51
|
Lee SG, Kim N, Kim SM, Park IB, Kim H, Kim S, Kim BG, Hwang JM, Baek IJ, Gartner A, Park JH, Myung K. Ewing sarcoma protein promotes dissociation of poly(ADP-ribose) polymerase 1 from chromatin. EMBO Rep 2020; 21:e48676. [PMID: 33006225 DOI: 10.15252/embr.201948676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) facilitates DNA damage response (DDR). While the Ewing's sarcoma breakpoint region 1 (EWS) protein fused to FLI1 triggers sarcoma formation, the physiological function of EWS is largely unknown. Here, we investigate the physiological role of EWS in regulating PARP1. We show that EWS is required for PARP1 dissociation from damaged DNA. Abnormal PARP1 accumulation caused by EWS inactivation leads to excessive Poly(ADP-Ribosy)lation (PARylation) and triggers cell death in both in vitro and in vivo models. Consistent with previous work, the arginine-glycine-glycine (RGG) domain of EWS is essential for PAR chain interaction and PARP1 dissociation from damaged DNA. Ews and Parp1 double mutant mice do not show improved survival, but supplementation with nicotinamide mononucleotides extends Ews-mutant pups' survival, which might be due to compensatory activation of other PARP proteins. Consistently, PARP1 accumulates on chromatin in Ewing's sarcoma cells expressing an EWS fusion protein that cannot interact with PARP1, and tissues derived from Ewing's sarcoma patients show increased PARylation. Taken together, our data reveal that EWS is important for removing PARP1 from damaged chromatin.
Collapse
Affiliation(s)
- Seon-Gyeong Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Namwoo Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Su-Min Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - In Bae Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Hyejin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - In-Joon Baek
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
52
|
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19:711-736. [PMID: 32884152 DOI: 10.1038/s41573-020-0076-6] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases - particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
53
|
PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias. Blood Rev 2020; 45:100696. [PMID: 32482307 DOI: 10.1016/j.blre.2020.100696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors, which induce synthetic lethality of BRCA mutant breast and ovarian cancers, are now under active exploration for treatment of acute leukemias, specifically acute myeloid leukemia (AML). Experimental data has revealed that DNA repair deficiencies similar to those found in BRCA mutant solid tumors function in malignant hematopoietic cells to enhance cell survival and promote therapy resistance. Preclinical studies have demonstrated that inhibition of PARP with a variety of agents can dramatically enhance the efficacy of other therapeutic approaches including cytotoxic and epigenetic chemotherapy, small molecule inhibitors (IDH and FLT3 inhibitors) and antibody drug conjugates. This has led to early stage clinical trials of multiple PARP inhibitors (PARPi) for AML patients. Despite small patient numbers, evidence of modest clinical efficacy and tolerability in combinatorial regimens support the further development of PARP inhibition as a novel therapeutic strategy for AML, particularly in select molecular subsets (MLL rearranged, FLT3 and IDH1 mutant disease.
Collapse
|
54
|
Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res 2020; 11:1185-1202. [PMID: 32219729 DOI: 10.1007/s12975-020-00806-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is one of the significant causes of morbidity and mortality, affecting millions of people across the globe. Cell injury in the infarct region is an inevitable consequence of focal cerebral ischemia. Subsequent reperfusion exacerbates the harmful effect and increases the infarct volume. These cellular injuries follow either a regulated pathway involving tightly structured signaling cascades and molecularly defined effector mechanisms or a non-regulated pathway, also known as accidental cell death, where the process is biologically uncontrolled. Classical cell death pathways are long established and well reported in several articles that majorly define apoptotic cell death. A recent focus on cell death study also considers investigation on non-classical pathways that are tightly regulated, may or may not involve caspases, but non-apoptotic. Pathological cell death is a cardinal feature of different neurodegenerative diseases. Although ischemia cannot be classified as a neurodegenerative disease, it is a cerebrovascular event where the infarct region exhibits aberrant cell death. Over the past few decades, several therapeutic options have been implicated for ischemic stroke. However, their use has been hampered owing to the number of limitations that they possess. Ischemic penumbral neurons undergo apoptosis and become dysfunctional; however, they are salvageable. Thus, understanding the role of different cell death pathways is crucial to aid in the modern treatment of protecting apoptotic neurons.
Collapse
|
55
|
Leung AKL. Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation. Trends Cell Biol 2020; 30:370-383. [PMID: 32302549 DOI: 10.1016/j.tcb.2020.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
Poly(ADP-ribose) (PAR) is a nucleic acid-like protein modification that can seed the formation of microscopically visible cellular compartments that lack enveloping membranes, recently termed biomolecular condensates. These PAR-mediated condensates are linked to cancer, viral infection, and neurodegeneration. Recent data have shown the therapeutic potential of modulating PAR conjugation (PARylation): PAR polymerase (PARP) inhibitors can modulate the formation and dynamics of these condensates as well as the trafficking of their components - many of which are key disease factors. However, the way in which PARylation facilitates these functions remains unclear, partly because of our lack of understanding of the fundamental parameters of intracellular PARylation, including the sites that are conjugated, PAR chain length and structure, and the physicochemical properties of the conjugates. This review first introduces the role of PARylation in regulating biomolecular condensates, followed by discussion of current knowledge gaps, potential solutions, and therapeutic applications.
Collapse
Affiliation(s)
- Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
56
|
Park H, Kam TI, Dawson TM, Dawson VL. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:1-29. [PMID: 32381174 DOI: 10.1016/bs.ircmb.2019.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disruption of cellular functions with aging-induced accumulation of neuronal stressors causes cell death which is a common feature of neurodegenerative diseases. Studies in a variety of neurodegenerative disease models demonstrate that poly (ADP-ribose) (PAR)-dependent cell death, also named parthanatos, is responsible for neuronal loss in neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Parthanatos has distinct features that differ from caspase-dependent apoptosis, necrosis or autophagic cell death. Parthanatos can be triggered by the accumulation of PAR due to overactivation of PAR polymerase-1 (PARP-1). Excess PAR, induces the mitochondrial release apoptosis-inducing factor (AIF), which binds to macrophage migration inhibitory factor (MIF) carrying MIF into the nucleus where it cleaves genomic DNA into large fragments. In this review, we will discuss the molecular mechanisms of parthanatos and their role in neurodegenerative diseases. Furthermore, we will discuss promising therapeutic interventions within the pathological PAR signaling cascade that could be designed to halt the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
57
|
François-Moutal L, Perez-Miller S, Scott DD, Miranda VG, Mollasalehi N, Khanna M. Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci 2019; 12:301. [PMID: 31920533 PMCID: PMC6934062 DOI: 10.3389/fnmol.2019.00301] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA binding protein (TDP-43) is a key player in neurodegenerative diseases. In this review, we have gathered and presented structural information on the different regions of TDP-43 with high resolution structures available. A thorough understanding of TDP-43 structure, effect of modifications, aggregation and sites of localization is necessary as we develop therapeutic strategies targeting TDP-43 for neurodegenerative diseases. We discuss how different domains as well as post-translational modification may influence TDP-43 overall structure, aggregation and droplet formation. The primary aim of the review is to utilize structural insights as we develop an understanding of the deleterious behavior of TDP-43 and highlight locations of established and proposed post-translation modifications. TDP-43 structure and effect on localization is paralleled by many RNA-binding proteins and this review serves as an example of how structure may be modulated by numerous compounding elements.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - David D Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| |
Collapse
|
58
|
Tepper S, Mortusewicz O, Członka E, Bello A, Schmidt A, Jeschke J, Fischbach A, Pfeil I, Petersen-Mahrt SK, Mangerich A, Helleday T, Leonhardt H, Jungnickel B. Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Res 2019; 47:7418-7429. [PMID: 31127309 PMCID: PMC6698665 DOI: 10.1093/nar/gkz466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Affinity maturation of the humoral immune response depends on somatic hypermutation (SHM) of immunoglobulin (Ig) genes, which is initiated by targeted lesion introduction by activation-induced deaminase (AID), followed by error-prone DNA repair. Stringent regulation of this process is essential to prevent genetic instability, but no negative feedback control has been identified to date. Here we show that poly(ADP-ribose) polymerase-1 (PARP-1) is a key factor restricting AID activity during somatic hypermutation. Poly(ADP-ribose) (PAR) chains formed at DNA breaks trigger AID-PAR association, thus preventing excessive DNA damage induction at sites of AID action. Accordingly, AID activity and somatic hypermutation at the Ig variable region is decreased by PARP-1 activity. In addition, PARP-1 regulates DNA lesion processing by affecting strand biased A:T mutagenesis. Our study establishes a novel function of the ancestral genome maintenance factor PARP-1 as a critical local feedback regulator of both AID activity and DNA repair during Ig gene diversification.
