51
|
Barros-Silva D, Klavert J, Jenster G, Jerónimo C, Lafontaine DLJ, Martens-Uzunova ES. The role of OncoSnoRNAs and Ribosomal RNA 2'-O-methylation in Cancer. RNA Biol 2021; 18:61-74. [PMID: 34775914 PMCID: PMC8677010 DOI: 10.1080/15476286.2021.1991167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ribosomes are essential nanomachines responsible for all protein production in cells. Ribosome biogenesis and function are energy costly processes, they are tightly regulated to match cellular needs. In cancer, major pathways that control ribosome biogenesis and function are often deregulated to ensure cell survival and to accommodate the continuous proliferation of tumour cells. Ribosomal RNAs (rRNAs) are abundantly modified with 2'-O-methylation (Nm, ribomethylation) being one of the most common modifications. In eukaryotic ribosomes, ribomethylation is performed by the methyltransferase Fibrillarin guided by box C/D small nucleolar RNAs (snoRNAs). Accumulating evidences indicate that snoRNA expression and ribosome methylation profiles are altered in cancer. Here we review our current knowledge on differential snoRNA expression and rRNA 2ʹ-O methylation in the context of human malignancies, and discuss the consequences and opportunities for cancer diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
- Daniela Barros-Silva
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.,Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Jonathan Klavert
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (Icbas-up), Porto, Portugal
| | - Denis L J Lafontaine
- Rna Molecular Biology, Fonds De La Recherche Scientifique (F.r.s./fnrs), Université Libre De Bruxelles (Ulb), BioPark Campus, Gosselies, Belgium
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
52
|
Fan J, Li Q, Chen L, Du J, Xue W, Yu S, Su X, Yang Y. Research Progress in the Synthesis of Targeting Organelle Carbon Dots and Their Applications in Cancer Diagnosis and Treatment. J Biomed Nanotechnol 2021; 17:1891-1916. [PMID: 34706792 DOI: 10.1166/jbn.2021.3167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With increasing knowledge about diseases at the histological, cytological to sub-organelle level, targeting organelle therapy has gradually been envisioned as an approach to overcome the shortcomings of poor specificity and multiple toxic side effects on tissues and cell-level treatments using the currently available therapy. Organelle carbon dots (CDs) are a class of functionalized CDs that can target organelles. CDs can be prepared by a "synchronous in situ synthesis method" and "asynchronous modification method." The superior optical properties and good biocompatibility of CDs can be preserved, and they can be used as targeting particles to carry drugs into cells while reducing leakage during transport. Given the excellent organelle fluorescence imaging properties, targeting organelle CDs can be used to monitor the physiological metabolism of organelles and progression of human diseases, which will provide advanced understanding and accurate diagnosis and targeted treatment of cancers. This study reviews the methods used for preparation of targeting organelle CDs, mechanisms of accurate diagnosis and targeted treatment of cancer, as well as their application in the area of cancer diagnosis and treatment research. Finally, the current difficulties and prospects for targeting organelle CDs are prospected.
Collapse
Affiliation(s)
- Jiangbo Fan
- Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinglei Du
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wenqiang Xue
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Medical University, Taiyuan 030001, China
| | - Xiuqin Su
- Shanxi Medical University, Taiyuan 030001, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
53
|
Tchurikov NA, Kravatsky YV. The Role of rDNA Clusters in Global Epigenetic Gene Regulation. Front Genet 2021; 12:730633. [PMID: 34531902 PMCID: PMC8438155 DOI: 10.3389/fgene.2021.730633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
The regulation of gene expression has been studied for decades, but the underlying mechanisms are still not fully understood. As well as local and distant regulation, there are specific mechanisms of regulation during development and physiological modulation of gene activity in differentiated cells. Current research strongly supports a role for the 3D chromosomal structure in the regulation of gene expression. However, it is not known whether the genome structure reflects the formation of active or repressed chromosomal domains or if these structures play a primary role in the regulation of gene expression. During early development, heterochromatinization of ribosomal DNA (rDNA) is coupled with silencing or activation of the expression of different sets of genes. Although the mechanisms behind this type of regulation are not known, rDNA clusters shape frequent inter-chromosomal contacts with a large group of genes controlling development. This review aims to shed light on the involvement of clusters of ribosomal genes in the global regulation of gene expression. We also discuss the possible role of RNA-mediated and phase-separation mechanisms in the global regulation of gene expression by nucleoli.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Yuri V Kravatsky
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
54
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
55
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
56
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
57
|
Figueiredo VC, McCarthy JJ. Targeting cancer via ribosome biogenesis: the cachexia perspective. Cell Mol Life Sci 2021; 78:5775-5787. [PMID: 34196731 PMCID: PMC11072391 DOI: 10.1007/s00018-021-03888-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Cancer cachexia afflicts many advanced cancer patients with many progressing to death. While there have been many advancements in understanding the molecular mechanisms that contribute to the development of cancer cachexia, substantial gaps still exist. Chemotherapy drugs often target ribosome biogenesis to slow or blunt tumor cell growth and proliferation. Some of the most frequent side-effects of chemotherapy are loss of skeletal muscle mass, muscular strength and an increase in fatigue. Given that ribosome biogenesis has emerged as a main mechanism regulating muscle hypertrophy, and more recently, also implicated in muscle atrophy, we propose that some chemotherapy drugs can cause further muscle wasting via its effect on skeletal muscle cells. Many chemotherapy drugs, including the most prescribed drugs such as doxorubicin and cisplatin, affect ribosomal DNA transcription, or other pathways related to ribosome biogenesis. Furthermore, middle-aged and older individuals are the most affected population with cancer, and advanced cancer patients often show reduced levels of physical inactivity. Thus, aging and inactivity can themselves affect muscle ribosome biogenesis, which can further worsen the effect of chemotherapy on skeletal muscle ribosome biogenesis and, ultimately, muscle mass and function. We propose that chemotherapy can accelerate the onset or worsen cancer cachexia via its inhibitory effects on skeletal muscle ribosome biogenesis. We end our review by providing recommendations that could be used to ameliorate the negative effects of chemotherapy on skeletal muscle ribosome biogenesis.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- College of Health Sciences, University of Kentucky, Lexington, KY, USA.
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
58
|
He H, Chen X, Feng Z, Liu L, Wang Q, Bi S. Nanoscopic Imaging of Nucleolar Stress Enabled by Protein-Mimicking Carbon Dots. NANO LETTERS 2021; 21:5689-5696. [PMID: 34181434 DOI: 10.1021/acs.nanolett.1c01420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nucleolus is a central hub for coordinating cellular stress responses during cancer development and treatment. Accurate identification of nucleolar stress response is crucially desired for nucleolus-based diagnostics and therapeutics but technically challenging due to the need to address the ultrastructural analysis. Here, we report a protein-like CD with the integration of fluorescent blinking domains and RNA-binding motifs, which offers the ability to perform enhanced super-resolution imaging of the nucleolar ultrastructure. This image allows extraction of multidimensional information from the nucleolus for accurate distinguishment of different cells from the same cell types. Furthermore, we demonstrate for the first time this CD-depicted nucleolar ultrastructure as a sensitive hallmark to identify and discriminate subtle responses to various stressors as well as to afford RNA-related information that has been inaccessible by conventional immunofluorescence methods. This protein-mimicking CD could become a broadly useful probe for nucleolar stress studies in cell diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoliang Chen
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Lihua Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
59
|
Lee JEA, Parsons LM, Quinn LM. MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractProgress in our understanding of the complex signaling events driving human cancer would have been unimaginably slow without discoveries from Drosophila genetic studies. Significantly, many of the signaling pathways now synonymous with cancer biology were first identified as a result of elegant screens for genes fundamental to metazoan development. Indeed the name given to many core cancer-signaling cascades tells of their history as developmental patterning regulators in flies—e.g. Wingless (Wnt), Notch and Hippo. Moreover, astonishing insight has been gained into these complex signaling networks, and many other classic oncogenic signaling networks (e.g. EGFR/RAS/RAF/ERK, InR/PI3K/AKT/TOR), using sophisticated fly genetics. Of course if we are to understand how these signaling pathways drive cancer, we must determine the downstream program(s) of gene expression activated to promote the cell and tissue over growth fundamental to cancer. Here we discuss one commonality between each of these pathways: they are all implicated as upstream activators of the highly conserved MYC oncogene and transcription factor. MYC can drive all aspects of cell growth and cell cycle progression during animal development. MYC is estimated to be dysregulated in over 50% of all cancers, underscoring the importance of elucidating the signals activating MYC. We also discuss the FUBP1/FIR/FUSE system, which acts as a ‘cruise control’ on the MYC promoter to control RNA Polymerase II pausing and, therefore, MYC transcription in response to the developmental signaling environment. Importantly, the striking conservation between humans and flies within these major axes of MYC regulation has made Drosophila an extremely valuable model organism for cancer research. We therefore discuss how Drosophila studies have helped determine the validity of signaling pathways regulating MYC in vivo using sophisticated genetics, and continue to provide novel insight into cancer biology.
Collapse
Affiliation(s)
- Jue Er Amanda Lee
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Linda May Parsons
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Leonie M. Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| |
Collapse
|
60
|
Ribosomal RNA Transcription Regulation in Breast Cancer. Genes (Basel) 2021; 12:genes12040502. [PMID: 33805424 PMCID: PMC8066022 DOI: 10.3390/genes12040502] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.
