51
|
Song J, Lang F, Zhao N, Guo Y, Zhang H. Vaginal Lactobacilli Induce Differentiation of Monocytic Precursors Toward Langerhans-like Cells: in Vitro Evidence. Front Immunol 2018; 9:2437. [PMID: 30410487 PMCID: PMC6211368 DOI: 10.3389/fimmu.2018.02437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023] Open
Abstract
Lactobacilli have immunomodulatory mechanisms that affect the host cell immune system, leading to inhibition of HIV-1 transmission. Thus, lactobacilli as mucosal delivery vehicles for developing HIV-1 vaccines have attracted interest in recent years. Herein, we investigated the immunomodulatory effects of six strains of Lactobacillus naturally isolated from vaginal samples, including Lactobacillus crispatus (L. crispatus), L. fermentum, L. jensenii, L. gasseri, L. delbrueckii and L. johnsonii, on differentiation of monocytic precursors. L. crispatus, L. fermentum and L. delbrueckii could drive human monocytic cell line THP-1 cells to differentiate into dendritic-like cells according to the morphology. Moreover, L. crispatus increased costimulatory molecules including CD40, CD80 and CD86, and Langerhans cell specific C-type lectin receptors CD207, while L. fermentum decreased these molecules in THP-1 cells. Furthermore, L. crispatus promoted the differentiation of THP-1 cells with specific markers, phagocytic features, cytokine production ability and reduced the expression of receptors for HIV-1 entry of Langerhans cells. However, in the presence of L. fermentum, THP-1 cells did not show the above alterations. Moreover, similar effects of L. crispatus and L. fermentum were observed in CD14+ monocytes. These data suggested that L. crispatus facilitates the differentiation of monocytic precursors toward Langerhans-like cells in vitro. We further identified the cell wall components of Lactobacillus and found that peptidoglycans (PGNs), rather than bacteriocins, S-layer protein and lipoteichoic acid, were key contributors to the induction of CD207 expression. However, PGNs originating from Bacillus subtilis, E. coli JM109 and E. coli DH5α did not elevate CD207 expression, indicating that only PGN derived from Lactobacillus could enhance CD207 expression. Finally, the recognized receptors of L. crispatus (such as TLR2 and TLR6) and the upstream transcription factors (PU.1, TAL1, TIF1γ, and POLR2A) of CD207 were examined, and the expression of these molecules was enhanced in THP-1 cells following L. crispatus treatment. Thus, this study offers powerful evidence that vaginal lactobacilli modulate monocytic precursor differentiation into Langerhans-like cells probably via activating the TLR2/6-TFs-CD207 axis. These data provide clues for further investigation of the original occurrence, development and differentiation of Langerhans cells from monocytes.
Collapse
Affiliation(s)
- Jie Song
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Chongqing Center for Biomedical Research and Equipment Development, Chongqing Academy of Science and Technology, Chongqing, China.,Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Fengchao Lang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Na Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huatang Zhang
- Chongqing Center for Biomedical Research and Equipment Development, Chongqing Academy of Science and Technology, Chongqing, China.,Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
52
|
Sepulveda-Toepfer JA, Pichler J, Fink K, Sevo M, Wildburger S, Mudde-Boer LC, Taus C, Mudde GC. TLR9-mediated activation of dendritic cells by CD32 targeting for the generation of highly immunostimulatory vaccines. Hum Vaccin Immunother 2018; 15:179-188. [PMID: 30156957 DOI: 10.1080/21645515.2018.1514223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rational for designing dendritic cell (DC)-targeted immunotherapies is their central role in orchestrating immunity. Most studies addressing antigen-targeting to DCs for eliciting T cell responses have employed ex-vivo matured DCs derived from monocytes or myeloid DCs isolated from peripheral blood. More recently, also plasmacytoid DCs (pDCs) emerged as attractive targets that can be readily isolated and activated ex vivo. pDCs are known as key effectors of innate and adaptive immunity due to their exquisite ability to produce large amounts of type-1 interferons upon signaling via TLR7 or TLR9 intracellular receptor for viral RNA or bacterial DNA, respectively. In this study, we describe and characterize the immune modulating and targeting module of a composite human specific vaccine platform for active immunotherapy. This module, called warhead (WH), is composed of a single-chain variable fragment (scFv) and CpG-C type oligonucleotides (ODNs) that are covalently coupled. The scFv mediates specific binding to FcγRII/CD32 on APCs and internalization of the ODNs which stimulate TLR9-expressing B cells and pDCs. Furthermore, the scFv in the WH is extended with a five-time heptad repeat (EVSALEK) alpha helix which allows for a coiled-coil complex formation with any immunogen also extended with another five-time heptad (KVSALKE) repeat. WH elicits fast and robust pDC activation as evidenced by the release of interferon-α, TNF-α and IL-6. The WH thus takes advantage of the key features of human pDCs for immunostimulation and can be a versatile tool for antigen-specific vaccination with a variety of proteins or peptides.
Collapse
Affiliation(s)
- J A Sepulveda-Toepfer
- a Department of Research and Development , S-TARget Therapeutics GmbH , Vienna , Austria.,b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| | - Johannes Pichler
- b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| | - Kathrin Fink
- b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| | - Milica Sevo
- a Department of Research and Development , S-TARget Therapeutics GmbH , Vienna , Austria
| | - Sonja Wildburger
- a Department of Research and Development , S-TARget Therapeutics GmbH , Vienna , Austria
| | | | - Christopher Taus
- b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| | - Geert Cornelius Mudde
- a Department of Research and Development , S-TARget Therapeutics GmbH , Vienna , Austria.,b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| |
Collapse
|
53
|
Implications for thymus growth in childhood: histogenesis of cortex and medulla. Anat Sci Int 2018; 94:111-118. [PMID: 30155680 DOI: 10.1007/s12565-018-0456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
The increase in autoimmune diseases in recent years has drawn attention back to the thymus, with new approaches to improve and/or restore immune function being investigated. As the primary lymphoid organ responsible for functional T cell development, studies on the pre-/post-natal development of this organ and T lymphocytes in human and other species are of special interest. During our screening studies we observed structures that had not been described or mentioned previously, and named them "epitheliostromal sheaths". Associated with these unique structures were also small attached lobules (possibly reflecting the maturational stages of thymic lobules), which the authors consider as markers of histogenesis and the growth of the organ during early childhood; these findings are thus presented to researchers in this field. Approximately 1000 sections prepared from infantile thymic tissues of partial biopsy specimens were immunostained and examined. Specimens were taken from ten patients (with informed consent) in the age range of 4-9 years who underwent surgery due to congenital cardiovascular anomalies but were otherwise normal. Digital images of interest were captured to describe them in detail. Determining the immunophenotype of the compartments in these newly developing lobules assisted us greatly in defining compartments and their growth order. In summary, our findings suggest a niche-based thymus growth mechanism during childhood. We presented our findings, hoping to provide additional insight to researchers aiming to restore thymus function in adulthood and improve its immunological functions.
Collapse
|
54
|
Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018; 9:1484. [PMID: 29997628 PMCID: PMC6030256 DOI: 10.3389/fimmu.2018.01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines represent the discovery of utmost importance for global health, due to both prophylactic action to prevent infections and therapeutic intervention in neoplastic diseases. Despite this, current vaccination strategies need to be refined to successfully generate robust protective antigen-specific memory immune responses. To address this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the outcome of immune responses to achieve the required type of immunity. Therefore, the choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted vehicles, and the choice of surface molecules to specifically target DCs represent the key issues currently explored in both preclinical and clinical settings. Here, we review advances in DCs-based vaccination approaches, which exploit direct in vivo DCs targeting and activation options. We also discuss the recent findings for efficient antitumor DCs-based vaccinations and combination strategies to reduce the immune tolerance promoted by the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
55
|
Na HY, Sohn M, Ryu SH, Choi W, In H, Shin HS, Park CG. Extended Culture of Bone Marrow with Granulocyte Macrophage-Colony Stimulating Factor Generates Immunosuppressive Cells. Immune Netw 2018; 18:e16. [PMID: 29736292 PMCID: PMC5928415 DOI: 10.4110/in.2018.18.e16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 01/19/2023] Open
Abstract
Bone marrow-derived dendritic cells (BM-DCs) are generated from bone marrow (BM) cells cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for a week. In this study we investigated the effect of duration on the BM culture with GM-CSF. Within several months, the cells in the BM culture gradually expressed homogeneous levels of CD11c and major histocompatibility complex II on surface, and they became unable to stimulate allogeneic naïve T cells in mixed lymphocyte reaction (MLR). In addition, when the BM culture were sustained for 32 wk or longer, the BM cells acquired ability to suppress the proliferation of allogeneic T cells in MLR as well as the response of ovalbumin-specific OT-I transgenic T cells in antigen-dependent manner. We found that, except for programmed death-ligand 1, most cell surface molecules were expressed lower in the BM cells cultured with GM-CSF for the extended duration. These results indicate that BM cells in the extended culture with GM-CSF undergo 2 distinct steps of functional change; first, they lose the immunostimulatory capacity; and next, they gain the immunosuppressive ability.