Collapse
Affiliation(s)
- Sandra Tepper
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Oliver Mortusewicz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany.,Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Ewelina Członka
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Amanda Bello
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Angelika Schmidt
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Julia Jeschke
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Arthur Fischbach
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ines Pfeil
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Svend K Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
59
|
Nebenzahl-Sharon K, Sharf R, Amer J, Shalata H, Khoury-Haddad H, Sohn SY, Ayoub N, Hearing P, Kleinberger T. An Interaction with PARP-1 and Inhibition of Parylation Contribute to Attenuation of DNA Damage Signaling by the Adenovirus E4orf4 Protein. J Virol 2019; 93:e02253-18. [PMID: 31315986 PMCID: PMC6744226 DOI: 10.1128/jvi.02253-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/02/2019] [Indexed: 01/27/2023] Open
Abstract
The adenovirus (Ad) E4orf4 protein was reported to contribute to inhibition of ATM- and ATR-regulated DNA damage signaling during Ad infection and following treatment with DNA-damaging drugs. Inhibition of these pathways improved Ad replication, and when expressed alone, E4orf4 sensitized transformed cells to drug-induced toxicity. However, the mechanisms utilized were not identified. Here, we show that E4orf4 associates with the DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP-1) and that the association requires PARP activity. During Ad infection, PARP is activated, but its activity is not required for recruitment of either E4orf4 or PARP-1 to virus replication centers, suggesting that their association occurs following recruitment. Inhibition of PARP-1 assists E4orf4 in reducing DNA damage signaling during infection, and E4orf4 attenuates virus- and DNA damage-induced parylation. Furthermore, E4orf4 reduces PARP-1 phosphorylation on serine residues, which likely contributes to PARP-1 inhibition as phosphorylation of this enzyme was reported to enhance its activity. PARP-1 inhibition is important to Ad infection since treatment with a PARP inhibitor enhances replication efficiency. When E4orf4 is expressed alone, it associates with poly(ADP-ribose) (PAR) chains and is recruited to DNA damage sites in a PARP-1-dependent manner. This recruitment is required for inhibition of drug-induced ATR signaling by E4orf4 and for E4orf4-induced cancer cell death. Thus, the results presented here demonstrate a novel mechanism by which E4orf4 targets and inhibits DNA damage signaling through an association with PARP-1 for the benefit of the virus and impacting E4orf4-induced cancer cell death.IMPORTANCE Replication intermediates and ends of viral DNA genomes can be recognized by the cellular DNA damage response (DDR) network as DNA damage whose repair may lead to inhibition of virus replication. Therefore, many viruses evolved mechanisms to inhibit the DDR network. We have previously shown that the adenovirus (Ad) E4orf4 protein inhibits DDR signaling, but the mechanisms were not identified. Here, we describe an association of E4orf4 with the DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP-1). E4orf4 reduces phosphorylation of this enzyme and inhibits its activity. PARP-1 inhibition assists E4orf4 in reducing Ad-induced DDR signaling and improves the efficiency of virus replication. Furthermore, the ability of E4orf4, when expressed alone, to accumulate at DNA damage sites and to kill cancer cells is attenuated by chemical inhibition of PARP-1. Our results indicate that the E4orf4-PARP-1 interaction has an important role in Ad replication and in promotion of E4orf4-induced cancer-selective cell death.
Collapse
Affiliation(s)
- Keren Nebenzahl-Sharon
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rakefet Sharf
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jana Amer
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hassan Shalata
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Sook-Young Sohn
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nabieh Ayoub
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Tamar Kleinberger
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
60
|
The Role of PARPs in Inflammation-and Metabolic-Related Diseases: Molecular Mechanisms and Beyond. Cells 2019; 8:cells8091047. [PMID: 31500199 PMCID: PMC6770262 DOI: 10.3390/cells8091047] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an essential post-translational modification catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. Poly(ADP-ribose) polymerase 1 (PARP1) is a well-characterized member of the PARP family. PARP1 plays a crucial role in multiple biological processes and PARP1 activation contributes to the development of various inflammatory and malignant disorders, including lung inflammatory disorders, cardiovascular disease, ovarian cancer, breast cancer, and diabetes. In this review, we will focus on the role and molecular mechanisms of PARPs enzymes in inflammation- and metabolic-related diseases. Specifically, we discuss the molecular mechanisms and signaling pathways that PARP1 is associated with in the regulation of pathogenesis. Recently, increasing evidence suggests that PARP inhibition is a promising strategy for intervention of some diseases. Thus, our in-depth understanding of the mechanism of how PARPs are activated and how their signaling downstream effecters can provide more potential therapeutic targets for the treatment of the related diseases in the future is crucial.
Collapse
|
61
|
Vivelo CA, Ayyappan V, Leung AKL. Poly(ADP-ribose)-dependent ubiquitination and its clinical implications. Biochem Pharmacol 2019; 167:3-12. [PMID: 31077644 PMCID: PMC6702056 DOI: 10.1016/j.bcp.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022]
Abstract
ADP-ribosylation-the addition of one or multiple ADP-ribose units onto proteins-is a therapeutically important post-translational modification implicated in cancer, neurodegeneration, and infectious diseases. The protein modification regulates a broad range of biological processes, including DNA repair, transcription, RNA metabolism, and the structural integrity of nonmembranous structures. The polymeric form of ADP-ribose, poly(ADP-ribose), was recently identified as a signal for triggering protein degradation through the ubiquitin-proteasome system. Using informatics analyses, we found that these ubiquitinated substrates tend to be low abundance proteins, which may serve as rate-limiting factors within signaling networks or metabolic processes. In this review, we summarize the current literature on poly(ADP-ribose)-dependent ubiquitination (PARdU) regarding its biological mechanisms, substrates, and relevance to diseases.
Collapse
Affiliation(s)
- Christina A Vivelo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Vinay Ayyappan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
62
|
Liu C, Fang Y. New insights of poly(ADP-ribosylation) in neurodegenerative diseases: A focus on protein phase separation and pathologic aggregation. Biochem Pharmacol 2019; 167:58-63. [PMID: 31034795 DOI: 10.1016/j.bcp.2019.04.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/25/2019] [Indexed: 01/22/2023]
Abstract
Abnormal protein aggregation is a common pathological feature of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Protein posttranslational modifications (PTMs) play a crucial regulatory role in the formation of pathologic aggregation. Among the known PTMs involved in neurodegeneration, poly(ADP-ribosylation) (PARylation) has emerged with promising therapeutic potentials of the use of poly(ADP-ribose) (PAR) polymerase (PARP) inhibitors. In this review, we describe the mounting evidence that abnormal PARP activation is involved in various neurodegenerative diseases, and discuss the underpinning mechanisms with a focus on the recent findings that PARylation affects liquid-liquid phase separation and aggregation of amyloid proteins. We hope this review will stimulate further investigation of the unknown functions of PARylation and promote the development of more effective therapeutic agents in treating neurodegeneration.
Collapse
Affiliation(s)
- Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
63
|
Fischbach A, Krüger A, Hampp S, Assmann G, Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, Ganz M, Ferrando-May E, Hartwig A, Hauser K, Wiesmüller L, Bürkle A, Mangerich A. The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res 2019; 46:804-822. [PMID: 29216372 PMCID: PMC5778597 DOI: 10.1093/nar/gkx1205] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023] Open
Abstract
The post-translational modification poly(ADP-ribosyl)ation (PARylation) plays key roles in genome maintenance and transcription. Both non-covalent poly(ADP-ribose) binding and covalent PARylation control protein functions, however, it is unknown how the two modes of modification crosstalk mechanistically. Employing the tumor suppressor p53 as a model substrate, this study provides detailed insights into the interplay between non-covalent and covalent PARylation and unravels its functional significance in the regulation of p53. We reveal that the multifunctional C-terminal domain (CTD) of p53 acts as the central hub in the PARylation-dependent regulation of p53. Specifically, p53 bound to auto-PARylated PARP1 via highly specific non–covalent PAR-CTD interaction, which conveyed target specificity for its covalent PARylation by PARP1. Strikingly, fusing the p53-CTD to a protein that is normally not PARylated, renders this a target for covalent PARylation as well. Functional studies revealed that the p53–PAR interaction had substantial implications on molecular and cellular levels. Thus, PAR significantly influenced the complex p53–DNA binding properties and controlled p53 functions, with major implications on the p53-dependent interactome, transcription, and replication-associated recombination. Remarkably, this mechanism potentially also applies to other PARylation targets, since a bioinformatics analysis revealed that CTD-like regions are highly enriched in the PARylated proteome.
