51
|
Brinckmann JA, Cunningham AB, Harter DEV. Running out of time to smell the roseroots: Reviewing threats and trade in wild Rhodiola rosea L. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113710. [PMID: 33358852 DOI: 10.1016/j.jep.2020.113710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodiola rosea L. has a circumpolar distribution and is used in ethnomedicines of Arctic peoples, as well as in national systems of traditional medicine. Since the late 20th century, global demand for R. rosea has increased steadily, in part due to clinical research supporting new uses in modern phytotherapy. Global supply has been largely obtained from wild populations, which face threats from poorly regulated and destructive exploitation of the rootstocks on an industrial scale. AIM OF THE STUDY To evaluate (i) the conservation status, harvesting and trade levels of R. rosea, in order to determine whether international trade should be monitored, (ii) the current state of experimental and commercial farming and whether cultivation may play a role to take pressure off wild stocks, and (iii) evidence of substitution of other Rhodiola species for R. rosea as an indicator of overexploitation and rarity. MATERIALS AND METHODS We reviewed published studies on R. rosea biology and ecology, as well as information on impacts of wild harvest, on management measures at the national and regional levels, and on the current level of cultivation from across the geographic range of this species. Production and trade data were assessed and analysed from published reports and trade databases, consultations with R. rosea farmers, processors of extracts, and trade experts, but also from government and news reports of illegal harvesting and smuggling. RESULTS AND CONCLUSIONS Our assessment of historical and current data from multiple disciplines shows that future monitoring and protection of R. rosea populations is of time-sensitive importance to the fields of ethnobotany, ethnopharmacology, phytochemistry and phytomedicine. We found that the global demand for R. rosea ingredients and products has been increasing in the 21st century, while wild populations in the main commercial harvesting areas continue to decrease, with conservation issues and reduced supply in some cases. The level of illegal harvesting in protected areas and cross border smuggling is increasing annually coupled with increasing incidences of adulteration and substitution of R. rosea with other wild Rhodiola species, potentially negatively impacting the conservation status of their wild populations, but also an indicator of scarcity of the genuine article. The current data suggests that the historical primary reliance on sourcing from wild populations of R. rosea should transition towards increased sourcing of R. rosea from farms that are implementing conservation oriented sustainable agricultural methods, and that sustainable wild collection standards must be implemented for sourcing from wild populations.
Collapse
Affiliation(s)
- J A Brinckmann
- Traditional Medicinals, 4515 Ross Road, Sebastopol, CA, 95472, USA.
| | - A B Cunningham
- School of Life Sciences, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg, 3209, South Africa; School of Veterinary and Life Sciences, Murdoch University, 90 South St., Murdoch, WA, 6150, Australia
| | - David E V Harter
- Bundesamt für Naturschutz (BfN), Konstantinstr. 110, Bonn, 53179, Germany
| |
Collapse
|
52
|
Qiu F, Yan Y, Zeng J, Huang JP, Zeng L, Zhong W, Lan X, Chen M, Huang SX, Liao Z. Biochemical and Metabolic Insights into Hyoscyamine Dehydrogenase. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fei Qiu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junlan Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lingjiang Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wei Zhong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi of Tibet 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
53
|
Zhao H, Li M, Zhao Y, Lin X, Liang H, Wei J, Wei W, Ma D, Zhou Z, Yang J. A Comparison of Two Monoterpenoid Synthases Reveals Molecular Mechanisms Associated With the Difference of Bioactive Monoterpenoids Between Amomum villosum and Amomum longiligulare. FRONTIERS IN PLANT SCIENCE 2021; 12:695551. [PMID: 34475877 PMCID: PMC8406774 DOI: 10.3389/fpls.2021.695551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 05/10/2023]
Abstract
The fruits of Amomum villosum and Amomum longiligulare are both used medicinally as Fructus Amomi the famous traditional Chinese medicine, however, the medicinal quality of A. villosum is better than that of A. longiligulare. Volatile terpenoids in the seeds, especially bornyl acetate and borneol, are the medicinal components of Fructus Amomi. The volatile terpenoids and transcriptome of developing seeds of A. villosum and A. longiligulare were compared in this study. The result revealed that the bornyl acetate and borneol contents were higher in A. villosum than in A. longiligulare. Additionally, six terpenoid synthase genes (AlTPS1-AlTPS6) were screened from the transcriptome of A. longiligulare, and AlTPS2 and AlTPS3 were found to share 98 and 83% identity with AvTPS2 and AvBPPS (bornyl diphosphate synthase) from A. villosum, respectively. BPPS is the key enzyme for the biosynthesis of borneol and bornyl acetate. Biochemical assays improved that AlTPS2 had an identical function to AvTPS2 as linalool synthase; however, AlTPS3 produced camphene as the major product and bornyl diphosphate (BPP) as the secondary product, whereas AvBPPS produced BPP as its major product. There was only one different amino acid between AlTPS3 (A496) and AvBPPS (G495) in their conserved motifs, and the site-directed mutation of A496G in DTE motif of AlTPS3 changed the major product from camphene to BPP. Molecular docking suggests that A496G mutation narrows the camphene-binding pocket and decreases the BPP-binding energy, thus increases the product BPP selectivity of enzyme. In addition, the expression level of AvBPPS was significantly higher than that of AlTPS3 in seeds, which was consistent with the related-metabolites contents. This study provides insight into the TPS-related molecular bases for the biosynthesis and accumulation differences of the bioactive terpenoids between A. villosum and A. longiligulare. BPPS, the key gene involved in the biosynthesis of the active compound, was identified as a target gene that could be applied for the quality-related identification and breeding of Fructus Amomi.
Collapse
Affiliation(s)
- Haiying Zhao
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Li
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Zhao
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Lin
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huilin Liang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieshu Wei
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Wuke Wei
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongming Ma
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongyu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jinfen Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jinfen Yang,
| |
Collapse
|
54
|
Barnum CR, Endelman BJ, Shih PM. Utilizing Plant Synthetic Biology to Improve Human Health and Wellness. FRONTIERS IN PLANT SCIENCE 2021; 12:691462. [PMID: 34504505 PMCID: PMC8421571 DOI: 10.3389/fpls.2021.691462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/03/2021] [Indexed: 05/13/2023]
Abstract
Plants offer a vast source of bioactive chemicals with the potential to improve human health through the prevention and treatment of disease. However, many potential therapeutics are produced in small amounts or in species that are difficult to cultivate. The rapidly evolving field of plant synthetic biology provides tools to capitalize on the inventive chemistry of plants by transferring metabolic pathways for therapeutics into far more tenable plants, increasing our ability to produce complex pharmaceuticals in well-studied plant systems. Plant synthetic biology also provides methods to enhance the ability to fortify crops with nutrients and nutraceuticals. In this review, we discuss (1) the potential of plant synthetic biology to improve human health by generating plants that produce pharmaceuticals, nutrients, and nutraceuticals and (2) the technological challenges hindering our ability to generate plants producing health-promoting small molecules.
