macromolecule delivery systems in cancer immunotherapy. J Control Release 2022; 348:572-589. [PMID: 35714733 DOI: 10.1016/j.jconrel.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Great attention has been paid to the impressive role the macromolecules played in cancer immunotherapy, however, the applications were largely limited by their poor circulation stability, low cellular uptake efficiency, and off-target effects. As an important messenger of intercellular communication, extracellular vesicles (EVs) exhibit unique advantages in macromolecule delivery compared to traditional synthetic carriers, offering new possibilities for modern drug delivery. These naturally derived carriers can achieve stable, efficient, and selective delivery of macromolecules and improve the efficacy and potentiality of macromolecular drugs in cancer immunotherapy. This review provides a brief overview of the unique features of EVs related to macromolecule delivery, the strategies and recent advances of using EVs as macromolecule delivery carriers in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
52
|
Abstract
Extracellular vesicles are released by the majority of cell types and circulate in body fluids. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has established a central role of extracellular vesicles in kidney physiology and pathology. Urinary extracellular vesicles mediate crosstalk between glomerular and tubular cells and between different segments of the tubule, whereas circulating extracellular vesicles mediate organ crosstalk and are involved in the amplification of kidney damage and inflammation. The molecular profile of extracellular vesicles reflects the type and pathophysiological status of the originating cell so could potentially be exploited for diagnostic and prognostic purposes. In addition, robust preclinical data suggest that administration of exogenous extracellular vesicles could promote kidney regeneration and reduce inflammation and fibrosis in acute and chronic kidney diseases. Stem cells are thought to be the most promising source of extracellular vesicles with regenerative activity. Extracellular vesicles are also attractive candidates for drug delivery and various engineering strategies are being investigated to alter their cargo and increase their efficacy. However, rigorous standardization and scalable production strategies will be necessary to enable the clinical application of extracellular vesicles as potential therapeutics. In this Review, the authors discuss the roles of extracellular vesicles in kidney physiology and disease as well as the beneficial effects of stem cell-derived extracellular vesicles in preclinical models of acute kidney injury and chronic kidney disease. They also highlight current and future clinical applications of extracellular vesicles in kidney diseases. Urinary extracellular vesicles have roles in intra-glomerular, glomerulo-tubular and intra-tubular crosstalk, whereas circulating extracellular vesicles might mediate organ crosstalk; these mechanisms could amplify kidney damage and contribute to disease progression. Urinary extracellular vesicles could potentially be analysed using multiplex diagnostic platforms to identify pathological processes and the originating cell types; technological advances including single extracellular vesicle analysis might increase the specificity of bulk analysis of extracellular vesicle preparations. Robust standardization and validation in large patient cohorts are required to enable clinical application of extracellular vesicle-based biomarkers. Stem cell-derived extracellular vesicles have been shown to improve renal recovery, limit progression of injury and reduce fibrosis in animal models of acute kidney injury and chronic kidney disease. Various engineering approaches can be used to load extracellular vesicles with therapeutic molecules and increase their delivery to the kidney. A small clinical trial that tested the efficacy of mesenchymal stem cell extracellular vesicle administration in patients with chronic kidney disease reported promising results; however, therapeutic application of extracellular vesicles is limited by a lack of scalable manufacturing protocols and clear criteria for standardization.
Collapse
|
53
|
Kao CY, Jiang J, Thompson W, Papoutsakis ET. miR-486-5p and miR-22-3p Enable Megakaryocytic Differentiation of Hematopoietic Stem and Progenitor Cells without Thrombopoietin. Int J Mol Sci 2022; 23:ijms23105355. [PMID: 35628168 PMCID: PMC9141330 DOI: 10.3390/ijms23105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/07/2022] [Indexed: 12/10/2022] Open
Abstract
Megakaryocytes release submicron size microparticles (MkMPs) in circulation. We have shown that MkMPs target CD34+ hematopoietic stem/progenitor cells (HSPCs) to induce megakaryocytic differentiation, and that small RNAs in MkMPs play an important role in the development of this phenotype. Here, using single-molecule real-time (SMRT) RNA sequencing (RNAseq), we identify the synergetic effect of two microRNAs (miRs), miR-486-5p and miR-22-3p (highly enriched in MkMPs), in driving the Mk differentiation of HSPCs in the absence of thrombopoietin (TPO). Separately, our data suggest that the MkMP-induced Mk differentiation of HSPCs is enabled through JNK and PI3K/Akt/mTOR signaling. The interaction between the two signaling pathways is likely mediated by a direct target of miR-486-5p and a negative regulator of PI3K/Akt signaling, the phosphatase and tensin homologue (PTEN) protein. Our data provide a possible mechanistic explanation of the biological effect of MkMPs in inducing megakaryocytic differentiation of HSPCs, a phenotype of potential physiological significance in stress megakaryopoiesis.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Jinlin Jiang
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
- Department of Biological Sciences, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA
- Correspondence: ; Tel.: +1-302-831-8376
| |
Collapse
|
54
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
55
|
Quaglia M, Merlotti G, Colombatto A, Bruno S, Stasi A, Franzin R, Castellano G, Grossini E, Fanelli V, Cantaluppi V. Stem Cell-Derived Extracellular Vesicles as Potential Therapeutic Approach for Acute Kidney Injury. Front Immunol 2022; 13:849891. [PMID: 35359949 PMCID: PMC8960117 DOI: 10.3389/fimmu.2022.849891] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury is a frequent complication of hospitalized patients and significantly increases morbidity and mortality, worsening costs and length of hospital stay. Despite this impact on healthcare system, treatment still remains only supportive (dialysis). Stem cell-derived extracellular vesicles are a promising option as they recapitulate stem cells properties, overcoming safety issues related to risks or rejection or aberrant differentiation. A growing body of evidence based on pre-clinical studies suggests that extracellular vesicles may be effective to treat acute kidney injury and to limit fibrosis through direct interference with pathogenic mechanisms of vascular and tubular epithelial cell damage. We herein analyze the state-of-the-art knowledge of therapeutic approaches with stem cell-derived extracellular vesicles for different forms of acute kidney injury (toxic, ischemic or septic) dissecting their cytoprotective, regenerative and immunomodulatory properties. We also analyze the potential impact of extracellular vesicles on the mechanisms of transition from acute kidney injury to chronic kidney disease, with a focus on the pivotal role of the inhibition of complement cascade in this setting. Despite some technical limits, nowadays the development of therapies based on stem cell-derived extracellular vesicles holds promise as a new frontier to limit acute kidney injury onset and progression.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Andrea Colombatto
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Kidney Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Vito Fanelli
- Department of Anesthesiology and Intensive Care, University of Torino, Torino, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
56
|
Lin F, Han S, Yu W, Rao T, Ruan Y, Yuan R, Li H, Ning J, Xia Y, Xie J, Qi Y, Zhou X, Cheng F. microRNA‐486‐5p is implicated in the cisplatin‐induced apoptosis and acute inflammation response of renal tubular epithelial cells by targeting HAT1. J Biochem Mol Toxicol 2022; 36:e23039. [PMID: 35279909 DOI: 10.1002/jbt.23039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Fang‐You Lin
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Shang‐Ting Han
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Wei‐Min Yu
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Ting Rao
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yuan Ruan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Run Yuan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Hao‐Yong Li
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Zhuo Ning
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Qi Xia
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Na Xie
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Cheng Qi
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xiang‐Jun Zhou
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Fan Cheng
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| |
Collapse
|
57
|
Ghorbani F, Movassaghpour AA, Talebi M, Yousefi M, Abbaszadeh H. Renoprotective effects of extracellular vesicles: A systematic review. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
58
|
Lim SW, Kim KW, Kim BM, Shin YJ, Luo K, Quan Y, Cui S, Ko EJ, Chung BH, Yang CW. Alleviation of renal ischemia/reperfusion injury by exosomes from induced pluripotent stem cell-derived mesenchymal stem cells. Korean J Intern Med 2022; 37:411-424. [PMID: 34521186 PMCID: PMC8925954 DOI: 10.3904/kjim.2020.438] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/20/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Renal ischemia followed by reperfusion (I/R) is a leading cause of acute kidney injury (AKI), which is closely associated with high morbidity and mortality. Studies have shown that induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) exert powerful therapeutic effects in renal ischemia. However, the efficacy of iMSC-derived exosomes (iExo) on I/R injuries remains largely unknown. METHODS Human iPSCs were differentiated into iMSCs using a modified one-step method. Ultrafiltration, combined with purification, was used to isolate iExo from iMSCs. iExo was administered following I/R injury in a mouse model. The effect of iExo on I/R injury was assessed through changes in renal function, histology, and expression of oxidative stress, inflammation, and apoptosis markers. Further, we evaluated its association with the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. RESULTS Mice subjected to I/R injury exhibited typical AKI patterns; serum creatinine level, tubular necrosis, apoptosis, inflammatory cytokine production, and oxidative stress were markedly increased compared to sham mice. However, treatment with iExo attenuated these changes, significantly improving renal function and tissue damage, similar to the renoprotective effects of iMSCs on I/R injury. Significant induction of activated ERK 1/2 signaling molecules was observed in mice treated with iExo compared to those in the I/R injury group. CONCLUSION The present study demonstrates that iExo administration ameliorated renal damage following I/R, suggesting that iMSC-derived exosomes may provide a novel therapeutic approach for AKI treatment.