Collapse
Affiliation(s)
- Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Moah Sohn
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seul Hye Ryu
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wanho Choi
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyunju In
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyun Soo Shin
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
56
|
Iurescia S, Fioretti D, Rinaldi M. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies. Front Immunol 2018; 9:711. [PMID: 29686682 PMCID: PMC5900005 DOI: 10.3389/fimmu.2018.00711] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS–STING and RIG-I–MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways are currently being targeted for clinical application in oncology.
Collapse
Affiliation(s)
- Sandra Iurescia
- Department of Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Daniela Fioretti
- Department of Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Monica Rinaldi
- Department of Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
57
|
Osmola-Mańkowska AJ, Teresiak-Mikołajczak E, Kowalczyk MJ, Żaba RW, Adamski Z, Dańczak-Pazdrowska A. Expression of selected genes of dendritic and Treg cells in blood and skin of morphea patients treated with UVA1 phototherapy. Arch Med Sci 2018; 14:361-369. [PMID: 29593811 PMCID: PMC5868677 DOI: 10.5114/aoms.2018.73469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/19/2015] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Morphea is a chronic autoimmune disease characterized by fibrosis of the skin. Dendritic cells (DC) and regulatory T cells (Tregs) play a significant role in development of autoimmune and tolerance mechanisms. The aim of the study was to establish the expression of selected genes of plasmacytoid and myeloid DC, Treg cells, and the microenvironment of cytokines (interleukin-17A (IL-17A), transforming growth factor β (TGF-β)) in blood and skin of morphea patients. In addition, the effect of UVA1 phototherapy on expression of the aforementioned genes was evaluated. MATERIAL AND METHODS The study was performed on 15 blood and 10 skin samples from patients with morphea. The evaluation included expression of CLEC4C (C-type lectin domain family 4, member C receptor), Lymphocyte antigen 75 (LY75), Forkhead box p3 (foxp3) transcription factor, IL-17A and TGF-β genes in peripheral blood mononuclear cells (PBMC) and in skin samples both before and after UVA1 phototherapy using real-time polymerase chain reaction. RESULTS The study revealed lower expression of CLEC4C before (p = 0.010) and after (p = 0.009) phototherapy and lower expression of IL-17A before (p = 0.038) phototherapy in PBMC of patients with morphea vs. the control group. Expression of CLEC4C in PBMC correlated negatively (rho = -0.90; p = 0.001) with activity of disease after phototherapy. No significant differences were found between expression of analysed genes before and after UVA1 therapy in PBMC and skin of morphea patients. CONCLUSIONS The results do not confirm the involvement of analysed subsets of DC and Tregs in UVA1 phototherapy in morphea, but point to CLEC4C as a possible biomarker associated with the disease activity.
Collapse
Affiliation(s)
- Agnieszka J. Osmola-Mańkowska
- Psoriasis and Novel Therapies Unit, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Teresiak-Mikołajczak
- Psoriasis and Novel Therapies Unit, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał J. Kowalczyk
- Department of Dermatology and Venereology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard W. Żaba
- Department of Dermatology and Venereology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zygmunt Adamski
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
58
|
Lakhrif Z, Moreau A, Hérault B, Di-Tommaso A, Juste M, Moiré N, Dimier-Poisson I, Mévélec MN, Aubrey N. Targeted Delivery of Toxoplasma gondii Antigens to Dendritic Cells Promote Immunogenicity and Protective Efficiency against Toxoplasmosis. Front Immunol 2018. [PMID: 29515595 PMCID: PMC5826183 DOI: 10.3389/fimmu.2018.00317] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toxoplasmosis is a major public health problem and the development of a human vaccine is of high priority. Efficient vaccination against Toxoplasma gondii requires both a mucosal and systemic Th1 immune response. Moreover, dendritic cells play a critical role in orchestrating the innate immune functions and driving specific adaptive immunity to T. gondii. In this study, we explore an original vaccination strategy that combines administration via mucosal and systemic routes of fusion proteins able to target the major T. gondii surface antigen SAG1 to DCs using an antibody fragment single-chain fragment variable (scFv) directed against DEC205 endocytic receptor. Our results show that SAG1 targeting to DCs by scFv via intranasal and subcutaneous administration improved protection against chronic T. gondii infection. A marked reduction in brain parasite burden is observed when compared with the intranasal or the subcutaneous route alone. DC targeting improved both local and systemic humoral and cellular immune responses and potentiated more specifically the Th1 response profile by more efficient production of IFN-γ, interleukin-2, IgG2a, and nasal IgA. This study provides evidence of the potential of DC targeting for the development of new vaccines against a range of Apicomplexa parasites.
Collapse
|
59
|
Neonatal mice possess two phenotypically and functionally distinct lung-migratory CD103 + dendritic cell populations following respiratory infection. Mucosal Immunol 2018; 11:186-198. [PMID: 28378805 PMCID: PMC5628111 DOI: 10.1038/mi.2017.28] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The CD103+ subset of lung-migratory dendritic cells (DCs) plays an important role in the generation of CD8+ T cell responses following respiratory infection. Here, we demonstrate that the dependence on CD103+ DCs for stimulation of RSV-specific T cells is both epitope and age-dependent. CD103+ DCs in neonatal mice develop two phenotypically and functionally distinct populations following respiratory infection. Neonatal CD103+ DCs expressing low levels of CD103 (CD103lo DCs) and other lineage and maturation markers including costimulatory molecules are phenotypically immature and functionally limited. CD103lo DCs sorted from infected neonates were unable to stimulate cells of the KdM282-90 specificity, which are potently stimulated by CD103hi DCs sorted from the same animals. These data suggest that the delayed maturation of CD103+ DCs in the neonate limits the KdM282-90-specific response and explain the distinct CD8+ T cell response hierarchy displayed in neonatal mice that differs from the hierarchy seen in adult mice. These findings have implications for the development of early-life vaccines, where the promotion of responses with less age bias may prove advantageous. Alternately, specific approaches may be used to enhance the maturation and function of the CD103lo DC population in neonates to promote more adult-like T cell responses.
Collapse
|
60
|
Vatner RE, Janssen EM. STING, DCs and the link between innate and adaptive tumor immunity. Mol Immunol 2017; 110:13-23. [PMID: 29273394 PMCID: PMC6768428 DOI: 10.1016/j.molimm.2017.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Cancer and the immune system are intimately related. Much of the bulk of tumors is comprised of stromal leukocytes with immune functions, which serve to both promote and inhibit tumor growth, invasion and metastasis. The T lymphocytes of the adaptive immune system are essential for tumor immunity, and these T cells are generated by cross-priming against tumor associated antigens. Dendritic cells (DCs) are essential in this process, serving as the cellular link between innate and adaptive immunity. As a prerequisite for priming of adaptive immune responses, DCs must take up tumor antigens, process them and present them in the context of the major histocompatibility complex (MHC). DCs also serve as sensors of innate activation signals from cancer that are necessary for their activation and effective priming of cancer specific T cells. Here we discuss the role of DCs in the sensing of cancer and in priming the adaptive response against tumors. Furthermore, we present the essential role of the Stimulator of Interferon Genes (STING) signaling pathway in producing type I interferons (IFNs) that are essential in this process.
Collapse
Affiliation(s)
- Ralph E Vatner
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States; Department of Radiation Oncology, University of Cincinnati College of Medicine, 234 Goodman Street, ML 0757, Cincinnati, OH 45267, United States.
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States
| |
Collapse
|
61
|
Kedl RM, Lindsay RS, Finlon JM, Lucas ED, Friedman RS, Tamburini BAJ. Migratory dendritic cells acquire and present lymphatic endothelial cell-archived antigens during lymph node contraction. Nat Commun 2017; 8:2034. [PMID: 29229919 PMCID: PMC5725486 DOI: 10.1038/s41467-017-02247-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Antigens derived from viral infection or vaccination can persist within a host for many weeks after resolution of the infection or vaccine responses. We previously identified lymphatic endothelial cells (LEC) as the repository for this antigen archival, yet LECs are unable to present their archived antigens to CD8+ T cells, and instead transfer their antigens to CD11c+ antigen-presenting cells (APC). Here we show that the exchange of archived antigens between LECs and APCs is mediated by migratory dendritic cells (DC). After vaccination, both migratory basic leucine zipper ATF-like transcription factor 3 (BatF3)-dependent and BatF3-independent DCs are responsible for antigen exchange and cross-presentation. However, exchange of archived viral antigens is mediated only by BatF3-dependent migratory DCs potentially acquiring apoptotic LECs. In conclusion, LEC-archived antigens are exchanged with migratory DCs, both directly and through LEC apoptosis, to cross-present archived antigens to circulating T cells. Viral infection and vaccination both induce lasting persistence of antigens for protective responses. Here the authors show that migratory dendritic cells, independent of the transcription factor BatF3 for their development, contribute to “archived antigen” exchange with lymphatic endothelial cells.
Collapse
Affiliation(s)
- Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA.
