51
|
Hyden B, Carper DL, Abraham PE, Yuan G, Yao T, Baumgart L, Zhang Y, Chen C, O'Malley R, Chen J, Yang X, Hettich RL, Tuskan GA, Smart LB. Functional analysis of Salix purpurea genes support roles for ARR17 and GATA15 as master regulators of sex determination. PLANT DIRECT 2023; 7:e3546. [PMID: 38028649 PMCID: PMC10651977 DOI: 10.1002/pld3.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The Salicaceae family is of growing interest in the study of dioecy in plants because the sex determination region (SDR) has been shown to be highly dynamic, with differing locations and heterogametic systems between species. Without the ability to transform and regenerate Salix in tissue culture, previous studies investigating the mechanisms regulating sex in the genus Salix have been limited to genome resequencing and differential gene expression, which are mostly descriptive in nature, and functional validation of candidate sex determination genes has not yet been conducted. Here, we used Arabidopsis to functionally characterize a suite of previously identified candidate genes involved in sex determination and sex dimorphism in the bioenergy shrub willow Salix purpurea. Six candidate master regulator genes for sex determination were heterologously expressed in Arabidopsis, followed by floral proteome analysis. In addition, 11 transcription factors with predicted roles in mediating sex dimorphism downstream of the SDR were tested using DAP-Seq in both male and female S. purpurea DNA. The results of this study provide further evidence to support models for the roles of ARR17 and GATA15 as master regulator genes of sex determination in S. purpurea, contributing to a regulatory system that is notably different from that of its sister genus Populus. Evidence was also obtained for the roles of two transcription factors, an AP2/ERF family gene and a homeodomain-like transcription factor, in downstream regulation of sex dimorphism.
Collapse
Affiliation(s)
- Brennan Hyden
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Dana L. Carper
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Paul E. Abraham
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Guoliang Yuan
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Tao Yao
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Leo Baumgart
- Lawrence Berkeley National LaboratoryUS Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Yu Zhang
- Lawrence Berkeley National LaboratoryUS Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Cindy Chen
- Lawrence Berkeley National LaboratoryUS Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Ronan O'Malley
- Lawrence Berkeley National LaboratoryUS Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Xiaohan Yang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Robert L. Hettich
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Gerald A. Tuskan
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| |
Collapse
|
52
|
Verwaaijen B, Alcock TD, Spitzer C, Liu Z, Fiebig A, Bienert MD, Bräutigam A, Bienert GP. The Brassica napus boron deficient inflorescence transcriptome resembles a wounding and infection response. PHYSIOLOGIA PLANTARUM 2023; 175:e14088. [PMID: 38148205 DOI: 10.1111/ppl.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023]
Abstract
Oilseed rape and other crops of Brassica napus have a high demand for boron (B). Boron deficiencies result in the inhibition of root growth, and eventually premature flower abortion. Understanding the genetic mechanisms underlying flower abortion in B-limiting conditions could provide the basis to enhance B-efficiency and prevent B-deficiency-related yield losses. In this study, we assessed transcriptomic responses to B-deficiency in diverse inflorescence tissues at multiple time points of soil-grown plants that were phenotypically unaffected by B-deficiency until early flowering. Whilst transcript levels of known B transporters were higher in B-deficient samples, these remained remarkably stable as the duration of B-deficiency increased. Meanwhile, GO-term enrichment analysis indicated a growing response resembling that of a pathogen or pest attack, escalating to a huge transcriptome response in shoot heads at mid-flowering. Grouping differentially expressed genes within this tissue into MapMan functional bins indicated enrichment of genes related to wounding, jasmonic acid and WRKY transcription factors. Individual candidate genes for controlling the "flowering-without-seed-setting" phenotype from within MapMan biotic stress bins include those of the metacaspase family, which have been implicated in orchestrating programmed cell death. Overall temporal expression patterns observed here imply a dynamic response to B-deficiency, first increasing expression of B transporters before recruiting various biotic stress-related pathways to coordinate targeted cell death, likely in response to as yet unidentified B-deficiency induced damage-associated molecular patterns (DAMPs). This response indicates new pathways to target and dissect to control B-deficiency-induced flower abortion and to develop more B-efficient crops.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Computational Biology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