Collapse
Affiliation(s)
- Collin R. Barnum
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Benjamin J. Endelman
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Patrick M. Shih,
| |
Collapse
|
55
|
Loaiza-Cano V, Monsalve-Escudero LM, Filho CDSMB, Martinez-Gutierrez M, de Sousa DP. Antiviral Role of Phenolic Compounds against Dengue Virus: A Review. Biomolecules 2020; 11:biom11010011. [PMID: 33374457 PMCID: PMC7823413 DOI: 10.3390/biom11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | - Laura Milena Monsalve-Escudero
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | | | - Marlen Martinez-Gutierrez
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP 58051-970 João Pessoa, PB, Brazil;
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| |
Collapse
|
56
|
Eljounaidi K, Lichman BR. Nature's Chemists: The Discovery and Engineering of Phytochemical Biosynthesis. Front Chem 2020; 8:596479. [PMID: 33240856 PMCID: PMC7680914 DOI: 10.3389/fchem.2020.596479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Plants produce a diverse array of natural products, many of which have high pharmaceutical value or therapeutic potential. However, these compounds often occur at low concentrations in uncultivated species. Producing phytochemicals in heterologous systems has the potential to address the bioavailability issues related to obtaining these molecules from their natural source. Plants are suitable heterologous systems for the production of valuable phytochemicals as they are autotrophic, derive energy and carbon from photosynthesis, and have similar cellular context to native producer plants. In this review we highlight the methods that are used to elucidate natural product biosynthetic pathways, including the approaches leading to proposing the sequence of enzymatic steps, selecting enzyme candidates and characterizing gene function. We will also discuss the advantages of using plant chasses as production platforms for high value phytochemicals. In addition, through this report we will assess the emerging metabolic engineering strategies that have been developed to enhance and optimize the production of natural and novel bioactive phytochemicals in heterologous plant systems.
Collapse
Affiliation(s)
- Kaouthar Eljounaidi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
57
|
Magani SKJ, Mupparthi SD, Gollapalli BP, Shukla D, Tiwari AK, Gorantala J, Yarla NS, Tantravahi S. Salidroside - Can it be a Multifunctional Drug? Curr Drug Metab 2020; 21:512-524. [PMID: 32520682 DOI: 10.2174/1389200221666200610172105] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Salidroside is a glucoside of tyrosol found mostly in the roots of Rhodiola spp. It exhibits diverse biological and pharmacological properties. In the last decade, enormous research is conducted to explore the medicinal properties of salidroside; this research reported many activities like anti-cancer, anti-oxidant, anti-aging, anti-diabetic, anti-depressant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, etc. Objective: Despite its multiple pharmacological effects, a comprehensive review detailing its metabolism and therapeutic activities is still missing. This review aims to provide an overview of the metabolism of salidroside, its role in alleviating different metabolic disorders, diseases and its molecular interaction with the target molecules in different conditions. This review mostly concentrates on the metabolism, biological activities and molecular pathways related to various pharmacological activities of salidroside. CONCLUSION Salidroside is produced by a three-step pathway in the plants with tyrosol as an intermediate molecule. The molecule is biotransformed into many metabolites through phase I and II pathways. These metabolites, together with a certain amount of salidroside may be responsible for various pharmacological functions. The salidroside based inhibition of PI3k/AKT, JAK/ STAT, and MEK/ERK pathways and activation of apoptosis and autophagy are the major reasons for its anti-cancer activity. AMPK pathway modulation plays a significant role in its anti-diabetic activity. The neuroprotective activity was linked with decreased oxidative stress and increased antioxidant enzymes, Nrf2/HO-1 pathways, decreased inflammation through suppression of NF-κB pathway and PI3K/AKT pathways. These scientific findings will pave the way to clinically translate the use of salidroside as a multi-functional drug for various diseases and disorders in the near future.
Collapse
Affiliation(s)
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - A K Tiwari
- Department of Zoology, Dr. Bhanvar Singh Porte Government College, Pendra Bilaspur, India
| | | | | | | |
Collapse
|
58
|
Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2020; 38:103-129. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
59
|
Hou Y, Tang Y, Wang X, Ai X, Wang H, Li X, Chen X, Zhang Y, Hu Y, Meng X, Zhang J. Rhodiola Crenulata ameliorates exhaustive exercise-induced fatigue in mice by suppressing mitophagy in skeletal muscle. Exp Ther Med 2020; 20:3161-3173. [PMID: 32855685 PMCID: PMC7444336 DOI: 10.3892/etm.2020.9072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of present study was to evaluate the potential effects of Rhodiola crenulata oral liquid (RCOL) on exhaustive exercise (EE)-induced fatigue in mice. Male Institute of Cancer Research mice from five treatment groups (n=10 per group) were orally administered with sterilized water for the Control and EE groups and/or RCOL at doses of 1.02, 3.03 and 6.06 ml/kg/day, once daily for 2 weeks. Anti-fatigue activity was subsequently evaluated by measuring the levels of creatine kinase (CK), lactic acid (LA), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and total anti-oxidative capability (T-AOC). Histopathology was assessed using hematoxylin and eosin staining. Ultrastructures of mitochondria were observed by transmission electron microscopy. Energy supply capacity was assessed using citrate synthase (CS), succinate dehydrogenase (SDH), Na+-K+-ATPase, and liver and quadriceps glycogen content assays. Expression levels of mRNA and protein associated with mitophagy in the skeletal muscle were measured by reverse transcription-quantitative PCR and western blotting, respectively. RCOL was observed to markedly inhibit fatigue-induced oxidative stress by increasing the activities of SOD, CAT and T-AOC, whilst reducing the accumulation of LA, CK, LDH and MDA. Histological analysis of the quadriceps femoris tissue suggested increased numbers of muscle fibers in the RCOL groups compared with those in the EE group. RCOL administration was found to reverse EE-induced mitochondrial structural damage and alleviated defects inflicted onto the energy supply mechanism by increasing CS, SDH, Na+-K+-ATPase and glycogen levels. Additionally, RCOL reduced the protein expression of PTEN-induced kinase 1 (PINK1), Parkin, microtubule-associated proteins 1A/1B light chain 3, sequestosome 1 and ubiquitin, whilst lowering the gene expression of PINK1 and Parkin. Taken together, results from the present study clarified the anti-fatigue effect of RCOL, where the underlying mechanism may be associated with increased antioxidant activity, enhanced energy production and the inhibition of mitophagy by suppressing the PINK1/Parkin signaling pathway.