Collapse
Affiliation(s)
- Sun Woo Lim
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung Woon Kim
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- R&D Center, OncoInsight Co. Ltd., Seoul, Korea
| | - Bo Mi Kim
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo Jin Shin
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kang Luo
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yi Quan
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sheng Cui
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Jeong Ko
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Ha Chung
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
59
|
Biogenesis and Function of Extracellular Vesicles in Pathophysiological Processes Skeletal Muscle Atrophy. Biochem Pharmacol 2022; 198:114954. [DOI: 10.1016/j.bcp.2022.114954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
60
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Primary Aldosteronism, Aldosterone, and Extracellular Vesicles. Endocrinology 2022; 163:6433012. [PMID: 34918071 DOI: 10.1210/endocr/bqab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Primary aldosteronism (PA) is an endocrine related condition leading to arterial hypertension due to inappropriately high and unregulated aldosterone concentration. Recently, a broad spectrum of PA has been recognized, which brings new challenges associated with early identification of this condition that affect renal epithelial and extrarenal tissues. Reports have shown the potential role of extracellular vesicles (EVs) and EV cargo as novel and complementary biomarkers in diagnosis and prognosis of PA. In vivo and in vitro studies have identified specific EV surface antigens, EV-proteins, and EV microRNAs that can be useful to develop novel diagnostic algorithms to detect, confirm, or follow up the PA. Moreover, the study of EVs in the field of PA provides further insight in the pathophysiological mechanism of the PA disease.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
61
|
Fei Y, Shao J, Huang G, Wang L, Zou S, Sun H, Zheng C, Yang J. Effect of Edaravone on MicroRNA Expression in Exosomes after Hepatic Ischemia-reperfusion Injury. Curr Mol Pharmacol 2021; 15:870-882. [PMID: 34847855 DOI: 10.2174/1874467214666211130162152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Hepatic ischemia-reperfusion injury (HIRI) results in serious complications after liver resection and transplantation. Edaravone (ED) has a protective effect on IRI. This study was designed to evaluate whether ED could protect the liver of rats from HIRI injury and explored its exosomal miRNA-related mechanism. METHODS The sham group, hepatic ischemia/reperfusion (IR group), and hepatic ischemia/reperfusion + edaravone (ED group) models were established. We determined the protective effect of ED by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), superoxide dismutase (SOD); enzyme-linked immunosorbent assay for tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β); hematoxylin-eosin staining and immunohistochemistry for histopathological changes. Exosomal miRNAs were subjected to second-generation sequencing to identify their differential expression. The results were analyzed using bioinformatics methods and validated using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS HIRI rats showed higher levels of ALT, AST, oxidative stress, and inflammatory markers; ED attenuated these effects. The sequencing results showed 6 upregulated and 13 downregulated miRNAs in the IR vs. sham groups, 10 upregulated and 10 downregulated miRNAs in the ED vs. IR groups. PC-3p-190-42101 was screened as an overlapping differentially expressed miRNA, and RT-qPCR validation showed that its expression in HIRI rats was significantly decreased; ED prevented this downregulation. Moreover, the expression of PC-3P-190-42101 was significantly correlated with the level of inflammatory factors. CONCLUSION These findings indicate that ED can regulate the level of inflammatory factors by affecting the expression of miRNA PC-3p-190-42101 in plasma exosomes to protect the liver from IRI.
Collapse
Affiliation(s)
- Yanxia Fei
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan. China
| | - Jiali Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan. China
| | - Ge Huang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan. China
| | - Lijuan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan. China
| | - Shuangfa Zou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan. China
| | - Huiping Sun
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan. China
| | - Chumei Zheng
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan. China
| | - Jinfeng Yang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan. China
| |
Collapse
|
62
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Serum Alpha-1-Acid Glycoprotein-1 and Urinary Extracellular Vesicle miR-21-5p as Potential Biomarkers of Primary Aldosteronism. Front Immunol 2021; 12:768734. [PMID: 34804057 PMCID: PMC8603108 DOI: 10.3389/fimmu.2021.768734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension and reaches a prevalence of 6-10%. PA is an endocrine disorder, currently identified as a broad-spectrum phenotype, spanning from normotension to hypertension. In this regard, several studies have made advances in the identification of mediators and novel biomarkers of PA as specific proteins, miRNAs, and lately, extracellular vesicles (EVs) and their cargo. Aim To evaluate lipocalins LCN2 and AGP1, and specific urinary EV miR-21-5p and Let-7i-5p as novel biomarkers for PA. Subjects and Methods A cross-sectional study was performed in 41 adult subjects classified as normotensive controls (CTL), essential hypertensives (EH), and primary aldosteronism (PA) subjects, who were similar in gender, age, and BMI. Systolic (SBP) and diastolic (DBP) blood pressure, aldosterone, plasma renin activity (PRA), and aldosterone to renin ratio (ARR) were determined. Inflammatory parameters were defined as hs-C-reactive protein (hs-CRP), PAI-1, MMP9, IL6, LCN2, LCN2-MMP9, and AGP1. We isolated urinary EVs (uEVs) and measured two miRNA cargo miR-21-5p and Let-7i-5p by Taqman-qPCR. Statistical analyses as group comparisons were performed by Kruskall-Wallis, and discriminatory analyses by ROC curves were performed with SPSS v21 and Graphpad-Prism v9. Results PA and EH subjects have significantly higher SBP and DBP (p <0.05) than the control group. PA subjects have similar hs-CRP, PAI-1, IL-6, MMP9, LCN2, and LCN2-MMP9 but have higher levels of AGP1 (p <0.05) than the CTL&EH group. The concentration and size of uEVs and miRNA Let-7i-5p did not show any difference between groups. In PA, we found significantly lower levels of miR-21-5p than controls (p <0.05). AGP1 was associated with aldosterone, PRA, and ARR. ROC curves detected AUC for AGP1 of 0.90 (IC 95 [0.79 - 1.00], p <0.001), and combination of AGP1 and EV-miR-21-5p showed an AUC of 0.94 (IC 95 [0.85 - 1.00], p<0.001) to discriminate the PA condition from EH and controls. Conclusion Serum AGP1 protein was found to be increased, and miR-21-5p in uEVs was decreased in subjects classified as PA. Association of AGP1 with aldosterone, renin activity, and ARR, besides the high discriminatory capacity of AGP1 and uEV-miR-21-5p to identify the PA condition, place both as potential biomarkers of PA.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
63
|
PTEN alleviates maladaptive repair of renal tubular epithelial cells by restoring CHMP2A-mediated phagosome closure. Cell Death Dis 2021; 12:1087. [PMID: 34789720 PMCID: PMC8599682 DOI: 10.1038/s41419-021-04372-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023]
Abstract
Phosphatase and Tensin Homolog on chromosome Ten (PTEN) has emerged as a key protein that governs the response to kidney injury. Notably, renal adaptive repair is important for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. To test the role of PTEN in renal repair after acute injury, we constructed a mouse model that overexpresses PTEN in renal proximal tubular cells (RPTC) by crossing PTENfl-stop-fl mice with Ggt1-Cre mice. Mass spectrometry-based proteomics was performed after subjecting these mice to ischemia/reperfusion (I/R). We found that PTEN was downregulated in renal tubular cells in mice and cultured HK-2 cells subjected to renal maladaptive repair induced by I/R. Renal expression of PTEN negatively correlated with NGAL and fibrotic markers. RPTC-specific PTEN overexpression relieved I/R-induced maladaptive repair, as indicated by alleviative tubular cell damage, apoptosis, and subsequent renal fibrosis. Mass spectrometry analysis revealed that differentially expressed proteins in RPTC-specific PTEN overexpression mice subjected to I/R were significantly enriched in phagosome, PI3K/Akt, and HIF-1 signaling pathway and found significant upregulation of CHMP2A, an autophagy-related protein. PTEN deficiency downregulated CHMP2A and inhibited phagosome closure and autolysosome formation, which aggravated cell injury and apoptosis after I/R. PTEN overexpression had the opposite effect. Notably, the beneficial effect of PTEN overexpression on autophagy flux and cell damage was abolished when CHMP2A was silenced. Collectively, our study suggests that PTEN relieved renal maladaptive repair in terms of cell damage, apoptosis, and renal fibrosis by upregulating CHMP2A-mediated phagosome closure, suggesting that PTEN/CHMP2A may serve as a novel therapeutic target for the AKI to CKD transition.
Collapse
|
64
|
Salybekov AA, Kunikeyev AD, Kobayashi S, Asahara T. Latest Advances in Endothelial Progenitor Cell-Derived Extracellular Vesicles Translation to the Clinic. Front Cardiovasc Med 2021; 8:734562. [PMID: 34671654 PMCID: PMC8520929 DOI: 10.3389/fcvm.2021.734562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Almost all nucleated cells secrete extracellular vesicles (EVs) that are heterogeneous spheroid patterned or round shape particles ranging from 30 to 200 nm in size. Recent preclinical and clinical studies have shown that endothelial progenitor cell-derived EVs (EPC-EVs) have a beneficial therapeutic effect in various diseases, including cardiovascular diseases and kidney, and lung disorders. Moreover, some animal studies have shown that EPC-EVs selectively accumulate at the injury site with a specific mechanism of binding along with angiogenic and restorative effects that are superior to those of their ancestors. This review article highlights current advances in the biogenesis, delivery route, and long-term storage methods of EPC-EVs and their favorable effects such as anti-inflammatory, angiogenic, and tissue protection in various diseases. Finally, we review the possibility of therapeutic application of EPC-EVs in the clinic.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Division of Regenerative Medicine, Department of Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan.,Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.,Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Aidyn D Kunikeyev
- Department of Software Engineering, Kazakh National Technical University After K.I. Satpayev, Almaty, Kazakhstan
| | - Shuzo Kobayashi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.,Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
65
|
Zeng CY, Xu J, Liu X, Lu YQ. Cardioprotective Roles of Endothelial Progenitor Cell-Derived Exosomes. Front Cardiovasc Med 2021; 8:717536. [PMID: 34513956 PMCID: PMC8428070 DOI: 10.3389/fcvm.2021.717536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
With the globally increasing prevalence, cardiovascular diseases (CVDs) have become the leading cause of mortality. The transplantation of endothelial progenitor cells (EPCs) holds a great promise due to their potential for vasculogenesis, angiogenesis, and protective cytokine release, whose mechanisms are essential for CVD therapies. In reality, many investigations have attributed the therapeutic effects of EPC transplantation to the secretion of paracrine factors rather than the differentiation function. Of note, previous studies have suggested that EPCs could also release exosomes (diameter range of 30–150 nm), which carry various lipids and proteins and are abundant in microRNAs. The EPC-derived exosomes (EPC-EXs) were reported to act on the heart and blood vessels and were implicated in anti-inflammation, anti-oxidation, anti-apoptosis, the inhibition of endothelial-to-mesenchymal transition (EndMT), and cardiac fibrosis, as well as anti-vascular remodeling and angiogenesis, which were considered as protective effects against CVDs. In this review, we summarize the current knowledge on using EPC-EXs as therapeutic agents and provide a detailed description of their identified mechanisms of action to promote the prognosis of CVDs.