Collapse
|
61
|
Ladelfa MF, Peche LY, Amato GE, Escalada MC, Zampieri S, Pascucci FA, Benevento AF, Do Porto DF, Dardis A, Schneider C, Monte M. Expression of the tumor-expressed protein MageB2 enhances rRNA transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119015. [PMID: 33741433 DOI: 10.1016/j.bbamcr.2021.119015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022]
Abstract
An essential requirement for cells to sustain a high proliferating rate is to be paired with enhanced protein synthesis through the production of ribosomes. For this reason, part of the growth-factor signaling pathways, are devoted to activate ribosome biogenesis. Enhanced production of ribosomes is a hallmark in cancer cells, which is boosted by different mechanisms. Here we report that the nucleolar tumor-protein MageB2, whose expression is associated with cell proliferation, also participates in ribosome biogenesis. Studies carried out in both siRNA-mediated MageB2 silenced cells and CRISPR/CAS9-mediated MageB2 knockout (KO) cells showed that its expression is linked to rRNA transcription increase independently of the cell proliferation status. Mechanistically, MageB2 interacts with phospho-UBF, a protein which causes the recruitment of RNA Pol I pre-initiation complex required for rRNA transcription. In addition, cells expressing MageB2 displays enhanced phospho-UBF occupancy at the rDNA gene promoter. Proteomic studies performed in MageB2 KO cells revealed impairment in ribosomal protein (RPs) content. Functionally, enhancement in rRNA production in MageB2 expressing cells, was directly associated with an increased dynamic in protein synthesis. Altogether our results unveil a novel function for a tumor-expressed protein from the MAGE-I family. Findings reported here suggest that nucleolar MageB2 might play a role in enhancing ribosome biogenesis as part of its repertoire to support cancer cell proliferation.
Collapse
Affiliation(s)
- María Fátima Ladelfa
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia Yamila Peche
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste, Italy
| | - Gastón Ezequiel Amato
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carolina Escalada
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Stefania Zampieri
- Centro di Coordinamento Regionale per le Malattie Rare, Ospedale Universitario Santa Maria Della Misericordia, Udine, Italy
| | - Franco Andrés Pascucci
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andres Fernandez Benevento
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Pabellón 2, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Dario Fernandez Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Pabellón 2, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Andrea Dardis
- Centro di Coordinamento Regionale per le Malattie Rare, Ospedale Universitario Santa Maria Della Misericordia, Udine, Italy
| | - Claudio Schneider
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste, Italy; Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, Udine, Italy
| | - Martin Monte
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
62
|
Scull CE, Lucius AL, Schneider DA. The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation. Biophys J 2021; 120:1883-1893. [PMID: 33737158 DOI: 10.1016/j.bpj.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotes express three DNA-dependent RNA polymerases (Pols) that are responsible for the entirety of cellular genomic expression. The three Pols have evolved to express specific cohorts of RNAs and thus have diverged both structurally and functionally to efficiently execute their specific transcriptional roles. One example of this divergence is Pol I's inclusion of a proofreading factor as a bona fide subunit, as opposed to Pol II, which recruits a transcription factor, TFIIS, for proofreading. The A12.2 (A12) subunit of Pol I shares homology with both the Rpb9 subunit of Pol II as well as the transcription factor TFIIS, which promotes RNA cleavage and proofreading by Pol II. In this study, the functional contribution of the TFIIS-like C-terminal domain and the Rpb9-like N-terminal domain of the A12 subunit are probed through mutational analysis. We found that a Pol I mutant lacking the C-terminal domain of the A12 subunit (ΔA12CTD Pol I) is slightly faster than wild-type Pol I in single-nucleotide addition, but ΔA12CTD Pol I lacks RNA cleavage activity. ΔA12CTD Pol I is likewise similar to wild-type Pol I in elongation complex stability, whereas removal of the entire A12 subunit (ΔA12 Pol I) was previously demonstrated to stabilize transcription elongation complexes. Furthermore, the ΔA12CTD Pol I is sensitive to downstream sequence context, as ΔA12CTD Pol I exposed to AT-rich downstream DNA is more arrest prone than ΔA12 Pol I. These data demonstrate that the N-terminal domain of A12 does not stimulate Pol I intrinsic RNA cleavage activity, but rather contributes to core transcription elongation properties of Pol I.
Collapse
Affiliation(s)
- Catherine E Scull
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aaron L Lucius
- the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - David A Schneider
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
63
|
Weeks SE, Kammerud SC, Metge BJ, AlSheikh HA, Schneider DA, Chen D, Wei S, Mobley JA, Ojesina AI, Shevde LA, Samant RS. Inhibiting β-catenin disables nucleolar functions in triple-negative breast cancer. Cell Death Dis 2021; 12:242. [PMID: 33664239 PMCID: PMC7933177 DOI: 10.1038/s41419-021-03531-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 01/31/2023]
Abstract
Triple-negative breast cancer (TNBC) patients with upregulated Wnt/β-catenin signaling often have poor clinical prognoses. During pathological examinations of breast cancer sections stained for β-catenin, we made the serendipitous observation that relative to non-TNBC, specimens from TNBC patients have a greater abundance of nucleoli. There was a remarkable direct relationship between nuclear β-catenin and greater numbers of nucleoli in TNBC tissues. These surprising observations spurred our investigations to decipher the differential functional relevance of the nucleolus in TNBC versus non-TNBC cells. Comparative nucleolar proteomics revealed that the majority of the nucleolar proteins in TNBC cells were potential targets of β-catenin signaling. Next, we undertook an analysis of the nucleolar proteome in TNBC cells in response to β-catenin inhibition. This effort revealed that a vital component of pre-rRNA processing, LAS1 like ribosome biogenesis factor (LAS1L) was significantly decreased in the nucleoli of β-catenin inhibited TNBC cells. Here we demonstrate that LAS1L protein expression is significantly elevated in TNBC patients, and it functionally is important for mammary tumor growth in xenograft models and enables invasive attributes. Our observations highlight a novel function for β-catenin in orchestrating nucleolar activity in TNBCs.
Collapse
Affiliation(s)
- Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A AlSheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Mobley
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akinyemi I Ojesina
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
64
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
65
|
Liu J, Li C, Xue H, Li L, Liu Q, Wang H, Wen T, Qian H. Cancer metastasis-associated protein 1 localizes to the nucleolus and regulates pre-rRNA synthesis in cancer cells. J Cell Biochem 2021; 122:180-188. [PMID: 32786109 DOI: 10.1002/jcb.29837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/07/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Metastasis-associated protein 1 (MTA1) is a critical component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA1 has several biological functions, and it is closely associated with the malignant properties of human cancers; however, the mechanisms and subcellular localization of MTA1 in cells remain unclear. Some initial studies indicated that MTA1 was absent from the nucleolus; however, several NuRD components were recently found to be present in the nucleolus, where they regulate preribosomal RNA (pre-rRNA) transcription. In this study, we demonstrated that MTA1 is definitely localized to the nucleolus and regulates pre-rRNA transcription, which is consistent with the recent reports on NuRD. To determine if MTA1 was present in the nucleolus, we utilized the following complementary molecular approaches: immunofluorescence, GFP-tag tracking, immunoelectron microscopy, and immunoprecipitation (IP). To examine the role of MTA1 in rRNA synthesis, we performed quantitative polymerase chain reaction analysis. We revealed that both endogenous and exogenous MTA1 showed apparent granule-like nucleolar subcellular localization. MTA1 interacts with two major resident nucleolar proteins, nucleolin and nucleophosmin. Immunofluorescent colocalization analyses showed that MTA1 localizes to the fibrillarin-deficient regions of the nucleolus, and Co-IP experiments indicated that there was no interaction between MTA1 and fibrillarin; further, fibrillarin was not identified in the MTA1 interactome. Loss- and gain-of-function studies indicated that MTA1 promotes pre-rRNA transcription in cancer cells. Collectively, our data identify MTA1 as a novel nucleolar protein, and activation of pre-rRNA transcription in cancer cells may be an alternative mechanism by which MTA1 promotes malignancies.
Collapse
Affiliation(s)
- Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongsheng Xue
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Lina Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qun Liu
- Department of Gynaecology and Obstetrics, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
66
|
Uchihara Y, Tago K, Tamura H, Funakoshi‐Tago M. EBP2, a novel NPM-ALK-interacting protein in the nucleolus, contributes to the proliferation of ALCL cells by regulating tumor suppressor p53. Mol Oncol 2021; 15:167-194. [PMID: 33040459 PMCID: PMC7782078 DOI: 10.1002/1878-0261.12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), found in anaplastic large-cell lymphoma (ALCL), localizes to the cytosol, nucleoplasm, and nucleolus. However, the relationship between its localization and transforming activity remains unclear. We herein demonstrated that NPM-ALK localized to the nucleolus by binding to nucleophosmin 1 (NPM1), a nucleolar protein that exhibits shuttling activity between the nucleolus and cytoplasm, in a manner that was dependent on its kinase activity. In the nucleolus, NPM-ALK interacted with Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2), which is involved in rRNA biosynthesis. Moreover, enforced expression of NPM-ALK induced tyrosine phosphorylation of EBP2. Knockdown of EBP2 promoted the activation of the tumor suppressor p53, leading to G0 /G1 -phase cell cycle arrest in Ba/F3 cells transformed by NPM-ALK and ALCL patient-derived Ki-JK cells, but not ALCL patient-derived SUDH-L1 cells harboring p53 gene mutation. In Ba/F3 cells transformed by NPM-ALK and Ki-JK cells, p53 activation induced by knockdown of EBP2 was significantly inhibited by Akt inhibitor GDC-0068, mTORC1 inhibitor rapamycin, and knockdown of Raptor, an essential component of mTORC1. These results suggest that the knockdown of EBP2 triggered p53 activation through the Akt-mTORC1 pathway in NPM-ALK-positive cells. Collectively, the present results revealed the critical repressive mechanism of p53 activity by EBP2 and provide a novel therapeutic strategy for the treatment of ALCL.