Collapse
Affiliation(s)
- Ya Hou
- Department of Pharmacology of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yan Tang
- Department of Pharmacology of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xiaobo Wang
- Department of Pharmacology of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xiaopeng Ai
- Department of Pharmacology of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Hongling Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xuanhao Li
- Department of Pharmacology of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xiaorui Chen
- Department of Pharmacology of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yao Hu
- Interdisciplinary Laboratory of Exercise and Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Jing Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
60
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
61
|
Guo W, Huang Q, Feng Y, Tan T, Niu S, Hou S, Chen Z, Du Z, Shen Y, Fang X. Rewiring central carbon metabolism for tyrosol and salidroside production in
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:2410-2419. [DOI: 10.1002/bit.27370] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Wei Guo
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Qiulan Huang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Yuhui Feng
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Taicong Tan
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Suhao Niu
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Shaoli Hou
- Yantai Huakangrongzan Biotechnology Co., Ltd.Yantai China
| | - Zhigang Chen
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Zhi‐Qiang Du
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Yu Shen
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Xu Fang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
- National Glycoengineering Research CenterShandong University Qingdao China
| |
Collapse
|
62
|
Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proc Natl Acad Sci U S A 2020; 117:10806-10817. [PMID: 32371491 DOI: 10.1073/pnas.1920097117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Radiation of the plant pyridoxal 5'-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.
Collapse
|
63
|
Lin X, Liu Y, Ma L, Ma X, Chen Z, Chen H, Si L, Ma X, Yu Z, Chen X. Amelioration of experimental autoimmune encephalomyelitis by Rhodiola rosea, a natural adaptogen. Biomed Pharmacother 2020; 125:109960. [DOI: 10.1016/j.biopha.2020.109960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
|
64
|
Wei G, Xu X, Tong H, Wang X, Chen Y, Ding Y, Zhang S, Ju W, Fu C, Li Z, Zeng L, Xu K, Qiao J. Salidroside inhibits platelet function and thrombus formation through AKT/GSK3β signaling pathway. Aging (Albany NY) 2020; 12:8151-8166. [PMID: 32352928 PMCID: PMC7244060 DOI: 10.18632/aging.103131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Salidroside is the main bioactive component in Rhodiola rosea and possesses multiple biological and pharmacological properties. However, whether salidroside affects platelet function remains unclear. Our study aims to investigate salidroside’s effect on platelet function. Human or mouse platelets were treated with salidroside (0-20 μM) for 1 hour at 37°C. Platelet aggregation, granule secretion, and receptors expression were measured together with detection of platelet spreading and clot retraction. In addition, salidroside (20 mg/kg) was intraperitoneally injected into mice followed by measuring tail bleeding time, arterial and venous thrombosis. Salidroside inhibited thrombin- or CRP-induced platelet aggregation and ATP release and did not affect the expression of P-selectin, glycoprotein (GP) Ibα, GPVI and αIIbβ3. Salidroside-treated platelets presented decreased spreading on fibrinogen or collagen and reduced clot retraction with decreased phosphorylation of c-Src, Syk and PLCγ2. Additionally, salidroside significantly impaired hemostasis, arterial and venous thrombus formation in mice. Moreover, in thrombin-stimulated platelets, salidroside inhibited phosphorylation of AKT (T308/S473) and GSK3β (Ser9). Further, addition of GSK3β inhibitor reversed the inhibitory effect of salidroside on platelet aggregation and clot retraction. In conclusion, salidroside inhibits platelet function and thrombosis via AKT/GSK3β signaling, suggesting that salidroside may be a novel therapeutic drug for treating thrombotic or cardiovascular diseases.
Collapse
Affiliation(s)
- Guangyu Wei
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiaoqi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiamin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yuting Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
65
|
Xu JJ, Fang X, Li CY, Yang L, Chen XY. General and specialized tyrosine metabolism pathways in plants. ABIOTECH 2020; 1:97-105. [PMID: 36304719 PMCID: PMC9590561 DOI: 10.1007/s42994-019-00006-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
Abstract
The tyrosine metabolism pathway serves as a starting point for the production of a variety of structurally diverse natural compounds in plants, such as tocopherols, plastoquinone, ubiquinone, betalains, salidroside, benzylisoquinoline alkaloids, and so on. Among these, tyrosine-derived metabolites, tocopherols, plastoquinone, and ubiquinone are essential to plant survival. In addition, this pathway provides us essential micronutrients (e.g., vitamin E and ubiquinone) and medicine (e.g., morphine, salidroside, and salvianolic acid B). However, our knowledge of the plant tyrosine metabolism pathway remains rudimentary, and genes encoding the pathway enzymes have not been fully defined. In this review, we summarize and discuss recent advances in the tyrosine metabolism pathway, key enzymes, and important tyrosine-derived metabolites in plants.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Kunming, 650201 Yunnan People’s Republic of China
| | - Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
- University of Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
66
|
Hoffarth ER, Rothchild KW, Ryan KS. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J 2020; 287:1403-1428. [PMID: 32142210 DOI: 10.1111/febs.15277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is an organic cofactor employed by ~ 4% of enzymes. The structure of the PLP cofactor allows for the stabilization of carbanions through resonance. A small number of PLP-dependent enzymes employ molecular oxygen as a cosubstrate. Here, we review the biological roles and possible mechanisms of these enzymes, and we observe that these enzymes are found in multiple protein families, suggesting that reaction with oxygen might have emerged de novo in several protein families and thus could be directed to emerge again through laboratory evolution experiments.