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Jeffrey M Finlon
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Erin D Lucas
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Beth A Jirón Tamburini
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA. .,Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
62
|
Selvaraj S, Oh JH, Spanel R, Länger F, Han HY, Lee EH, Yoon S, Borlak J. The pathogenesis of diclofenac induced immunoallergic hepatitis in a canine model of liver injury. Oncotarget 2017; 8:107763-107824. [PMID: 29296203 PMCID: PMC5746105 DOI: 10.18632/oncotarget.21201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Hypersensitivity to non-steroidal anti-inflammatory drugs is a common adverse drug reaction and may result in serious inflammatory reactions of the liver. To investigate mechanism of immunoallergic hepatitis beagle dogs were given 1 or 3 mg/kg/day (HD) oral diclofenac for 28 days. HD diclofenac treatment caused liver function test abnormalities, reduced haematocrit and haemoglobin but induced reticulocyte, WBC, platelet, neutrophil and eosinophil counts. Histopathology evidenced hepatic steatosis and glycogen depletion, apoptosis, acute lobular hepatitis, granulomas and mastocytosis. Whole genome scans revealed 663 significantly regulated genes of which 82, 47 and 25 code for stress, immune response and inflammation. Immunopathology confirmed strong induction of IgM, the complement factors C3&B, SAA, SERPING1 and others of the classical and alternate pathway. Alike, marked expression of CD205 and CD74 in Kupffer cells and lymphocytes facilitate antigen presentation and B-cell differentiation. The highly induced HIF1A and KLF6 protein expression in mast cells and macrophages sustain inflammation. Furthermore, immunogenomics discovered 24, 17, 6 and 11 significantly regulated marker genes to hallmark M1/M2 polarized macrophages, lymphocytic and granulocytic infiltrates; note, the latter was confirmed by CAE staining. Other highly regulated genes included alpha-2-macroglobulin, CRP, hepcidin, IL1R1, S100A8 and CCL20. Diclofenac treatment caused unprecedented induction of myeloperoxidase in macrophages and oxidative stress as shown by SOD1/SOD2 immunohistochemistry. Lastly, bioinformatics defined molecular circuits of inflammation and consisted of 161 regulated genes. Altogether, the mechanism of diclofenac induced liver hypersensitivity reactions involved oxidative stress, macrophage polarization, mastocytosis, complement activation and an erroneous programming of the innate and adaptive immune system.
Collapse
Affiliation(s)
- Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.,Institute of Pathology, 41747 Viersen, Germany
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Eun-Hee Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
63
|
|
64
|
Silva-Cardoso SC, Affandi AJ, Spel L, Cossu M, van Roon JAG, Boes M, Radstake TRDJ. CXCL4 Exposure Potentiates TLR-Driven Polarization of Human Monocyte-Derived Dendritic Cells and Increases Stimulation of T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:253-262. [PMID: 28515281 DOI: 10.4049/jimmunol.1602020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
Chemokines have been shown to play immune-modulatory functions unrelated to steering cell migration. CXCL4 is a chemokine abundantly produced by activated platelets and immune cells. Increased levels of circulating CXCL4 are associated with immune-mediated conditions, including systemic sclerosis. Considering the central role of dendritic cells (DCs) in immune activation, in this article we addressed the effect of CXCL4 on the phenotype and function of monocyte-derived DCs (moDCs). To this end, we compared innate and adaptive immune responses of moDCs with those that were differentiated in the presence of CXCL4. Already prior to TLR- or Ag-specific stimulation, CXCL4-moDCs displayed a more matured phenotype. We found that CXCL4 exposure can sensitize moDCs for TLR-ligand responsiveness, as illustrated by a dramatic upregulation of CD83, CD86, and MHC class I in response to TLR3 and TLR7/8-agonists. Also, we observed a markedly increased secretion of IL-12 and TNF-α by CXCL4-moDCs exclusively upon stimulation with polyinosinic-polycytidylic acid, R848, and CL075 ligands. Next, we analyzed the effect of CXCL4 in modulating DC-mediated T cell activation. CXCL4-moDCs strongly potentiated proliferation of autologous CD4+ T cells and CD8+ T cells and production of IFN-γ and IL-4, in an Ag-independent manner. Although the internalization of Ag was comparable to that of moDCs, Ag processing by CXCL4-moDCs was impaired. Yet, these cells were more potent at stimulating Ag-specific CD8+ T cell responses. Together our data support that increased levels of circulating CXCL4 may contribute to immune dysregulation through the modulation of DC differentiation.
Collapse
Affiliation(s)
- Sandra C Silva-Cardoso
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| | - Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| | - Lotte Spel
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Pediatrics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marta Cossu
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| | - Marianne Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands;
- Department of Pediatrics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands;
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| |
Collapse
|
65
|
Abstract
Apoptosis is an important component of normal tissue physiology, and the prompt removal of apoptotic cells is equally essential to avoid the undesirable consequences of their accumulation and disintegration. Professional phagocytes are highly specialized for engulfing apoptotic cells. The recent ability to track cells that have undergone apoptosis in situ has revealed a division of labor among the tissue resident phagocytes that sample them. Macrophages are uniquely programmed to process internalized apoptotic cell-derived fatty acids, cholesterol and nucleotides, as a reflection of their dominant role in clearing the bulk of apoptotic cells. Dendritic cells carry apoptotic cells to lymph nodes where they signal the emergence and expansion of highly suppressive regulatory CD4 T cells. A broad suppression of inflammation is executed through distinct phagocyte-specific mechanisms. A clever induction of negative regulatory nodes is notable in dendritic cells serving to simultaneously shut down multiple pathways of inflammation. Several of the genes and pathways modulated in phagocytes in response to apoptotic cells have been linked to chronic inflammatory and autoimmune diseases such as atherosclerosis, inflammatory bowel disease and systemic lupus erythematosus. Our collective understanding of old and new phagocyte functions after apoptotic cell phagocytosis demonstrates the enormity of ways to mediate immune suppression and enforce tissue homeostasis.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
66
|
Izumi G, Koga K, Takamura M, Makabe T, Nagai M, Urata Y, Harada M, Hirata T, Hirota Y, Fujii T, Osuga Y. Mannose receptor is highly expressed by peritoneal dendritic cells in endometriosis. Fertil Steril 2017; 107:167-173.e2. [DOI: 10.1016/j.fertnstert.2016.09.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
|
67
|
Cummings RJ, Barbet G, Bongers G, Hartmann BM, Gettler K, Muniz L, Furtado GC, Cho J, Lira SA, Blander JM. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 2016; 539:565-569. [PMID: 27828940 PMCID: PMC5807003 DOI: 10.1038/nature20138] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/30/2016] [Indexed: 12/19/2022]
Abstract
Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions, are not merely extruded to maintain homeostatic cell numbers, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4+ T-cell activation. A common 'suppression of inflammation' signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4+ T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Ryan J Cummings
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Gaetan Barbet
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Gerold Bongers
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Boris M Hartmann
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Kyle Gettler
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Luciana Muniz
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Glaucia C Furtado
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Judy Cho
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
68
|
Keratin mediates the recognition of apoptotic and necrotic cells through dendritic cell receptor DEC205/CD205. Proc Natl Acad Sci U S A 2016; 113:13438-13443. [PMID: 27821726 DOI: 10.1073/pnas.1609331113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clearance of dead cells is critical for maintaining homeostasis and prevents autoimmunity and inflammation. When cells undergo apoptosis and necrosis, specific markers are exposed and recognized by the receptors on phagocytes. DEC205 (CD205) is an endocytotic receptor on dendritic cells with antigen presentation function and has been widely used in immune therapies for vaccine generation. It has been shown that human DEC205 recognizes apoptotic and necrotic cells in a pH-dependent fashion. However, the natural ligand(s) of DEC205 remains unknown. Here we find that keratins are the cellular ligands of human DEC205. DEC205 binds to keratins specifically at acidic, but not basic, pH through its N-terminal domains. Keratins form intermediate filaments and are important for maintaining the strength of cells and tissues. Our results suggest that keratins also function as cell markers of apoptotic and necrotic cells and mediate a pH-dependent pathway for the immune recognition of dead cells.
Collapse
|
69
|
Bocian K, Borysowski J, Zarzycki M, Pacek M, Weber-Dąbrowska B, Machcińska M, Korczak-Kowalska G, Górski A. The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells. Front Microbiol 2016; 7:1267. [PMID: 27582733 PMCID: PMC4988118 DOI: 10.3389/fmicb.2016.01267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3/R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs.
Collapse
Affiliation(s)
- Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw Warsaw, Poland
| | - Michał Zarzycki
- Department of Immunology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Magdalena Pacek
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Laboratory of Bacteriophages, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Maja Machcińska
- Department of Immunology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Grażyna Korczak-Kowalska
- Department of Immunology, Faculty of Biology, University of WarsawWarsaw, Poland; Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| | - Andrzej Górski
- Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland; Laboratory of Bacteriophages, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| |
Collapse
|
70
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
71
|
Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin Transl Immunology 2016; 5:e66. [PMID: 27217957 PMCID: PMC4815026 DOI: 10.1038/cti.2016.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) targeting is a novel strategy to enhance vaccination efficacy. This approach is based on the in situ delivery of antigen via antibodies that are specific for endocytic receptors expressed at the surface of DCs. Here we review the complexity of the DC subsets and the antigen presentation pathways that need to be considered in the settings of DC targeting. We also summarize current knowledge about antigen delivery to DCs via DEC-205, Clec9A and Clec12A, receptor targets that strongly enhance cellular and humoral immune responses. Finally, we discuss the intracellular trafficking criteria of the targeted receptors that may impact their effectiveness as DC targets.