Collapse
Affiliation(s)
- Yuki Uchihara
- Division of Hygienic ChemistryFaculty of PharmacyKeio UniversityTokyoJapan
| | - Kenji Tago
- Division of Structural BiochemistryDepartment of BiochemistryJichi Medical UniversityShimotsuke‐shiJapan
| | - Hiroomi Tamura
- Division of Hygienic ChemistryFaculty of PharmacyKeio UniversityTokyoJapan
| | | |
Collapse
|
67
|
Metge BJ, Kammerud SC, Pruitt HC, Shevde LA, Samant RS. Hypoxia re-programs 2'-O-Me modifications on ribosomal RNA. iScience 2020; 24:102010. [PMID: 33490918 PMCID: PMC7811136 DOI: 10.1016/j.isci.2020.102010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the critical stressors encountered by various cells of the human body under diverse pathophysiologic conditions including cancer and has profound impacts on several metabolic and physiologic processes. Hypoxia prompts internal ribosome entry site (IRES)-mediated translation of key genes, such as VEGF, that are vital for tumor progression. Here, we describe that hypoxia remarkably upregulates RNA Polymerase I activity. We discovered that in hypoxia, rRNA shows a different methylation pattern compared to normoxia. Heterogeneity in ribosomes due to the diversity of ribosomal RNA and protein composition has been postulated to generate “specialized ribosomes” that differentially regulate translation. We find that in hypoxia, a sub-set of differentially methylated ribosomes recognizes the VEGF-C IRES, suggesting that ribosomal heterogeneity allows for altered ribosomal functions in hypoxia. Chronic hypoxia stimulates RNA Pol I activity In hypoxia, a pool of specialized rRNA translates VEGFC IRES Hypoxia changes 2′-O-Me modification - epitranscriptomic marks on rRNA
Collapse
Affiliation(s)
- Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Hawley C Pruitt
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
68
|
Chattopadhyaya S, Banerjee S. miRNA 146b mediates the regulation of nucleolar size and activity in polyploid megakaryocytes. Biol Cell 2020; 113:118-129. [PMID: 33278308 DOI: 10.1111/boc.202000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND INFORMATION Megakaryocytes (MKs) follow a unique cell cycle duplication process, called endomitosis, resulting in polyploidisation of cells. It is hypothesised that polyploidy, as well as an increment in cytoplasm volume, allow more efficient platelets generation from MKs. Although polyploidy leads to an increase in the DNA amount, which impacts gene expression, little is known about ribosomal biogenesis in these polylobulated polyploid cells. RESULTS The nucleolus acts as a hub for ribosomal biogenesis, which in turn governs the protein synthesis rate of the cells. We therefore estimated the size and activity of the nucleolus in polyploid cells during megakaryopoiesis in vitro. Polyploid megakaryocytic cell lines and in vitro cultured MKs, which were obtained from human cord blood-derived CD 34+ cells, revealed that miRNA 146b regulated the activity of nucleolar and coiled-body phosphoprotein 1, which plays an integral role in determining nucleolar size and activity. Additionally, miRNA-146b was up-regulated during endomitosis and was found to promote megakaryopoiesis. CONCLUSION We propose that miRNA 146b regulates not only nucleolar size and activity, but also megakaryopoiesis. SIGNIFICANCE This study highlights the importance of nucleolar activity and miRNA in the progression of megakaryopoiesis and thrombopoiesis.
Collapse
Affiliation(s)
- Saran Chattopadhyaya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Bidhannagar, Kolkata, 700064, India
| | - Subrata Banerjee
- School of Biological Sciences, Ramkrishna Mission Vivekananda Educational & Research Institute (RKMVERI), Narendrapur, Kolkata, 700103, India
| |
Collapse
|
69
|
Gupta S, Santoro R. Regulation and Roles of the Nucleolus in Embryonic Stem Cells: From Ribosome Biogenesis to Genome Organization. Stem Cell Reports 2020; 15:1206-1219. [PMID: 32976768 PMCID: PMC7724472 DOI: 10.1016/j.stemcr.2020.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
The nucleolus is the largest compartment of the eukaryotic cell's nucleus. It acts as a ribosome factory, thereby sustaining the translation machinery. The nucleolus is also the subnuclear compartment with the highest transcriptional activity in the cell, where hundreds of ribosomal RNA (rRNA) genes transcribe the overwhelming majority of RNAs. The structure and composition of the nucleolus change according to the developmental state. For instance, in embryonic stem cells (ESCs), rRNA genes display a hyperactive transcriptional state and open chromatin structure compared with differentiated cells. Increasing evidence indicates that the role of the nucleolus and rRNA genes might go beyond the control of ribosome biogenesis. One such role is linked to the genome architecture, since repressive domains are often located close to the nucleolus. This review highlights recent findings describing how the nucleolus is regulated in ESCs and its role in regulating ribosome biogenesis and genome organization for the maintenance of stem cell identity.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057 Zurich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
70
|
Lamb MC, Tootle TL. Fascin in Cell Migration: More Than an Actin Bundling Protein. BIOLOGY 2020; 9:biology9110403. [PMID: 33212856 PMCID: PMC7698196 DOI: 10.3390/biology9110403] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Cell migration is an essential biological process that regulates both development and diseases, such as cancer metastasis. Therefore, understanding the factors that promote cell migration is crucial. One of the factors known to regulate cell migration is the actin-binding protein, Fascin. Fascin is typically thought to promote cell migration through bundling actin to form migratory structures such as filopodia and invadapodia. However, Fascin has many other functions in the cell that may contribute to cell migration. How these novel functions promote cell migration and are regulated is still not well understood. Here, we review the structure of Fascin, the many functions of Fascin and how they may promote cell migration, how Fascin is regulated, and Fascin’s role in diseases such as cancer metastasis. Abstract Fascin, an actin-binding protein, regulates many developmental migrations and contributes to cancer metastasis. Specifically, Fascin promotes cell motility, invasion, and adhesion by forming filopodia and invadopodia through its canonical actin bundling function. In addition to bundling actin, Fascin has non-canonical roles in the cell that are thought to promote cell migration. These non-canonical functions include regulating the activity of other actin-binding proteins, binding to and regulating microtubules, mediating mechanotransduction to the nucleus via interaction with the Linker of the Nucleoskeleton and Cytoskeleton (LINC) Complex, and localizing to the nucleus to regulate nuclear actin, the nucleolus, and chromatin modifications. The many functions of Fascin must be coordinately regulated to control cell migration. While much remains to be learned about such mechanisms, Fascin is regulated by post-translational modifications, prostaglandin signaling, protein–protein interactions, and transcriptional means. Here, we review the structure of Fascin, the various functions of Fascin and how they contribute to cell migration, the mechanisms regulating Fascin, and how Fascin contributes to diseases, specifically cancer metastasis.