- Center of Biotechnology, Bielefeld University, Bielefeld, Germany
- Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas David Alcock
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| | - Christoph Spitzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Zhaojun Liu
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Manuela Désirée Bienert
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Andrea Bräutigam
- Computational Biology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
- Center of Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Gerd Patrick Bienert
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| |
Collapse
|
53
|
Weil HL, Schneider K, Tschöpe M, Bauer J, Maus O, Frey K, Brilhaus D, Martins Rodrigues C, Doniparthi G, Wetzels F, Lukasczyk J, Kranz A, Grüning B, Zimmer D, Deßloch S, von Suchodoletz D, Usadel B, Garth C, Mühlhaus T. PLANTdataHUB: a collaborative platform for continuous FAIR data sharing in plant research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:974-988. [PMID: 37818860 DOI: 10.1111/tpj.16474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
In modern reproducible, hypothesis-driven plant research, scientists are increasingly relying on research data management (RDM) services and infrastructures to streamline the processes of collecting, processing, sharing, and archiving research data. FAIR (i.e., findable, accessible, interoperable, and reusable) research data play a pivotal role in enabling the integration of interdisciplinary knowledge and facilitating the comparison and synthesis of a wide range of analytical findings. The PLANTdataHUB offers a solution that realizes RDM of scientific (meta)data as evolving collections of files in a directory - yielding FAIR digital objects called ARCs - with tools that enable scientists to plan, communicate, collaborate, publish, and reuse data on the same platform while gaining continuous quality control insights. The centralized platform is scalable from personal use to global communities and provides advanced federation capabilities for institutions that prefer to host their own satellite instances. This approach borrows many concepts from software development and adapts them to fit the challenges of the field of modern plant science undergoing digital transformation. The PLANTdataHUB supports researchers in each stage of a scientific project with adaptable continuous quality control insights, from the early planning phase to data publication. The central live instance of PLANTdataHUB is accessible at (https://git.nfdi4plants.org), and it will continue to evolve as a community-driven and dynamic resource that serves the needs of contemporary plant science.
Collapse
Affiliation(s)
- Heinrich Lukas Weil
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kevin Schneider
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Marcel Tschöpe
- Computer Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonathan Bauer
- Computer Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Maus
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kevin Frey
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Dominik Brilhaus
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Gajendra Doniparthi
- Heterogenous Information Systems, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Florian Wetzels
- Scientific Visualization Lab, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas Lukasczyk
- Scientific Visualization Lab, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Angela Kranz
- IBG-4 Bioinformatics, BioSC, Forschungszentrum Jülich, Jülich, Germany
| | - Björn Grüning
- Bioinformatics Group, University of Freiburg, Freiburg im Breisgau, Germany
| | - David Zimmer
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Stefan Deßloch
- Heterogenous Information Systems, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | | | - Björn Usadel
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- IBG-4 Bioinformatics, BioSC, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Garth
- Scientific Visualization Lab, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
54
|
Yurkov AP, Afonin AM, Kryukov AA, Gorbunova AO, Kudryashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Kosulnikov YV, Laktionov YV, Kozhemyakov AP, Romanyuk DA, Zhukov VA, Puzanskiy RK, Mikhailova YV, Yemelyanov VV, Shishova MF. The Effects of Rhizophagus irregularis Inoculation on Transcriptome of Medicago lupulina Leaves at Early Vegetative and Flowering Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3580. [PMID: 37896043 PMCID: PMC10610208 DOI: 10.3390/plants12203580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.