Collapse
Affiliation(s)
- Elesha R Hoffarth
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
67
|
Qiu F, Zeng J, Wang J, Huang JP, Zhou W, Yang C, Lan X, Chen M, Huang SX, Kai G, Liao Z. Functional genomics analysis reveals two novel genes required for littorine biosynthesis. THE NEW PHYTOLOGIST 2020; 225:1906-1914. [PMID: 31705812 DOI: 10.1111/nph.16317] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 05/04/2023]
Abstract
Some medicinal plants of the Solanaceae produce pharmaceutical tropane alkaloids (TAs), such as hyoscyamine and scopolamine. Littorine is a key biosynthetic intermediate in the hyoscyamine and scopolamine biosynthetic pathways. However, the mechanism underlying littorine formation from the precursors phenyllactate and tropine is not completely understood. Here, we report the elucidation of littorine biosynthesis through a functional genomics approach and functional identification of two novel biosynthesis genes that encode phenyllactate UDP-glycosyltransferase (UGT1) and littorine synthase (LS). UGT1 and LS are highly and specifically expressed in Atropa belladonna secondary roots. Suppression of either UGT1 or LS disrupted the biosynthesis of littorine and its TA derivatives (hyoscyamine and scopolamine). Purified His-tagged UGT1 catalysed phenyllactate glycosylation to form phenyllactylglucose. UGT1 and LS co-expression in tobacco leaves led to littorine synthesis if tropine and phenyllactate were added. This identification of UGT1 and LS provides the missing link in littorine biosynthesis. The results pave the way for producing hyoscyamine and scopolamine for medical use by metabolic engineering or synthetic biology.
Collapse
Affiliation(s)
- Fei Qiu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Centre for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China
| | - Chunxian Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi of Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Centre for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
68
|
Zhong F, Huang L, Qi L, Ma Y, Yan Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. PLANT MOLECULAR BIOLOGY 2020; 102:477-499. [PMID: 31902069 DOI: 10.1007/s11103-019-00959-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/30/2019] [Indexed: 05/20/2023]
Abstract
The study carry out comprehensive transcriptome analysis of C. deltoidea and exploration of BIAs biosynthesis and accumulation based on UHPLC-MS/MS and combined sequencing platforms. Coptis deltoidea is an important medicinal plant with a long history of medicinal use, which is rich in benzylisoquinoline alkaloids (BIAs). In this study, Ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) and combined sequencing platforms were performed for exploration of BIAs biosynthesis, accumulation and comprehensive transcriptome analysis of C. deltoidea. By metabolism profiling, the accumulation of ten BIAs was analyzed using UHPLC-MS/MS and different contents were observed in different organs. From transcriptome sequencing result, we applied single-molecule real-time (SMRT) sequencing to C. deltoidea and generated a total of 75,438 full-length transcripts. We proposed the candidate biosynthetic pathway of tyrosine, precursor of BIAs, and identified 64 full length-transcripts encoding enzymes putatively involved in BIAs biosynthesis. RNA-Seq data indicated that the majority of genes exhibited relatively high expression level in roots. Transport of BIAs was also important for their accumulation. Here, 9 ABC transporters and 2 MATE transporters highly homologous to known alkaloid transporters related with BIAs transport in roots and rhizomes were identified. These findings based on the combined sequencing platforms provide valuable genetic information for C. deltoidea and the results of transcriptome combined with metabolome analysis can help us better understand BIAs biosynthesis and transport in this medicinal plant. The information will be critical for further characterization of C. deltoidea transcriptome and molecular-assisted breeding for this medicinal plant with scarce resources.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Huang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Luming Qi
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuntong Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhuyun Yan
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
69
|
Current advances in acteoside biosynthesis pathway elucidation and biosynthesis. Fitoterapia 2020; 142:104495. [PMID: 32045692 DOI: 10.1016/j.fitote.2020.104495] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Acteoside is an important bioactive natural product distributed in many plant species, composed of four moieties such as caffeic acid, glucose, rhamnose and phenylethyl alcohol, and possesses some bioactivities such as anti-inflammatory, anti-oxidant, neuro-protective, anti-tumor and so on. However, acteoside content in medicinal plants is low, and acteoside stability is bad, so acteoside biosynthesis is a problem. Recent years, acteoside biosynthesis pathway elucidation and bio-production have been widely investigated, so many achievements have been made up to now. In this study, we reviewed current advances in both the elucidation and bio-production such as the putative methods and enzymatic determination of acteoside biosynthesis pathway, functional analyses of the roles of some candidate genes for verbascoside biosynthesis by transgenic technology, acteoside production via metabolic engineering and synthetic biology approaches and plant tissue culture. Moreover, we first established a combined putative acteoside biosynthesis pathway based on its recent studies in animals, plants and microbes. Meanwhile, we pointed out both problems to shortcomings, and highlighted its future development trend. These results will provide references for the complete elucidation of acteoside biosynthesis pathway and the improvement of acteoside content in medicinal plants and acteoside production via microbial and plant metabolic engineering and synthetic biology approaches, and inform the readers critically of the latest developments of them.
Collapse
|
70
|
Torrens-Spence MP, Liu CT, Weng JK. Engineering New Branches of the Kynurenine Pathway To Produce Oxo-(2-aminophenyl) and Quinoline Scaffolds in Yeast. ACS Synth Biol 2019; 8:2735-2745. [PMID: 31714755 DOI: 10.1021/acssynbio.9b00368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kynurenine pathway, named after its nonproteinogenic amino acid precursor l-kynurenine, is responsible for the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in eukaryotes. Oxo-(2-aminophenyl) and quinoline molecules downstream from l-kynurenine also serve as antagonists of several receptors of the central nervous system in mammals. In this study, we engineered new biosynthetic routes in yeast Saccharomyces cerevisiae to produce a suite of l-kynurenine-derived natural products. Overexpression of Homo sapiens l-tryptophan 2,3-dioxygenase (HsTDO2) in S. cerevisiae led to a marked increase in the production of l-kynurenine and downstream metabolites. Using this background, new branch points to the kynurenine pathway were added through the incorporation of a Psilocybe cubensis noncanonical L-aromatic amino acid decarboxylase (PcncAAAD) capable of catalyzing both decarboxylation and decarboxylation-dependent oxidative-deamination reactions of l-kynurenine and 3-hydroxy-l-kynurenine to yield their corresponding monoamines, aldehydes, and downstream nonenzymatically cyclized quinolines. The PcncAAAD-catalyzed decarboxylation products, kynuramine and 3-hydroxykynuramine, could further be converted to quinoline scaffolds through the addition of H. sapiens monoamine oxidase A (HsMAO-A). Finally, by incorporating upstream regiospecific l-tryptophan halogenases into the engineering scheme, we produced a number of halogenated oxo-(2-aminophenyl) and quinoline compounds. This work illustrates a synthetic biology approach to expand primary metabolic pathways in the production of novel natural-product-like scaffolds amenable for downstream functionalization.