Collapse
|
71
|
Mars JC, Tremblay MG, Valere M, Sibai DS, Sabourin-Felix M, Lessard F, Moss T. The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability. NAR Cancer 2020; 2:zcaa032. [PMID: 33196044 PMCID: PMC7646227 DOI: 10.1093/narcan/zcaa032] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
In the search for drugs to effectively treat cancer, the last 10 years have seen a resurgence of interest in targeting ribosome biogenesis. CX-5461 is a potential inhibitor of ribosomal RNA synthesis that is now showing promise in phase I trials as a chemotherapeutic agent for a range of malignancies. Here, we show that CX-5461 irreversibly inhibits ribosomal RNA transcription by arresting RNA polymerase I (RPI/Pol1/PolR1) in a transcription initiation complex. CX-5461 does not achieve this by preventing formation of the pre-initiation complex nor does it affect the promoter recruitment of the SL1 TBP complex or the HMGB-box upstream binding factor (UBF/UBTF). CX-5461 also does not prevent the subsequent recruitment of the initiation-competent RPI–Rrn3 complex. Rather, CX-5461 blocks promoter release of RPI–Rrn3, which remains irreversibly locked in the pre-initiation complex even after extensive drug removal. Unexpectedly, this results in an unproductive mode of RPI recruitment that correlates with the onset of nucleolar stress, inhibition of DNA replication, genome-wide DNA damage and cellular senescence. Our data demonstrate that the cytotoxicity of CX-5461 is at least in part the result of an irreversible inhibition of RPI transcription initiation and hence are of direct relevance to the design of improved strategies of chemotherapy.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Mélissa Valere
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Dany S Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Marianne Sabourin-Felix
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| |
Collapse
|
72
|
Zhang W, Cheng W, Parlato R, Guo X, Cui X, Dai C, Xu L, Zhu J, Zhu M, Luo K, Zhang W, Dong B, Wang J, Jiang F. Nucleolar stress induces a senescence-like phenotype in smooth muscle cells and promotes development of vascular degeneration. Aging (Albany NY) 2020; 12:22174-22198. [PMID: 33146634 PMCID: PMC7695416 DOI: 10.18632/aging.104094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022]
Abstract
Senescence of smooth muscle cells (SMCs) has a crucial role in the pathogenesis of abdominal aortic aneurysm (AAA), a disease of vascular degeneration. Perturbation of cellular ribosomal DNA (rDNA) transcription triggers nucleolar stress response. Previously we demonstrated that induction of nucleolar stress in SMCs elicited cell cycle arrest via the ataxia-telangiectasia mutated (ATM)/ATM- and Rad3-related (ATR)-p53 axis. However, the specific roles of nucleolar stress in vascular degeneration remain unexplored. In the present study, we demonstrated for the first time that in both human and animal AAA tissues, there were non-coordinated changes in the expression of RNA polymerase I machinery components, including a downregulation of transcription initiation factor-IA (TIF-IA). Genetic deletion of TIF-IA in SMCs in mice (smTIF-IA-/-) caused spontaneous aneurysm-like lesions in the aorta. In vitro, induction of nucleolar stress triggered a non-canonical DNA damage response, leading to p53 phosphorylation and a senescence-like phenotype in SMCs. In human AAA tissues, there was increased nucleolar stress in medial cells, accompanied by localized DNA damage response within the nucleolar compartment. Our data suggest that perturbed rDNA transcription and induction of nucleolar stress contribute to the pathogenesis of AAA. Moreover, smTIF-IA-/- mice may be a novel animal model for studying spontaneous AAA-like vascular degenerations.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Cheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Chaochao Dai
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Xu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Min Zhu
- Department of Transplant Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kun Luo
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wencheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Jianli Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Current address: Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
73
|
Frequent Germline and Somatic Single Nucleotide Variants in the Promoter Region of the Ribosomal RNA Gene in Japanese Lung Adenocarcinoma Patients. Cells 2020; 9:cells9112409. [PMID: 33153169 PMCID: PMC7692307 DOI: 10.3390/cells9112409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022] Open
Abstract
Ribosomal RNA (rRNA), the most abundant non-coding RNA species, is a major component of the ribosome. Impaired ribosome biogenesis causes the dysfunction of protein synthesis and diseases called “ribosomopathies,” including genetic disorders with cancer risk. However, the potential role of rRNA gene (rDNA) alterations in cancer is unknown. We investigated germline and somatic single-nucleotide variants (SNVs) in the rDNA promoter region (positions −248 to +100, relative to the transcription start site) in 82 lung adenocarcinomas (LUAC). Twenty-nine tumors (35.4%) carried germline SNVs, and eight tumors (9.8%) harbored somatic SNVs. Interestingly, the presence of germline SNVs between positions +1 and +100 (n = 12; 14.6%) was associated with significantly shorter recurrence-free survival (RFS) and overall survival (OS) by univariate analysis (p < 0.05, respectively), and was an independent prognostic factor for RFS and OS by multivariate analysis. LUAC cell line PC9, carrying rDNA promoter SNV at position +49, showed significantly higher ribosome biogenesis than H1650 cells without SNV. Upon nucleolar stress induced by actinomycin D, PC9 retained significantly higher ribosome biogenesis than H1650. These results highlight the possible functional role of SNVs at specific sites of the rDNA promoter region in ribosome biogenesis, the progression of LUAC, and their potential prognostic value.
Collapse
|
74
|
Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. Ribosome Biogenesis Alterations in Colorectal Cancer. Cells 2020; 9:E2361. [PMID: 33120992 PMCID: PMC7693311 DOI: 10.3390/cells9112361] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Sophie Nait Slimane
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Virginie Marcel
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Tanguy Fenouil
- Institute of Pathology EST, Hospices Civils de Lyon, Site-Est Groupement Hospitalier- Est, 69677 Bron, France;
| | - Frédéric Catez
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Christophe Saurin
- Gastroenterology and Genetic Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Philippe Bouvet
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Jacques Diaz
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Hichem C. Mertani
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| |
Collapse
|
75
|
Shu WJ, Chen R, Yin ZH, Li F, Zhang H, Du HN. Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions. Nucleic Acids Res 2020; 48:8360-8373. [PMID: 32619236 PMCID: PMC7470948 DOI: 10.1093/nar/gkaa558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/24/2022] Open
Abstract
Coordinated regulation of ribosomal RNA (rRNA) synthesis and ribosomal protein gene (RPG) transcription by eukaryotic RNA polymerases (RNAP) is a key requirement for growth control. Although evidence for balance between RNPI-dependent 35S rRNA production and RNAPII-mediated RPG transcription have been described, the molecular basis is still obscure. Here, we found that Rph1 modulates the transcription status of both rRNAs and RPGs in yeast. We show that Rph1 widely associates with RNAPI and RNAPII-transcribed genes. Deletion of RPH1 remarkably alleviates cell slow growth caused by TORC1 inhibition via derepression of rRNA and RPG transcription under nutrient stress conditions. Mechanistically, Rim15 kinase phosphorylates Rph1 upon rapamycin treatment. Phosphorylation-mimetic mutant of Rph1 exhibited more resistance to rapamycin treatment, decreased association with ribosome-related genes, and faster cell growth compared to the wild-type, indicating that Rph1 dissociation from chromatin ensures cell survival upon nutrient stress. Our results uncover the role of Rph1 in coordination of RNA polymerases-mediated transcription to control cell growth under nutrient stress conditions.
Collapse
Affiliation(s)
- Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Zhao-Hong Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai, 201062, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| |
Collapse
|
76
|
Pang W, Jiang P, Ding S, Bao Z, Wang N, Wang H, Qu J, Wang D, Gu B, Wei X. Nucleolus-Targeted Photodynamic Anticancer Therapy Using Renal-Clearable Carbon Dots. Adv Healthc Mater 2020; 9:e2000607. [PMID: 32548916 DOI: 10.1002/adhm.202000607] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT), which utilizes light excited photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. In order to further enhance PDT effect, PSs are functionalized to target specific sub-cellular organelles, but most PSs cannot target nucleolus, which is demonstrated as a more efficient and ideal site for cancer treatment. Here, an effective carbon dots (C-dots) photosensitizer with intrinsic nucleolus-targeting capability, for the first time, is synthesized, characterized, and employed for in vitro and in vivo image-guided photodynamic anticancer therapy with enhanced treatment performance at a low dose of PS and light irradiation. The C-dots possess high ROS generation efficiency and fluorescence quantum yield, excellent in vitro and in vivo biocompatibility, and rapid renal clearance, endowing it with a great potential for future translational research.
Collapse
Affiliation(s)
- Wen Pang
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Pengfei Jiang
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Shihui Ding
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Ren Ji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200127 China
| | - Ningtao Wang
- Department of 2nd Dental CenterShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong UniversitySchool of Medicine Shanghai 200011 China
| | - Hongxia Wang
- Department of OncologyShanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai 200080 China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Dan Wang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Bobo Gu
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Xunbin Wei
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100083 China
| |
Collapse
|
77
|
Engbrecht M, Mangerich A. The Nucleolus and PARP1 in Cancer Biology. Cancers (Basel) 2020; 12:cancers12071813. [PMID: 32640701 PMCID: PMC7408768 DOI: 10.3390/cancers12071813] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
The nucleolus has been known for a long time to fulfill crucial functions in ribosome biogenesis, of which cancer cells can become addicted to in order to produce sufficient amounts of proteins for cell proliferation. Recently, the nucleolus has emerged as a central regulatory hub in many other cancer-relevant processes, including stress sensing, DNA damage response, cell cycle control, and proteostasis. This fostered the idea that nucleolar processes can be exploited in cancer therapy. Interestingly, a significant proportion of poly(ADP-ribose) polymerase 1 (PARP1) molecules are localized in the nucleolus and PARP1 also plays crucial roles in many processes that are important in cancer biology, including genome maintenance, replication, transcription, and chromatin remodeling. Furthermore, during the last years, PARP1 came into focus in oncology since it represents a promising target of pharmacological PARP inhibitors in various types of cancers. Here, we provide an overview of our current understanding on the role of PARP1 in nucleolar functions and discuss potential implications in cancer biology and therapy.
Collapse
|
78
|
Son J, Hannan KM, Poortinga G, Hein N, Cameron DP, Ganley ARD, Sheppard KE, Pearson RB, Hannan RD, Sanij E. rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461. Front Cell Dev Biol 2020; 8:568. [PMID: 32719798 PMCID: PMC7349920 DOI: 10.3389/fcell.2020.00568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.