Collapse
Affiliation(s)
- Andrey P. Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey M. Afonin
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey A. Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Anastasia O. Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Tatyana R. Kudryashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Ekaterina M. Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Yuri V. Kosulnikov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Yuri V. Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Andrey P. Kozhemyakov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia
| | - Yulia V. Mikhailova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| |
Collapse
|
55
|
Hazra A, Ghosh S, Naskar S, Rahaman P, Roy C, Kundu A, Chaudhuri RK, Chakraborti D. Global transcriptome analysis reveals fungal disease responsive core gene regulatory landscape in tea. Sci Rep 2023; 13:17186. [PMID: 37821523 PMCID: PMC10567763 DOI: 10.1038/s41598-023-44163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fungal infections are the inevitable limiting factor for productivity of tea. Transcriptome reprogramming recruits multiple regulatory pathways during pathogen infection. A comprehensive meta-analysis was performed utilizing previously reported, well-replicated transcriptomic datasets from seven fungal diseases of tea. The study identified a cumulative set of 18,517 differentially expressed genes (DEGs) in tea, implicated in several functional clusters, including the MAPK signaling pathway, transcriptional regulation, and the biosynthesis of phenylpropanoids. Gene set enrichment analyses under each pathogen stress elucidated that DEGs were involved in ethylene metabolism, secondary metabolism, receptor kinase activity, and various reactive oxygen species detoxification enzyme activities. Expressional fold change of combined datasets highlighting 2258 meta-DEGs shared a common transcriptomic response upon fungal stress in tea. Pervasive duplication events caused biotic stress-responsive core DEGs to appear in multiple copies throughout the tea genome. The co-expression network of meta-DEGs in multiple modules demonstrated the coordination of appropriate pathways, most of which involved cell wall organization. The functional coordination was controlled by a number of hub genes and miRNAs, leading to pathogenic resistance or susceptibility. This first-of-its-kind meta-analysis of host-pathogen interaction generated consensus candidate loci as molecular signatures, which can be associated with future resistance breeding programs in tea.
Collapse
Affiliation(s)
- Anjan Hazra
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sudipta Naskar
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Piya Rahaman
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chitralekha Roy
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
56
|
Pavlovic T, Margarit E, Müller GL, Saenz E, Ruzzo AI, Drincovich MF, Borrás L, Saigo M, Wheeler MCG. Differential metabolic reprogramming in developing soybean embryos in response to nutritional conditions and abscisic acid. PLANT MOLECULAR BIOLOGY 2023; 113:89-103. [PMID: 37702897 DOI: 10.1007/s11103-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Seed storage compound deposition is influenced by both maternal and filial tissues. Within this framework, we analyzed strategies that operate during the development and filling of soybean embryos, using in vitro culture systems combined with metabolomics and proteomics approaches. The carbon:nitrogen ratio (C:N) of the maternal supply and the hormone abscisic acid (ABA) are specific and interacting signals inducing differential metabolic reprogrammings linked to changes in the accumulation of storage macromolecules like proteins or oils. Differences in the abundance of sugars, amino acids, enzymes, transporters, transcription factors, and proteins involved in signaling were detected. Embryos adapted to the nutritional status by enhancing the metabolism of both carbon and nitrogen under lower C:N ratio condition or only carbon under higher C:N ratio condition. ABA turned off multiple pathways especially in high availability of amino acids, prioritizing the storage compounds biosynthesis. Common responses induced by ABA involved increased sucrose uptake (to increase the sink force) and oleosin (oil body structural component) accumulation. In turn, ABA differentially promoted protein degradation under lower nitrogen supply in order to sustain the metabolic demands. Further, the operation of a citrate shuttle was suggested by transcript quantification and enzymatic activity measurements. The results obtained are useful to help define biotechnological tools and technological approaches to improve oil and protein yields, with direct impact on human and animal nutrition as well as in green chemistry.