Collapse
Affiliation(s)
| | - Chun-Ting Liu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
71
|
Günther J, Schmidt A, Gershenzon J, Köllner TG. Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar. PLANT SIGNALING & BEHAVIOR 2019; 14:1668233. [PMID: 31532355 PMCID: PMC6804715 DOI: 10.1080/15592324.2019.1668233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/11/2019] [Indexed: 05/29/2023]
Abstract
In response to herbivory, poplar produces among other compounds the volatile alcohol 2-phenylethanol and its corresponding glucoside 2-phenylethyl-β-D-glucopyranoside. While the free alcohol is released only upon herbivory, the glucoside accumulates also in undamaged leaves, but increases after herbivore feeding. Recently we showed that 2-phenylethanol and its glucoside are biosynthesized via separate pathways in Populus trichocarpa. The phenylacetaldehyde synthase PtAAS1 plays a central role in the de novo formation of herbivory-induced volatile 2-phenylethanol, while the phenylalanine decarboxylase PtAADC1 initiates a pathway responsible for the herbivory-induced production of 2-phenylethyl-β-D-glucopyranoside. Besides PtAAS1, P. trichocarpa possesses another aromatic aldehyde synthase PtAAS2 with in vitro enzymatic activity comparable to that of PtAAS1. However, in contrast to PtAAS1, which is exclusively expressed in herbivory-damaged leaves, PtAAS2 was found to be expressed at constant levels in both damaged and undamaged leaves. Thus it has been hypothesized that PtAAS2 provides phenylacetaldehyde as substrate for the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in undamaged P. trichocarpa trees. By generating RNAi-mediated AAS2 knockdown plants, we show here that despite the similar activities of PtAAS1 and PtAAS2 in vitro, the latter enzyme does not contribute to the biosynthesis of 2-phenylethyl-β-D-glucopyranoside in planta. Based on the recent finding that phenylpyruvic acid accumulates in undamaged poplar leaves, the constitutive formation of the glucoside may now be suggested to proceed via the Ehrlich pathway, which begins with the conversion of phenylalanine into phenylpyruvic acid.
Collapse
Affiliation(s)
- Jan Günther
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Schmidt
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias G. Köllner
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
72
|
An Aromatic Aldehyde Synthase Controls the Synthesis of Hydroxytyrosol Derivatives Present in Virgin Olive Oil. Antioxidants (Basel) 2019; 8:antiox8090352. [PMID: 31480559 PMCID: PMC6770214 DOI: 10.3390/antiox8090352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/30/2023] Open
Abstract
The phenolic composition of virgin olive oil (VOO) is strongly determined by the content and distribution of secoiridoid phenolic glucosides present in the olive fruit. Among them, oleuropein is the most abundant in olive mesocarp and is characterized by containing an hydroxytyrosol residue in its chemical structure. Hydroxytyrosol-containing molecules are those that exhibit the most important biological activities in virgin olive oil. In this regard, we identified an aromatic aldehyde synthase gene (OeAAS) from an olive transcriptome, which was synthesized, expressed in Eschrichia coli, and purified its encoded protein. The recombinant OeAAS is a bifunctional enzyme catalyzing decarboxylation and amine-oxidation reactions in a single step. OeAAS displays strict substrate specificity for l-DOPA to form 2,4-dihydroxyphenylacetaldehyde, the immediate precursor of hydroxytyrosol. In addition to the biochemical characterization of the enzyme, the expression analysis carried out in different olive cultivars and ripening stages indicate that OeAAS gene is temporally regulated in a cultivar-dependent manner. High correlation coefficients were found between OeAAS expression levels and the phenolic content of olive fruits and oils, which supports a key role for OeAAS in the accumulation of hydroxytyrosol-derived secoiridoid compounds in olive fruit and virgin olive oil.
Collapse
|
73
|
Li F, Guo H, Yang Y, Feng M, Liu B, Ren X, Zhou H. Autophagy modulation in bladder cancer development and treatment (Review). Oncol Rep 2019; 42:1647-1655. [PMID: 31436298 PMCID: PMC6775810 DOI: 10.3892/or.2019.7286] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is a potentially life-threatening malignancy. Due to a high recurrence rate, frequent surveillance strategies and intravesical drug therapies, BC is considered one of the most expensive tumors to treat. As a fundamental evolutionary catabolic process, autophagy plays an important role in the maintenance of cellular environmental homeostasis by degrading and recycling damaged cytoplasmic components, including macromolecules and organelles. Scientific studies in the last two decades have shown that autophagy acts as a double-edged sword with regard to the treatment of cancer. On one hand, autophagy inhibition is able to increase the sensitivity of cancer cells to treatment, a process known as protective autophagy. On the other hand, autophagy overactivation may lead to cell death, referred to as autophagic cell death, similar to apoptosis. Therefore, it is essential to identify the role of autophagy in cancer cells in order to develop novel therapeutic agents. In addition, autophagy may potentially become a novel therapeutic target in human diseases. In this review, the current knowledge on autophagy modulation in BC development and treatment is summarized.