Collapse
Affiliation(s)
- Cai-Yu Zeng
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
66
|
Yan Y, Gu T, Christensen SDK, Su J, Lassen TR, Hjortbak MV, Lo IJ, Venø ST, Tóth AE, Song P, Nielsen MS, Bøtker HE, Blagoev B, Drasbek KR, Kjems J. Cyclic Hypoxia Conditioning Alters the Content of Myoblast-Derived Extracellular Vesicles and Enhances Their Cell-Protective Functions. Biomedicines 2021; 9:biomedicines9091211. [PMID: 34572398 PMCID: PMC8471008 DOI: 10.3390/biomedicines9091211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Remote ischemic conditioning (RIC) is a procedure that can attenuate ischemic-reperfusion injury by conducting brief cycles of ischemia and reperfusion in the arm or leg. Extracellular vesicles (EVs) circulating in the bloodstream can release their content into recipient cells to confer protective function on ischemia-reperfusion injured (IRI) organs. Skeletal muscle cells are potential candidates to release EVs as a protective signal during RIC. In this study, we used C2C12 cells as a model system and performed cyclic hypoxia-reoxygenation (HR) to mimic RIC. EVs were collected and subjected to small RNA profiling and proteomics. HR induced a distinct shift in the miRNA profile and protein content in EVs. HR EV treatment restored cell viability, dampened inflammation, and enhanced tube formation in in vitro assays. In vivo, HR EVs showed increased accumulation in the ischemic brain compared to EVs secreted from normoxic culture (N EVs) in a mouse undergoing transient middle cerebral artery occlusion (tMCAO). We conclude that HR conditioning changes the miRNA and protein profile in EVs released by C2C12 cells and enhances the protective signal in the EVs to recipient cells in vitro.
Collapse
Affiliation(s)
- Yan Yan
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
- Omiics ApS, 8200 Aarhus, Denmark;
| | - Tingting Gu
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (T.G.); (K.R.D.)
| | - Stine Duelund Kaas Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (S.D.K.C.); (B.B.)
| | - Junyi Su
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - IJu Lo
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | | | - Andrea Erzsebet Tóth
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.E.T.); (M.S.N.)
| | - Ping Song
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (S.D.K.C.); (B.B.)
| | - Kim Ryun Drasbek
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (T.G.); (K.R.D.)
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-289-920-86
| |
Collapse
|
67
|
Wang H, Maimaitiaili R, Yao J, Xie Y, Qiang S, Hu F, Li X, Shi C, Jia P, Yang H, Wei M, Zhao J, Zhou Z, Xie J, Jiang J, Cai H, Sluijter JPG, Xu Y, Zhang Y, Xiao J. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis. Hypertension 2021; 78:1541-1554. [PMID: 34488435 DOI: 10.1161/hypertensionaha.121.17574] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Rusitanmujiang Maimaitiaili
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Sujing Qiang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Hu
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Shi
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Peng Jia
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Yang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Juan Zhao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Zheng Zhou
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxin Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Jizong Jiang
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Haidong Cai
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands (J.P.G.S.)
- UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, the Netherlands (J.P.G.S.)
| | - Yawei Xu
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| |
Collapse
|
68
|
Exosomes: Emerging Therapy Delivery Tools and Biomarkers for Kidney Diseases. Stem Cells Int 2021; 2021:7844455. [PMID: 34471412 PMCID: PMC8405320 DOI: 10.1155/2021/7844455] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nanometer-sized small EVs coated with bilayer structure, which are released by prokaryotic and eukaryotic cells. Exosomes are rich in a variety of biologically active substances, such as proteins, nucleotides, and lipids. Exosomes are widely present in various body fluids and cell culture supernatants, and it mediates the physiological and pathological processes of the body through the shuttle of these active ingredients to target cells. In recent years, studies have shown that exosomes from a variety of cell sources can play a beneficial role in acute and chronic kidney disease. In particular, exosomes derived from mesenchymal stem cells have significant curative effects on the prevention and treatment of kidney disease in preclinical trials. Besides, some encapsulated substances are demonstrated to exert beneficial effects on various diseases, so they have attracted much attention. In addition, exosomes have extensive sources, stable biological activity, and good biocompatibility and are easy to store and transport; these advantages endow exosomes with superior diagnostic value. With the rapid development of liquid biopsy technology related to exosomes, the application of exosomes in the rapid diagnosis of kidney disease has become more prominent. In this review, the latest development of exosomes, including the biosynthesis process, the isolation and identification methods of exosomes are systematically summarized. The utilization of exosomes in diagnosis and their positive effects in the repair of kidney dysfunction are discussed, along with the specific mechanisms. This review is expected to be helpful for relevant studies and to provide insight into future applications in clinical practice.
Collapse
|
69
|
Abstract
Epigenetics examines heritable changes in DNA and its associated proteins except mutations in gene sequence. Epigenetic regulation plays fundamental roles in kidney cell biology through the action of DNA methylation, chromatin modification via epigenetic regulators and non-coding RNA species. Kidney diseases, including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis are multistep processes associated with numerous molecular alterations even in individual kidney cells. Epigenetic alterations, including anomalous DNA methylation, aberrant histone alterations and changes of microRNA expression all contribute to kidney pathogenesis. These changes alter the genome-wide epigenetic signatures and disrupt essential pathways that protect renal cells from uncontrolled growth, apoptosis and development of other renal associated syndromes. Molecular changes impact cellular function within kidney cells and its microenvironment to drive and maintain disease phenotype. In this chapter, we briefly summarize epigenetic mechanisms in four kidney diseases including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis. We primarily focus on current knowledge about the genome-wide profiling of DNA methylation and histone modification, and epigenetic regulation on specific gene(s) in the pathophysiology of these diseases and the translational potential of identifying new biomarkers and treatment for prevention and therapy. Incorporating epigenomic testing into clinical research is essential to elucidate novel epigenetic biomarkers and develop precision medicine using emerging therapies.
Collapse
|
70
|
Goggins E, Tanaka S. EXPLORing exosomes for the treatment of acute kidney injury. Kidney Int 2021; 100:508-510. [PMID: 34420658 DOI: 10.1016/j.kint.2021.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/20/2022]
Abstract
Exosomes are emerging as a novel drug delivery system for the treatment of numerous diseases, including acute kidney injury. In this issue of Kidney International, Kim et al. use a novel optogenetically engineered exosome technology, "EXPLOR," to deliver the exosomal repressor of nuclear factor-κB into mice before and after renal ischemia-reperfusion. They report that these exosomes downregulated renal nuclear factor-κB signaling and ameliorated acute kidney injury. This study deserves attention for its significant scientific and potential clinical value in acute kidney injury.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
71
|
Viñas JL, Spence M, Porter CJ, Douvris A, Gutsol A, Zimpelmann JA, Campbell PA, Burns KD. micro-RNA-486-5p protects against kidney ischemic injury and modifies the apoptotic transcriptome in proximal tubules. Kidney Int 2021; 100:597-612. [PMID: 34181969 DOI: 10.1016/j.kint.2021.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) carries high morbidity and mortality, and effective treatments are lacking. Preclinical models support involvement of micro-RNAs (miRs) in AKI pathogenesis, although effects on the kidney transcriptome are unclear. We previously showed that injection of cord blood endothelial colony forming cell-derived exosomes, enriched in miR-486-5p, prevented ischemic AKI in mice. To further define this, we studied direct effects of miR-486-5p in mice with kidney ischemia-reperfusion injury. RNA-Seq was used to compare the impact of miR-486-5p and exosomes on the transcriptome of proximal tubules and kidney endothelial cells 24 hours after ischemia-reperfusion. In mice with AKI, injection of miR-486-5p mimic increased its levels in proximal tubules and endothelial cells, and improved plasma creatinine, histological injury, neutrophil infiltration, and apoptosis. Additionally, miR-486-5p inhibited expression of its target phosphatase and tensin homolog, and activated protein kinase B. In proximal tubules, miR-486-5p or exosomes reduced expression of genes associated with ischemic injury and the tumor necrosis factor (TNF) pathway, and altered distinct apoptotic genes. In endothelial cells, genes associated with metabolic processes were altered by miR-486-5p or exosomes, although TNF pathway genes were not affected. Thus, our results suggest that miR-486-5p may have therapeutic potential in AKI.