Collapse
Affiliation(s)
- Tatiana Pavlovic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - Ezequiel Margarit
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - Ezequiel Saenz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino CC14, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Andrés Iván Ruzzo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - Lucas Borrás
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino CC14, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Mariana Saigo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina.
| | - Mariel Claudia Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina.
| |
Collapse
|
57
|
Taranto F, Esposito S, Fania F, Sica R, Marzario S, Logozzo G, Gioia T, De Vita P. Breeding effects on durum wheat traits detected using GWAS and haplotype block analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1206517. [PMID: 37794940 PMCID: PMC10546023 DOI: 10.3389/fpls.2023.1206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Introduction The recent boosting of genomic data in durum wheat (Triticum turgidum subsp. durum) offers the opportunity to better understand the effects of breeding on the genetic structures that regulate the expression of traits of agronomic interest. Furthermore, the identification of DNA markers useful for marker-assisted selection could also improve the reliability of technical protocols used for variety protection and registration. Methods Within this motivation context, 123 durum wheat accessions, classified into three groups: landraces (LR), ancient (OC) and modern cultivars (MC), were evaluated in two locations, for 34 agronomic traits, including UPOV descriptors, to assess the impact of changes that occurred during modern breeding. Results The association mapping analysis, performed with 4,241 SNP markers and six multi-locus-GWAS models, revealed 28 reliable Quantitative Trait Nucleotides (QTNs) related to plant morphology and kernel-related traits. Some important genes controlling flowering time and plant height were in linkage disequilibrium (LD) decay with QTNs identified in this study. A strong association for yellow berry was found on chromosome 6A (Q.Yb-6A) in a region containing the nadh-ubiquinone oxidoreductase subunit, a gene involved in starch metabolism. The Q.Kcp-2A harbored the PPO locus, with the associated marker (Ku_c13700_1196) in LD decay with Ppo-A1 and Ppo-A2. Interestingly, the Q.FGSGls-2B.1, identified by RAC875_c34512_685 for flag leaf glaucosity, mapped less than 1 Mb from the Epistatic inhibitors of glaucousness (Iw1), thus representing a good candidate for supporting the morphological DUS traits also with molecular markers. LD haplotype block approach revealed a higher diversity, richness and length of haploblocks in MC than OC and LR (580 in LR, 585 in OC and 612 in MC), suggesting a possible effect exerted by breeding programs on genomic regions associated with the agronomic traits. Discussion Our findings pave new ways to support the phenotypic characterization necessary for variety registration by using a panel of cost-effectiveness SNP markers associated also to the UPOV descriptors. Moreover, the panel of associated SNPs might represent a reservoir of favourable alleles to use in durum wheat breeding and genetics.
Collapse
Affiliation(s)
- F. Taranto
- Italian National Council of Research (CNR), Institute of Biosciences and Bioresources (IBBR), Bari, Italy
| | - S. Esposito
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - F. Fania
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE) - University of Foggia, Foggia, Italy
| | - R. Sica
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - S. Marzario
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - G. Logozzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - T. Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - P. De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| |
Collapse
|
58
|
Mittal M, Dhingra A, Dawar P, Payton P, Rock CD. The role of microRNAs in responses to drought and heat stress in peanut (Arachis hypogaea). THE PLANT GENOME 2023; 16:e20350. [PMID: 37351954 DOI: 10.1002/tpg2.20350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/24/2023]
Abstract
MicroRNAs (miRNAs) are 21-24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development. Only seven peanut MIRNA families are documented in miRBase, yet a reference genome assembly is now published and over 480 plant-like MIRNA loci were predicted in the diploid peanut progenitor Arachis duranensis genome. We explored by computational analysis of a leaf sRNA library and publicly available sRNA, degradome, and transcriptome datasets the miRNA and phasiRNA space associated with drought and heat stresses in peanut. We characterized 33 novel candidate and 33 ancient conserved families of MIRNAs and present degradome evidence for their cleavage activities on mRNA targets, including several noncanonical targets and novel phasiRNA-producing noncoding and mRNA loci with validated novel targets such as miR1509 targeting serine/threonine-protein phosphatase7 and miRc20 and ahy-miR3514 targeting penta-tricopeptide repeats (PPRs), in contradistinction to other claims of miR1509/173/7122 superfamily miRNAs indirectly targeting PPRs via TAS-like noncoding RNA loci. We characterized the inverse correlations of significantly differentially expressed drought- and heat-regulated miRNAs, assayed by sRNA blots or transcriptome datasets, with target mRNA expressions in the same datasets. Meta-analysis of an expression atlas and over representation of miRNA target genes in co-expression networks suggest that miRNAs have functions in unique aspects of peanut gynophore development. Genome-wide MIRNA annotation of the published allopolyploid peanut genome can facilitate molecular breeding of value-added traits.