Collapse
Affiliation(s)
- Jinbae Son
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Donald P. Cameron
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Austen R. D. Ganley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Karen E. Sheppard
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Richard B. Pearson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ross D. Hannan
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
79
|
Sanij E, Hannan KM, Xuan J, Yan S, Ahern JE, Trigos AS, Brajanovski N, Son J, Chan KT, Kondrashova O, Lieschke E, Wakefield MJ, Frank D, Ellis S, Cullinane C, Kang J, Poortinga G, Nag P, Deans AJ, Khanna KK, Mileshkin L, McArthur GA, Soong J, Berns EMJJ, Hannan RD, Scott CL, Sheppard KE, Pearson RB. CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nat Commun 2020; 11:2641. [PMID: 32457376 PMCID: PMC7251123 DOI: 10.1038/s41467-020-16393-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.
Collapse
Affiliation(s)
- Elaine Sanij
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Katherine M Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton, 2601, Australia Capital Territory, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Jiachen Xuan
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shunfei Yan
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jessica E Ahern
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Anna S Trigos
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Natalie Brajanovski
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Jinbae Son
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keefe T Chan
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Melbourne Bioinformatics, University of Melbourne, Victoria, 3010, Australia
| | - Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sarah Ellis
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jian Kang
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Purba Nag
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Nathan, Brisbane, QLD, 4111, Australia
| | - Andrew J Deans
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC, 3010, Australia
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Linda Mileshkin
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John Soong
- Senhwa Biosciences, Virginia Commonwealth University School of Medicine, San Diego, CA, USA
| | - Els M J J Berns
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ross D Hannan
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton, 2601, Australia Capital Territory, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Clare L Scott
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medicine and Health Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Karen E Sheppard
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
80
|
snoRNAs Offer Novel Insight and Promising Perspectives for Lung Cancer Understanding and Management. Cells 2020; 9:cells9030541. [PMID: 32111002 PMCID: PMC7140444 DOI: 10.3390/cells9030541] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs localized in the nucleolus, where they participate in the cleavage and chemical modification of ribosomal RNAs. Their biogenesis and molecular functions have been extensively studied since their identification in the 1960s. However, their role in cancer has only recently started to emerge. In lung cancer, efforts to profile snoRNA expression have enabled the definition of snoRNA-related signatures, not only in tissues but also in biological fluids, exposing these small RNAs as potential non-invasive biomarkers. Moreover, snoRNAs appear to be essential actors of lung cancer onset and dissemination. They affect diverse cellular functions, from regulation of the cell proliferation/death balance to promotion of cancer cell plasticity. snoRNAs display both oncogenic and tumor suppressive activities that are pivotal in lung cancer tumorigenesis and progression. Altogether, we review how further insight into snoRNAs may improve our understanding of basic lung cancer biology and the development of innovative diagnostic tools and therapies.
Collapse
|
81
|
Ferreira R, Schneekloth JS, Panov KI, Hannan KM, Hannan RD. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells 2020; 9:cells9020266. [PMID: 31973211 PMCID: PMC7072222 DOI: 10.3390/cells9020266] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Transcription of the ribosomal RNA genes (rDNA) that encode the three largest ribosomal RNAs (rRNA), is mediated by RNA Polymerase I (Pol I) and is a key regulatory step for ribosomal biogenesis. Although it has been reported over a century ago that the number and size of nucleoli, the site of ribosome biogenesis, are increased in cancer cells, the significance of this observation for cancer etiology was not understood. The realization that the increase in rRNA expression has an active role in cancer progression, not only through increased protein synthesis and thus proliferative capacity but also through control of cellular check points and chromatin structure, has opened up new therapeutic avenues for the treatment of cancer through direct targeting of Pol I transcription. In this review, we discuss the rational of targeting Pol I transcription for the treatment of cancer; review the current cancer therapeutics that target Pol I transcription and discuss the development of novel Pol I-specific inhibitors, their therapeutic potential, challenges and future prospects.
Collapse
Affiliation(s)
- Rita Ferreira
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Correspondence:
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Konstantin I. Panov
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- CCRCB and School of Biological Sciences, Queen’s University Belfast Medical Biology Centre, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross D. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
82
|
Architecture of The Human Ape1 Interactome Defines Novel Cancers Signatures. Sci Rep 2020; 10:28. [PMID: 31913336 PMCID: PMC6949240 DOI: 10.1038/s41598-019-56981-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
APE1 is essential in cancer cells due to its central role in the Base Excision Repair pathway of DNA lesions and in the transcriptional regulation of genes involved in tumor progression/chemoresistance. Indeed, APE1 overexpression correlates with chemoresistance in more aggressive cancers, and APE1 protein-protein interactions (PPIs) specifically modulate different protein functions in cancer cells. Although important, a detailed investigation on the nature and function of protein interactors regulating APE1 role in tumor progression and chemoresistance is still lacking. The present work was aimed at analyzing the APE1-PPI network with the goal of defining bad prognosis signatures through systematic bioinformatics analysis. By using a well-characterized HeLa cell model stably expressing a flagged APE1 form, which was subjected to extensive proteomics analyses for immunocaptured complexes from different subcellular compartments, we here demonstrate that APE1 is a central hub connecting different subnetworks largely composed of proteins belonging to cancer-associated communities and/or involved in RNA- and DNA-metabolism. When we performed survival analysis in real cancer datasets, we observed that more than 80% of these APE1-PPI network elements is associated with bad prognosis. Our findings, which are hypothesis generating, strongly support the possibility to infer APE1-interactomic signatures associated with bad prognosis of different cancers; they will be of general interest for the future definition of novel predictive disease biomarkers. Future studies will be needed to assess the function of APE1 in the protein complexes we discovered. Data are available via ProteomeXchange with identifier PXD013368.
Collapse
|
83
|
Kirsch VC, Orgler C, Braig S, Jeremias I, Auerbach D, Müller R, Vollmar AM, Sieber SA. Der zytotoxische Naturstoff Vioprolid A interagiert mit dem für die Ribosomen‐Biogenese essentiellen nukleolären Protein 14. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Volker C. Kirsch
- Center for Integrated Protein Science (CIPSM) Department Chemie Technische Universität München (TUM) Lichtenbergstraße 4 85747 Garching Deutschland
| | - Christina Orgler
- Department für Pharmazie Pharmazeutische Biologie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5–13 81377 München Deutschland
| | - Simone Braig
- Department für Pharmazie Pharmazeutische Biologie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5–13 81377 München Deutschland
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt Marchioninistraße 25 81377 München Deutschland
- Dr. von Hauner Kinderkrankenhaus Ludwig-Maximilians-Universität München (LMU) Lindwurmstraße 4 80337 München Deutschland
| | - David Auerbach
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Center für Infektionsforschung und Department Pharmazie Universität des Saarlandes Campus Gebäude E8.1 66123 Saarbrücken Deutschland
| | - Rolf Müller
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Center für Infektionsforschung und Department Pharmazie Universität des Saarlandes Campus Gebäude E8.1 66123 Saarbrücken Deutschland
| | - Angelika M. Vollmar
- Department für Pharmazie Pharmazeutische Biologie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5–13 81377 München Deutschland
| | - Stephan A. Sieber
- Center for Integrated Protein Science (CIPSM) Department Chemie Technische Universität München (TUM) Lichtenbergstraße 4 85747 Garching Deutschland
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Center für Infektionsforschung und Department Pharmazie Universität des Saarlandes Campus Gebäude E8.1 66123 Saarbrücken Deutschland
| |
Collapse
|
84
|
Kirsch VC, Orgler C, Braig S, Jeremias I, Auerbach D, Müller R, Vollmar AM, Sieber SA. The Cytotoxic Natural Product Vioprolide A Targets Nucleolar Protein 14, Which Is Essential for Ribosome Biogenesis. Angew Chem Int Ed Engl 2019; 59:1595-1600. [PMID: 31658409 PMCID: PMC7004033 DOI: 10.1002/anie.201911158] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/24/2019] [Indexed: 11/23/2022]
Abstract
Novel targets are needed for treatment of devastating diseases such as cancer. For decades, natural products have guided innovative therapies by addressing diverse pathways. Inspired by the potent cytotoxic bioactivity of myxobacterial vioprolides A–D, we performed in‐depth studies on their mode of action. Based on its prominent potency against human acute lymphoblastic leukemia (ALL) cells, we conducted thermal proteome profiling (TPP) and deciphered the target proteins of the most active derivative vioprolide A (VioA) in Jurkat cells. Nucleolar protein 14 (NOP14), which is essential in ribosome biogenesis, was confirmed as a specific target of VioA by a suite of proteomic and biological follow‐up experiments. Given its activity against ALL cells compared to healthy lymphocytes, VioA exhibits unique therapeutic potential for anticancer therapy through a novel mode of action.
Collapse
Affiliation(s)
- Volker C Kirsch
- Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Christina Orgler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian-University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Simone Braig
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian-University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377, München, Germany.,Dr. von Hauner Children's Hospital, Ludiwg-Maximilian-University of Munich (LMU), Lindwurmstrasse 4, 80337, Munich, Germany
| | - David Auerbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian-University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
85
|
El Hassouni B, Sarkisjan D, Vos JC, Giovannetti E, Peters GJ. Targeting the Ribosome Biogenesis Key Molecule Fibrillarin to Avoid Chemoresistance. Curr Med Chem 2019; 26:6020-6032. [PMID: 30501594 DOI: 10.2174/0929867326666181203133332] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
Background:
Inherent or acquired chemo resistance in cancer patients has been a perpetual
limitation in cancer treatment. Expanding knowledge on essential cellular processes opens a new
window for therapeutic targeting. Ribosome biogenesis is a process that shows potential due to its
fundamental role in cell development and contribution to tumorigenesis as a result of its upregulation.