Collapse
|
72
|
Abstract
In this chapter, a comprehensive overview of the known ligands for the C-type lectins (CTLs) is provided. Emphasis has been placed on the chemical structure of the glycans that bind to the different CTLs and the amount of structural variation (or overlap) that each CTL can tolerate. In this way, both the synthetic carbohydrate chemist and the immunologist can more readily gain insight into the existing structure-activity space for the CTL ligands and, ideally, see areas of synergy that will help identify and refine the ligands for these receptors.
Collapse
Affiliation(s)
- Sho Yamasaki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
73
|
Pugholm LH, Petersen LR, Søndergaard EKL, Varming K, Agger R. Enhanced Humoral Responses Induced by Targeting of Antigen to Murine Dendritic Cells. Scand J Immunol 2016; 82:515-22. [PMID: 26346906 DOI: 10.1111/sji.12387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
Dendritic cells (DCs) are superior in their ability to induce and control adaptive immune responses. These qualities have motivated the hypothesis that targeted delivery of antigen to DCs in vivo may be an effective way of enhancing immunization. Recent results show that antigen targeted to certain DC surface molecules may indeed induce robust immune responses. Targeting of antigen to DCs can be accomplished by the means of monoclonal antibodies. This study compared the humoral responses induced in mice by in vivo targeting of DCs using monoclonal antibodies specific for CD11c, CD36, CD205, Clec6A, Clec7A, Clec9A, Siglec-H and PDC-TREM. The results demonstrate that antigen delivery to different targets on DCs in vivo gives rise to humoral responses that differ in strength. Targeting of antigen to CD11c, CD36, CD205, Clec6A, Clec7A and PDC-TREM induced significantly stronger antibody responses compared to non-targeted isotype-matched controls. Targeting of Clec9A and Siglec-H did not lead to efficient antibody responses, which may be due to unfavourable properties of the targeting antibody, in which case, other antibodies with the same specificity might elicit a different outcome. Anti-CD11c was additionally used for elucidating the impact of the route of vaccination, and the results showed only minor differences between the antibody responses induced after immunization either s.c., i.v. or i.p. Altogether, these data show that targeting of different surface molecules on DCs result in very different antibody responses and that, even in the absence of adjuvants, strong humoral responses was induced.
Collapse
Affiliation(s)
- L H Pugholm
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.,Laboratory of Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - L R Petersen
- Laboratory of Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - E K L Søndergaard
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - K Varming
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - R Agger
- Laboratory of Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
74
|
Jing M, Wang J, Zhu S, Ao F, Wang L, Han T, Yue X, Zhu Y, Ye L, Liu S. Development of a more efficient hepatitis B virus vaccine by targeting hepatitis B virus preS to dendritic cells. Vaccine 2016; 34:516-522. [DOI: 10.1016/j.vaccine.2015.11.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/29/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023]
|
75
|
Towards Targeted Delivery Systems: Ligand Conjugation Strategies for mRNA Nanoparticle Tumor Vaccines. J Immunol Res 2015; 2015:680620. [PMID: 26819957 PMCID: PMC4706915 DOI: 10.1155/2015/680620] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/18/2015] [Indexed: 12/02/2022] Open
Abstract
The use of nanoparticles encapsulating messenger RNA (mRNA) as a vaccine has recently attracted much attention because of encouraging results achieved in many nonviral genetic antitumor vaccination studies. Notably, in all of these studies, mRNA nanoparticles are passively targeted to dendritic cells (DCs) through careful selection of vaccination sites. Hence, DC-targeted mRNA nanoparticle vaccines may be an imminent next step forward. In this brief report, we will discuss established conjugation strategies that have been successfully applied to both polymeric and liposomal gene delivery systems. We will also briefly describe promising DC surface receptors amenable for targeting mRNA nanoparticles. Practicable conjugation strategies and receptors reviewed in this paper will provide a convenient reference to facilitate future development of targeted mRNA nanoparticle vaccine.
Collapse
|
76
|
Osorio F, Fuentes C, López MN, Salazar-Onfray F, González FE. Role of Dendritic Cells in the Induction of Lymphocyte Tolerance. Front Immunol 2015; 6:535. [PMID: 26539197 PMCID: PMC4611163 DOI: 10.3389/fimmu.2015.00535] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/02/2015] [Indexed: 01/07/2023] Open
Abstract
The ability of dendritic cells (DCs) to trigger tolerance or immunity is dictated by the context in which an antigen is encountered. A large body of evidence indicates that antigen presentation by steady-state DCs induces peripheral tolerance through mechanisms such as the secretion of soluble factors, the clonal deletion of autoreactive T cells, and feedback control of regulatory T cells. Moreover, recent understandings on the function of DC lineages and the advent of murine models of DC depletion have highlighted the contribution of DCs to lymphocyte tolerance. Importantly, these findings are now being applied to human research in the contexts of autoimmune diseases, allergies, and transplant rejection. Indeed, DC-based immunotherapy research has made important progress in the area of human health, particularly in regards to cancer. A better understanding of several DC-related aspects including the features of DC lineages, milieu composition, specific expression of surface molecules, the control of signaling responses, and the identification of competent stimuli able to trigger and sustain a tolerogenic outcome will contribute to the success of DC-based immunotherapy in the area of lymphocyte tolerance. This review will discuss the latest advances in the biology of DC subtypes related to the induction of regulatory T cells, in addition to presenting current ex vivo protocols for tolerogenic DC production. Particular attention will be given to the molecules and signals relevant for achieving an adequate tolerogenic response for the treatment of human pathologies.
Collapse
Affiliation(s)
- Fabiola Osorio
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Camila Fuentes
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Mercedes N López
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile ; Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital , Santiago , Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Fermín E González
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Laboratory of Experimental Immunology and Cancer, Faculty of Dentistry, University of Chile , Santiago , Chile
| |
Collapse
|
77
|
Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes S, Adiko AC, Saveanu L, Guermonprez P. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets. Front Immunol 2015; 6:363. [PMID: 26236315 PMCID: PMC4505393 DOI: 10.3389/fimmu.2015.00363] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen-presenting cells. Here, we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by DCs subsets.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Remi Planès
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Giorgio Anselmi
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Matthew Reynolds
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Shinelle Menezes
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Aimé Cézaire Adiko
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Loredana Saveanu
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| |
Collapse
|
78
|
Michon C, Christophe M, Kuczkowska K, Langella P, Eijsink VGH, Mathiesen G, Chatel JM. Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo. Microb Cell Fact 2015; 14:95. [PMID: 26141059 PMCID: PMC4491208 DOI: 10.1186/s12934-015-0290-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lactic acid bacteria (LAB) are promising vehicles for delivery of a variety of medicinal compounds, including antigens and cytokines. It has also been established that LAB are able to deliver cDNA to host cells. To increase the efficiency of LAB-driven DNA delivery we have constructed Lactobacillus plantarum strains targeting DEC-205, which is a receptor located at the surface of dendritic cells (DCs). The purpose was to increase uptake of bacterial cells, which could lead to improved cDNA delivery to immune cells. RESULTS Anti-DEC-205 antibody (aDec) was displayed at the surface of L. plantarum using three different anchoring strategies: (1) covalent anchoring of aDec to the cell membrane (Lipobox domain, Lip); (2) covalent anchoring to the cell wall (LPXTG domain, CWA); (3) non-covalent anchoring to the cell wall (LysM domain, LysM). aDec was successfully expressed in all three strains, but surface location of the antibody could only be demonstrated for the two strains with cell wall anchors (CWA and LysM). Co-incubation of the engineered strains and DCs showed increased uptake when anchoring aDec using the CWA or LysM anchors. In a competition assay, free anti-DEC abolished the increased uptake, showing that the internalization is due to specific interactions between the DEC-205 receptor and aDec. To test plasmid transfer, a plasmid for expression of GFP under control of an eukaryotic promoter was transformed into the aDec expressing strains and GFP expression in DCs was indeed increased when using the strains producing cell-wall anchored aDec. Plasmid transfer to DCs in the gastro intestinal tract was also detected using a mouse model. Surprisingly, in mice the highest expression of GFP was observed for the strain in which aDec was coupled to the cell membrane. CONCLUSION The results show that surface expression of aDec leads to increased internalization of L. plantarum and plasmid transfer in DCs and that efficiency depends on the type of anchor used. Interestingly, in vitro data indicates that cell wall anchoring is more effective, whereas in vivo data seem to indicate that anchoring to the cell membrane is preferable. It is likely that the more embedded localization of aDec in the latter case is favorable when cells are exposed to the harsh conditions of the gastro-intestinal tract.