Collapse
Affiliation(s)
- Meenakshi Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Anuradha Dhingra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Paxton Payton
- USDA-ARS Plant Stress and Germplasm Lab, Lubbock, Texas, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
59
|
Shi H, Yang Z, Huang J, Wu H, Fu S, Li W, Zou X, Zhou C, Wang X. An effector of 'Candidatus Liberibacter asiaticus' manipulates autophagy to promote bacterial infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4670-4684. [PMID: 37166404 DOI: 10.1093/jxb/erad176] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.
Collapse
Affiliation(s)
- Hongwei Shi
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Zuhui Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Jie Huang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Haodi Wu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Xiuping Zou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| |
Collapse
|
60
|
Imbert B, Kreplak J, Flores RG, Aubert G, Burstin J, Tayeh N. Development of a knowledge graph framework to ease and empower translational approaches in plant research: a use-case on grain legumes. Front Artif Intell 2023; 6:1191122. [PMID: 37601035 PMCID: PMC10435283 DOI: 10.3389/frai.2023.1191122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
While the continuing decline in genotyping and sequencing costs has largely benefited plant research, some key species for meeting the challenges of agriculture remain mostly understudied. As a result, heterogeneous datasets for different traits are available for a significant number of these species. As gene structures and functions are to some extent conserved through evolution, comparative genomics can be used to transfer available knowledge from one species to another. However, such a translational research approach is complex due to the multiplicity of data sources and the non-harmonized description of the data. Here, we provide two pipelines, referred to as structural and functional pipelines, to create a framework for a NoSQL graph-database (Neo4j) to integrate and query heterogeneous data from multiple species. We call this framework Orthology-driven knowledge base framework for translational research (Ortho_KB). The structural pipeline builds bridges across species based on orthology. The functional pipeline integrates biological information, including QTL, and RNA-sequencing datasets, and uses the backbone from the structural pipeline to connect orthologs in the database. Queries can be written using the Neo4j Cypher language and can, for instance, lead to identify genes controlling a common trait across species. To explore the possibilities offered by such a framework, we populated Ortho_KB to obtain OrthoLegKB, an instance dedicated to legumes. The proposed model was evaluated by studying the conservation of a flowering-promoting gene. Through a series of queries, we have demonstrated that our knowledge graph base provides an intuitive and powerful platform to support research and development programmes.
Collapse
Affiliation(s)
- Baptiste Imbert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Raphaël-Gauthier Flores
- Université Paris-Saclay, INRAE, URGI, Versailles, France
- Université Paris-Saclay, INRAE, BioinfOmics, Plant Bioinformatics Facility, Versailles, France
| | - Grégoire Aubert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Nadim Tayeh
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
61
|
Moing A, Berton T, Roch L, Diarrassouba S, Bernillon S, Arrivault S, Deborde C, Maucourt M, Cabasson C, Bénard C, Prigent S, Jacob D, Gibon Y, Lemaire-Chamley M. Multi-omics quantitative data of tomato fruit unveils regulation modes of least variable metabolites. BMC PLANT BIOLOGY 2023; 23:365. [PMID: 37479985 PMCID: PMC10362748 DOI: 10.1186/s12870-023-04370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied. RESULTS We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways. CONCLUSIONS The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.