Inhibiting components of ribosome biogenesis has been explored and has shown interesting
results. Yet, an important key component, methyltransferase Fibrillarin (FBL), which influences
both the abundance and composition of ribosomes, has not been exploited thus far.
Methods:
In this literature review, we describe relevant aspects of ribosome biogenesis in cancer to
emphasize the potential of FBL as a therapeutic target, in order to lower the genotoxic effects of
anti-cancer treatment.
Results:
Remarkably, the amplification of the 19q13 cytogenetic band, including the gene coding
for FBL, correlated to cell viability and resistance in pancreatic cells as well as to a trend toward a
shorter survival in pancreatic cancer patients.
:
Targeting ribosome biogenesis, more specifically compared to the secondary effects of chemotherapeutics
such as 5-fluorouracil or oxaliplatin, has been achieved by compound CX-5461. The cell
dependent activity of this Pol I inhibitor has been reported in ovarian cancer, melanoma and leukemia
models with active or mutated p53 status, presenting a promising mechanism to evade p53 resistance.
Conclusion:
Targeting critical ribosome biogenesis components in order to decrease the genotoxic
activity in cancer cell looks promising. Hence, we believe that targeting key protein rRNA methyltransferase
FBL shows great potential, due to its pivotal role in ribosome biogenesis, its correlation
to an improved survival rate at low expression in breast cancer patients and its association with p53.
Collapse
Affiliation(s)
- Btissame El Hassouni
- Department of Medical Oncology, VU University Medical Center- Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Dzjemma Sarkisjan
- Department of Medical Oncology, VU University Medical Center- Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - J. Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, O
- 2 building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center- Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center- Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
86
|
Abstract
Selectively targeting the cell nucleolus remains a challenge. Here, we report the first case in which d-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A d-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin-dependent endocytosis and mainly accumulate at the cell nucleolus. A structural analogue of the d-peptide reveals that the particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. In contrast to those of the d-peptide, the assemblies of the corresponding l-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the d-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of d-peptides for targeting subcellular organelles.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| |
Collapse
|
87
|
Siebenwirth C, Greubel C, Drexler GA, Reindl J, Walsh DWM, Schwarz B, Sammer M, Baur I, Pospiech H, Schmid TE, Dollinger G, Friedl AA. Local inhibition of rRNA transcription without nucleolar segregation after targeted ion irradiation of the nucleolus. J Cell Sci 2019; 132:jcs.232181. [PMID: 31492757 PMCID: PMC6803363 DOI: 10.1242/jcs.232181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Nucleoli have attracted interest for their role as cellular stress sensors and as potential targets for cancer treatment. The effect of DNA double-strand breaks (DSBs) in nucleoli on rRNA transcription and nucleolar organisation appears to depend on the agent used to introduce DSBs, DSB frequency and the presence (or not) of DSBs outside the nucleoli. To address the controversy, we targeted nucleoli with carbon ions at the ion microbeam SNAKE. Localized ion irradiation with 1-100 carbon ions per point (about 0.3-30 Gy per nucleus) did not lead to overall reduced ribonucleotide incorporation in the targeted nucleolus or other nucleoli of the same cell. However, both 5-ethynyluridine incorporation and Parp1 protein levels were locally decreased at the damaged nucleolar chromatin regions marked by γH2AX, suggesting localized inhibition of rRNA transcription. This locally restricted transcriptional inhibition was not accompanied by nucleolar segregation, a structural reorganisation observed after inhibition of rRNA transcription by treatment with actinomycin D or UV irradiation. The presented data indicate that even multiple complex DSBs do not lead to a pan-nucleolar response if they affect only a subnucleolar region.
Collapse
Affiliation(s)
- Christian Siebenwirth
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany .,Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany.,Department of Radiation Therapy and Radiooncology, Technical University of Munich, 81675 Munich, Germany
| | - Christoph Greubel
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Guido A Drexler
- Department of Radiation Oncology, University Hospital, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Judith Reindl
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Dietrich W M Walsh
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Benjamin Schwarz
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Matthias Sammer
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Iris Baur
- Department of Radiation Oncology, University Hospital, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Helmut Pospiech
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Thomas E Schmid
- Department of Radiation Therapy and Radiooncology, Technical University of Munich, 81675 Munich, Germany
| | - Günther Dollinger
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| |
Collapse
|
88
|
He JS, Soo P, Evers M, Parsons KM, Hein N, Hannan KM, Hannan RD, George AJ. High-Content Imaging Approaches to Quantitate Stress-Induced Changes in Nucleolar Morphology. Assay Drug Dev Technol 2019; 16:320-332. [PMID: 30148664 DOI: 10.1089/adt.2018.861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nucleolus is a dynamic subnuclear compartment that has a number of different functions, but its primary role is to coordinate the production and assembly of ribosomes. For well over 100 years, pathologists have used changes in nucleolar number and size to stage diseases such as cancer. New information about the nucleolus' broader role within the cell is leading to the development of drugs which directly target its structure as therapies for disease. Traditionally, it has been difficult to develop high-throughput image analysis pipelines to measure nucleolar changes due to the broad range of morphologies observed. In this study, we describe a simple high-content image analysis algorithm using Harmony software (PerkinElmer), with a PhenoLOGIC™ machine-learning component, that can measure and classify three different nucleolar morphologies based on nucleolin and fibrillarin staining ("normal," "peri-nucleolar rings" and "dispersed"). We have utilized this algorithm to determine the changes in these classes of nucleolar morphologies over time with drugs known to alter nucleolar structure. This approach could be further adapted to include other parameters required for the identification of new therapies that directly target the nucleolus.
Collapse
Affiliation(s)
- Jin-Shu He
- 1 ANU Centre for Therapeutic Discovery, The Australian National University , Acton, Australia
| | - Priscilla Soo
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia
| | - Maurits Evers
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia
| | - Kate M Parsons
- 1 ANU Centre for Therapeutic Discovery, The Australian National University , Acton, Australia
| | - Nadine Hein
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia
| | - Katherine M Hannan
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia .,3 Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Australia
| | - Ross D Hannan
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia .,3 Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Australia .,4 Sir Peter MacCallum Department of Oncology, University of Melbourne , Parkville, Australia .,5 Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Australia .,6 Department of Biochemistry and Molecular Biology, Monash University , Clayton, Australia .,7 School of Biomedical Sciences, University of Queensland , St Lucia, Australia
| | - Amee J George
- 1 ANU Centre for Therapeutic Discovery, The Australian National University , Acton, Australia .,2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia .,7 School of Biomedical Sciences, University of Queensland , St Lucia, Australia .,8 Department of Clinical Pathology, University of Melbourne , Parkville, Australia
| |
Collapse
|
89
|
Gaviraghi M, Vivori C, Tonon G. How Cancer Exploits Ribosomal RNA Biogenesis: A Journey beyond the Boundaries of rRNA Transcription. Cells 2019; 8:cells8091098. [PMID: 31533350 PMCID: PMC6769540 DOI: 10.3390/cells8091098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
The generation of new ribosomes is a coordinated process essential to sustain cell growth. As such, it is tightly regulated according to cell needs. As cancer cells require intense protein translation to ensure their enhanced growth rate, they exploit various mechanisms to boost ribosome biogenesis. In this review, we will summarize how oncogenes and tumor suppressors modulate the biosynthesis of the RNA component of ribosomes, starting from the description of well-characterized pathways that converge on ribosomal RNA transcription while including novel insights that reveal unexpected regulatory networks hacked by cancer cells to unleash ribosome production.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Experimental Imaging Center; Ospedale San Raffaele, 20132 Milan, Italy.
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
90
|
Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells 2019; 8:E1090. [PMID: 31527430 PMCID: PMC6770360 DOI: 10.3390/cells8091090] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is a distinct sub-cellular compartment structure in the nucleus. First observed more than 200 years ago, the nucleolus is detectable by microscopy in eukaryotic cells and visible during the interphase as a sub-nuclear structure immersed in the nucleoplasm, from which it is not separated from any membrane. A huge number of studies, spanning over a century, have identified ribosome biogenesis as the main function of the nucleolus. Recently, novel functions, independent from ribosome biogenesis, have been proposed by several proteomic, genomic, and functional studies. Several works have confirmed the non-canonical role for nucleoli in regulating important cellular processes including genome stability, cell-cycle control, the cellular senescence, stress responses, and biogenesis of ribonucleoprotein particles (RNPs). Many authors have shown that both canonical and non-canonical functions of the nucleolus are associated with several cancer-related processes. The association between the nucleolus and cancer, first proposed by cytological and histopathological studies showing that the number and shape of nucleoli are commonly altered in almost any type of cancer, has been confirmed at the molecular level by several authors who demonstrated that numerous mechanisms occurring in the nucleolus are altered in tumors. Recently, therapeutic approaches targeting the nucleolus in cancer have started to be considered as an emerging "hallmark" of cancer and several therapeutic interventions have been developed. This review proposes an up-to-date overview of available strategies targeting the nucleolus, focusing on novel targeted therapeutic approaches. Finally, a target-based classification of currently available treatment will be proposed.