Collapse
Affiliation(s)
| | - Michon Christophe
- INRA, UMR1319 MICALIS, Bat 440, R-2, 78352, Jouy-en-Josas, France. .,AgroParisTech, UMR MICALIS, 78352, Jouy-en-Josas, France.
| | - Katarzyna Kuczkowska
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | - Philippe Langella
- INRA, UMR1319 MICALIS, Bat 440, R-2, 78352, Jouy-en-Josas, France. .,AgroParisTech, UMR MICALIS, 78352, Jouy-en-Josas, France.
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | - Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | - Jean-Marc Chatel
- INRA, UMR1319 MICALIS, Bat 440, R-2, 78352, Jouy-en-Josas, France. .,AgroParisTech, UMR MICALIS, 78352, Jouy-en-Josas, France.
| |
Collapse
|
79
|
pH-Dependent recognition of apoptotic and necrotic cells by the human dendritic cell receptor DEC205. Proc Natl Acad Sci U S A 2015; 112:7237-42. [PMID: 26039988 DOI: 10.1073/pnas.1505924112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells play important roles in regulating innate and adaptive immune responses. DEC205 (CD205) is one of the major endocytotic receptors on dendritic cells and has been widely used for vaccine generation against viruses and tumors. However, little is known about its structure and functional mechanism. Here we determine the structure of the human DEC205 ectodomain by cryoelectron microscopy. The structure shows that the 12 extracellular domains form a compact double ring-shaped conformation at acidic pH and become extended at basic pH. Biochemical data indicate that the pH-dependent conformational change of DEC205 is correlated with ligand binding and release. DEC205 only binds to apoptotic and necrotic cells at acidic pH, whereas live cells cannot be recognized by DEC205 at either acidic or basic conditions. These results suggest that DEC205 is an immune receptor that recognizes apoptotic and necrotic cells specifically through a pH-dependent mechanism.
Collapse
|
80
|
The role of dendritic cells and regulatory T cells in the pathogenesis of morphea. Cent Eur J Immunol 2015; 40:103-8. [PMID: 26155191 PMCID: PMC4472547 DOI: 10.5114/ceji.2015.50841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
Morphea is one of diseases characterised by fibrosis of the skin and subcutaneous tissue. It is a chronic disease that does not shorten the life of the patient, yet significantly affects its quality. The group of factors responsible for its pathogenesis is thought to include disturbed functioning of endothelial cells as well as immune disturbances leading to chronic inflammatory conditions, accompanied by increased production of collagen and of other extracellular matrix components. Dendritic cells (DC) are a type of professional antigen-presenting cells and can be found in almost all body tissues. Individual investigations have demonstrated high numbers of plasmacytoid DC (pDC) in morphoeic skin lesions, within deeper dermal layers, around blood vessels, and around collagen fibres in subcutaneous tissue. It appears that DC has a more pronounced role in the development of inflammation and T cell activation in morphea, as compared to systemic sclerosis (SSc). Regulatory T (Treg) cells represent a subpopulation of T cells with immunosuppressive properties. Recent studies have drawn attention to the important role played by Treg in the process of autoimmunisation. Just a few studies have demonstrated a decrease in the number and activity of Treg in patients with SSc, and only such studies involve morphea. This article reviews recent studies on the role of DC and regulatory T cells in the pathogenesis of morphea. Moreover, mechanisms of phototherapy and potential therapeutic targets in the treatment of morphea are discussed in this context.
Collapse
|
81
|
In situ Delivery of Antigen to DC-SIGN(+)CD14(+) Dermal Dendritic Cells Results in Enhanced CD8(+) T-Cell Responses. J Invest Dermatol 2015; 135:2228-2236. [PMID: 25885805 DOI: 10.1038/jid.2015.152] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/24/2022]
Abstract
CD14(+) dendritic cells (DCs) present in the dermis of human skin represent a large subset of dermal DCs (dDCs) that are considered macrophage-like cells with poor antigen (cross)-presenting capacity and limited migratory potential to the lymph nodes. CD14(+) dDC highly express DC-specific ICAM-3-grabbing non-integrin (DC-SIGN), a receptor containing potent endocytic capacity, facilitating intracellular routing of antigens to major histocompatibility complex I and II (MHC-I andII) loading compartments for the presentation to antigen-specific CD8(+) and CD4(+) T cells. Here we show using a human skin explant model that the in situ targeting of antigens to DC-SIGN using glycan-modified liposomes enhances the antigen-presenting capacity of CD14(+) dDCs. Intradermal vaccination of liposomes modified with the DC-SIGN-targeting glycan Lewis(X), containing melanoma antigens (MART-1 or Gp100), accumulated in CD14(+) dDCs and resulted in enhanced Gp100- or MART-1-specific CD8(+) T-cell responses. Simultaneous intradermal injection of the cytokines GM-CSF and IL-4 as adjuvant enhanced the migration of the skin DCs and increased the expression of DC-SIGN on the CD14(+) and CD1a(+) dDCs. These data demonstrate that human CD14(+) dDCs exhibit potent cross-presenting capacity when targeted in situ through DC-SIGN.
Collapse
|
82
|
Alonso A, Domènech E, Julià A, Panés J, García-Sánchez V, Mateu PN, Gutiérrez A, Gomollón F, Mendoza JL, Garcia-Planella E, Barreiro-de Acosta M, Muñoz F, Vera M, Saro C, Esteve M, Andreu M, Chaparro M, Manyé J, Cabré E, López-Lasanta M, Tortosa R, Gelpí JL, García-Montero AC, Bertranpetit J, Absher D, Myers RM, Marsal S, Gisbert JP. Identification of risk loci for Crohn's disease phenotypes using a genome-wide association study. Gastroenterology 2015; 148:794-805. [PMID: 25557950 DOI: 10.1053/j.gastro.2014.12.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Crohn's disease is a highly heterogeneous inflammatory bowel disease comprising multiple clinical phenotypes. Genome-wide association studies (GWASs) have associated a large number of loci with disease risk but have not associated any specific genetic variants with clinical phenotypes. We performed a GWAS of clinical phenotypes in Crohn's disease. METHODS We genotyped 576,818 single-nucleotide polymorphisms in a well-characterized cohort of 1090 Crohn's disease patients of European ancestry. We assessed their association with 17 phenotypes of Crohn's disease (based on disease location, disease behavior, disease course, age at onset, and extraintestinal manifestations). A total of 57 markers with strong associations to Crohn's disease phenotypes (P < 2 × 10(-4)) were subsequently analyzed in an independent replication cohort of 1296 patients of European ancestry. RESULTS We replicated the association of 4 loci with different Crohn's disease phenotypes. Variants in MAGI1, CLCA2, 2q24.1, and LY75 loci were associated with a complicated stricturing disease course (Pcombined = 2.01 × 10(-8)), disease location (Pcombined = 1.3 × 10(-6)), mild disease course (Pcombined = 5.94 × 10(-7)), and erythema nodosum (Pcombined = 2.27 × 10(-6)), respectively. CONCLUSIONS In a GWAS, we associated 4 loci with clinical phenotypes of Crohn's disease. These findings indicate a genetic basis for the clinical heterogeneity observed for this inflammatory bowel disease.
Collapse
Affiliation(s)
- Arnald Alonso
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain; Department of Enginyeria de Sistemes, Automática i Informàtica Industrial, Polytechnic University of Catalonia, Barcelona, Spain
| | - Eugeni Domènech
- Gastroenterology and Hepatology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Julián Panés
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; Gastroenterology Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Valle García-Sánchez
- Digestive System Service, Universidad de Córdoba/Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Pilar Nos Mateu
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; Digestive Medicine Service, Hospital la Fe, Valencia, Spain
| | - Ana Gutiérrez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; Gastroenterology Service, Hospital General de Alicante, Alicante, Spain
| | - Fernando Gomollón
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; Digestive System Service, Hospital Clínico Universitario, Zaragoza, Spain
| | - Juan L Mendoza
- Gastroenterology Service, Hospital Clínico San Carlos, Madrid, Spain
| | | | | | - Fernando Muñoz
- Gastroenterology Service, Complejo Hospitalario de León, León, Spain
| | - Maribel Vera
- Gastroenterology Service, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Cristina Saro
- Internal Medicine Service, Hospital de Cabueñes, Gijón, Spain
| | - Maria Esteve
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; Gastroenterology Service, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
| | - Montserrat Andreu
- Department of Gastroenterology, Institut Hospital del Mar d'Investigacions Mèdiques, Institute of Research Hospital del Mar, Parc de Salut Mar, Pompeu Fabra University, Barcelona, Spain
| | - Maria Chaparro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; Gastroenterology Service, Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Josep Manyé
- Gastroenterology and Hepatology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Eduard Cabré
- Gastroenterology and Hepatology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - María López-Lasanta
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Raül Tortosa
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Josep Lluís Gelpí
- Life Sciences, Barcelona Supercomputing Center, National Institute of Bioinformatics, Barcelona, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | | | | | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain.
| | - Javier P Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; Gastroenterology Service, Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| |
Collapse
|
83
|
Gurka S, Hartung E, Becker M, Kroczek RA. Mouse Conventional Dendritic Cells Can be Universally Classified Based on the Mutually Exclusive Expression of XCR1 and SIRPα. Front Immunol 2015; 6:35. [PMID: 25699051 PMCID: PMC4316789 DOI: 10.3389/fimmu.2015.00035] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/19/2015] [Indexed: 12/23/2022] Open
Abstract
Since the identification of mouse dendritic cells (DC) in the early 70s, all attempts to consistently classify the identified functional DC subpopulations according to their surface molecule expression failed. In the absence of DC lineage markers, a great variety of non-congruent surface molecules were used instead. Recent advances in the understanding of the involvement of transcription factors in the differentiation of DC subpopulations, together with the identification of a lineage marker for cross-presenting DC, have now allowed to establish a consistent and unified DC classification in the mouse. We demonstrate in the present article that all conventional DC in the mouse can be universally subdivided into either XCR1+ (“cross-presenting”) DC or SIRPα+ DC, irrespective of their activation status. This advancement will greatly facilitate future work on the biology of mouse DC. We discuss this new classification in view of current DC classification systems in the mouse and the human.