Collapse
Affiliation(s)
- Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Guo
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuxuan Yang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mingliang Feng
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiang Ren
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
74
|
Zhang J, Nugrahaningrum DA, Marcelina O, Ariyanti AD, Wang G, Liu C, Wu S, Kasim V. Tyrosol Facilitates Neovascularization by Enhancing Skeletal Muscle Cells Viability and Paracrine Function in Diabetic Hindlimb Ischemia Mice. Front Pharmacol 2019; 10:909. [PMID: 31474865 PMCID: PMC6702659 DOI: 10.3389/fphar.2019.00909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
As one of the most severe manifestations of diabetes, vascular complications are the main causes of diabetes-related morbidity and mortality. Hyperglycemia induces systemic abnormalities, including impaired angiogenesis, causing diabetic patients to be highly susceptible in suffering hindlimb ischemia (HLI). Despite its severe prognosis, there is currently no effective treatment for diabetic HLI. Skeletal muscle cells secrete multiple angiogenic factors, hence, recently are reported to be critical for angiogenesis; however, hyperglycemia disrupted the paracrine function in skeletal muscle cells, leading to the impaired angiogenesis potential observed in diabetic patients. The present study showed that tyrosol, a phenylethanoid compound, suppresses accumulation of intracellular reactive oxygen species (ROS) caused by hyperglycemia, most plausibly by promoting heme oxygenase-1 (HO-1) expression in skeletal muscle cells. Consequently, tyrosol exerts cytoprotective function against hyperglycemia-induced oxidative stress in skeletal muscle cells, increases their proliferation vigorously, and simultaneously suppresses apoptosis. Furthermore, tyrosol grossly increases the secretion of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from skeletal muscle cells. This leads to enhanced proliferation and migration capabilities of vascular endothelial and smooth muscle cells, two types of cells that are responsible in forming blood vessels, through cell-cell communication. Finally, in vivo experiment using the diabetic HLI mouse model showed that tyrosol injection into the gastrocnemius muscle of the ischemic hindlimb significantly enhances the formation of functional blood vessels and subsequently leads to significant recovery of blood perfusion. Overall, our findings highlight the potential of the pharmacological application of tyrosol as a small molecule drug for therapeutic angiogenesis in diabetic HLI patients.
Collapse
Affiliation(s)
- Jianqi Zhang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Dyah Ari Nugrahaningrum
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Agnes Dwi Ariyanti
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Guixue Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Caiping Liu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
75
|
Guo W, Huang Q, Liu H, Hou S, Niu S, Jiang Y, Bao X, Shen Y, Fang X. Rational Engineering of Chorismate-Related Pathways in Saccharomyces cerevisiae for Improving Tyrosol Production. Front Bioeng Biotechnol 2019; 7:152. [PMID: 31334226 PMCID: PMC6616077 DOI: 10.3389/fbioe.2019.00152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 11/26/2022] Open
Abstract
Tyrosol is extensively used in the pharmaceutical industry as an important natural product from plants. In this study, an exogenous pathway involved in catalyzing tyrosine to tyrosol was introduced into Saccharomyces cerevisiae. Furthermore, The pyruvate decarboxylase gene pdc1 was deleted to redirect the flux distribution at the pyruvate node, and a bifunctional NAD+-dependent fused chorismate mutase/prephenate dehydrogenase from E. coli (EcTyrA) and its' tyrosine inhibition resistant mutant (EcTyrAM53I/A354V) were heterologously expression in S. cerevisiae to tuning up the chorismate metabolism effectively directed the metabolic flux toward tyrosol production. Finally, the tyrosol yield of the engineered strain GFT-4 was improved to 126.74 ± 6.70 mg/g DCW at 48 h, increased 440 times compared with that of the control strain GFT-0 (0.28 ± 0.01 mg/g DCW). The new synergetic engineering strategy developed in this study can be further applied to increase the production of high value-added aromatic compounds derived from aromatic amino acid or shikimate in S. cerevisiae.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qiulan Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hao Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Shaoli Hou
- Shandong Henglu Biological Technology Co. Ltd, Jinan, China
| | - Suhao Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
76
|
Li Y, Long L, Ge J, Li H, Zhang M, Wan Q, Yu X. Effect of Imidacloprid Uptake from Contaminated Soils on Vegetable Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7232-7242. [PMID: 31184888 DOI: 10.1021/acs.jafc.9b00747] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the present study, the effect of imidacloprid uptake from contaminated soils on the growth of leaf vegetable Shanghaiqing was investigated. The result showed that during 35-day exposure, the concentration of imidacloprid (IMI) was in the order of vegetable shoots > vegetable roots > soil, indicating that IMI was more readily concentrated in vegetable shoots than in roots. Moreover, the biomass of IMI-treated vegetable shoots was comparable to that of the controls with early exposure, but was higher than that of the controls after 7-day exposure, showing that the test concentration of IMI could stimulate vegetable growth. The plant metabolic analysis of vegetable shoots using LC-QTOF/MS revealed that IMI may cause oxidative stress to the plant shoots with early exposure; however, the stressful situation of IMI seems to be relieved with the increase of some substances (such as spermidine and phenylalanine) with late exposure. Moreover, the upregulation of N-rich amino acids (glutamine, aspartate, and arginine) suggested that the process of fixing inorganic nitrogen in the plant should be enhanced, possibly contributing to enhanced growth rates. Additionally, four IMI's metabolites were identified by using MS-FINDER software, and the distribution of three metabolites in vegetable tissues was compared.
Collapse
Affiliation(s)
- Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base , Ministry of Science and Technology , 50 Zhongling Street , Nanjing 210014 , China
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Ling Long
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base , Ministry of Science and Technology , 50 Zhongling Street , Nanjing 210014 , China
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Jing Ge
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base , Ministry of Science and Technology , 50 Zhongling Street , Nanjing 210014 , China
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
- School of the Environment and Safety Enginerring , Jiangsu University , 301 Zhenjiang City University Road , Zhenjiang 212001 , China
| | - Haocong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base , Ministry of Science and Technology , 50 Zhongling Street , Nanjing 210014 , China
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Meng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base , Ministry of Science and Technology , 50 Zhongling Street , Nanjing 210014 , China
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Qun Wan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base , Ministry of Science and Technology , 50 Zhongling Street , Nanjing 210014 , China
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base , Ministry of Science and Technology , 50 Zhongling Street , Nanjing 210014 , China
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
- School of the Environment and Safety Enginerring , Jiangsu University , 301 Zhenjiang City University Road , Zhenjiang 212001 , China
| |
Collapse
|
77
|
Mirmazloum I, Ladányi M, Beinrohr L, Kiss-Bába E, Kiss A, György Z. Identification of a novel UDP-glycosyltransferase gene from Rhodiola rosea and its expression during biotransformation of upstream precursors in callus culture. Int J Biol Macromol 2019; 136:847-858. [PMID: 31226374 DOI: 10.1016/j.ijbiomac.2019.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
Roseroot (Rhodiola rosea L.) is a medicinal plant with adaptogenic properties and several pharmaceutically important metabolites. In this study, a full length cDNA encoding a UDPG gene of roseroot was identified, cloned and characterized. Its ORF (1425 bp) was transferred into E. coli, where the expression of the recombinant enzyme was confirmed. To monitor the enzyme activity, 3 precursors (tyramine, 4-hydroxyphenylpyruvate & tyrosol) of salidroside biosynthesis pathway were added to roseroot callus cultures and samples were harvested after 1, 6, 12, 24, 48 & 96 h. Along with the controls (without precursor feeding), each sample was subjected to HPLC and qRT-PCR for phytochemical and relative UDP-glycosyltransferase gene expression analysis, respectively. The HPLC analysis showed that the salidroside content significantly increased; reaching 0.5% of the callus dry weight (26-fold higher than the control) after 96 h when 2 mM tyrosol was given to the media. The expression of the UDP-glycosyltransferase increased significantly being the highest at 12 h after the feeding. The effect of tyramine and 4-hydroxyphenylpyruvate was not as pronounced as of tyrosol. Here, we introduce a R. rosea specific UDPG gene and its expression pattern after biotransformation of intermediate precursors in in vitro roseroot callus cultures.