Collapse
Affiliation(s)
- Jose L Viñas
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew Spence
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, the Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Adrianna Douvris
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph A Zimpelmann
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Pearl A Campbell
- Regenerative Medicine Program, the Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
72
|
Butreddy A, Kommineni N, Dudhipala N. Exosomes as Naturally Occurring Vehicles for Delivery of Biopharmaceuticals: Insights from Drug Delivery to Clinical Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1481. [PMID: 34204903 PMCID: PMC8229362 DOI: 10.3390/nano11061481] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Exosomes as nanosized vesicles are emerging as drug delivery systems for therapeutics owing to their natural origin, their ability to mediate intercellular communication, and their potential to encapsulate various biological molecules such as proteins and nucleic acids within the lipid bilayer membrane or in the lumen. Exosomes contain endogenous components (proteins, lipids, RNA) that could be used to deliver cargoes to target cells, offering an opportunity to diagnose and treat various diseases. Owing to their ability to travel safely in extracellular fluid and to transport cargoes to target cells with high efficacy, exosomes offer enhanced delivery of cargoes in vivo. However, several challenges related to the stabilization of the exosomes, the production of sufficient amounts of exosomes with safety and efficacy, the efficient loading of drugs into exosomes, the clearance of exosomes from circulation, and the transition from the bench scale to clinical production may limit their development and clinical use. For the clinical use of exosomes, it is important to understand the molecular mechanisms behind the transport and function of exosome vesicles. This review exploits techniques related to the isolation and characterization of exosomes and their drug delivery potential to enhance the therapeutic outcome and stabilization methods. Further, routes of administration, clinical trials, and regulatory aspects of exosomes will be discussed in this review.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad 500078, Telangana State, India;
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Narendar Dudhipala
- Depratment of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal 506005, Telangana State, India
| |
Collapse
|
73
|
Ma Z, Zhao H, Shi L, Yu D, Guo X. Automatic medium exchange for micro-volume cell samples based on dielectrophoresis. Electrophoresis 2021; 42:1507-1515. [PMID: 33990980 DOI: 10.1002/elps.202000195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/06/2022]
Abstract
Cell medium exchange is a crucial step for life science and medicine. However, conventional cell medium exchange methods, including centrifuging and filtering, show limited ability for micro-volume cell samples such as circulating tumor cell (CTC) and circulating fetal cell (CFC). In this paper, we proposed an automatic medium exchange method for micro-volume cell samples based on dielectrophoresis (DEP) in microfluidic chip. Fresh medium and cell suspension were introduced into the microfluidic channel as the laminar flow. Plane stair-shaped interdigital electrodes were employed to drive the cells from the cell suspension to fresh media directly by DEP force. Additionally, we characterized and optimized the cell medium exchange according to both the theory and experiments. In the end, we achieved a 96.9% harvest rate of medium exchange for 0.3 μL samples containing micro-volume cells. For implementing an automatic continuous cell medium exchange, the proposed method can be integrated into the automatic cell processing system conveniently. Furthermore, the proposed method is a great candidate in micro-volume cell analysis and processing, cell electroporation, single cell sequencing, and other scenarios.
Collapse
Affiliation(s)
- Zhouyang Ma
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Hongwang Zhao
- School of Automobile and Traffic Engineering, Guilin University of Aerospace Technology, Guilin, Guangxi, P. R. China
| | - Liujia Shi
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, P. R. China
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China.,Beijing Advance Innovation Center for Soft Matter Science and Engineering, Beijing, P. R. China
| | - Xiaoliang Guo
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
74
|
Chang X, Zhang P, Xu XX, Pang B. Total Glucosides of Paeony Inhibited Autophagy and Improved Acute Kidney Injury Induced by Ischemia-Reperfusion via the lncRNA TUG1/miR-29a/PTEN Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2229-2242. [PMID: 34079224 PMCID: PMC8164873 DOI: 10.2147/dddt.s286606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/12/2021] [Indexed: 01/19/2023]
Abstract
Objective Total glucosides of paeony (TGP) has been proven to affect anti-inflammatory, immunomodulatory and hypoxia tolerance. This study investigates the effect of TGP on autophagy in acute kidney injury (AKI) induced by ischemia-reperfusion (I/R). Methods Rat model of AKI induced by I/R was established. Rats were administered with TGP at different doses by oral gavage. The contents of BUN, creatinine, NGAL, Kim-1 and IL-18 were detected. The levels of inflammatory factors (TNF-α, IL-1β and IL-6) and autophagy were measured. The expressions of lncRNA TUG1, miR-29a and PTEN were detected and their binding relationships were verified. I/R rat model with overexpressed TUG1 was established to explore the effect of TGP on kidney injury and autophagy. The hypoxia/reoxygenation (HR) model of HK-2 cells and the HR model of HK-2 cells overexpressing TUG1 and low-expressing PTEN were established. Results TGP decreased the contents of BUN, creatinine, NGAL, Kim-1 and IL-18, and reduced the levels of inflammatory factors. LncRNA TUG1 and PTEN were downregulated, and miR-29a was upregulated in kidney tissues. The binding relationships between lncRNA TUG1 and miR-29a, and miR-29a and PTEN were confirmed. TGP suppressed PTEN expression via the lncRNA TUG1/miR-29a axis. Overexpressing lncRNA TUG1 attenuated the protective effect of TGP on AKI and autophagy in HK-2 cells. TGP improved cell viability and inhibited the autophagy in HR model of HK-2 cells via lncRNA TUG1/miR-29a/PTEN axis. Conclusion TGP inhibited autophagy and improved AKI induced by I/R via the lncRNA TUG1/miR-29a/PTEN axis.
Collapse
Affiliation(s)
- Xiaoyan Chang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Pei Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xing-Xin Xu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Bo Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
75
|
Harnessing the Physiological Functions of Cellular Prion Protein in the Kidneys: Applications for Treating Renal Diseases. Biomolecules 2021; 11:biom11060784. [PMID: 34067472 PMCID: PMC8224798 DOI: 10.3390/biom11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A cellular prion protein (PrPC) is a ubiquitous cell surface glycoprotein, and its physiological functions have been receiving increased attention. Endogenous PrPC is present in various kidney tissues and undergoes glomerular filtration. In prion diseases, abnormal prion proteins are found to accumulate in renal tissues and filtered into urine. Urinary prion protein could serve as a diagnostic biomarker. PrPC plays a role in cellular signaling pathways, reno-protective effects, and kidney iron uptake. PrPC signaling affects mitochondrial function via the ERK pathway and is affected by the regulatory influence of microRNAs, small molecules, and signaling proteins. Targeting PrPC in acute and chronic kidney disease could help improve iron homeostasis, ameliorate damage from ischemia/reperfusion injury, and enhance the efficacy of mesenchymal stem/stromal cell or extracellular vesicle-based therapeutic strategies. PrPC may also be under the influence of BMP/Smad signaling and affect the progression of TGF-β-related renal fibrosis. PrPC conveys TNF-α resistance in some renal cancers, and therefore, the coadministration of anti-PrPC antibodies improves chemotherapy. PrPC can be used to design antibody-drug conjugates, aptamer-drug conjugates, and customized tissue inhibitors of metalloproteinases to suppress cancer. With preclinical studies demonstrating promising results, further research on PrPC in the kidney may lead to innovative PrPC-based therapeutic strategies for renal disease.
Collapse
|
76
|
Exosomal miR-486-5p derived from human placental microvascular endothelial cells regulates proliferation and invasion of trophoblasts via targeting IGF1. Hum Cell 2021; 34:1310-1323. [PMID: 33977502 PMCID: PMC8338855 DOI: 10.1007/s13577-021-00543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/27/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE) is a serious complication of pregnancy. Exosomes are known to be upregulated in PE. In this study, we sought to investigate the effect of miR-486-5p from human placental microvascular endothelial cells, on the function of trophoblast cells. To investigate the function of human placental microvascular endothelial cell (HPVEC)-derived exosomes on trophoblast cells, HPVECs were treated with hypoxia/reoxygenation (H/R). The separation efficiency of exosomes was determined by transmission electron microscopy, nanosight and Western blot. Cell Counting Kit-8, EdU staining, wound-healing, and transwell assay were performed to detect the effect of exosomally transferred miR-486-5p inhibitor on proliferation, migration and invasion of trophoblast cells. MiRDB and dual-luciferase report assay were used to find the target of miR-486-5p. Our data revealed that miR-486-5p was significantly upregulated in H/R-treated HPVEC-Exo, and miR-486-5p was enriched in HPVEC-Exo. miR-486-5p inhibitor carried by HPVEC-Exo significantly inhibited the proliferation, migration and invasion of trophoblast cells. Insulin-like growth factor 1 (IGF1) was found to be the target of miR-486-5p, and IGF1 overexpression notably reversed the effect of miR-486-5p inhibitor from HPVEC-Exo on trophoblast cell function. In summary, H/R-treated HPVEC-derived exosomally expressing miR-486-5p inhibitor significantly inhibited the proliferation, migration and invasion of trophoblast cells via downregulation of IGF1. The findings from the present study may be useful in the development of treatments for PE.
Collapse
|
77
|
ECs-derived exosomes: A novel therapeutic target for myocardial ischemia-reperfusion injury. Int J Cardiol 2021; 333:51. [PMID: 33684381 DOI: 10.1016/j.ijcard.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
|
78
|
Sun J, Lu H, Liang W, Zhao G, Ren L, Hu D, Chang Z, Liu Y, Garcia-Barrio MT, Zhang J, Chen YE, Fan Y. Endothelial TFEB (Transcription Factor EB) Improves Glucose Tolerance via Upregulation of IRS (Insulin Receptor Substrate) 1 and IRS2. Arterioscler Thromb Vasc Biol 2021; 41:783-795. [PMID: 33297755 PMCID: PMC8105265 DOI: 10.1161/atvbaha.120.315310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Vascular endothelial cells (ECs) play a critical role in maintaining vascular homeostasis. Aberrant EC metabolism leads to vascular dysfunction and metabolic diseases. TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy, has protective effects on vascular inflammation and atherosclerosis. However, the role of endothelial TFEB in metabolism remains to be explored. In this study, we sought to investigate the role of endothelial TFEB in glucose metabolism and underlying molecular mechanisms. Approach and Results: To determine whether endothelial TFEB is critical for glucose metabolism in vivo, we utilized EC-selective TFEB knockout and EC-selective TFEB transgenic mice fed a high-fat diet. EC-selective TFEB knockout mice exhibited significantly impaired glucose tolerance compared with control mice. Consistently, EC-selective TFEB transgenic mice showed improved glucose tolerance. In primary human ECs, small interfering RNA-mediated TFEB knockdown blunts Akt (AKT serine/threonine kinase) signaling. Adenovirus-mediated overexpression of TFEB consistently activates Akt and significantly increases glucose uptake in ECs. Mechanistically, TFEB upregulates IRS1 and IRS2 (insulin receptor substrate 1 and 2). TFEB increases IRS2 transcription measured by reporter gene and chromatin immunoprecipitation assays. Furthermore, we found that TFEB increases IRS1 protein via downregulation of microRNAs (miR-335, miR-495, and miR-548o). In vivo, Akt signaling in the skeletal muscle and adipose tissue was significantly impaired in EC-selective TFEB knockout mice and consistently improved in EC-selective TFEB transgenic mice on high-fat diet. CONCLUSIONS Our data revealed a critical role of TFEB in endothelial metabolism and suggest that TFEB constitutes a potential molecular target for the treatment of vascular and metabolic diseases.