Collapse
Affiliation(s)
- Arthur Fischbach
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Krüger
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stephanie Hampp
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Greta Assmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Rank
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Martin T Stöckl
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jan M F Fischer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sebastian Veith
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Research Training Group 1331, University of Konstanz, 78457 Konstanz, Germany
| | - Pascal Rossatti
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Magdalena Ganz
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
64
|
Caron MC, Sharma AK, O'Sullivan J, Myler LR, Ferreira MT, Rodrigue A, Coulombe Y, Ethier C, Gagné JP, Langelier MF, Pascal JM, Finkelstein IJ, Hendzel MJ, Poirier GG, Masson JY. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat Commun 2019; 10:2954. [PMID: 31273204 PMCID: PMC6609622 DOI: 10.1038/s41467-019-10741-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
PARP-1 is rapidly recruited and activated by DNA double-strand breaks (DSBs). Upon activation, PARP-1 synthesizes a structurally complex polymer composed of ADP-ribose units that facilitates local chromatin relaxation and the recruitment of DNA repair factors. Here, we identify a function for PARP-1 in DNA DSB resection. Remarkably, inhibition of PARP-1 leads to hyperresected DNA DSBs. We show that loss of PARP-1 and hyperresection are associated with loss of Ku, 53BP1 and RIF1 resection inhibitors from the break site. DNA curtains analysis show that EXO1-mediated resection is blocked by PARP-1. Furthermore, PARP-1 abrogation leads to increased DNA resection tracks and an increase of homologous recombination in cellulo. Our results, therefore, place PARP-1 activation as a critical early event for DNA DSB repair activation and regulation of resection. Hence, our work has direct implications for the clinical use and effectiveness of PARP inhibition, which is prescribed for the treatment of various malignancies. Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates local chromatin relaxation and the recruitment of DNA repair factors at double strand breaks site (DSBs). Here the authors reveal that PARP-1 acts as a critical regulator of DNA end resection of DSBs.
Collapse
Affiliation(s)
- Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Ajit K Sharma
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AL, T6G 1Z2, Canada
| | - Julia O'Sullivan
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Logan R Myler
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria Tedim Ferreira
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.,CHU de Québec Research Center, CHUL Pavilion, Oncology Division, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada
| | - Amélie Rodrigue
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Chantal Ethier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.,CHU de Québec Research Center, CHUL Pavilion, Oncology Division, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.,CHU de Québec Research Center, CHUL Pavilion, Oncology Division, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada
| | - Marie-France Langelier
- Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Pavillon Roger-Gaudry, Montréal, QC, H3T 1J4, Canada
| | - John M Pascal
- Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Pavillon Roger-Gaudry, Montréal, QC, H3T 1J4, Canada
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AL, T6G 1Z2, Canada.
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada. .,CHU de Québec Research Center, CHUL Pavilion, Oncology Division, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada. .,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
65
|
PARP1 and Poly(ADP-ribosyl)ation Signaling during Autophagy in Response to Nutrient Deprivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2641712. [PMID: 31281570 PMCID: PMC6590576 DOI: 10.1155/2019/2641712] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022]
Abstract
Autophagy is considered to be the primary degradative pathway that takes place in all eukaryotic cells. Morphologically, the autophagy pathway refers to a process by which cytoplasmic portions are delivered to double-membrane organelles, called autophagosomes, to fuse with lysosomes for bulk degradation. Autophagy, as a prosurvival mechanism, can be stimulated by different types of cellular stress such as nutrient deprivation, hypoxia, ROS, pH, DNA damage, or ER stress, promoting adaptation of the cell to the changing and hostile environment. The functional relevance of autophagy in many diseases such as cancer or neurodegenerative diseases remains controversial, preserving organelle function and detoxification and promoting cell growth, although in other contexts, autophagy could suppress cell expansion. Poly(ADP-ribosyl)ation (PARylation) is a covalent and reversible posttranslational modification (PTM) of proteins mediated by Poly(ADP-ribose) polymerases (PARPs) with well-described functions in DNA repair, replication, genome integrity, cell cycle, and metabolism. Herein, we review the current state of PARP1 activation and PARylation in starvation-induced autophagy.
Collapse
|
66
|
McGurk L, Rifai OM, Bonini NM. Poly(ADP-Ribosylation) in Age-Related Neurological Disease. Trends Genet 2019; 35:601-613. [PMID: 31182245 DOI: 10.1016/j.tig.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
A central and causative feature of age-related neurodegenerative disease is the deposition of misfolded proteins in the brain. To devise novel approaches to treatment, regulatory pathways that modulate these aggregation-prone proteins must be defined. One such pathway is post-translational modification by the addition of poly(ADP-ribose) (PAR), which promotes protein recruitment and localization in several cellular contexts. Mounting evidence implicates PAR in seeding the abnormal localization and accumulation of proteins that are causative of neurodegenerative disease. Inhibitors of PAR polymerase (PARP) activity have been developed as cancer therapeutics, raising the possibility that they could be used to treat neurodegenerative disease. We focus on pathways regulated by PAR in neurodegenerative disease, with emphasis on amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD).
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Olivia M Rifai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
67
|
Grimaldi G, Catara G, Palazzo L, Corteggio A, Valente C, Corda D. PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochem Pharmacol 2019; 167:64-75. [PMID: 31102582 DOI: 10.1016/j.bcp.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Among the post-translational modifications, ADP-ribosylation has been for long time the least integrated in the scheme of the structural protein modifications affecting physiological functions. In spite of the original findings on bacterial-dependent ADP-ribosylation catalysed by toxins such as cholera and pertussis toxin, only with the discovery of the poly-ADP-ribosyl polymerase (PARP) family the field has finally expanded and the role of ADP-ribosylation has been recognised in both physiological and pathological processes, including cancer, infectious and neurodegenerative diseases. This is now a rapidly expanding field of investigation, centred on the role of the different PARPs and their substrates in various diseases, and on the potential of PARP inhibitors as novel pharmacological tools to be employed in relevant pathological context. In this review we analyse the role that members of the PARP family and poly-ADP-ribose (PAR; the product of PARP1 and PARP5a activity) play in the processes following the exposure of cells to different stresses. The cell response that arises following conditions such as heat, osmotic, oxidative stresses or viral infection relies on the formation of stress granules, which are transient cytoplasmic membrane-less structures, that include untranslated mRNA, specific proteins and PAR, this last one serving as the "collector" of all components (that bind to it in a non-covalent manner). The resulting phenotypes are cells in which translation, intracellular transport or pro-apoptotic pathways are reversibly inhibited, for the time the given stress holds. Interestingly, the formation of defective stress granules has been detected in diverse pathological conditions including neurological disorders and cancer. Analysing the molecular details of stress granule formation under these conditions offers a novel view on the pathogenesis of these diseases and, as a consequence, the possibility of identifying novel drug targets for their treatment.
Collapse
Affiliation(s)
- Giovanna Grimaldi
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| | - Giuliana Catara
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Luca Palazzo
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Annunziata Corteggio
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
68
|
Fakouri NB, Hansen TL, Desler C, Anugula S, Rasmussen LJ. From Powerhouse to Perpetrator-Mitochondria in Health and Disease. BIOLOGY 2019; 8:biology8020035. [PMID: 31083572 PMCID: PMC6627154 DOI: 10.3390/biology8020035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
In this review we discuss the interaction between metabolic stress, mitochondrial dysfunction, and genomic instability. Unrepaired DNA damage in the nucleus resulting from excess accumulation of DNA damages and stalled replication can initiate cellular signaling responses that negatively affect metabolism and mitochondrial function. On the other hand, mitochondrial pathologies can also lead to stress in the nucleus, and cause sensitivity to DNA-damaging agents. These are examples of how hallmarks of cancer and aging are connected and influenced by each other to protect humans from disease.
Collapse
Affiliation(s)
- Nima B Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Thomas Lau Hansen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Sharath Anugula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
69
|
Structural analyses of NudT16-ADP-ribose complexes direct rational design of mutants with improved processing of poly(ADP-ribosyl)ated proteins. Sci Rep 2019; 9:5940. [PMID: 30976021 PMCID: PMC6459841 DOI: 10.1038/s41598-019-39491-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023] Open
Abstract
ADP-ribosylation is a post-translational modification that occurs on chemically diverse amino acids, including aspartate, glutamate, lysine, arginine, serine and cysteine on proteins and is mediated by ADP-ribosyltransferases, including a subset commonly known as poly(ADP-ribose) polymerases. ADP-ribose can be conjugated to proteins singly as a monomer or in polymeric chains as poly(ADP-ribose). While ADP-ribosylation can be reversed by ADP-ribosylhydrolases, this protein modification can also be processed to phosphoribosylation by enzymes possessing phosphodiesterase activity, such as snake venom phosphodiesterase, mammalian ectonucleotide pyrophosphatase/phosphodiesterase 1, Escherichia coli RppH, Legionella pneumophila Sde and Homo sapiens NudT16 (HsNudT16). Our studies here sought to utilize X-ray crystallographic structures of HsNudT16 in complex with monomeric and dimeric ADP-ribose in identifying the active site for binding and processing free and protein-conjugated ADP-ribose into phosphoribose forms. These structural data guide rational design of mutants that widen the active site to better accommodate protein-conjugated ADP-ribose. We identified that several HsNudT16 mutants (Δ17, F36A, and F61S) have reduced activity for free ADP-ribose, similar processing ability against protein-conjugated mono(ADP-ribose), but improved catalytic efficiency for protein-conjugated poly(ADP-ribose). These HsNudT16 variants may, therefore, provide a novel tool to investigate different forms of ADP-ribose.