Collapse
Affiliation(s)
- Annick Moing
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Thierry Berton
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Léa Roch
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Salimata Diarrassouba
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: Laboratoire de Recherche en Sciences Végétales, UMR 5546 UPS/CNRS, Auzeville- Tolosane, F-31320 France
| | - Stéphane Bernillon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, Mycologie et Sécurité des Aliments, UR 1264, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, am Muehlenberg 14476, Potsdam-Golm, Germany
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, UR1268 BIA, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
- Present address: INRAE, BIBS Facility, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
| | - Mickaël Maucourt
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Cécile Cabasson
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Camille Bénard
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Sylvain Prigent
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Martine Lemaire-Chamley
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| |
Collapse
|
62
|
Saint-Vincent PMB, Furches A, Galanie S, Teixeira Prates E, Aldridge JL, Labbe A, Zhao N, Martin MZ, Ranjan P, Jones P, Kainer D, Kalluri UC, Chen JG, Muchero W, Jacobson DA, Tschaplinski TJ. Validation of a metabolite-GWAS network for Populus trichocarpa family 1 UDP-glycosyltransferases. FRONTIERS IN PLANT SCIENCE 2023; 14:1210146. [PMID: 37546246 PMCID: PMC10402742 DOI: 10.3389/fpls.2023.1210146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 08/08/2023]
Abstract
Metabolite genome-wide association studies (mGWASs) are increasingly used to discover the genetic basis of target phenotypes in plants such as Populus trichocarpa, a biofuel feedstock and model woody plant species. Despite their growing importance in plant genetics and metabolomics, few mGWASs are experimentally validated. Here, we present a functional genomics workflow for validating mGWAS-predicted enzyme-substrate relationships. We focus on uridine diphosphate-glycosyltransferases (UGTs), a large family of enzymes that catalyze sugar transfer to a variety of plant secondary metabolites involved in defense, signaling, and lignification. Glycosylation influences physiological roles, localization within cells and tissues, and metabolic fates of these metabolites. UGTs have substantially expanded in P. trichocarpa, presenting a challenge for large-scale characterization. Using a high-throughput assay, we produced substrate acceptance profiles for 40 previously uncharacterized candidate enzymes. Assays confirmed 10 of 13 leaf mGWAS associations, and a focused metabolite screen demonstrated varying levels of substrate specificity among UGTs. A substrate binding model case study of UGT-23 rationalized observed enzyme activities and mGWAS associations, including glycosylation of trichocarpinene to produce trichocarpin, a major higher-order salicylate in P. trichocarpa. We identified UGTs putatively involved in lignan, flavonoid, salicylate, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress response that determine sustainable biomass crop production. Our results provide new support for in silico analyses and evidence-based guidance for in vivo functional characterization.
Collapse
Affiliation(s)
- Patricia M. B. Saint-Vincent
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Anna Furches
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Stephanie Galanie
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Protein Engineering, Merck & Co., Inc., Rahway, NJ, United States
| | - Erica Teixeira Prates
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jessa L. Aldridge
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Audrey Labbe
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Nan Zhao
- School of Electrical Engineering, Southeast University, Nanjing, China
| | - Madhavi Z. Martin
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Priya Ranjan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Piet Jones
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - David Kainer
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Udaya C. Kalluri
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Jin-Gui Chen
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Daniel A. Jacobson
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Timothy J. Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
63
|
Chabi M, Goulas E, Galinousky D, Blervacq AS, Lucau-Danila A, Neutelings G, Grec S, Day A, Chabbert B, Haag K, Müssig J, Arribat S, Planchon S, Renaut J, Hawkins S. Identification of new potential molecular actors related to fiber quality in flax through Omics. FRONTIERS IN PLANT SCIENCE 2023; 14:1204016. [PMID: 37528984 PMCID: PMC10390313 DOI: 10.3389/fpls.2023.1204016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