Collapse
Affiliation(s)
- Jinjian Sun
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Die Hu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ziyi Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Minerva T. Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanbo Fan
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
79
|
Perez-Hernandez J, Riffo-Campos AL, Ortega A, Martinez-Arroyo O, Perez-Gil D, Olivares D, Solaz E, Martinez F, Martínez-Hervás S, Chaves FJ, Redon J, Cortes R. Urinary- and Plasma-Derived Exosomes Reveal a Distinct MicroRNA Signature Associated With Albuminuria in Hypertension. Hypertension 2021; 77:960-971. [PMID: 33486986 DOI: 10.1161/hypertensionaha.120.16598] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urinary albumin excretion (UAE) is a marker of cardiovascular risk and renal damage in hypertension. MicroRNAs (miRNAs) packaged into exosomes function as paracrine effectors in cell communication and the kidney is not exempt. This study aimed to state an exosomal miRNA profile/signature associated to hypertension with increased UAE and the impact of profibrotic TGF-β1 (transforming growth factor β1) on exosomes miRNA release. Therefore, exosomes samples from patients with hypertension with/without UAE were isolated and characterized. Three individual and unique small RNA libraries from each subject were prepared (total plasma, urinary, and plasma-derived exosomes) for next-generation sequencing profiling. Differentially expressed miRNAs were over-represented in Kyoto Encyclopedia of Genes and Genomes pathways, and selected miRNAs were validated by real-time quantitative polymerase chain reaction in a confirmation cohort. Thus, a signature of 29 dysregulated circulating miRNAs was identified in UAE hypertensive subjects, regulating 21 pathways. Moreover, changes in the levels of 4 exosomes-miRNAs were validated in a confirmation cohort and found associated with albuminuria. In particular miR-26a, major regulator of TGF-β signaling, was found downregulated in both type of exosomes when compared with healthy controls and to hypertension normoalbuminurics (P<0.01). Similarly, decreased miR-26a levels were found in podocyte-derived exosomes after TGF-β stress. Our results revealed an exosomes miRNA signature associated to albuminuria in hypertension. In particular, exosomes miR-26a seemed to play a key role in the regulation of TGF-β, a relevant effector in podocyte damage. These findings support the use of exosomes miRNAs as biomarkers of cardiovascular risk progression and therapeutic tools in early kidney damage.
Collapse
Affiliation(s)
- Javier Perez-Hernandez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Angela L Riffo-Campos
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile (A.L.R.-C.)
| | - Ana Ortega
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Olga Martinez-Arroyo
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Daniel Perez-Gil
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Dolores Olivares
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Elena Solaz
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Fernando Martinez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Sergio Martínez-Hervás
- Endocrinology and Nutrition Department Clinic Hospital, Spain (S.M.-H.).,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Spain (S.M.-H.)
| | - Felipe J Chaves
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain (F.J.C.)
| | - Josep Redon
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.).,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain (J.R.)
| | - Raquel Cortes
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| |
Collapse
|
80
|
Han Z, Liu S, Pei Y, Ding Z, Li Y, Wang X, Zhan D, Xia S, Driedonks T, Witwer KW, Weiss RG, van Zijl PCM, Bulte JWM, Cheng L, Liu G. Highly efficient magnetic labelling allows MRI tracking of the homing of stem cell-derived extracellular vesicles following systemic delivery. J Extracell Vesicles 2021; 10:e12054. [PMID: 33489014 PMCID: PMC7809601 DOI: 10.1002/jev2.12054] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Human stem‐cell‐derived extracellular vesicles (EVs) are currently being investigated for cell‐free therapy in regenerative medicine applications, but the lack of noninvasive imaging methods to track EV homing and uptake in injured tissues has limited the refinement and optimization of the approach. Here, we developed a new labelling strategy to prepare magnetic EVs (magneto‐EVs) allowing sensitive yet specific MRI tracking of systemically injected therapeutic EVs. This new labelling strategy relies on the use of ‘sticky’ magnetic particles, namely superparamagnetic iron oxide (SPIO) nanoparticles coated with polyhistidine tags, to efficiently separate magneto‐EVs from unencapsulated SPIO particles. Using this method, we prepared pluripotent stem cell (iPSC)‐derived magneto‐EVs and subsequently used MRI to track their homing in different animal models of kidney injury and myocardial ischemia. Our results showed that iPSC‐derived EVs preferentially accumulated in the injury sites and conferred substantial protection. Our study paves a new pathway for preparing highly purified magnetic EVs and tracking them using MRI towards optimized, systemically administered EV‐based cell‐free therapies.
Collapse
Affiliation(s)
- Zheng Han
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Senquan Liu
- Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA.,Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Yigang Pei
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Department of Radiology Xiangya Hospital Central South University Changsha Hunan China
| | - Zheng Ding
- Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Yuguo Li
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Xinge Wang
- Department of Bioengineering University of Illinois at Chicago Chicago Illinois USA
| | - Daqian Zhan
- Department of Neurology Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA
| | - Shuli Xia
- Department of Neurology Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA
| | - Tom Driedonks
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Robert G Weiss
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA.,Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Linzhao Cheng
- Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| |
Collapse
|
81
|
Zhang D, Cai G, Liu K, Zhuang Z, Jia K, Pei S, Wang X, Wang H, Xu S, Cui C, Sun M, Guo S, Song W, Cai G. Microglia exosomal miRNA-137 attenuates ischemic brain injury through targeting Notch1. Aging (Albany NY) 2021; 13:4079-4095. [PMID: 33461167 PMCID: PMC7906161 DOI: 10.18632/aging.202373] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Microglia are the resident immune cells in the central nervous system and play an essential role in brain homeostasis and neuroprotection in brain diseases. Exosomes are crucial in intercellular communication by transporting bioactive miRNAs. Thus, this study aimed to investigate the function of microglial exosome in the presence of ischemic injury and related mechanism. Oxygen-glucose deprivation (OGD)-treated neurons and transient middle cerebral artery occlusion (TMCAO)-treated mice were applied in this study. Western blotting, RT-PCR, RNA-seq, luciferase reporter assay, transmission electron microscope, nanoparticle tracking analysis, immunohistochemistry, TUNEL and LDH assays, and behavioral assay were applied in mechanistic and functional studies. The results demonstrated that exosomes derived from microglia in M2 phenotype (BV2-Exo) were internalized by neurons and attenuated neuronal apoptosis in response to ischemic injury in vitro and in vivo. BV2-Exo also decreased infarct volume and behavioral deficits in ischemic mice. Exosomal miRNA-137 was upregulated in BV2-Exo and participated in the partial neuroprotective effect of BV2-Exo. Furthermore, Notch1 was a directly targeting gene of exosomal miRNA-137. In conclusion, these results suggest that BV2-Exo alleviates ischemia-reperfusion brain injury through transporting exosomal miRNA-137. This study provides novel insight into microglial exosomes-based therapies for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Dianquan Zhang
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Guoliang Cai
- Postdoctoral Research Workstation of Harbin Sport University, Harbin 150008, China.,Harbin Sport University, Harbin 150008, China
| | - Kai Liu
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Zhe Zhuang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Kunping Jia
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Siying Pei
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Xiuzhen Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Hong Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Shengnan Xu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Cheng Cui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Manchao Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Sihui Guo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Wenli Song
- Harbin Sport University, Harbin 150008, China
| | - Guofeng Cai
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China.,Postdoctoral Research Station of Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
82
|
Sex diversity in proximal tubule and endothelial gene expression in mice with ischemic acute kidney injury. Clin Sci (Lond) 2020; 134:1887-1909. [PMID: 32662516 DOI: 10.1042/cs20200168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Female sex protects against development of acute kidney injury (AKI). While sex hormones may be involved in protection, the role of differential gene expression is unknown. We conducted gene profiling in male and female mice with or without kidney ischemia-reperfusion injury (IRI). Mice underwent bilateral renal pedicle clamping (30 min), and tissues were collected 24 h after reperfusion. RNA-sequencing (RNA-Seq) was performed on proximal tubules (PTs) and kidney endothelial cells. Female mice were resistant to ischemic injury compared with males, determined by plasma creatinine and neutrophil gelatinase-associated lipocalin (NGAL), histologic scores, neutrophil infiltration, and extent of apoptosis. Sham mice had sex-specific gene disparities in PT and endothelium, and male mice showed profound gene dysregulation with ischemia-reperfusion compared with females. After ischemia PTs from females exhibited smaller increases compared with males in injury-associated genes lipocalin-2 (Lcn2), hepatitis A virus cellular receptor 1 (Havcr1), and keratin 18 (Krt18), and no up-regulation of SRY-Box transcription factor 9 (Sox9) or keratin 20 (Krt20). Endothelial up-regulation of adhesion molecules and cytokines/chemokines occurred in males, but not females. Up-regulated genes in male ischemic PTs were linked to tumor necrosis factor (TNF) and Toll-like receptor (TLR) pathways, while female ischemic PTs showed up-regulated genes in pathways related to transport. The data highlight sex-specific gene expression differences in male and female PTs and endothelium before and after ischemic injury that may underlie disparities in susceptibility to AKI.