Collapse
|
70
|
Xu F, Sun Y, Yang SZ, Zhou T, Jhala N, McDonald J, Chen Y. Cytoplasmic PARP-1 promotes pancreatic cancer tumorigenesis and resistance. Int J Cancer 2019; 145:474-483. [PMID: 30614530 DOI: 10.1002/ijc.32108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
Abstract
The poly(ADP-ribose) polymerases (PARP) play important roles in repairing damaged DNA during intrinsic cell death. We recently linked PARP-1 to death receptor (DR)-activated extrinsic apoptosis, the present studies sought to elucidate the function of cytoplasmic PARP-1 in pancreatic cancer tumorigenesis and therapy. Using human normal and pancreatic cancer tissues, we analyzed the prevalence of cytoplasmic PARP-1 expression. In normal human pancreatic tissues, PARP-1 expression was present in the nucleus; however, cytoplasmic PARP-1 expression was identified in pancreatic cancers. Therefore, cytoplasmic PARP-1 mutants were generated by site-direct mutagenesis, to determine a causative effect of cytoplasmic PARP-1 on pancreatic cancer tumorigenesis and sensitivity to therapy with TRA-8, a humanized DR5 antibody. PARP-1 cytoplasmic mutants rendered TRA-8 sensitive pancreatic cancer cells, BxPc-3 and MiaPaCa-2, more resistant to TRA-8-induced apoptosis; whereas wild-type PARP-1, localizing mainly in the nucleus, had no effects. Additionally, cytoplasmic PARP-1, but not wild-type PARP-1, increased resistance of BxPc-3 cells to TRA-8 therapy in a mouse xenograft model in vivo. Inhibition of PARP enzymatic activity attenuated cytoplasmic PARP-1-mediated TRA-8 resistance. Furthermore, increased cytoplasmic PARP-1, but not wild-type PARP-1, was recruited into the TRA-8-activated death-inducing signaling complex and associated with increased and sustained activation of Src-mediated survival signals. In contrast, PARP-1 knockdown inhibited Src activation. Taken together, we have identified a novel function and mechanism underlying cytoplasmic PARP-1, distinct from nuclear PARP-1, in regulating DR5-activated apoptosis. Our studies support an innovative application of available PARP inhibitors or new cytoplasmic PARP-1 antagonists to enhance TRAIL therapy for TRAIL-resistant pancreatic cancers.
Collapse
Affiliation(s)
- Fei Xu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Shan-Zhong Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Tong Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nirag Jhala
- Department of Pathology, Temple University, Philadelphia, PA
| | - Jay McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Affairs Medical Center, Research Department, Birmingham, AL
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Affairs Medical Center, Research Department, Birmingham, AL
| |
Collapse
|
71
|
Kulikova VA, Gromyko DV, Nikiforov AA. The Regulatory Role of NAD in Human and Animal Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:800-812. [PMID: 30200865 DOI: 10.1134/s0006297918070040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- V A Kulikova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - D V Gromyko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| |
Collapse
|
72
|
McGurk L, Gomes E, Guo L, Mojsilovic-Petrovic J, Tran V, Kalb RG, Shorter J, Bonini NM. Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Mol Cell 2018; 71:703-717.e9. [PMID: 30100264 PMCID: PMC6128762 DOI: 10.1016/j.molcel.2018.07.002] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/18/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022]
Abstract
In amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD), cytoplasmic aggregates of hyperphosphorylated TDP-43 accumulate and colocalize with some stress granule components, but how pathological TDP-43 aggregation is nucleated remains unknown. In Drosophila, we establish that downregulation of tankyrase, a poly(ADP-ribose) (PAR) polymerase, reduces TDP-43 accumulation in the cytoplasm and potently mitigates neurodegeneration. We establish that TDP-43 non-covalently binds to PAR via PAR-binding motifs embedded within its nuclear localization sequence. PAR binding promotes liquid-liquid phase separation of TDP-43 in vitro and is required for TDP-43 accumulation in stress granules in mammalian cells and neurons. Stress granule localization initially protects TDP-43 from disease-associated phosphorylation, but upon long-term stress, stress granules resolve, leaving behind aggregates of phosphorylated TDP-43. Finally, small-molecule inhibition of Tankyrase-1/2 in mammalian cells inhibits formation of cytoplasmic TDP-43 foci without affecting stress granule assembly. Thus, Tankyrase inhibition antagonizes TDP-43-associated pathology and neurodegeneration and could have therapeutic utility for ALS and FTD.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Gomes
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jelena Mojsilovic-Petrovic
- Department of Neurology, Children's Hospital of Philadelphia, Joseph Stokes Jr. Research Institute, Philadelphia, PA 19104, USA
| | - Van Tran
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert G Kalb
- Department of Neurology, Children's Hospital of Philadelphia, Joseph Stokes Jr. Research Institute, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
73
|
Mao F, Lei J, Enoch O, Wei M, Zhao C, Quan Y, Yu W. Quantitative proteomics of Bombyx mori after BmNPV challenge. J Proteomics 2018; 181:142-151. [PMID: 29674014 DOI: 10.1016/j.jprot.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 01/07/2023]
Abstract
The domesticated silkworm is an ideal and economic insect model that plays crucial roles in sericulture and bioreactor. Bombyx mori nucleopolyhedrovirus (BmNPV) is not only an infectious pathogen to B. mori, but also an efficient vector expressing recombinant proteins. Although, the proteomics of silkworm and BmN cell membrane lipid raft towards BmNPV infection had been investigated, proteome results of BmN cells upon BmNPV challenge currently remain ambiguous. In order to explore the interaction between silkworm and BmNPV, we analyzed several pivotal processes of BmNPV infected BmN cell by quantitative mass spectrometry. Our study indicated that a total of 4205 identified proteins, among which 4194 were with quantitative level. Concretely, during BmNPV infection, several transcription factors and epigenetically modified proteins showed substantially different abundance levels. Especially, proteins with binding activity, displayed significant changes in their molecular functions. Disabled non-homologous end joining by BmNPV reflects irreversible breakage of DNA. Nevertheless, highly abundant superoxide dismutase suggests that the cellular defense system is persistently functional in maintaining biochemical homeostasis. Our comparative and quantitative proteomics will be helpful to unravel the dynamics of B.mori after BmNPV infection and could provide new insights to decipher the mechanism of interaction between BmN cell and BmNPV.
Collapse
Affiliation(s)
- Fuxiang Mao
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Jihai Lei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Obeng Enoch
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Ming Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Cui Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China.
| |
Collapse
|
74
|
PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc Natl Acad Sci U S A 2018; 115:E4061-E4070. [PMID: 29632181 DOI: 10.1073/pnas.1712345115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression. To elucidate its function in CRC, PARP-1 deficient (PARP-1-/-) and wild-type animals (WT) were subjected to azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced colorectal carcinogenesis. Miniendoscopy showed significantly more tumors in WT than in PARP-1-/- mice. Although the lack of PARP-1 moderately increased DNA damage, both genotypes exhibited comparable levels of AOM-induced autophagy and cell death. Interestingly, miniendoscopy revealed a higher AOM/DSS-triggered intestinal inflammation in WT animals, which was associated with increased levels of innate immune cells and proinflammatory cytokines. Tumors in WT animals were more aggressive, showing higher levels of STAT3 activation and cyclin D1 up-regulation. PARP-1-/- animals were then crossed with O6-methylguanine-DNA methyltransferase (MGMT)-deficient animals hypersensitive to AOM. Intriguingly, PARP-1-/-/MGMT-/- double knockout (DKO) mice developed more, but much smaller tumors than MGMT-/- animals. In contrast to MGMT-deficient mice, DKO animals showed strongly reduced AOM-dependent colonic cell death despite similar O6-methylguanine levels. Studies with PARP-1-/- cells provided evidence for increased alkylation-induced DNA strand break formation when MGMT was inhibited, suggesting a role of PARP-1 in the response to O6-methylguanine adducts. Our findings reveal PARP-1 as a double-edged sword in colorectal carcinogenesis, which suppresses tumor initiation following DNA alkylation in a MGMT-dependent manner, but promotes inflammation-driven tumor progression.