Collapse
Affiliation(s)
- Pietro Carotenuto
- The Institute of Cancer Research, Cancer Therapeutic Unit, London SM2 5NG, UK.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy.
| | - Annalisa Pecoraro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gaetano Palma
- Department of Advanced Biomedical Science, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Giulia Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Annapina Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
91
|
Awasthi S, Verma M, Mahesh A, K Khan MI, Govindaraju G, Rajavelu A, Chavali PL, Chavali S, Dhayalan A. DDX49 is an RNA helicase that affects translation by regulating mRNA export and the levels of pre-ribosomal RNA. Nucleic Acids Res 2019; 46:6304-6317. [PMID: 29618122 PMCID: PMC6158705 DOI: 10.1093/nar/gky231] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
Among the proteins predicted to be a part of the DExD box RNA helicase family, the functions of DDX49 are unknown. Here, we characterize the enzymatic activities and functions of DDX49 by comparing its properties with the well-studied RNA helicase, DDX39B. We find that DDX49 exhibits a robust ATPase and RNA helicase activity, significantly higher than that of DDX39B. DDX49 is required for the efficient export of poly (A)+ RNA from nucleus in a splicing-independent manner. Furthermore, DDX49 is a resident protein of nucleolus and regulates the steady state levels of pre-ribosomal RNA by regulating its transcription and stability. These dual functions of regulating mRNA export and pre-ribosomal RNA levels enable DDX49 to modulate global translation. Phenotypically, DDX49 promotes proliferation and colony forming potential of cells. Strikingly, DDX49 is significantly elevated in diverse cancer types suggesting that the increased abundance of DDX49 has a role in oncogenic transformation of cells. Taken together, this study shows the physiological role of DDX49 in regulating distinct steps of mRNA and pre-ribosomal RNA metabolism and hence translation and potential pathological role of its dysregulation, especially in cancers.
Collapse
Affiliation(s)
- Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Gayathri Govindaraju
- Bacterial and Parasite Disease Biology, Rajiv Gandhi Center for Biotechnology, Trivandrum 695 014, India
| | - Arumugam Rajavelu
- Bacterial and Parasite Disease Biology, Rajiv Gandhi Center for Biotechnology, Trivandrum 695 014, India
| | - Pavithra L Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| |
Collapse
|
92
|
Matos-Perdomo E, Machín F. Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer. Cells 2019; 8:cells8080779. [PMID: 31357498 PMCID: PMC6721496 DOI: 10.3390/cells8080779] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Once thought a mere ribosome factory, the nucleolus has been viewed in recent years as an extremely sensitive gauge of diverse cellular stresses. Emerging concepts in nucleolar biology include the nucleolar stress response (NSR), whereby a series of cell insults have a special impact on the nucleolus. These insults include, among others, ultra-violet radiation (UV), nutrient deprivation, hypoxia and thermal stress. While these stresses might influence nucleolar biology directly or indirectly, other perturbances whose origin resides in the nucleolar biology also trigger nucleolar and systemic stress responses. Among the latter, we find mutations in nucleolar and ribosomal proteins, ribosomal RNA (rRNA) processing inhibitors and ribosomal DNA (rDNA) transcription inhibition. The p53 protein also mediates NSR, leading ultimately to cell cycle arrest, apoptosis, senescence or differentiation. Hence, NSR is gaining importance in cancer biology. The nucleolar size and ribosome biogenesis, and how they connect with the Target of Rapamycin (TOR) signalling pathway, are also becoming important in the biology of aging and cancer. Simple model organisms like the budding yeast Saccharomyces cerevisiae, easy to manipulate genetically, are useful in order to study nucleolar and rDNA structure and their relationship with stress. In this review, we summarize the most important findings related to this topic.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Tenerife, Spain.
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Santa María de Guía, Gran Canaria, Spain.
| |
Collapse
|
93
|
Scull CE, Schneider DA. Coordinated Control of rRNA Processing by RNA Polymerase I. Trends Genet 2019; 35:724-733. [PMID: 31358304 DOI: 10.1016/j.tig.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/19/2022]
Abstract
Ribosomal RNA (rRNA) is co- and post-transcriptionally processed into active ribosomes. This process is dynamically regulated by direct covalent modifications of the polymerase that synthesizes the rRNA, RNA polymerase I (Pol I), and by interactions with cofactors that influence initiation, elongation, and termination activities of Pol I. The rate of transcription elongation by Pol I directly influences processing of nascent rRNA, and changes in Pol I transcription rate result in alternative rRNA processing events that lead to cellular signaling alterations and stress. It is clear that in divergent species, there exists robust organization of nascent rRNA processing events during transcription elongation. This review evaluates the current state of our understanding of the complex relationship between transcription elongation and rRNA processing.
Collapse
Affiliation(s)
- Catherine E Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
94
|
PARP1 regulates DNA damage-induced nucleolar-nucleoplasmic shuttling of WRN and XRCC1 in a toxicant and protein-specific manner. Sci Rep 2019; 9:10075. [PMID: 31296950 PMCID: PMC6624289 DOI: 10.1038/s41598-019-46358-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
The prime function of nucleoli is ribogenesis, however, several other, non-canonical functions have recently been identified, including a role in genotoxic stress response. Upon DNA damage, numerous proteins shuttle dynamically between the nucleolus and the nucleoplasm, yet the underlying molecular mechanisms are incompletely understood. Here, we demonstrate that PARP1 and PARylation contribute to genotoxic stress-induced nucleolar-nucleoplasmic shuttling of key genome maintenance factors in HeLa cells. Our work revealed that the RECQ helicase, WRN, translocates from nucleoli to the nucleoplasm upon treatment with the oxidizing agent H2O2, the alkylating agent 2-chloroethyl ethyl sulfide (CEES), and the topoisomerase inhibitor camptothecin (CPT). We show that after treatment with H2O2 and CEES, but not CPT, WRN translocation was dependent on PARP1 protein, yet independent of its enzymatic activity. In contrast, nucleolar-nucleoplasmic translocation of the base excision repair protein, XRCC1, was dependent on both PARP1 protein and its enzymatic activity. Furthermore, gossypol, which inhibits PARP1 activity by disruption of PARP1-protein interactions, abolishes nucleolar-nucleoplasmic shuttling of WRN, XRCC1 and PARP1, indicating the involvement of further upstream factors. In conclusion, this study highlights a prominent role of PARP1 in the DNA damage-induced nucleolar-nucleoplasmic shuttling of genome maintenance factors in HeLa cells in a toxicant and protein-specific manner.
Collapse
|
95
|
Baltanás FC, Berciano MT, Tapia O, Narcis JO, Lafarga V, Díaz D, Weruaga E, Santos E, Lafarga M. Nucleolin reorganization and nucleolar stress in Purkinje cells of mutant PCD mice. Neurobiol Dis 2019; 127:312-322. [PMID: 30905767 DOI: 10.1016/j.nbd.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 01/12/2023] Open
Abstract
The Purkinje cell (PC) degeneration (pcd) mouse harbors a mutation in Agtpbp1 gene that encodes for the cytosolic carboxypeptidase, CCP1. The mutation causes degeneration and death of PCs during the postnatal life, resulting in clinical and pathological manifestation of cerebellar ataxia. Monogenic biallelic damaging variants in the Agtpbp1 gene cause infantile-onset neurodegeneration and cerebellar atrophy, linking loss of functional CCP1 with human neurodegeneration. Although CCP1 plays a key role in the regulation of tubulin stabilization, its loss of function in PCs leads to a severe nuclear phenotype with heterochromatinization and accumulation of DNA damage. Therefore, the pcd mice provides a useful neuronal model to investigate nuclear mechanisms involved in neurodegeneration, particularly the nucleolar stress. In this study, we demonstrated that the Agtpbp1 gene mutation induces a p53-dependent nucleolar stress response in PCs, which is characterized by nucleolar fragmentation, nucleoplasmic and cytoplasmic mislocalization of nucleolin, and dysfunction of both pre-rRNA processing and mRNA translation. RT-qPCR analysis revealed reduction of mature 18S rRNA, with a parallel increase of its intermediate 18S-5'-ETS precursor, that correlates with a reduced expression of Fbl mRNA, which encodes an essential factor for rRNA processing. Moreover, nucleolar alterations were accompanied by a reduction of PTEN mRNA and protein levels, which appears to be related to the chromosome instability and accumulation of DNA damage in degenerating PCs. Our results highlight the essential contribution of nucleolar stress to PC degeneration and also underscore the nucleoplasmic mislocalization of nucleolin as a potential indicator of neurodegenerative processes.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Lab.1, CIC-IBMCC (Universidad de Salamanca-CSIC) and CIBERONC, Salamanca, Spain
| | - María T Berciano
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Olga Tapia
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Josep Oriol Narcis
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Vanesa Lafarga
- Laboratory of Genomic Instability, "Centro Nacional de Investigaciones Oncológicas" (CNIO), Madrid, Spain
| | - David Díaz
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Eugenio Santos
- Lab.1, CIC-IBMCC (Universidad de Salamanca-CSIC) and CIBERONC, Salamanca, Spain
| | - Miguel Lafarga
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain.
| |
Collapse
|
96
|
Genome Organization in and around the Nucleolus. Cells 2019; 8:cells8060579. [PMID: 31212844 PMCID: PMC6628108 DOI: 10.3390/cells8060579] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
The nucleolus is the largest substructure in the nucleus, where ribosome biogenesis takes place, and forms around the nucleolar organizer regions (NORs) that comprise ribosomal RNA (rRNA) genes. Each cell contains hundreds of rRNA genes, which are organized in three distinct chromatin and transcriptional states—silent, inactive and active. Increasing evidence indicates that the role of the nucleolus and rRNA genes goes beyond the control of ribosome biogenesis. Recent results highlighted the nucleolus as a compartment for the location and regulation of repressive genomic domains and, together with the nuclear lamina, represents the hub for the organization of the inactive heterochromatin. In this review, we aim to describe the crosstalk between the nucleolus and the rest of the genome and how distinct rRNA gene chromatin states affect nucleolus structure and are implicated in genome stability, genome architecture, and cell fate decision.