Collapse
|
83
|
Zhang Y, Wang J, Yang B, Qiao R, Li A, Guo H, Ding J, Li H, Ye H, Wu D, Cui L, Yang S. Transfer of MicroRNA-216a-5p From Exosomes Secreted by Human Urine-Derived Stem Cells Reduces Renal Ischemia/Reperfusion Injury. Front Cell Dev Biol 2020; 8:610587. [PMID: 33415108 PMCID: PMC7783217 DOI: 10.3389/fcell.2020.610587] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Human urine-derived stem cells (USCs) protect rats against kidney ischemia/reperfusion (I/R) injury. Here we investigated the role of USCs exosomes (USCs-Exos) in protecting tubular endothelial cells and miRNA transfer in the kidney. Human USCs and USCs-Exos were isolated and verified by morphology and specific biomarkers. USC-Exos played a protective role in human proximal tubular epithelial cells (HK-2) exposed to hypoxia/reoxygenation (H/R). USCs-Exos were rich in miR-216a-5p, which targeted phosphatase and tensin homolog (PTEN) and regulated cell apoptosis through the Akt pathway. In HK-2 cells exposed to H/R, incubation with USC-Exos increased miR-216-5p, decreased PTEN levels, and stimulated Akt phosphorylation. Exposure of hypoxic HK-2 cells to USCs-Exos pretreated with anti-miR-216a-5p can prevent the increase of miR-216-5p and Akt phosphorylation levels, restore PTEN expression, and promote apoptosis. The dual-luciferase reported gene assay in HK-2 cells confirmed that miR-216a-5p targeted PTEN. In rats with I/R injury, intravenous infusion of USCs-Exos can effectively induce apoptosis suppression and functional protection, which is associated with decreased PTEN. Infusion of exosomes from anti-miR-216a-5p-transfected USCs weakened the protective effect in the I/R model. Therefore, USCs-Exos can reduce renal I/R injury by transferring miR-216a-5p targeting PTEN. Potentially, USCs-Exos rich in miR-216a-5p can serve as a promising therapeutic option for AKI.
Collapse
Affiliation(s)
- Yinmei Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Junxiong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Rui Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Aiwei Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Han Guo
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Jie Ding
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Hui Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Hong Ye
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Di Wu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
84
|
Zhang C, Gong Y, Li N, Liu X, Zhang Y, Ye F, Guo Q, Zheng J. Long noncoding RNA Kcnq1ot1 promotes sC5b-9-induced podocyte pyroptosis by inhibiting miR-486a-3p and upregulating NLRP3. Am J Physiol Cell Physiol 2020; 320:C355-C364. [PMID: 33296289 DOI: 10.1152/ajpcell.00403.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Podocytes are epithelial cells adhering glomerular capillaries, which regulate the integrity of glomerular filtration barrier. Irreversible podocyte injury induces glomerular inflammation and causes chronic renal diseases. Kcnq1ot1, a long noncoding RNA, participates in the pathogenesis of diabetic retinopathy and cardiomyopathy. However, its function in podocyte injury is elusive. Pyroptosis of murine podocyte MPC5 was triggered by sublytic complement C5b-9 (sC5b-9) for subsequent in vitro functional and mechanistic investigation. Gain/loss-of-function analysis was conducted to examine the functional role of Kcnq1ot1 in podocyte pyroptosis. Meanwhile, the molecular mechanism of Kcnq1ot1's effect on podocyte injury was explored by identifying downstream molecules and their intermediate interactions. Kcnq1ot1 was upregulated in sC5b-9-induced podocytes, and silencing Kcnq1ot1 could inhibit sC5b-9's effect on podocyte pyroptosis. We also identified the interaction between Kcnq1ot1 and miR-486a-3p, through which Kcnq1ot1 mediated miR-486a-3p inhibition by sC5b-9. Furthermore, miR-486a-3p reduced the transcriptional activity of NLRP3, while the overexpression of NLRP3 enhanced sC5b-9's effect on podocyte pyroptosis through activating NLRP3 inflammasome. sC5b-9 induces pyroptosis in podocytes through modulating the Kcnq1ot1/miR-486a-3p/NLRP3 regulatory axis, and these uncovered key molecules might facilitate podocyte-targeted treatment for renal inflammatory diseases.
Collapse
Affiliation(s)
- Chunjian Zhang
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yimeng Gong
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Na Li
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Xiaoyan Liu
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yunzhu Zhang
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Fangze Ye
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Qiang Guo
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jiaxin Zheng
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
85
|
Zhao G, Ge Y, Zhang C, Zhang L, Xu J, Qi L, Li W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr Pharm Des 2020; 26:2022-2037. [PMID: 32310043 DOI: 10.2174/1381612826666200420144805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.
Collapse
Affiliation(s)
- Guifang Zhao
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China
| | - Yiwen Ge
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Chenyingnan Zhang
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Leyi Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Junjie Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China.,School of Basic Medical Sciences, Department of Pathophysiology, Jilin Medical University, Jilin 132013, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
86
|
Xu M, Yang Q, Sun X, Wang Y. Recent Advancements in the Loading and Modification of Therapeutic Exosomes. Front Bioeng Biotechnol 2020; 8:586130. [PMID: 33262977 PMCID: PMC7686035 DOI: 10.3389/fbioe.2020.586130] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Exosomes have a rapid development of bio-nanoparticles for drug delivery and confluent advances in next-generation diagnostics, monitoring the progression of several diseases, and accurate guidance for therapy. Based on their prominent stability, cargo-carriage properties, stable circulating capability, and favorable safety profile, exosomes have great potential to regulate cellular communication by carrying variable cargoes into specific site. However, the specific loading strategies and modification methods for engineered exosomes to enhance the targeting ability are unclear. The clinical application of exosomes is still limited. In this review, we discuss both original and modified exosomes for loading specific therapeutic molecules (proteins, nucleic acids, and small molecules) and the design strategies used to target specific cells. This review can be used as a reference for further loading and modification strategies as well as for the therapeutic applications of exosomes.
Collapse
Affiliation(s)
- Mengqiao Xu
- Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yue Wang
- Department of Histology and Embryology, Second Military Medical University, Shanghai, China.,Shanghai Key Lab of Cell Engineering, Shanghai, China
| |
Collapse
|
87
|
Jirak P, Wernly B, Lichtenauer M, Franz M, Knost T, Abusamrah T, Kelm M, Bimpong-Buta NY, Jung C. Next-generation sequencing analysis of circulating micro-RNA expression in response to parabolic flight as a spaceflight analogue. NPJ Microgravity 2020; 6:31. [PMID: 33298968 PMCID: PMC7606465 DOI: 10.1038/s41526-020-00121-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/11/2020] [Indexed: 01/15/2023] Open
Abstract
Understanding physiologic reactions to weightlessness is an indispensable requirement for safe human space missions. This study aims to analyse changes in the expression of circulating miRNAs following exposure to gravitational changes. Eight healthy volunteers (age: 24.5 years, male: 4, female: 4) were included. Each subject underwent 31 short-term phases of weightlessness and hypergravity induced by parabolic flight as a spaceflight analogue. At baseline, 1 and 24 h after parabolic flight, venous blood was withdrawn. Analysis of circulating miRNAs in serum was conducted by means of next generation sequencing. In total, 213 miRNAs were robustly detected (TPM > 5) by small RNA sequencing in all 24 samples. Four miRNAs evidenced a significant change in expression after adjusting for multiple testing. Only miR-223-3p showed a consistent significant decrease 24 h after parabolic flight compared to baseline values and values at 1 h after parabolic flight. miR-941 and miR-24-3p showed a significant decrease 24 h after parabolic flight compared to 1 h after parabolic flight but not to baseline values. miR-486-5p showed a significant increase 24 h after parabolic flight compared to 1 h after parabolic flight but not to baseline values. A target network analysis identified genes of the p53 signaling pathway and the cell cycle highly enriched among the targets of the four microRNAs. Our findings suggest cellular adaption to gravitational changes at the post-transcriptional level. Based on our results, we suggest a change in cell cycle regulation as potential explanation for adaptational changes observed in space missions.
Collapse
Affiliation(s)
- Peter Jirak
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Thorben Knost
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Thaer Abusamrah
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Nana-Yaw Bimpong-Buta
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
88
|
Hypoxia-Induced Glioma-Derived Exosomal miRNA-199a-3p Promotes Ischemic Injury of Peritumoral Neurons by Inhibiting the mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5609637. [PMID: 33110474 PMCID: PMC7578720 DOI: 10.1155/2020/5609637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022]
Abstract
The underlying molecular mechanisms that the hypoxic microenvironment could aggravate neuronal injury are still not clear. In this study, we hypothesized that the exosomes, exosomal miRNAs, and the mTOR signaling pathway might be involved in hypoxic peritumoral neuronal injury in glioma. Multimodal radiological images, HE, and HIF-1α staining of high-grade glioma (HGG) samples revealed that the peritumoral hypoxic area overlapped with the cytotoxic edema region and directly contacted with normal neurons. In either direct or indirect coculture system, hypoxia could promote normal mouse hippocampal neuronal cell (HT22) injury, and the growth of HT22 cells was suppressed by C6 glioma cells under hypoxic condition. For administrating hypoxia-induced glioma-derived exosomes (HIGDE) that could aggravate oxygen-glucose deprivation (OGD)/reperfusion neuronal injury, we identified that exosomes may be the communication medium between glioma cells and peritumoral neurons, and we furtherly found that exosomal miR-199a-3p mediated the OGD/reperfusion neuronal injury process by suppressing the mTOR signaling pathway. Moreover, the upregulation of miRNA-199a-3p in exosomes from glioma cells was induced by hypoxia-related HIF-1α activation. To sum up, hypoxia-induced glioma-derived exosomal miRNA-199a-3p can be upregulated by the activation of HIF-1α and is able to increase the ischemic injury of peritumoral neurons by inhibiting the mTOR pathway.