Collapse
|
75
|
Gagné JP, Lachapelle S, Garand C, Tsofack SP, Coulombe Y, Caron MC, Poirier GG, Masson JY, Lebel M. Different non-synonymous polymorphisms modulate the interaction of the WRN protein to its protein partners and its enzymatic activities. Oncotarget 2018; 7:85680-85696. [PMID: 27863399 PMCID: PMC5349866 DOI: 10.18632/oncotarget.13341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 09/27/2016] [Indexed: 12/25/2022] Open
Abstract
Werner syndrome (WS) is characterized by the premature onset of several age-associated pathologies including cancer. The protein defective in WS patients (WRN) is a helicase/exonuclease involved in DNA replication and repair. Here, we present the results of a large-scale proteome analysis that has been undertaken to determine protein partners of different polymorphic WRN proteins found with relatively high prevalence in the human population. We expressed different fluorescently tagged-WRN (eYFP-WRN) variants in human 293 embryonic kidney cells (HEK293) and used a combination of affinity-purification and mass spectrometry to identify different compositions of WRN-associated protein complexes. We found that a WRN variant containing a phenylalanine residue at position 1074 and an arginine at position 1367 (eYFP-WRN(F-R)) possesses more affinity for DNA-PKc, KU86, KU70, and PARP1 than a variant containing a leucine at position 1074 and a cysteine at position 1367 (eYFP-WRN(L-C)). Such results were confirmed in a WRN-deficient background using WS fibroblasts. Interestingly, the exonuclase activity of WRN recovered from immunoprecipitated eYFP-WRN(L-C) variant was lower than the eYFP-WRN(F-R) in WS cells. Finally, HEK293 cells and WS fibroblasts overexpressing the eYFP-WRN(F-R) variant were more resistant to the benzene metabolite hydroquinone than cells expressing the eYFP-WRN(L-C) variant. These results indicate that the protein-protein interaction landscape of WRN is subject to modulation by polymorphic amino acids, a characteristic associated with distinctive cell survival outcome.
Collapse
Affiliation(s)
- Jean-Philippe Gagné
- Centre de Recherche du CHU de Québec, Pavillon CHUL Université Laval, Faculté de Médecine, Québec, Canada
| | - Sophie Lachapelle
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Chantal Garand
- Centre de Recherche du CHU de Québec, Pavillon CHUL Université Laval, Faculté de Médecine, Québec, Canada
| | - Serges P Tsofack
- Centre de Recherche du CHU de Québec, Pavillon CHUL Université Laval, Faculté de Médecine, Québec, Canada
| | - Yan Coulombe
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Marie-Christine Caron
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Guy G Poirier
- Centre de Recherche du CHU de Québec, Pavillon CHUL Université Laval, Faculté de Médecine, Québec, Canada
| | - Jean-Yves Masson
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Michel Lebel
- Centre de Recherche du CHU de Québec, Pavillon CHUL Université Laval, Faculté de Médecine, Québec, Canada
| |
Collapse
|
76
|
Martire S, Fuso A, Mosca L, Forte E, Correani V, Fontana M, Scarpa S, Maras B, d'Erme M. Bioenergetic Impairment in Animal and Cellular Models of Alzheimer's Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions. J Alzheimers Dis 2018; 54:307-24. [PMID: 27567805 DOI: 10.3233/jad-151040] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid-beta peptide accumulation in the brain is one of the main hallmarks of Alzheimer's disease. The amyloid aggregation process is associated with the generation of free radical species responsible for mitochondrial impairment and DNA damage that in turn activates poly(ADP-ribose)polymerase 1 (PARP-1). PARP-1 catalyzes the poly(ADP-ribosylation), a post-translational modification of proteins, cleaving the substrate NAD+ and transferring the ADP-ribose moieties to the enzyme itself or to an acceptor protein to form branched polymers of ADP-ribose. In this paper, we demonstrate that a mitochondrial dysfunction occurs in Alzheimer's transgenic mice TgCRND8, in SH-SY5Y treated with amyloid-beta and in 7PA2 cells. Moreover, PARP-1 activation contributes to the functional energetic decline affecting cytochrome oxidase IV protein levels, oxygen consumption rates, and membrane potential, resulting in cellular bioenergetic deficit. We also observed, for the first time, an increase of pyruvate kinase 2 expression, suggesting a modulation of the glycolytic pathway by PARP-1. PARP-1 inhibitors are able to restore both mitochondrial impairment and pyruvate kinase 2 expression. The overall data here presented indicate a pivotal role for this enzyme in the bioenergetic network of neuronal cells and open new perspectives for investigating molecular mechanisms underlying energy charge decline in Alzheimer's disease. In this scenario, PARP-1 inhibitors might represent a novel therapeutic intervention to rescue cellular energetic metabolism.
Collapse
Affiliation(s)
- Sara Martire
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Andrea Fuso
- Department of Psychology, and European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Sapienza University, Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Virginia Correani
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Mario Fontana
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Sigfrido Scarpa
- Department of Surgery "P. Valdoni", Sapienza University, Roma, Italy
| | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| |
Collapse
|
77
|
Poltronieri P, Čerekovic N. Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems. CHALLENGES 2018; 9:3. [DOI: 10.3390/challe9010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr) moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A) and oligoadenylates (oligo2′-5′A), two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr) transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.
Collapse
|
78
|
Catara G, Grimaldi G, Schembri L, Spano D, Turacchio G, Lo Monte M, Beccari AR, Valente C, Corda D. PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Sci Rep 2017; 7:14035. [PMID: 29070863 PMCID: PMC5656619 DOI: 10.1038/s41598-017-14156-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022] Open
Abstract
Poly-ADP-ribose-polymerases (PARPs) 1 and 2 are nuclear enzymes that catalyze the poly-ADP-ribosylation of nuclear proteins transferring poly-ADP-ribose (PAR) polymers to specific residues. PARPs and PAR intervene in diverse functions, including DNA repair in the nucleus and stress granule assembly in the cytoplasm. Stress granules contribute to the regulation of translation by clustering and stabilizing mRNAs as well as several cytosolic PARPs and signaling proteins to modulate cell metabolism and survival. Our study is focused on one of these PARPs, PARP12, a Golgi-localized mono-ADP-ribosyltransferase that under stress challenge reversibly translocates from the Golgi complex to stress granules. PARP1 activation and release of nuclear PAR drive this translocation by direct PAR binding to the PARP12-WWE domain. Thus, PAR formation functionally links the activity of the nuclear and cytosolic PARPs during stress response, determining the release of PARP12 from the Golgi complex and the disassembly of the Golgi membranes, followed by a block in anterograde-membrane traffic. Notably, these functions can be rescued by reverting the stress condition (by drug wash-out). Altogether these data point at a novel, reversible nuclear signaling that senses stress to then act on cytosolic PARP12, which in turn converts the stress response into a reversible block in intracellular-membrane traffic.
Collapse
Affiliation(s)
- Giuliana Catara
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy
| | - Giovanna Grimaldi
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy.
| | - Laura Schembri
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy
| | - Daniela Spano
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy
| | - Matteo Lo Monte
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy
| | - Andrea Rosario Beccari
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy.,Dompé Farmaceutici SpA Research Center, L'Aquila, Via Campo di Pile, 67100, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy.
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Naples, Via Pietro Castellino 111, 80131, Italy.
| |
Collapse
|
79
|
Hou WH, Chen SH, Yu X. Poly-ADP ribosylation in DNA damage response and cancer therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:82-91. [PMID: 31395352 DOI: 10.1016/j.mrrev.2017.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribosyl)ation (aka PARylation) is a unique protein post-translational modification (PTM) first described over 50 years ago. PARylation regulates a number of biological processes including chromatin remodeling, the DNA damage response (DDR), transcription, apoptosis, and mitosis. The subsequent discovery of poly(ADP-ribose) polymerase-1 (PARP-1) catalyzing DNA-dependent PARylation spearheaded the field of DDR. The expanding knowledge about the poly ADP-ribose (PAR) recognition domains prompted the discovery of novel DDR factors and revealed crosstalk with other protein PTMs including phosphorylation, ubiquitination, methylation and acetylation. In this review, we highlight the current knowledge on PAR-regulated DDR, PAR recognition domain, and PARP inhibition in cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsien Hou
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Shih-Hsun Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
80
|
Elovanoids are novel cell-specific lipid mediators necessary for neuroprotective signaling for photoreceptor cell integrity. Sci Rep 2017; 7:5279. [PMID: 28706274 PMCID: PMC5509689 DOI: 10.1038/s41598-017-05433-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is abundant in the retina and is enzymatically converted into pro-homeostatic docosanoids. The DHA- or eicosapentaenoic acid (EPA)-derived 26 carbon fatty acid is a substrate of elongase ELOVL4, which is expressed in photoreceptor cells and generates very long chain (≥C28) polyunsaturated fatty acids including n-3 (VLC-PUFAs,n-3). While ELOVL4 mutations are linked to vision loss and neuronal dysfunctions, the roles of VLC-PUFAs remain unknown. Here we report a novel class of lipid mediators biosynthesized in human retinal pigment epithelial (RPE) cells that are oxygenated derivatives of VLC-PUFAs,n-3; we termed these mediators elovanoids (ELV). ELVs have structures reminiscent of docosanoids but with different physicochemical properties and alternatively-regulated biosynthetic pathways. The structures, stereochemistry, and bioactivity of ELVs were determined using synthetic materials produced by stereo-controlled chemical synthesis. ELVs enhance expression of pro-survival proteins in cells undergoing uncompensated oxidative stress. Our findings unveil a novel autocrine/paracrine pro-homeostatic RPE cell signaling that aims to sustain photoreceptor cell integrity and reveal potential therapeutic targets for retinal degenerations.