Collapse
Affiliation(s)
- Iman Mirmazloum
- Department of Plant Physiology and Plant Biochemistry, Szent István University, Budapest, Hungary; Food Science Innovation Centre, Kaposvár University, Kaposvár, Hungary.
| | - Márta Ladányi
- Department of Biometrics and Agricultural Informatics, Szent István University, Budapest, Hungary
| | - László Beinrohr
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Erzsébet Kiss-Bába
- Department of Plant Physiology and Plant Biochemistry, Szent István University, Budapest, Hungary
| | - Attila Kiss
- Food Science Innovation Centre, Kaposvár University, Kaposvár, Hungary
| | - Zsuzsanna György
- Department of Genetics and Plant Breeding, Szent István University, Budapest, Hungary
| |
Collapse
|
78
|
Wang M, Toda K, Block A, Maeda HA. TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in Arabidopsis thaliana. J Biol Chem 2019; 294:3563-3576. [PMID: 30630953 PMCID: PMC6416433 DOI: 10.1074/jbc.ra118.006539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Indexed: 12/18/2022] Open
Abstract
Plants produce various l-tyrosine (Tyr)-derived compounds that are critical for plant adaptation and have pharmaceutical or nutritional importance for human health. Tyrosine aminotransferases (TATs) catalyze the reversible reaction between Tyr and 4-hydroxyphenylpyruvate (HPP), representing the entry point in plants for both biosynthesis of various natural products and Tyr degradation in the recycling of energy and nutrients. To better understand the roles of TATs and how Tyr is metabolized in planta, here we characterized single and double loss-of-function mutants of TAT1 (At5g53970) and TAT2 (At5g36160) in the model plant Arabidopsis thaliana As reported previously, tat1 mutants exhibited elevated and decreased levels of Tyr and tocopherols, respectively. The tat2 mutation alone had no impact on Tyr and tocopherol levels, but a tat1 tat2 double mutant had increased Tyr accumulation and decreased tocopherol levels under high-light stress compared with the tat1 mutant. Relative to WT and the tat2 mutant, the tat1 mutant displayed increased vulnerability to continuous dark treatment, associated with an early drop in respiratory activity and sucrose depletion. During isotope-labeled Tyr feeding in the dark, we observed that the tat1 mutant exhibits much slower 13C incorporation into tocopherols, fumarate, and other tricarboxylic acid (TCA) cycle intermediates than WT and the tat2 mutant. These results indicate that TAT1 and TAT2 function together in tocopherol biosynthesis, with TAT2 having a lesser role, and that TAT1 plays the major role in Tyr degradation in planta Our study also highlights the importance of Tyr degradation under carbon starvation conditions during dark-induced senescence in plants.
Collapse
Affiliation(s)
- Minmin Wang
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Kyoko Toda
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Anna Block
- the Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida 32608, and
| | - Hiroshi A Maeda
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|
79
|
Liu X, Li L, Liu J, Qiao J, Zhao GR. Metabolic engineering Escherichia coli for efficient production of icariside D2. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:261. [PMID: 31709010 PMCID: PMC6833136 DOI: 10.1186/s13068-019-1601-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/24/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Icariside D2 is a plant-derived natural glycoside with pharmacological activities of inhibiting angiotensin-converting enzyme and killing leukemia cancer cells. Production of icariside D2 by plant extraction and chemical synthesis is inefficient and environmentally unfriendly. Microbial cell factory offers an attractive route for economical production of icariside D2 from renewable and sustainable bioresources. RESULTS We metabolically constructed the biosynthetic pathway of icariside D2 in engineered Escherichia coli. We screened the uridine diphosphate glycosyltransferases (UGTs) and obtained an active RrUGT3 that regio-specifically glycosylated tyrosol at phenolic position to exclusively synthesize icariside D2. We put heterologous genes in E. coli cell for the de novo biosynthesis of icariside D2. By fine-tuning promoter and copy number as well as balancing gene expression pattern to decrease metabolic burden, the BMD10 monoculture was constructed. Parallelly, for balancing pathway strength, we established the BMT23-BMD12 coculture by distributing the icariside D2 biosynthetic genes to two E. coli strains BMT23 and BMD12, responsible for biosynthesis of tyrosol from preferential xylose and icariside D2 from glucose, respectively. Under the optimal conditions in fed-batch shake-flask fermentation, the BMD10 monoculture produced 3.80 g/L of icariside D2 using glucose as sole carbon source, and the BMT23-BMD12 coculture produced 2.92 g/L of icariside D2 using glucose-xylose mixture. CONCLUSIONS We for the first time reported the engineered E. coli for the de novo efficient production of icariside D2 with gram titer. It would be potent and sustainable approach for microbial production of icariside D2 from renewable carbon sources. E. coli-E. coli coculture approach is not limited to glycoside production, but could also be applied to other bioproducts.