Collapse
|
89
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
90
|
Petejova N, Martinek A, Zadrazil J, Kanova M, Klementa V, Sigutova R, Kacirova I, Hrabovsky V, Svagera Z, Stejskal D. Acute Kidney Injury in Septic Patients Treated by Selected Nephrotoxic Antibiotic Agents-Pathophysiology and Biomarkers-A Review. Int J Mol Sci 2020; 21:ijms21197115. [PMID: 32993185 PMCID: PMC7583998 DOI: 10.3390/ijms21197115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury is a common complication in critically ill patients with sepsis and/or septic shock. Further, some essential antimicrobial treatment drugs are themselves nephrotoxic. For this reason, timely diagnosis and adequate therapeutic management are paramount. Of potential acute kidney injury (AKI) biomarkers, non-protein-coding RNAs are a subject of ongoing research. This review covers the pathophysiology of vancomycin and gentamicin nephrotoxicity in particular, septic AKI and the microRNAs involved in the pathophysiology of both syndromes. PubMED, UptoDate, MEDLINE and Cochrane databases were searched, using the terms: biomarkers, acute kidney injury, antibiotic nephrotoxicity, sepsis, miRNA and nephrotoxicity. A comprehensive review describing pathophysiology and potential biomarkers of septic and toxic acute kidney injury in septic patients was conducted. In addition, five miRNAs: miR-15a-5p, miR-192-5p, miR-155-5p, miR-486-5p and miR-423-5p specific to septic and toxic acute kidney injury in septic patients, treated by nephrotoxic antibiotic agents (vancomycin and gentamicin) were identified. However, while these are at the stage of clinical testing, preclinical and clinical trials are needed before they can be considered useful biomarkers or therapeutic targets of AKI in the context of antibiotic nephrotoxicity or septic injury.
Collapse
Affiliation(s)
- Nadezda Petejova
- Department of Internal Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (A.M.); (V.H.)
- Department of Clinical Studies Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Internal Medicine III—Nephrology, Rheumatology and Endocrinology, University Hospital and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (J.Z.); (V.K.)
- Correspondence:
| | - Arnost Martinek
- Department of Internal Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (A.M.); (V.H.)
- Department of Clinical Studies Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Josef Zadrazil
- Department of Internal Medicine III—Nephrology, Rheumatology and Endocrinology, University Hospital and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (J.Z.); (V.K.)
| | - Marcela Kanova
- Department of Anesthesiology and Resuscitation, University Hospital Ostrava, 70852 Ostrava, Czech Republic;
| | - Viktor Klementa
- Department of Internal Medicine III—Nephrology, Rheumatology and Endocrinology, University Hospital and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (J.Z.); (V.K.)
| | - Radka Sigutova
- Department of Laboratory Diagnostics Institute of Clinical Biochemistry and Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (R.S.); (I.K.); (Z.S.); (D.S.)
- Department of Biomedical Sciences Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Ivana Kacirova
- Department of Laboratory Diagnostics Institute of Clinical Biochemistry and Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (R.S.); (I.K.); (Z.S.); (D.S.)
- Institute of Clinical Pharmacology Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Vladimir Hrabovsky
- Department of Internal Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (A.M.); (V.H.)
- Department of Clinical Studies Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Zdenek Svagera
- Department of Laboratory Diagnostics Institute of Clinical Biochemistry and Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (R.S.); (I.K.); (Z.S.); (D.S.)
- Department of Biomedical Sciences Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - David Stejskal
- Department of Laboratory Diagnostics Institute of Clinical Biochemistry and Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (R.S.); (I.K.); (Z.S.); (D.S.)
- Department of Biomedical Sciences Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| |
Collapse
|
91
|
Wu YL, Li HF, Chen HH, Lin H. MicroRNAs as Biomarkers and Therapeutic Targets in Inflammation- and Ischemia-Reperfusion-Related Acute Renal Injury. Int J Mol Sci 2020; 21:ijms21186738. [PMID: 32937906 PMCID: PMC7555653 DOI: 10.3390/ijms21186738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI), caused mainly by ischemia-reperfusion, sepsis, or nephrotoxins (such as contrast medium), is identified by an abrupt decline in kidney function and is associated with high morbidity and mortality. Despite decades of efforts, the pathogenesis of AKI remains poorly understood, and effective therapies are lacking. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level to control cell differentiation, development, and homeostasis. Additionally, extracellular miRNAs might mediate cell-cell communication during various physiological and pathological processes. Recently, mounting evidence indicates that miRNAs play a role in the pathogenesis of AKI. Moreover, emerging research suggests that because of their remarkable stability in body fluids, microRNAs can potentially serve as novel diagnostic biomarkers of AKI. Of note, our previous finding that miR-494 is rapidly elevated in urine but not in serum provides insight into the ultimate role of urine miRNAs in AKI. Additionally, exosomal miRNAs derived from stem cells, known as the stem cell secretome, might be a potential innovative therapeutic strategy for AKI. This review aims to provide new data obtained in this field of research. It is hoped that new studies on this topic will not only generate new insights into the pathophysiology of urine miRNAs in AKI but also might lead to the precise management of this fatal disease.
Collapse
Affiliation(s)
- Yueh-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (H.-H.C.); (H.L.); Tel.: +886-27361661-3188 (H.-H.C.); +886-2-2737-3577 (H.L.); Fax: +886-2-5558-9890 (H.-H.C.)
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (H.-H.C.); (H.L.); Tel.: +886-27361661-3188 (H.-H.C.); +886-2-2737-3577 (H.L.); Fax: +886-2-5558-9890 (H.-H.C.)
| |
Collapse
|
92
|
Chen Y, Han X, Sun Y, He X, Xue D. A circulating exosomal microRNA panel as a novel biomarker for monitoring post-transplant renal graft function. J Cell Mol Med 2020; 24:12154-12163. [PMID: 32918330 PMCID: PMC7579686 DOI: 10.1111/jcmm.15861] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Accurate and effective biomarkers for continuous monitoring of graft function are needed after kidney transplantation. The aim of this study was to establish a circulating exosomal miRNA panel as non‐invasive biomarker for kidney transplant recipients. Plasma exosomes of 58 kidney transplant recipients and 27 healthy controls were extracted by gel exclusion chromatography and characterized by transmission electron microscopy, nanoparticle tracking analysis and Western blotting. Post‐transplant renal graft function was evaluated by estimated glomerular filtration rate (eGFR). Quantitative real‐time polymerase chain reaction was used to determine the expression of exosomal microRNAs (miRNAs). Exosomal miR‐21, miR‐210 and miR‐4639 showed negative correlations with eGFR in the training set and were selected for further analysis. In the validation set, miR‐21, miR‐210 and miR‐4639 showed the capability to discriminate between subjects with chronic allograft dysfunction (eGFR < 60 mL/min/1.73 m2) and those with normal graft function (eGFR > 90 mL/min/1.73 m2). Three‐miRNA panel exhibited higher accuracy compared with individual miRNAs or double indicators. One‐year follow‐up revealed a stable recovery of allograft function in subjects with low calculated score from three‐miRNA panel (below the optimal cut‐off value). In conclusion, a unique circulating exosomal miRNA panel was identified as an effective biomarker for monitoring post‐transplant renal graft function in this study.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Han
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yangyang Sun
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
93
|
Pathomthongtaweechai N, Chutipongtanate S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy. Biomed Pharmacother 2020; 131:110655. [PMID: 32853909 DOI: 10.1016/j.biopha.2020.110655] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Disturbance of endoplasmic reticulum (ER) homeostasis triggered by the accumulation of unfolded proteins and advanced glycation end-products (AGEs) plays a major role in pathophysiology of diabetic nephropathy. Activation of receptor for AGEs (RAGE) stimulates NADPH oxidase-mediated reactive oxygen species (ROS) production, leading to ER stress, inflammation, glomerular hypertrophy, podocyte injury, and renal fibrosis. A growing body of evidence indicates that non-coding RNAs (ncRNAs) could rescue ER stress and renal inflammation by the epigenetic modification. This review summarizes ncRNA regulation in AGE/RAGE signaling-mediated ER stress, and discusses the opportunities and challenges of ncRNA-loaded extracellular vesicle therapy in diabetic nephropathy.
Collapse
Affiliation(s)
- Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand; Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
94
|
Extracellular vesicles carrying miRNAs in kidney diseases: a systemic review. Clin Exp Nephrol 2020; 24:1103-1121. [DOI: 10.1007/s10157-020-01947-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/27/2020] [Indexed: 01/26/2023]
|
95
|
Salunkhe S, Dheeraj, Basak M, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J Control Release 2020; 326:599-614. [PMID: 32730952 DOI: 10.1016/j.jconrel.2020.07.042] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Exosomes are natural nanovesicles excreted by many cells for intercellular communication and for transfer of materials including proteins, nucleic acids and even synthetic therapeutic agents. Surface modification of exosomes imparts additional functionality to the exosomes to enable site specific drug delivery and in vivo imaging and tracking and is an emerging area in drug delivery research. The present review focuses upon these modifications on the exosomal surface, the chemistry involved and their impact on targeted drug delivery for the treatment of brain, breast, lung, liver, colon tumors and, heart diseases and for understanding their in vivo fate including their uptake mechanisms, pharmacokinetics and biodistribution. The specific exosomal membrane proteins such as tetraspanins (CD63, CD81, CD9), lactadherin (LA), lysosome associated membrane protein-2b (Lamp-2b) and, glycosyl-phosphatidyl-inositol (GPI) involved in functionalization of exosome surface have also been discussed along with different strategies of surface modification like genetic engineering, covalent modification (click chemistry and metabolic engineering of parent cells of exosomes) and non-covalent modification (multivalent electrostatic interactions, ligand-receptor interaction, hydrophobic interaction, aptamer based modification and modification by anchoring CP05 peptide) along with optical (fluorescent and bioluminescent) and radioactive isotope labelling techniques of exosomes for imaging purpose.