Collapse
|
81
|
Lai YC, Baker JS, Donti T, Graham BH, Craigen WJ, Anderson AE. Mitochondrial Dysfunction Mediated by Poly(ADP-Ribose) Polymerase-1 Activation Contributes to Hippocampal Neuronal Damage Following Status Epilepticus. Int J Mol Sci 2017; 18:ijms18071502. [PMID: 28704930 PMCID: PMC5535992 DOI: 10.3390/ijms18071502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the neuropathology associated with status epilepticus (SE) and is implicated in the development of epilepsy. While excitotoxic mechanisms are well-known mediators affecting mitochondrial health following SE, whether hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) also contributes to SE-induced mitochondrial dysfunction remains to be examined. Here we first evaluated the temporal evolution of poly-ADP-ribosylated protein levels in hippocampus following kainic acid-induced SE as a marker for PARP-1 activity, and found that PARP-1 was hyperactive at 24 h following SE. We evaluated oxidative metabolism and found decreased NAD+ levels by enzymatic cycling, and impaired NAD+-dependent mitochondrial respiration as measured by polarography at 24 h following SE. Stereological estimation showed significant cell loss in the hippocampal CA1 and CA3 subregions 72 h following SE. PARP-1 inhibition using N-(6-Oxo-5,6-dihydro-phenanthridin-2-yl)- N,N-dimethylacetamide (PJ-34) in vivo administration was associated with preserved NAD+ levels and NAD+-dependent mitochondrial respiration, and improved CA1 neuronal survival. These findings suggest that PARP-1 hyperactivation contributes to SE-associated mitochondrial dysfunction and CA1 hippocampal damage. The deleterious effects of PARP-1 hyperactivation on mitochondrial respiration are in part mediated through intracellular NAD+ depletion. Therefore, modulating PARP-1 activity may represent a potential therapeutic target to preserve intracellular energetics and mitochondrial function following SE.
Collapse
Affiliation(s)
- Yi-Chen Lai
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - J Scott Baker
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Taraka Donti
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Brett H Graham
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - William J Craigen
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Anne E Anderson
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
- Departments of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
- Departments of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
82
|
Gupte R, Liu Z, Kraus WL. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 2017; 31:101-126. [PMID: 28202539 PMCID: PMC5322727 DOI: 10.1101/gad.291518.116] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, Gupte et al. discuss new findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair as well as recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer. The discovery of poly(ADP-ribose) >50 years ago opened a new field, leading the way for the discovery of the poly(ADP-ribose) polymerase (PARP) family of enzymes and the ADP-ribosylation reactions that they catalyze. Although the field was initially focused primarily on the biochemistry and molecular biology of PARP-1 in DNA damage detection and repair, the mechanistic and functional understanding of the role of PARPs in different biological processes has grown considerably of late. This has been accompanied by a shift of focus from enzymology to a search for substrates as well as the first attempts to determine the functional consequences of site-specific ADP-ribosylation on those substrates. Supporting these advances is a host of methodological approaches from chemical biology, proteomics, genomics, cell biology, and genetics that have propelled new discoveries in the field. New findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair have been complemented by recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer. These studies have begun to reveal the promising ways in which PARPs may be targeted therapeutically for the treatment of disease. In this review, we discuss these topics and relate them to the future directions of the field.
Collapse
Affiliation(s)
- Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ziying Liu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
83
|
Abstract
Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.
Collapse
|
84
|
Belayev L, Mukherjee PK, Balaszczuk V, Calandria JM, Obenaus A, Khoutorova L, Hong SH, Bazan NG. Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death Differ 2017; 24:1091-1099. [PMID: 28430183 PMCID: PMC5442474 DOI: 10.1038/cdd.2017.55] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/31/2022] Open
Abstract
Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS. Iduna, which was increased by the lipid mediator, requires the presence of the poly(ADP-ribose) (PAR) sites. Moreover, astrocytes and neurons in the penumbra display an enhanced abundance of Iduna, followed by remarkable neurological protection when DHA, a precursor of NPD1, is systemically administered 1 h after 2 h of ischemic stroke. These findings provide a conceptual advancement for survival of neural cells undergoing challenges to homeostasis because a lipid mediator, made 'on demand,' modulates the abundance of a critically important protein for cell survival.
Collapse
Affiliation(s)
- Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Veronica Balaszczuk
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sung-Ha Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
85
|
Alemasova EE, Lavrik OI. At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae 2017; 9:4-16. [PMID: 28740723 PMCID: PMC5508997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 11/26/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.
Collapse
Affiliation(s)
- E. E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
86
|
Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, Curtin NJ, Cuzzocrea S, Dawson TM, Dawson VL, Haskó G, Liaudet L, Moroni F, Pacher P, Radermacher P, Salzman AL, Snyder SH, Soriano FG, Strosznajder RP, Sümegi B, Swanson RA, Szabo C. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 2017; 175:192-222. [PMID: 28213892 DOI: 10.1111/bph.13748] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
The recent clinical availability of the PARP inhibitor olaparib (Lynparza) opens the door for potential therapeutic repurposing for non-oncological indications. Considering (a) the preclinical efficacy data with PARP inhibitors in non-oncological diseases and (b) the risk-benefit ratio of treating patients with a compound that inhibits an enzyme that has physiological roles in the regulation of DNA repair, we have selected indications, where (a) the severity of the disease is high, (b) the available therapeutic options are limited, and (c) the duration of PARP inhibitor administration could be short, to provide first-line options for therapeutic repurposing. These indications are as follows: acute ischaemic stroke; traumatic brain injury; septic shock; acute pancreatitis; and severe asthma and severe acute lung injury. In addition, chronic, devastating diseases, where alternative therapeutic options cannot halt disease development (e.g. Parkinson's disease, progressive multiple sclerosis or severe fibrotic diseases), should also be considered. We present a preclinical and clinical action plan for the repurposing of PARP inhibitors. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Nathan A Berger
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Valerie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Constance, Germany
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center - University Hospital, University of Florence, Florence, Italy
| | - Robert S Clark
- Department of Critical Care Medicine and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola J Curtin
- Newcastle University, Northern Institute for Cancer Research, Medical School, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK
| | | | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Pharmacology and Molecular Sciences and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, University Hospital Medical Center, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Flavio Moroni
- Department of Neuroscience, Università degli Studi di Firenze, Florence, Italy
| | - Pál Pacher
- Laboratory of Physiologic Studies, Section on Oxidative Stress Tissue Injury, NIAAA, NIH, Bethesda, USA
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Solomon H Snyder
- Department of Neurology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francisco Garcia Soriano
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Balázs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Raymond A Swanson
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
87
|
Dulaney C, Marcrom S, Stanley J, Yang ES. Poly(ADP-ribose) polymerase activity and inhibition in cancer. Semin Cell Dev Biol 2017; 63:144-153. [PMID: 28087320 DOI: 10.1016/j.semcdb.2017.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Genomic instability resultant from defective DNA repair mechanisms is a fundamental hallmark of cancer. The poly(ADP-ribose) polymerase (PARP) proteins 1, 2 and 3 catalyze the polymerization of poly(ADP-ribose) and covalent attachment to proteins in a phylogenetically ancient form of protein modification. PARPs play a role in base excision repair, homologous recombination, and non-homologous end joining. The discovery that loss of PARP activity had cytotoxic effects in cells deficient in homologous recombination has sparked a decade of translational research efforts that culminated in the FDA approval of an oral PARP inhibitor for clinical use in patients with ovarian cancer and defective homologous recombination. Five PARP inhibitors are now in late-stage development in clinical trials that are seeking to expand the understanding of targeted therapies and DNA repair defects in human cancer. This review examines the cell biology of PARP, the discovery of synthetic lethality with HR deficiency, the clinical development of PARP inhibitors, and the role of PARP inhibitors in ongoing clinical trials and clinical practice.