Collapse
Affiliation(s)
- Stephanie Gurka
- Molecular Immunology, Robert Koch-Institute , Berlin , Germany
| | - Evelyn Hartung
- Molecular Immunology, Robert Koch-Institute , Berlin , Germany
| | - Martina Becker
- Molecular Immunology, Robert Koch-Institute , Berlin , Germany
| | | |
Collapse
|
84
|
Schinnerling K, Soto L, García-González P, Catalán D, Aguillón JC. Skewing dendritic cell differentiation towards a tolerogenic state for recovery of tolerance in rheumatoid arthritis. Autoimmun Rev 2015; 14:517-27. [PMID: 25633325 DOI: 10.1016/j.autrev.2015.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
To date, the available options to treat autoimmune diseases such as rheumatoid arthritis (RA) include traditional corticoids and biological drugs, which are not exempt of adverse effects. The development of cellular therapies based on dendritic cells with tolerogenic functions (TolDCs) has opened a new possibility to efficiently eradicate symptoms and control the immune response in the field of autoimmunity. TolDCs are an attractive tool for antigen-specific immunotherapy to restore self-tolerance in RA and other autoimmune disorders. A promising strategy is to inject autologous self-antigen-loaded TolDCs, which are able to delete or reprogram autoreactive T cells. Different protocols for the generation of stable human TolDCs have been established and the therapeutic effect of TolDCs has been investigated in multiple rodent models of arthritis. Pilot studies in humans confirmed that TolDC application is safe, encouraging clinical trials using self-antigen-loaded TolDCs in RA patients. Although an abundance of molecular regulators of DC functions has been discovered in the last decade, no master regulator of tolerogenicity has been identified yet. Further research is required to define biomarkers or key regulators of tolerogenicity that might facilitate the induction and monitoring of TolDCs.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paulina García-González
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
85
|
Zhou F, Ciric B, Zhang GX, Rostami A. Immunotherapy using lipopolysaccharide-stimulated bone marrow-derived dendritic cells to treat experimental autoimmune encephalomyelitis. Clin Exp Immunol 2015; 178:447-58. [PMID: 25138204 DOI: 10.1111/cei.12440] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2014] [Indexed: 01/09/2023] Open
Abstract
Lipopolysaccharide (LPS) produced by Gram-negative bacteria induces tolerance and suppresses inflammatory responses in vivo; however, the mechanisms are poorly understood. In this study we show that LPS induces apoptosis of bone marrow-derived dendritic cells (DCs) and modulates phenotypes of DCs. LPS treatment up-regulates expression of tolerance-associated molecules such as CD205 and galectin-1, but down-regulates expression of Gr-1 and B220 on CD11c(+) DCs. Moreover, LPS treatment regulates the numbers of CD11c(+) CD8(+) , CD11c(+) CD11b(low) and CD11c(+) CD11b(hi) DCs, which perform different immune functions in vivo. Our data also demonstrated that intravenous transfer of LPS-treated DCs blocks experimental autoimmune encephalomyelitis (EAE) development and down-regulates expression of retinoic acid-related orphan receptor gamma t (ROR-γt), interleukin (IL)-17A, IL-17F, IL-21, IL-22 and interferon (IFN)-γ in myelin oligodendrocyte glycoprotein (MOG)-primed CD4(+) T cells in the peripheral environment. These results suggest that LPS-induced apoptotic DCs may lead to generation of tolerogenic DCs and suppress the activity of MOG-stimulated effector CD4(+) T cells, thus inhibiting the development of EAE in vivo. Our results imply a potential mechanism of LPS-induced tolerance mediated by DCs and the possible use of LPS-induced apoptotic DCs to treat autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- F Zhou
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
86
|
Imbalance between CD205 and CD80/CD86 in dendritic cells in patients with immune thrombocytopenia. Thromb Res 2014; 135:352-61. [PMID: 25554498 DOI: 10.1016/j.thromres.2014.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/20/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
INTRODUCTION CD205(DEC-205), a tolerance-associated receptor, is a member of the macrophage mannose receptor family of C-type lectin receptors. Antigen uptake via CD205 induces regulatory T cells, thereby regulating peripheral immune tolerance. However, the contribution of CD205 to autoimmune diseases has not been elucidated. Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by overdestruction of platelets. A previous study by the present authors found that CD205 expression in dendritic cells (DCs) was upregulated during induction of immune tolerance in patients with ITP. METHODS CD205 expression in monocyte-derived DCs and spleens from patients with ITP was analysed prior to and after high-dose dexamethasone (HD-DXM) treatment. Expression of CD80, CD86 and HLA-DR was also analysed in order to identify and define the maturation status of the DCs more precisely. RESULTS In patients with ITP, CD205 expression was found to be significantly decreased in DCs, and rare or absent in the border region of the spleen. However, the expression of CD80 and CD86 was increased in both monocyte-derived DCs and spleens in patients with ITP compared with controls. HD-DXM treatment may upregulate CD205 expression and downregulate CD80/CD86 expression, then rebalance the expression of CD205 and CD80/CD86 in DCs in patients with ITP. CONCLUSION Imbalance between CD205 and CD80/CD86 may contribute to the development of ITP. Therapies that aim to restore the balance between CD205 and CD80/CD86 may help to re-establish tolerance in patients with ITP.
Collapse
|
87
|
An anti-DEC-205 monoclonal antibody stimulates binding of thymocytes to rat thymic dendritic cells and promotes apoptosis of thymocytes. Cent Eur J Immunol 2014; 39:411-8. [PMID: 26155156 PMCID: PMC4439949 DOI: 10.5114/ceji.2014.47722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/22/2014] [Indexed: 12/05/2022] Open
Abstract
DEC-205, a transmembrane receptor responsible for cross-presentation of apoptotic cell-derived antigens, is expressed by cortical thymic epithelial cells (TEC) and thymic dendritic cells (TDC) in humans and mice, but its function in T-cell development is still unclear. In this work we have studied for the first time the expression of DEC-205 in the rat thymus by HD83 monoclonal antibody (mAb) and immunohistochemistry, as well as the ability of this mAb to modulate thymocyte – TDC interactions in vitro. We showed the positivity of cortical TEC in situ, including thymic nurse cells (TNC) in suspension, and TDC, whereas subcapsular, perivascular and medullary TEC were negative. All examined DEC-205 positive and DEC-205 negative structures were MHC class II positive. HD83 mAb increased apoptosis of thymocytes in co-culture with TDC in vitro and the process was associated with increased binding of thymocytes to TDC in a rosette form. Since negative selection of thymocytes by clonal deletion (apoptosis) was mediated predominantly by TDC, our results suggest the possible indirect effect of the DEC-205 molecule in these mechanisms.
Collapse
|
88
|
Presslauer C, Nagasawa K, Dahle D, Babiak J, Fernandes JMO, Babiak I. Induced autoimmunity against gonadal proteins affects gonadal development in juvenile zebrafish. PLoS One 2014; 9:e114209. [PMID: 25436775 PMCID: PMC4250200 DOI: 10.1371/journal.pone.0114209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
A method to mitigate or possibly eliminate reproduction in farmed fish is highly demanded. The existing approaches have certain applicative limitations. So far, no immunization strategies affecting gonadal development in juvenile animals have been developed. We hypothesized that autoimmune mechanisms, occurring spontaneously in a number of diseases, could be induced by targeted immunization. We have asked whether the immunization against specific targets in a juvenile zebrafish gonad will produce an autoimmune response, and, consequently, disturbance in gonadal development. Gonadal soma-derived factor (Gsdf), growth differentiation factor (Gdf9), and lymphocyte antigen 75 (Cd205/Ly75), all essential for early gonad development, were targeted with 5 immunization tests. Zebrafish (n = 329) were injected at 6 weeks post fertilization, a booster injection was applied 15 days later, and fish were sampled at 30 days. We localized transcripts encoding targeted proteins by in situ hybridization, quantified expression of immune-, apoptosis-, and gonad-related genes with quantitative real-time PCR, and performed gonadal histology and whole-mount immunohistochemistry for Bcl2-interacting-killer (Bik) pro-apoptotic protein. The treatments resulted in an autoimmune reaction, gonad developmental retardation, intensive apoptosis, cell atresia, and disturbed transcript production. Testes were remarkably underdeveloped after anti-Gsdf treatments. Anti-Gdf9 treatments promoted apoptosis in testes and abnormal development of ovaries. Anti-Cd205 treatment stimulated a strong immune response in both sexes, resulting in oocyte atresia and strong apoptosis in supporting somatic cells. The effect of immunization was FSH-independent. Furthermore, immunization against germ cell proteins disturbed somatic supporting cell development. This is the first report to demonstrate that targeted autoimmunity can disturb gonadal development in a juvenile fish. It shows a straightforward potential to develop auto-immunization-based technologies to mitigate fish reproduction before they reach maturation. However, the highly variable results between treatments and individuals suggest significant optimization should be performed to achieve the full potential of this technology.