Collapse
Affiliation(s)
- Shubham Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Dheeraj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Moumita Basak
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
96
|
Liao G, Zheng K, Shorr R, Allan DS. Human endothelial colony-forming cells in regenerative therapy: A systematic review of controlled preclinical animal studies. Stem Cells Transl Med 2020; 9:1344-1352. [PMID: 32681814 PMCID: PMC7581447 DOI: 10.1002/sctm.20-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial colony‐forming cells (ECFCs) hold significant promise as candidates for regenerative therapy of vascular injury. Existing studies remain largely preclinical and exhibit marked design heterogeneity. A systematic review of controlled preclinical trials of human ECFCs is needed to guide future study design and to accelerate clinical translation. A systematic search of Medline and EMBASE on 1 April 2019 returned 3131 unique entries of which 66 fulfilled the inclusion criteria. Most studies used ECFCs derived from umbilical cord or adult peripheral blood. Studies used genetically modified immunodeficient mice (n = 52) and/or rats (n = 16). ECFC phenotypes were inconsistently characterized. While >90% of studies used CD31+ and CD45−, CD14− was demonstrated in 73% of studies, CD146+ in 42%, and CD10+ in 35%. Most disease models invoked ischemia. Peripheral vascular ischemia (n = 29), central nervous system ischemia (n = 14), connective tissue injury (n = 10), and cardiovascular ischemia and reperfusion injury (n = 7) were studied most commonly. Studies showed predominantly positive results; only 13 studies reported ≥1 outcome with null results, three reported only null results, and one reported harm. Quality assessment with SYRCLE revealed potential sources of bias in most studies. Preclinical ECFC studies are associated with benefit across several ischemic conditions in animal models, although combining results is limited by marked heterogeneity in study design. In particular, characterization of ECFCs varied and aspects of reporting introduced risk of bias in most studies. More studies with greater focus on standardized cell characterization and consistency of the disease model are needed.
Collapse
Affiliation(s)
- Gary Liao
- Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katina Zheng
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Risa Shorr
- Information Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - David S Allan
- Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
97
|
AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 2020; 33:1171-1187. [PMID: 32651850 DOI: 10.1007/s40620-020-00793-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is an increasing health burden with high morbidity and mortality rates worldwide. AKI is a risk factor for chronic kidney disease (CKD) development and progression to end stage renal disease (ESRD). Rapid action is required to find treatment options for AKI, plus to anticipate the development of CKD and other complications. Therefore, it is essential to understand the pathophysiology of AKI to CKD transition. Over the last several years, research has revealed maladaptive repair to be an interplay of cell death, endothelial dysfunction, tubular epithelial cell senescence, inflammatory processes and more-terminating in fibrosis. Various pathological mechanisms have been discovered and reveal targets for potential interventions. Furthermore, there have been clinical efforts measures for AKI prevention and progression including the development of novel biomarkers and prediction models. In this review, we provide an overview of pathophysiological mechanisms involved in kidney fibrosis. Furthermore, we discuss research gaps and promising therapeutic approaches for AKI to CKD progression.
Collapse
|
98
|
Borgheti-Cardoso LN, Kooijmans SAA, Chamorro LG, Biosca A, Lantero E, Ramírez M, Avalos-Padilla Y, Crespo I, Fernández I, Fernandez-Becerra C, Del Portillo HA, Fernàndez-Busquets X. Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles. Int J Pharm 2020; 587:119627. [PMID: 32653596 DOI: 10.1016/j.ijpharm.2020.119627] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Among several factors behind drug resistance evolution in malaria is the challenge of administering overall doses that are not toxic for the patient but that, locally, are sufficiently high to rapidly kill the parasites. Thus, a crucial antimalarial strategy is the development of drug delivery systems capable of targeting antimalarial compounds to Plasmodium with high specificity. In the present study, extracellular vesicles (EVs) have been evaluated as a drug delivery system for the treatment of malaria. EVs derived from naive red blood cells (RBCs) and from Plasmodium falciparum-infected RBCs (pRBCs) were isolated by ultrafiltration followed by size exclusion chromatography. Lipidomic characterization showed that there were no significant qualitative differences between the lipidomic profiles of pRBC-derived EVs (pRBC-EVs) and RBC-derived EVs (RBC-EVs). Both EVs were taken up by RBCs and pRBCs, although pRBC-EVs were more efficiently internalized than RBC-EVs, which suggested their potential use as drug delivery vehicles for these cells. When loaded into pRBC-EVs, the antimalarial drugs atovaquone and tafenoquine inhibited in vitro P. falciparum growth more efficiently than their free drug counterparts, indicating that pRBC-EVs can potentially increase the efficacy of several small hydrophobic drugs used for the treatment of malaria.
Collapse
Affiliation(s)
- Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain.
| | | | - Lucía Gutiérrez Chamorro
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Arnau Biosca
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Isabel Crespo
- Plataforma de Citometria, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene Fernández
- Unitat d'Espectrometria de Masses de Caracterització Molecular, CCiTUB, Universitat de Barcelona (UB), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Hernando A Del Portillo
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB, UB), Barcelona, Spain.
| |
Collapse
|
99
|
Wang Y, Guo YF, Fu GP, Guan C, Zhang X, Yang DG, Shi YC. Protective effect of miRNA-containing extracellular vesicles derived from mesenchymal stromal cells of old rats on renal function in chronic kidney disease. Stem Cell Res Ther 2020; 11:274. [PMID: 32641100 PMCID: PMC7346413 DOI: 10.1186/s13287-020-01792-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) play an important role in the prevention of cell and tissue fibrosis. Senescence may decrease the function of MSCs during recovery from tissue and organ damage. Extracellular vesicles (EVs) released from MSCs contribute to the repair of kidney injury. We explored the influence of senescence on EVs derived from MSCs (MSC-EVs) and detected the protective effects of MSC-EVs expressing low levels of miR-294/miR-133 derived from old rats against chronic kidney disease (CKD). Methods The effects of MSC-EVs derived from 3-month-old and 18-month-old male Fisher 344 rats on renal fibrosis were explored in a unilateral ureteral obstruction (UUO) model. pLV-miR-294/pLV-miR-133 mimic/inhibitor were injected into young and old rats before UUO to detect the effects of miR-294/miR-133, which were decreased in MSC-EVs and sera from old rats, on renal function in CKD. Transforming growth factor-β1 (TGF-β1)-induced human renal proximal tubular epithelial (HK2) cells were used to imitate the pathological process of renal fibrosis in vitro. Western blotting was used to assess the expression of epithelial/mesenchymal markers and phosphorylation of proteins in HK2 cells. Results The inhibition of UUO-induced CKD by MSC-EVs was weaker in old rats than in young rats. Downregulation of miRNAs (miR-294 and miR-133) in both MSC-EVs and sera from old rats obviously attenuated UUO-induced renal injury in old rats. miR-294 and miR-133 overexpression mitigated TGF-β1-mediated epithelial-mesenchymal transition (EMT) in HK2 cells, and the obvious increase in the phosphorylation of both SMAD2/3 and ERK1/2 induced by TGF-β1 was prevented in miR-294- and miR-133-overexpressing HK2 cells. Conclusions The ability of MSC-EVs to inhibit renal fibrosis decreased with age. miR-294/miR-133 in MSC-EVs and sera had an important effect on renal fibrosis in old rats and on EMT in HK2 cells. Furthermore, miR-294/miR-133 overexpression prevented SMAD2/3 and ERK1/2 phosphorylation in HK2 cells during TGF-β1-mediated EMT. These findings show that miR-294/miR-133 may be therapeutic in renal fibrosis and related renal dysfunction in elderly individuals.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| | - Yi Fang Guo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guang Ping Fu
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medical, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chang Guan
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin Zhang
- Northern College, Zhangjiakou, Hebei, China
| | | | - Yun Cong Shi
- Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
100
|
Smith M, Zuckerman M, Kandanearatchi A, Thompson R, Davenport M. Using next-generation sequencing of microRNAs to identify host and/or pathogen nucleic acid signatures in samples from children with biliary atresia - a pilot study. Access Microbiol 2020; 2:acmi000127. [PMID: 32974591 PMCID: PMC7497833 DOI: 10.1099/acmi.0.000127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Biliary atresia (BA) is a progressive disease affecting infants resulting in inflammatory obliteration and fibrosis of the extra- and intra-hepatic biliary tree. BA may be grouped into type 1 isolated; type 2 syndromic, where other congenital malformations may be present; type 3 cystic BA, where there is cyst formation within an otherwise obliterated biliary tree; and cytomegalovirus-associated BA. The cause of BA is unclear, with immune dysregulation, inflammation and infection, particularly with cytomegalovirus (CMV), all implicated. In this study a total of 50/67 samples were tested for CMV DNA using quantitative real-time PCR. Ten liver tissue and 8 bile samples from 10 patients representing the range of BA types were also analysed by next-generation sequencing. CMV DNA was found in 8/50 (16 %) patients and a total of 265 differentially expressed microRNAs were identified. No statistically significant differences between the various types of BA were found. However, differences were identified in the expression patterns of 110 microRNAs in bile and liver tissue samples (P<0.05). A small number of bacterial and viral sequences were found, although their relevance to BA remains to be determined. No direct evidence of viral causes of BA were found, although clear evidence of microRNAs associated with hepatocyte and cholangiocyte differentiation together with fibrosis and inflammation were identified. These include miR-30 and the miR-23 cluster (liver and bile duct development) and miR-29, miR-483, miR-181, miR-199 and miR-200 (inflammation and fibrosis).
Collapse
Affiliation(s)
- Melvyn Smith
- Viapath Analytics, South London Specialist Virology Centre, Denmark Hill, London
| | - Mark Zuckerman
- Viapath Analytics, South London Specialist Virology Centre, Denmark Hill, London
| | | | - Richard Thompson
- Institute of Liver Studies and Paediatric Liver Services, Denmark Hill, London
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS
| |
Collapse
|