Collapse
Affiliation(s)
- Caleb Dulaney
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Samuel Marcrom
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Jennifer Stanley
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States.
| |
Collapse
|
88
|
Abstract
Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca2+ homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.
Collapse
Affiliation(s)
- Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana 70130
| |
Collapse
|
89
|
Daniels CM, Ong SE, Leung AKL. ADP-Ribosylated Peptide Enrichment and Site Identification: The Phosphodiesterase-Based Method. Methods Mol Biol 2017; 1608:79-93. [PMID: 28695505 PMCID: PMC5956525 DOI: 10.1007/978-1-4939-6993-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Protein ADP-ribosylation is a posttranslational modification (PTM) that plays an important role in all major cellular processes, including DNA repair, cellular signaling, and RNA metabolism. Site identification for this PTM has recently become possible through the development of several mass spectrometry-based methods, a critical step in understanding the regulatory role played by mono(ADP-ribose) (MAR), poly(ADP-ribose) (PAR), and the enzymes which make these modifications: poly(ADP-ribose) polymerases (PARPs), best known for their role in DNA repair and as targets for chemotherapeutic PARP inhibitors. Here, we have described our method for enriching and identifying ADP-ribosylation events through the use of a phosphodiesterase to digest protein-conjugated ADP-ribose down to its attachment structure, phosphoribose. We also include here a guide to choosing between collision-induced dissociation (CID)-, higher-energy collisional dissociation (HCD)-, and electron-transfer dissociation (ETD)-based peptide fragmentation for the identification of phosphoribosylated peptides.
Collapse
Affiliation(s)
- Casey M Daniels
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
90
|
Abstract
Poly(ADP-ribose) polymerases (PARP) participate in diverse biological processes contributing to cellular homeostasis or exacerbating injury. PARP catalyzes the addition of ADP-ribose molecules (pADPr) to the target proteins, a process termed poly-ADP-ribosylation. Overactivation of PARP, as reflected by increased poly-ADP-ribosylation, accumulation of pADPr-modified proteins or free pADPr, contributes to depletion of NAD+ and mitochondrial dysfunction, potentially leading to cell death. Since PARP overactivation and increases in free pADPr have been identified as key contributors to the pathobiology of many diseases, monitoring PARP-1 activation by detecting and quantifying pADPr may provide valuable mechanistic insights as well as facilitating therapeutic drug monitoring for PARP inhibitors.Several non-isotopic immunodetection methods for quantifying pADPr are discussed: western blotting of poly-ADP-ribosylated proteins, cellular localization of pADPr by immunohistochemistry, quantification of pADPr by enzyme-linked immunoassay and small scale two-dimensional gel electrophoresis.
Collapse
Affiliation(s)
- Yi-Chen Lai
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Section of Pediatric Critical Care Medicine, Texas Children's Hospital, 6621 Fannin Street, WT6-006, Houston, TX, 77030, USA.
| | - Rajesh K Aneja
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | - Robert S B Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
91
|
Narne P, Pandey V, Simhadri PK, Phanithi PB. Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: The death knell tolls for neurons. Semin Cell Dev Biol 2016; 63:154-166. [PMID: 27867042 DOI: 10.1016/j.semcdb.2016.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Neurodegeneration is a salient feature of chronic refractory brain disorders like Alzheimer's, Parkinson's, Huntington's, amyotropic lateral sclerosis and acute conditions like cerebral ischemia/reperfusion etc. The pathological protein aggregates, mitochondrial mutations or ischemic insults typifying these disease conditions collude with and intensify existing oxidative stress and attendant mitochondrial dysfunction. Interlocking these mechanisms is poly(ADP-ribose) polymerase (PARP-1) hyperactivation that invokes a distinct form of neuronal cell death viz., 'parthanatos'. PARP-1, a typical 'moonlighting protein' by virtue of its ability to poly(ADP-ribosyl)ate a plethora of cellular proteins exerts diverse functions that impinge significantly on cellular processes. In addition, its interactions with various nuclear proteins like transcription factors and chromatin modifiers elicit varied transcriptional outcomes that wield pathological cellular responses. Further, emerging leitmotifs like mitochondrial and nucleolar PARPs and the novel aspects of gene expression regulation by PARP-1 and poly(ADP-ribosyl)ation can provide a holistic view of PARP-1's influence on cell vitality. In this review, we discuss the pathological underpinnings of PARP-1, with a special emphasis on mitochondrial dysfunction and cell death subroutines, in the realm of neurodegeneration. This would provide a deeper insight into the functions of PARP-1 in neurodegenerative conditions that would enable the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Parimala Narne
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Vimal Pandey
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Praveen Kumar Simhadri
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Prakash Babu Phanithi
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
92
|
Stram AR, Payne RM. Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cell Mol Life Sci 2016; 73:4063-73. [PMID: 27233499 PMCID: PMC5045789 DOI: 10.1007/s00018-016-2280-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 02/03/2023]
Abstract
There is an intimate interplay between cellular metabolism and the pathophysiology of disease. Mitochondria are essential to maintaining and regulating metabolic function of cells and organs. Mitochondrial dysfunction is implicated in diverse diseases, such as cardiovascular disease, diabetes and metabolic syndrome, neurodegeneration, cancer, and aging. Multiple reversible post-translational protein modifications are located in the mitochondria that are responsive to nutrient availability and redox conditions, and which can act in protein-protein interactions to modify diverse mitochondrial functions. Included in this are physiologic redox signaling via reactive oxygen and nitrogen species, phosphorylation, O-GlcNAcylation, acetylation, and succinylation, among others. With the advent of mass proteomic screening techniques, there has been a vast increase in the array of known mitochondrial post-translational modifications and their protein targets. The functional significance of these processes in disease etiology, and the pathologic response to their disruption, are still under investigation. However, many of these reversible modifications act as regulatory mechanisms in mitochondria and show promise for mitochondrial-targeted therapeutic strategies. This review addresses the current knowledge of post-translational processing and signaling mechanisms in mitochondria, and their implications in health and disease.
Collapse
Affiliation(s)
- Amanda R Stram
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St., Room R4-302b, Indianapolis, IN, 46202, USA
| | - R Mark Payne
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St., Room R4-302b, Indianapolis, IN, 46202, USA.
| |
Collapse
|
93
|
Rank L, Veith S, Gwosch EC, Demgenski J, Ganz M, Jongmans MC, Vogel C, Fischbach A, Buerger S, Fischer JMF, Zubel T, Stier A, Renner C, Schmalz M, Beneke S, Groettrup M, Kuiper RP, Bürkle A, Ferrando-May E, Mangerich A. Analyzing structure-function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells. Nucleic Acids Res 2016; 44:10386-10405. [PMID: 27694308 PMCID: PMC5137445 DOI: 10.1093/nar/gkw859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 12/17/2022] Open
Abstract
Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\L713F expression triggered apoptosis, whereas PARP1\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants.
Collapse
Affiliation(s)
- Lisa Rank
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Sebastian Veith
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Research Training Group 1331, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Eva C Gwosch
- Bioimaging Center, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Janine Demgenski
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Magdalena Ganz
- Bioimaging Center, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marjolijn C Jongmans
- Department of Human Genetics, Radboud University Medical Center Nijmegen, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherland
| | - Christopher Vogel
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Arthur Fischbach
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Stefanie Buerger
- FlowKon FACS Facility, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Jan M F Fischer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Tabea Zubel
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Anna Stier
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Christina Renner
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Schmalz
- Center of Applied Photonics, Department of Physics, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Sascha Beneke
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Ecotoxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- FlowKon FACS Facility, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Immunology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Roland P Kuiper
- Department of Human Genetics, Radboud University Medical Center Nijmegen, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
94
|
Viral Macro Domains Reverse Protein ADP-Ribosylation. J Virol 2016; 90:8478-86. [PMID: 27440879 DOI: 10.1128/jvi.00705-16] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD(+) to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. IMPORTANCE Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular integrity are demodified by macro domains from members of these virus families. In the case of hepatitis E virus, the adjacent viral helicase domain dramatically increases the binding of the macro domain to PAR and simulates the demodification activity.