Collapse
|
97
|
Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:250. [PMID: 31186061 PMCID: PMC6560741 DOI: 10.1186/s13046-019-1265-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
FAK is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a malignant phenotype. Except for its typical role as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, related studies have shown new aspects of the roles of FAK in the nucleus. FAK can promote p53 degradation through ubiquitination, leading to cancer cell growth and proliferation. FAK can also regulate GATA4 and IL-33 expression, resulting in reduced inflammatory responses and immune escape. These findings establish a new model of FAK from the cytoplasm to the nucleus. Activated FAK binds to transcription factors and regulates gene expression. Inactive FAK synergizes with different E3 ligases to promote the turnover of transcription factors by enhancing ubiquitination. In the tumor microenvironment, nuclear FAK can regulate the formation of new blood vessels, affecting the tumor blood supply. This article reviews the roles of nuclear FAK in regulating gene expression. In addition, the use of FAK inhibitors to target nuclear FAK functions will also be emphasized.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
98
|
Farley-Barnes KI, McCann KL, Ogawa LM, Merkel J, Surovtseva YV, Baserga SJ. Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number. Cell Rep 2019; 22:1923-1934. [PMID: 29444442 PMCID: PMC5828527 DOI: 10.1016/j.celrep.2018.01.056] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022] Open
Abstract
Ribosome biogenesis is a highly regulated, essential cellular process. Although studies in yeast have established some of the biological principles of ribosome biogenesis, many of the intricacies of its regulation in higher eukaryotes remain unknown. To understand how ribosome biogenesis is globally integrated in human cells, we conducted a genome-wide siRNA screen for regulators of nucleolar number. We found 139 proteins whose depletion changed the number of nucleoli per nucleus from 2–3 to only 1 in human MCF10A cells. Follow-up analyses on 20 hits found many (90%) to be essential for the nucleolar functions of rDNA transcription (7), pre-ribosomal RNA (pre-rRNA) processing (16), and/or global protein synthesis (14). This genome-wide analysis exploits the relationship between nucleolar number and function to discover diverse cellular pathways that regulate the making of ribosomes and paves the way for further exploration of the links between ribosome biogenesis and human disease.
Collapse
Affiliation(s)
- Katherine I Farley-Barnes
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathleen L McCann
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, PO Box 12233 MD F3-05, Research Triangle Park, NC 27709, USA
| | - Lisa M Ogawa
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Janie Merkel
- Yale Center for Molecular Discovery, Yale University, 600 West Campus Drive, West Haven, CT 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, 600 West Campus Drive, West Haven, CT 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
99
|
Prakash V, Carson BB, Feenstra JM, Dass RA, Sekyrova P, Hoshino A, Petersen J, Guo Y, Parks MM, Kurylo CM, Batchelder JE, Haller K, Hashimoto A, Rundqivst H, Condeelis JS, Allis CD, Drygin D, Nieto MA, Andäng M, Percipalle P, Bergh J, Adameyko I, Farrants AKÖ, Hartman J, Lyden D, Pietras K, Blanchard SC, Vincent CT. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nat Commun 2019; 10:2110. [PMID: 31068593 PMCID: PMC6506521 DOI: 10.1038/s41467-019-10100-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is a canonical hallmark of cell growth and proliferation. Here we show that execution of Epithelial-to-Mesenchymal Transition (EMT), a migratory cellular program associated with development and tumor metastasis, is fueled by upregulation of ribosome biogenesis during G1/S arrest. This unexpected EMT feature is independent of species and initiating signal, and is accompanied by release of the repressive nucleolar chromatin remodeling complex (NoRC) from rDNA, together with recruitment of the EMT-driving transcription factor Snai1 (Snail1), RNA Polymerase I (Pol I) and the Upstream Binding Factor (UBF). EMT-associated ribosome biogenesis is also coincident with increased nucleolar recruitment of Rictor, an essential component of the EMT-promoting mammalian target of rapamycin complex 2 (mTORC2). Inhibition of rRNA synthesis in vivo differentiates primary tumors to a benign, Estrogen Receptor-alpha (ERα) positive, Rictor-negative phenotype and reduces metastasis. These findings implicate the EMT-associated ribosome biogenesis program with cellular plasticity, de-differentiation, cancer progression and metastatic disease.
Collapse
Affiliation(s)
- Varsha Prakash
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Brittany B Carson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jennifer M Feenstra
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Randall A Dass
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Petra Sekyrova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Ayuko Hoshino
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Pediatrics and Cell and Developmental Biology, Weill Cornell Medicine College, New York, NY, 10065, USA
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Yuan Guo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691, Stockholm, Sweden
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jake E Batchelder
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kristian Haller
- Department of Laboratory Medicine, Center for Molecular Pathology, Lund University, Lund, SE-223 81, Sweden
| | - Ayako Hashimoto
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Pediatrics and Cell and Developmental Biology, Weill Cornell Medicine College, New York, NY, 10065, USA
| | - Helene Rundqivst
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
- Department of Pathology, Montefiore Medical Center, Bronx, 10461, NY, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Denis Drygin
- Pimera, Inc, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - M Angela Nieto
- Instituto de Neurociencias, CSIC-UMH, Alicante, 03550, Spain
| | - Michael Andäng
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, S-171 76, Solna, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, S-171 76, Solna, Sweden
| | - David Lyden
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Pediatrics and Cell and Developmental Biology, Weill Cornell Medicine College, New York, NY, 10065, USA
| | - Kristian Pietras
- Department of Laboratory Medicine, Center for Molecular Pathology, Lund University, Lund, SE-223 81, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
- Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - C Theresa Vincent
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
100
|
Michel J, Nolin F, Wortham L, Lalun N, Tchelidze P, Banchet V, Terryn C, Ploton D. Various Nucleolar Stress Inducers Result in Highly Distinct Changes in Water, Dry Mass and Elemental Content in Cancerous Cell Compartments: Investigation Using a Nano-Analytical Approach. Nanotheranostics 2019; 3:179-195. [PMID: 31183313 PMCID: PMC6536780 DOI: 10.7150/ntno.31878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Numerous chemotherapeutic drugs that affect ribosome biogenesis in the nucleolus induce nucleolar stress. Improving our understanding of the effects of these drugs will require uncovering and comparing their impact on several biophysical parameters of the major cell compartments. Here, we quantified the water content and dry mass of cancerous cells treated with CX-5461, DRB or DAM to calculate macromolecular crowding and the volume occupied by free water, as well as elemental content. Methods: HeLa-H2B-GFP cells were treated with CX-5461, DRB or DAM. Water content and dry mass were measured in numerous regions of interest of ultrathin cryo-sections by quantitative scanning transmission electron microscope dark-field imaging and the elements quantified by energy dispersive X-ray spectrometry. The data were used to calculate macromolecular crowding and the volume occupied by free water in all cell compartments of control and treated cells. Hydrophobic and unfolded proteins were revealed by 8-Anilinonaphtalene-1-sulfonic acid (ANS) staining and imaging by two-photon microscopy. Immunolabeling of UBF, pNBS1 and pNF-κB was carried out and the images acquired with a confocal microscope for 3D imaging to address whether the localization of these proteins changes in treated cells. Results: Treatment with CX-5461, DRB or DAM induced completely different changes in macromolecular crowding and elemental content. Macromolecular crowding and elemental content were much higher in CX-5461-treated, moderately higher in DRB-treated, and much lower in DAM-treated cells than control cells. None of the drugs alone induced nucleolar ANS staining but it was induced by heat-shock of control cells and cells previously treated with DAM. UBF and pNBS1 were systematically co-localized in the nucleolus of CX-5461- and DAM-treated cells. pNF-κB only localized to the nucleolar caps of pre-apoptotic DAM-treated cells. Conclusion: We directly quantified water and ion content in cell compartments using cryo-correlative electron microscopy. We show that different chemotherapeutic nucleolar stress inducers result in distinctive, thus far-unrecognized changes in macromolecular crowding and elemental content which are known to modify cell metabolism. Moreover we were able to correlate these changes to the sensitivity of treated cells to heat-shock and the behavior of nucleolar pNBS1 and pNF-κB.
Collapse
Affiliation(s)
- Jean Michel
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | | | - Laurence Wortham
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | - Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | | | - Christine Terryn
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | | |
Collapse
|