Collapse
Affiliation(s)
| | - Kazue Nagasawa
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | - Joanna Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | | | - Igor Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
- * E-mail:
| |
Collapse
|
89
|
Role of innate immunity in the pathogenesis of otitis media. Int J Infect Dis 2014; 29:259-67. [PMID: 25447732 DOI: 10.1016/j.ijid.2014.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022] Open
Abstract
Otitis media (OM) is a public health problem in both developed and developing countries. It is the leading cause of hearing loss and represents a significant healthcare burden. In some cases, acute OM progresses to chronic suppurative OM (CSOM), characterized by effusion and discharge, despite antimicrobial therapy. The emergence of antibiotic resistance and potential ototoxicity of antibiotics has created an urgent need to design non-conventional therapeutic strategies against OM based on modern insights into its pathophysiology. In this article, we review the role of innate immunity as it pertains to OM and discuss recent advances in understanding the role of innate immune cells in protecting the middle ear. We also discuss the mechanisms utilized by pathogens to subvert innate immunity and thereby overcome defensive responses. A better knowledge about bacterial virulence and host resistance promises to reveal novel targets to design effective treatment strategies against OM. The identification and characterization of small natural compounds that can boost innate immunity may provide new avenues for the treatment of OM. There is also a need to design novel methods for targeted delivery of these compounds into the middle ear, allowing higher therapeutic doses and minimizing systemic side effects.
Collapse
|
90
|
Sawanobori Y, Ueta H, Dijkstra CD, Park CG, Satou M, Kitazawa Y, Matsuno K. Three distinct subsets of thymic epithelial cells in rats and mice defined by novel antibodies. PLoS One 2014; 9:e109995. [PMID: 25334032 PMCID: PMC4204869 DOI: 10.1371/journal.pone.0109995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/04/2014] [Indexed: 01/04/2023] Open
Abstract
AIM Thymic epithelial cells (TECs) are thought to play an essential role in T cell development and have been detected mainly in mice using lectin binding and antibodies to keratins. Our aim in the present study was to create a precise map of rat TECs using antibodies to putative markers and novel monoclonal antibodies (i.e., ED 18/19/21 and anti-CD205 antibodies) and compare it with a map from mouse counterparts and that of rat thymic dendritic cells. RESULTS Rat TECs were subdivided on the basis of phenotype into three subsets; ED18+ED19+/-keratin 5 (K5)+K8+CD205+ class II MHC (MHCII)+ cortical TECs (cTECs), ED18+ED21-K5-K8+Ulex europaeus lectin 1 (UEA-1)+CD205- medullary TECs (mTEC1s), and ED18+ED21+K5+K8dullUEA-1-CD205- medullary TECs (mTEC2s). Thymic nurse cells were defined in cytosmears as an ED18+ED19+/-K5+K8+ subset of cTECs. mTEC1s preferentially expressed MHCII, claudin-3, claudin-4, and autoimmune regulator (AIRE). Use of ED18 and ED21 antibodies revealed three subsets of TECs in mice as well. We also detected two distinct TEC-free areas in the subcapsular cortex and in the medulla. Rat dendritic cells in the cortex were MHCII+CD103+ but negative for TEC markers, including CD205. Those in the medulla were MHCII+CD103+ and CD205+ cells were found only in the TEC-free area. CONCLUSION Both rats and mice have three TEC subsets with similar phenotypes that can be identified using known markers and new monoclonal antibodies. These findings will facilitate further analysis of TEC subsets and DCs and help to define their roles in thymic selection and in pathological states such as autoimmune disorders.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cells, Cultured
- Claudin-3/immunology
- Claudin-3/metabolism
- Claudin-4/immunology
- Claudin-4/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Keratin-5/immunology
- Keratin-5/metabolism
- Keratin-8/immunology
- Keratin-8/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Minor Histocompatibility Antigens
- Phenotype
- Plant Lectins/immunology
- Plant Lectins/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Thymus Gland/cytology
Collapse
Affiliation(s)
- Yasushi Sawanobori
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Hiashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Christine D. Dijkstra
- Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Motoyasu Satou
- Department of Biochemistry, Dokkyo Medical University, Tochigi, Japan
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
- * E-mail:
| |
Collapse
|
91
|
Miyake Y, Ishikawa E, Ishikawa T, Yamasaki S. Self and nonself recognition through C-type lectin receptor, Mincle. SELF NONSELF 2014; 1:310-313. [PMID: 21487505 DOI: 10.4161/self.1.4.13736] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 01/31/2023]
Abstract
Mincle (also called as Clec4e or Clecsf9) is a C-type lectin receptor expressed in activated macrophages. Recently, we have reported that Mincle transduces the activation signals through ITAM-containing adaptor protein, FcRγ and induces the secretion of inflammatory cytokines. Furthermore, we and other groups have identified that Mincle recognizes a wide variety of ligands such as damaged cells, fungus, yeast and mycobacteria. These results indicate that Mincle acts as a multi-task danger receptor for both self and nonself ligands. This review summarizes the recent discoveries about the ligands and immunological roles of Mincle.
Collapse
Affiliation(s)
- Yasunobu Miyake
- Division of Molecular Immunology; Medical Institute of Bioregulation; Kyushu University; Maidashi Higashiku, Fukuoka Japan
| | | | | | | |
Collapse
|
92
|
Sei JJ, Ochoa AS, Bishop E, Barlow JW, Golde WT. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets. PLoS One 2014; 9:e109273. [PMID: 25295753 PMCID: PMC4190170 DOI: 10.1371/journal.pone.0109273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/01/2014] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DC) are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR) agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c−. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC), and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.
Collapse
Affiliation(s)
- Janet J. Sei
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, United States of America
- Department of Animal Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Amanda S. Ochoa
- Department of Animal Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Elizabeth Bishop
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, United States of America
| | - John W. Barlow
- Department of Animal Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - William T. Golde
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, United States of America
- * E-mail:
| |
Collapse
|
93
|
Ashok D, Acha-Orbea H. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends Parasitol 2014; 30:499-507. [DOI: 10.1016/j.pt.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/02/2023]
|
94
|
González-Cano P, Arsic N, Popowych YI, Griebel PJ. Two functionally distinct myeloid dendritic cell subpopulations are present in bovine blood. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:378-388. [PMID: 24502939 DOI: 10.1016/j.dci.2014.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Immature myeloid (m)DCs circulating in the blood of cattle have been defined as lineage negative (Lin(-))MHCII(+)CD11c(+)CD205(+) cells. Lin(-)MHCII(+)CD11c(+)CD205(+) mDCs (0.2% blood mononuclear cells) isolated from bovine blood were heterogeneous in cell size and CD205 expression. Using highspeed cell sorting, Lin(-)MHCII(+)CD11c(+)CD205(+) DCs were sorted into CD205(Hi) and CD205(Lo) subpopulations which were phenotypically distinct and differed significantly (P<0.01) in TLR gene expression. CD205(Hi) and CD205(Lo) mDCs were more efficient in macropinocytosis than monocytes and expressed no or little detectable non-specific esterase activity. CD205(Lo) mDCs efficiently activated purified allogeneic T cells and the addition of TLR agonists did not significantly alter this antigen presentation capacity. T cell activation by CD205(Lo) mDCs was associated with differential up-regulation of CD40, CD80, CD86 and TGFβ1 gene expression when compared to CD205(Hi) mDCs. In conclusion, two phenotypically and functionally distinct CD11c(+)CD205(+) mDCs were isolated from blood that had an equal capacity to acquire antigen but markedly different capacities to activate T cells.