Collapse
|
95
|
Buntz A, Wallrodt S, Gwosch E, Schmalz M, Beneke S, Ferrando-May E, Marx A, Zumbusch A. Zelluläre Mikroskopie der Poly(ADP-Ribos)ylierung von Proteinen in Echtzeit. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Annette Buntz
- Fachbereich Chemie und Center for Applied Photonics; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Sarah Wallrodt
- Fachbereich Chemie; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Eva Gwosch
- Fachbereich Biologie; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Michael Schmalz
- Fachbereich Physik und Center for Applied Photonics; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Sascha Beneke
- Fachbereich Biologie; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Elisa Ferrando-May
- Fachbereich Biologie; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Fachbereich Chemie; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Zumbusch
- Fachbereich Chemie und Center for Applied Photonics; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
96
|
Wang L, Cai W, Zhang W, Chen X, Dong W, Tang D, Zhang Y, Ji C, Zhang M. Inhibition of poly(ADP-ribose) polymerase 1 protects against acute myeloid leukemia by suppressing the myeloproliferative leukemia virus oncogene. Oncotarget 2016; 6:27490-504. [PMID: 26314963 PMCID: PMC4695004 DOI: 10.18632/oncotarget.4748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
An abnormal expression of poly(ADP-ribose) polymerase 1 (PARP-1) has been described in many tumors. PARP-1 promotes tumorigenesis and cancer progression by acting on different molecular pathways. PARP-1 inhibitors can be used with radiotherapy or chemotherapy to enhance the susceptibility of tumor cells to the treatment. However, the specific mechanism of PARP-1 in acute myeloid leukemia (AML) remains unknown. Our study showed that expression of PARP-1 was upregulated in AML patients. PARP-1 inhibition slowed AML cell proliferation, arrested the cell cycle, induced apoptosis in vitro and improved AML prognosis in vivo. Mechanistically, microarray assay of AML cells with loss of PARP-1 function revealed that the myeloproliferative leukemia virus oncogene (MPL) was significantly downregulated. In human AML samples, MPL expression was increased, and gain-of-function and loss-of-function analysis demonstrated that MPL promoted cell growth. Moreover, PARP-1 and MPL expression were positively correlated in AML samples, and their overexpression was associated with an unfavorable prognosis. Furthermore, PARP-1 and MPL consistently acted on Akt and ERK1/2 pathways, and the anti-proliferative and pro-apoptotic function observed with PARP-1 inhibition were reversed in part via MPL activation upon thrombopoietin stimulation or gene overexpression. These data highlight the important function of PARP-1 in the progression of AML, which suggest PARP-1 as a potential target for AML treatment.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Weili Cai
- Department of Cardiology, The Third Hospital of Jinan, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xueying Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Wenqian Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Dongqi Tang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
97
|
Ciccarone F, Valentini E, Zampieri M, Caiafa P. 5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme. Oncotarget 2016; 6:24333-47. [PMID: 26136340 PMCID: PMC4695189 DOI: 10.18632/oncotarget.4476] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022] Open
Abstract
5-hydroxymethylcytosine is a new epigenetic modification deriving from the oxidation of 5-methylcytosine by the TET hydroxylase enzymes. DNA hydroxymethylation drives DNA demethylation events and is involved in the control of gene expression. Deregulation of TET enzymes causes developmental defects and is associated with pathological conditions such as cancer. Little information thus far is available on the regulation of TET activity by post-translational modifications. Here we show that TET1 protein is able to interact with PARP-1/ARTD1 enzyme and is target of both noncovalent and covalent PARylation. In particular, we have demonstrated that the noncovalent binding of ADP-ribose polymers with TET1 catalytic domain decreases TET1 hydroxylase activity while the covalent PARylation stimulates TET1 enzyme. In addition, TET1 activates PARP-1/ARTD1 independently of DNA breaks. Collectively, our results highlight a complex interplay between PARylation and TET1 which may be helpful in coordinating the multiple biological roles played by 5-hydroxymethylcytosine and TET proteins.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome and Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elisabetta Valentini
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome and Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome and Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome and Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
98
|
Vivelo CA, Wat R, Agrawal C, Tee HY, Leung AKL. ADPriboDB: The database of ADP-ribosylated proteins. Nucleic Acids Res 2016; 45:D204-D209. [PMID: 27507885 PMCID: PMC5210603 DOI: 10.1093/nar/gkw706] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
ADP-ribosylation refers to the addition of one or more ADP-ribose units onto proteins post-translationally. This protein modification is often added by ADP-ribosyltransferases, commonly known as PARPs, but it can also be added by other enzymes, including sirtuins or bacterial toxins. While past literature has utilized a variety of methods to identify ADP-ribosylated proteins, recent proteomics studies bring the power of mass spectrometry to determine sites of the modification. To appreciate the diverse roles of ADP-ribosylation across the proteome, we have created ADPriboDB – a database of ADP-ribosylated proteins (http://ADPriboDB.leunglab.org). Each entry of ADPriboDB is annotated manually by at least two independent curators from the literature between January 1975 and July 2015. The current database includes over 12 400 protein entries from 459 publications, identifying 2389 unique proteins. Here, we describe the structure and the current state of ADPriboDB as well as the criteria for entry inclusion. Using this aggregate data, we identified a statistically significant enrichment of ADP-ribosylated proteins in non-membranous RNA granules. To our knowledge, ADPriboDB is the first publicly available database encapsulating ADP-ribosylated proteins identified from the past 40 years, with a hope to facilitate the research of both basic scientists and clinicians to better understand ADP-ribosylation at the molecular level.
Collapse
Affiliation(s)
- Christina A Vivelo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ricky Wat
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Charul Agrawal
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hui Yi Tee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA .,Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
99
|
Buntz A, Wallrodt S, Gwosch E, Schmalz M, Beneke S, Ferrando-May E, Marx A, Zumbusch A. Real-Time Cellular Imaging of Protein Poly(ADP-ribos)ylation. Angew Chem Int Ed Engl 2016; 55:11256-60. [PMID: 27468728 DOI: 10.1002/anie.201605282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 01/02/2023]
Abstract
Poly(ADP-ribos)ylation (PARylation) is an important posttranslational protein modification, and is involved in major cellular processes such as gene regulation and DNA repair. Its dysregulation has been linked to several diseases, including cancer. Despite its importance, methods to observe PARylation dynamics within cells are rare. By following a chemical biology approach, we developed a fluorescent NAD(+) analogue that proved to be a competitive building block for protein PARylation in vitro and in cells. This allowed us to directly monitor the turnover of PAR in living cells at DNA damage sites after near-infrared (NIR) microirradiation. Additionally, covalent and noncovalent interactions of selected target proteins with PAR chains were visualized in cells by using FLIM-FRET microscopy. Our results open up new opportunities for the study of protein PARylation in real time and in live cells, and will thus contribute to a better understanding of its significance in a cellular context.
Collapse
Affiliation(s)
- Annette Buntz
- Department of Chemistry and Center for Applied Photonics, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Sarah Wallrodt
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Eva Gwosch
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Schmalz
- Department of Physics and Center for Applied Photonics, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Sascha Beneke
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Elisa Ferrando-May
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
| | - Andreas Zumbusch
- Department of Chemistry and Center for Applied Photonics, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
| |
Collapse
|
100
|
Song H, Yoon SP, Kim J. Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells. Anat Cell Biol 2016; 49:79-87. [PMID: 27382509 PMCID: PMC4927434 DOI: 10.5115/acb.2016.49.2.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
Abstract
After renal injury, selective damage occurs in the proximal tubules as a result of inhibition of glycolysis. The molecular mechanism of damage is not known. Poly(ADP-ribose) polymerase (PARP) activation plays a critical role of proximal tubular cell death in several renal disorders. Here, we studied the role of PARP on glycolytic flux in pig kidney proximal tubule epithelial LLC-PK1 cells using XFp extracellular flux analysis. Poly(ADP-ribosyl)ation by PARP activation was increased approximately 2-fold by incubation of the cells in 10 mM glucose for 30 minutes, but treatment with the PARP inhibitor 3-aminobenzamide (3-AB) does-dependently prevented the glucose-induced PARP activation (approximately 14.4% decrease in 0.1 mM 3-AB–treated group and 36.7% decrease in 1 mM 3-AB–treated group). Treatment with 1 mM 3-AB significantly enhanced the glucose-mediated increase in the extracellular acidification rate (61.1±4.3 mpH/min vs. 126.8±6.2 mpH/min or approximately 2-fold) compared with treatment with vehicle, indicating that PARP inhibition increases only glycolytic activity during glycolytic flux including basal glycolysis, glycolytic activity, and glycolytic capacity in kidney proximal tubule epithelial cells. Glucose increased the activities of glycolytic enzymes including hexokinase, phosphoglucose isomerase, phosphofructokinase-1, glyceraldehyde-3-phosphate dehydrogenase, enolase, and pyruvate kinase in LLC-PK1 cells. Furthermore, PARP inhibition selectively augmented the activities of hexokinase (approximately 1.4-fold over vehicle group), phosphofructokinase-1 (approximately 1.6-fold over vehicle group), and glyceraldehyde-3-phosphate dehydrogenase (approximately 2.2-fold over vehicle group). In conclusion, these data suggest that PARP activation may regulate glycolytic activity via poly(ADP-ribosyl)ation of hexokinase, phosphofructokinase-1, and glyceraldehyde-3-phosphate dehydrogenase in kidney proximal tubule epithelial cells.
Collapse
Affiliation(s)
- Hana Song
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea.; Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|