Collapse
Affiliation(s)
- Xue Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Lingling Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Jincong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| |
Collapse
|
80
|
Torrens-Spence MP, Liu CT, Pluskal T, Chung YK, Weng JK. Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom. ACS Chem Biol 2018; 13:3343-3353. [PMID: 30484626 DOI: 10.1021/acschembio.8b00821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aromatic l-amino acid decarboxylases (AAADs) are a phylogenetically diverse group of enzymes responsible for the decarboxylation of aromatic amino acid substrates into their corresponding aromatic arylalkylamines. AAADs have been extensively studied in mammals and plants as they catalyze the first step in the production of neurotransmitters and bioactive phytochemicals, respectively. Unlike mammals and plants, the hallucinogenic psilocybin mushroom Psilocybe cubensis reportedly employs an unrelated phosphatidylserine-decarboxylase-like enzyme to catalyze l-tryptophan decarboxylation, the first step in psilocybin biosynthesis. To explore the origin of this chemistry in psilocybin mushroom, we generated the first de novo transcriptomes of P. cubensis and investigated several putative l-tryptophan-decarboxylase-like enzymes. We report the biochemical characterization of a noncanonical AAAD from P. cubensis ( PcncAAAD) that exhibits substrate permissiveness toward l-phenylalanine, l-tyrosine, and l-tryptophan, as well as chloro-tryptophan derivatives. The crystal structure of PcncAAAD revealed the presence of a unique C-terminal appendage domain featuring a novel double-β-barrel fold. This domain is required for PcncAAAD activity and regulates catalytic rate and thermal stability through calcium binding. PcncAAAD likely plays a role in psilocybin production in P. cubensis and offers a new tool for metabolic engineering of aromatic-amino-acid-derived natural products.
Collapse
Affiliation(s)
| | - Chun-Ting Liu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
| | - Yin Kwan Chung
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Division of Life Science, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
81
|
Jiang J, Yin H, Wang S, Zhuang Y, Liu S, Liu T, Ma Y. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4431-4438. [PMID: 29671328 DOI: 10.1021/acs.jafc.8b01272] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Salidroside is an important plant-derived aromatic compound with diverse biological properties. Because of inadequate natural resources, the supply of salidroside is currently limited. In this work, we engineered the production of salidroside in yeast. First, the aromatic aldehyde synthase (AAS) from Petroselinum crispum was overexpressed in Saccharomyces cerevisiae when combined with endogenous Ehrlich pathway to produce tyrosol from tyrosine. Glucosyltransferases from different resources were tested for ideal production of salidroside in the yeast. Metabolic flux was enhanced toward tyrosine biosynthesis by overexpressing pathway genes and eliminating feedback inhibition. The pathway genes were integrated into yeast chromosome, leading to a recombinant strain that produced 239.5 mg/L salidroside and 965.4 mg/L tyrosol. The production of salidroside and tyrosol reached up to 732.5 and 1394.6 mg/L, respectively, by fed-batch fermentation. Our work provides an alternative way for industrial large-scale production of salidroside and tyrosol from S. cerevisiae.
Collapse
Affiliation(s)
- Jingjie Jiang
- College of Biotechnology, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Hua Yin
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Shuai Wang
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Shaowei Liu
- College of Biotechnology, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| |
Collapse
|
82
|
Schenck CA, Maeda HA. Tyrosine biosynthesis, metabolism, and catabolism in plants. PHYTOCHEMISTRY 2018; 149:82-102. [PMID: 29477627 DOI: 10.1016/j.phytochem.2018.02.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 05/22/2023]
Abstract
L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
83
|
Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metab Eng 2018; 47:243-253. [PMID: 29596994 DOI: 10.1016/j.ymben.2018.03.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 11/23/2022]
Abstract
Synthetic microbial coculture to express heterologous biosynthetic pathway for de novo production of medicinal ingredients is an emerging strategy for metabolic engineering and synthetic biology. Here, taking efficient production of salidroside as an example of glycosides, we design and construct a syntrophic Escherichia coli-E. coli coculture composed of the aglycone (AG) strain and the glycoside (GD) strain, which convergently accommodate biosynthetic pathways of tyrosol and salidroside, respectively. To accomplish this the phenylalanine-deficient AG strain was engineered to utilize xylose preferentially and to overproduce precursor tyrosol, while the tyrosine-deficient GD strain was constructed to consume glucose exclusively and to enhance another precursor UDP-glucose availability for synthesis of salidroside. The AG and GD strains in the synthetic consortium are obligatory cooperators through crossfeeding of tyrosine and phenylalanine and compatible in glucose and xylose mixture. Through balancing the metabolic pathway strength, we show that the syntrophic coculture was robust and stable, and produced 6.03 g/L of salidroside. It was the de novo production of salidroside for the first time in E. coli coculture system, which would be applicable for production of other important glycosides and natural products.
Collapse
|
84
|
Wang H, Ma D, Yang J, Deng K, Li M, Ji X, Zhong L, Zhao H. An Integrative Volatile Terpenoid Profiling and Transcriptomics Analysis for Gene Mining and Functional Characterization of AvBPPS and AvPS Involved in the Monoterpenoid Biosynthesis in Amomum villosum. FRONTIERS IN PLANT SCIENCE 2018; 9:846. [PMID: 29973947 PMCID: PMC6020762 DOI: 10.3389/fpls.2018.00846] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/31/2018] [Indexed: 05/21/2023]
Abstract
Amomum villosum, also known as Fructus Amomi, has been used to treat digestive diseases such as abdominal pain, vomiting, and dysentery. Volatile terpenoids are the active metabolites in the essential oil of Fructus Amomi. Nevertheless, downstream genes responsible for activating metabolites biosynthesis in A. villosum still remain unclear. Here, we report the use of an integrative volatile terpenoid profiling and transcriptomics analysis for mining the corresponding genes involved in volatile terpenoid biosynthesis. Ten terpene synthase (TPS) genes were discovered, and two of them were cloned and functionally characterized. AvTPS1 (AvPS: pinene synthase) catalyzed GPP to form α-pinene and β-pinene; AvTPS3 (AvBPPS: bornyl diphosphate synthase) produced bornyl diphosphate as major product and the other three monoterpenoids as minor products. Metabolite accumulation and gene expression pattern combined with AvPS biochemical characterization suggested that AvPS might play a role in biotic defense. On the other hand, the most active ingredient, bornyl acetate, was highly accumulated in seeds and was consistent with the high expression of AvBPPS, which further indicated that AvBPPS is responsible for the biosynthesis of bornyl acetate, the final metabolite of bornyl diphosphate in A. villosum. This study can be used to improve the quality of A. villosum through metabolic engineering, and for the sustainable production of bornyl acetate in heterologous hosts.
Collapse
|