Collapse
Affiliation(s)
- Patricia González-Cano
- Vaccine and Infectious Disease Organization-International Vaccine Center, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Natasa Arsic
- Vaccine and Infectious Disease Organization-International Vaccine Center, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Yurij I Popowych
- Vaccine and Infectious Disease Organization-International Vaccine Center, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Philip J Griebel
- Vaccine and Infectious Disease Organization-International Vaccine Center, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| |
Collapse
|
95
|
Ruan GX, Chen YZ, Yao XL, Du A, Tang GP, Shen YQ, Tabata Y, Gao JQ. Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering. Acta Biomater 2014; 10:1847-55. [PMID: 24440421 DOI: 10.1016/j.actbio.2014.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/15/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022]
Abstract
Macrophages are the most plastic cells in the hematopoietic system and they exhibit great functional diversity. They have been extensively applied in anti-inflammatory, anti-fibrotic and anti-cancer therapies. However, the application of macrophages is limited by the efficiency of their engineering. The macrophage mannose receptor (MMR, CD206), a C-type lectin receptor, is ubiquitously expressed on macrophages and has a high affinity for mannose oligosaccharides. In the present study, we developed a novel non-viral vehicle with specific affinity for MMR. Mannan was cationized with spermine at a grafted ratio of ∼12% to deliver DNA and was characterized as a stable system for delivery. This spermine-mannan (SM)-based delivery system was evaluated as a biocompatible vehicle with superior transfection efficiency on murine macrophages, up to 28.5-fold higher than spermine-pullulan, 11.5-fold higher than polyethylenimine and 3.0-fold higher than Lipofectamine™ 2000. We confirmed that the SM-based delivery system for macrophages transfection was MMR-specific and we described the intracellular transport of the delivery system. To our knowledge, this is the first study using SM to demonstrate a mannose receptor-specific gene delivery system, thereby highlighting the potential of a novel specific non-viral delivery vehicle for macrophage engineering.
Collapse
Affiliation(s)
- Gui-Xin Ruan
- Zhejiang Province Key Laboratory of Anti-Cancer Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Yu-Zhe Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Xing-Lei Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Anariwa Du
- Department of Clinical Laboratory, Inner Mongolia Peoples Hospital, 20 Zhaowuda Road, Huhehaote 010010, Inner Mongolia, People's Republic of China
| | - Gu-Ping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, People's Republic of China
| | - You-Qing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
96
|
Wengerter BC, Katakowski JA, Rosenberg JM, Park CG, Almo SC, Palliser D, Levy M. Aptamer-targeted antigen delivery. Mol Ther 2014; 22:1375-1387. [PMID: 24682172 PMCID: PMC4089008 DOI: 10.1038/mt.2014.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/19/2014] [Indexed: 01/08/2023] Open
Abstract
Effective therapeutic vaccines often require activation of T cell-mediated immunity. Robust T cell activation, including CD8 T cell responses, can be achieved using antibodies or antibody fragments to direct antigens of interest to professional antigen presenting cells. This approach represents an important advance in enhancing vaccine efficacy. Nucleic acid aptamers present a promising alternative to protein-based targeting approaches. We have selected aptamers that specifically bind the murine receptor, DEC205, a C-type lectin expressed predominantly on the surface of CD8α+ dendritic cells (DCs) that has been shown to be efficient at facilitating antigen crosspresentation and subsequent CD8+ T cell activation. Using a minimized aptamer conjugated to the model antigen ovalbumin (OVA), DEC205-targeted antigen crosspresentation was verified in vitro and in vivo by proliferation and cytokine production by primary murine CD8+ T cells expressing a T cell receptor specific for the major histocompatibility complex (MHC) I-restricted OVA257–264 peptide SIINFEKL. Compared with a nonspecific ribonucleic acid (RNA) of similar length, DEC205 aptamer-OVA-mediated antigen delivery stimulated strong proliferation and production of interferon (IFN)-γ and interleukin (IL)-2. The immune responses elicited by aptamer-OVA conjugates were sufficient to inhibit the growth of established OVA-expressing B16 tumor cells. Our results demonstrate a new application of aptamer technology for the development of effective T cell-mediated vaccines.
Collapse
Affiliation(s)
- Brian C Wengerter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joseph A Katakowski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jacob M Rosenberg
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA; Current address: Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Chae Gyu Park
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA; Current address: Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deborah Palliser
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
97
|
Ashok D, Schuster S, Ronet C, Rosa M, Mack V, Lavanchy C, Marraco SF, Fasel N, Murphy KM, Tacchini-Cottier F, Acha-Orbea H. Cross-presenting dendritic cells are required for control of Leishmania major infection. Eur J Immunol 2014; 44:1422-32. [PMID: 24643576 DOI: 10.1002/eji.201344242] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/27/2013] [Accepted: 02/06/2014] [Indexed: 11/08/2022]
Abstract
Leishmania major infection induces self-healing cutaneous lesions in C57BL/6 mice. Both IL-12 and IFN-γ are essential for the control of infection. We infected Jun dimerization protein p21SNFT (Batf3(-/-) ) mice (C57BL/6 background) that lack the major IL-12 producing and cross-presenting CD8α(+) and CD103(+) DC subsets. Batf3(-/-) mice displayed enhanced susceptibility with larger lesions and higher parasite burden. Additionally, cells from draining lymph nodes of infected Batf3(-/-) mice secreted less IFN-γ, but more Th2- and Th17-type cytokines, mirrored by increased serum IgE and Leishmania-specific immunoglobulin 1 (Th2 indicating). Importantly, CD8α(+) DCs isolated from lymph nodes of L. major-infected mice induced significantly more IFN-γ secretion by L. major-stimulated immune T cells than CD103(+) DCs. We next developed CD11c-diptheria toxin receptor: Batf3(-/-) mixed bone marrow chimeras to determine when the DCs are important for the control of infection. Mice depleted of Batf-3-dependent DCs from day 17 or wild-type mice depleted of cross-presenting DCs from 17-19 days after infection maintained significantly larger lesions similar to mice whose Batf-3-dependent DCs were depleted from the onset of infection. Thus, we have identified a crucial role for Batf-3-dependent DCs in protection against L. major.
Collapse
Affiliation(s)
- Devika Ashok
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Glycans from avian influenza virus are recognized by chicken dendritic cells and are targets for the humoral immune response in chicken. Mol Immunol 2013; 56:452-62. [DOI: 10.1016/j.molimm.2013.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 11/22/2022]
|
99
|
Espinosa G, Collado JA, Scholz E, Mestre-Ferrer A, Kuse N, Takiguchi M, Carrascal M, Canals F, Pujol-Borrell R, Jaraquemada D, Alvarez I. Peptides presented by HLA class I molecules in the human thymus. J Proteomics 2013; 94:23-36. [PMID: 24029068 DOI: 10.1016/j.jprot.2013.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED The thymus is the organ in which T lymphocytes mature. Thymocytes undergo exhaustive selection processes that require interactions between the TCRs and peptide-HLA complexes on thymus antigen-presenting cells. The thymic peptide repertoire associated with HLA molecules must mirror the peptidome that mature T cells will encounter at the periphery, including peptides that arise from tissue-restricted antigens. The transcriptome of specific thymus cell populations has been widely studied, but there are no data on the HLA-I peptidome of the human thymus. Here, we describe the HLA-I-bound peptide repertoire from thymus samples, showing that it is mostly composed of high-affinity ligands from cytosolic and nuclear proteins. Several proteins generated more than one peptide, and some redundant peptides were found in different samples, suggesting the existence of antigen immunodominance during the processes that lead to central tolerance. Three HLA-I ligands were found to be derived from proteins expressed by stromal cells, including one from the protein TBATA (or SPATIAL), which is present in the thymus, brain and testis. The expression of TBATA in medullary thymic epithelial cells has been reported to be AIRE dependent. Thus, this report describes the first identification of a thymus HLA-I natural ligand derived from an AIRE-dependent protein with restricted tissue expression. BIOLOGICAL SIGNIFICANCE We present the first description of the HLA-I-bound peptide repertoire from ex vivo thymus samples. This repertoire is composed of standard ligands from cytosolic and nuclear proteins. Some peptides seem to be dominantly presented to thymocytes in the thymus. Most importantly, some HLA-I associated ligands derived from proteins expressed by stromal cells, including one peptide, restricted by HLA-A*31:01, arising from an AIRE-dependent protein with restricted tissue expression.
Collapse
Affiliation(s)
- Gabriel Espinosa
- Immunology Unit, Department of Cell Biology, Physiology and Immunology and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Garfin PM, Min D, Bryson JL, Serwold T, Edris B, Blackburn CC, Richie ER, Weinberg KI, Manley NR, Sage J, Viatour P. Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. ACTA ACUST UNITED AC 2013; 210:1087-97. [PMID: 23669396 PMCID: PMC3674705 DOI: 10.1084/jem.20121716] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RB family genes control T cell production and promote thymic involution through reducing Foxn1 expression in thymic epithelial cells. Thymic involution during aging is a major cause of decreased production of T cells and reduced immunity. Here we show that inactivation of Rb family genes in young mice prevents thymic involution and results in an enlarged thymus competent for increased production of naive T cells. This phenotype originates from the expansion of functional thymic epithelial cells (TECs). In RB family mutant TECs, increased activity of E2F transcription factors drives increased expression of Foxn1, a central regulator of the thymic epithelium. Increased Foxn1 expression is required for the thymic expansion observed in Rb family mutant mice. Thus, the RB family promotes thymic involution and controls T cell production via a bone marrow–independent mechanism, identifying a novel pathway to target to increase thymic function in patients.
Collapse
Affiliation(s)
- Phillip M Garfin
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|