One of the biggest challenges for a more widespread utilization of plant fibers is to better understand the different molecular factors underlying the variability in fineness and mechanical properties of both elementary and scutched fibers. Accordingly, we analyzed genome-wide transcription profiling from bast fiber bearing tissues of seven different flax varieties (4 spring, 2 winter fiber varieties and 1 winter linseed) and identified 1041 differentially expressed genes between varieties, of which 97 were related to cell wall metabolism. KEGG analysis highlighted a number of different enriched pathways. Subsequent statistical analysis using Partial Least-Squares Discriminant Analysis showed that 73% of the total variance was explained by the first 3 X-variates corresponding to 56 differentially expressed genes. Calculation of Pearson correlations identified 5 genes showing a strong correlation between expression and morphometric data. Two-dimensional gel proteomic analysis on the two varieties showing the most discriminant and significant differences in morphometrics revealed 1490 protein spots of which 108 showed significant differential abundance. Mass spectrometry analysis successfully identified 46 proteins representing 32 non-redundant proteins. Statistical clusterization based on the expression level of genes corresponding to the 32 proteins showed clear discrimination into three separate clusters, reflecting the variety type (spring-/winter-fiber/oil). Four of the 32 proteins were also highly correlated with morphometric features. Examination of predicted functions for the 9 (5 + 4) identified genes highlighted lipid metabolism and senescence process. Calculation of Pearson correlation coefficients between expression data and retted fiber mechanical measurements (strength and maximum force) identified 3 significantly correlated genes. The genes were predicted to be connected to cell wall dynamics, either directly (Expansin-like protein), or indirectly (NAD(P)-binding Rossmann-fold superfamily protein). Taken together, our results have allowed the identification of molecular actors potentially associated with the determination of both in-planta fiber morphometrics, as well as ex-planta fiber mechanical properties, both of which are key parameters for elementary fiber and scutched fiber quality in flax.
Collapse
Affiliation(s)
- Malika Chabi
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Estelle Goulas
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Dmitry Galinousky
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anne-Sophie Blervacq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anca Lucau-Danila
- Université de Lille, UMRT 1158 BioEcoAgro, Institut Charles Viollette, Lille, France
| | - Godfrey Neutelings
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Arnaud Day
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Fibres Recherche Développement, Technopole de l’Aube en Champagne – Hôtel de Bureaux 2, 2 rue Gustave Eiffel, CS 90601, Troyes, France
| | - Brigitte Chabbert
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France
| | - Katharina Haag
- Fraunhofer-Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, Germany
| | - Jörg Müssig
- The Biological Materials Group, HSB – City University of Applied Sciences, Bremen, Germany
| | - Sandrine Arribat
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Planchon
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Jenny Renaut
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Simon Hawkins
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
64
|
Yadav IS, Rawat N, Chhuneja P, Kaur S, Uauy C, Lazo G, Gu YQ, Doležel J, Tiwari VK. Comparative genomic analysis of 5M g chromosome of Aegilops geniculata and 5U u chromosome of Aegilops umbellulata reveal genic diversity in the tertiary gene pool. FRONTIERS IN PLANT SCIENCE 2023; 14:1144000. [PMID: 37521926 PMCID: PMC10373596 DOI: 10.3389/fpls.2023.1144000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Wheat is one of the most important cereal crops for the global food security. Due to its narrow genetic base, modern bread wheat cultivars face challenges from increasing abiotic and biotic stresses. Since genetic improvement is the most sustainable approach, finding novel genes and alleles is critical for enhancing the genetic diversity of wheat. The tertiary gene pool of wheat is considered a gold mine for genetic diversity as novel genes and alleles can be identified and transferred to wheat cultivars. Aegilops geniculata and Ae. umbellulata are the key members of the tertiary gene pool of wheat and harbor important genes against abiotic and biotic stresses. Homoeologous-group five chromosomes (5Uu and 5Mg) have been extensively studied from Ae. geniculata and Ae. umbellulata as they harbor several important genes including Lr57, Lr76, Yr40, Yr70, Sr53 and chromosomal pairing loci. In the present study, using chromosome DNA sequencing and RNAseq datasets, we performed comparative analysis to study homoeologous gene evolution in 5Mg, 5Uu, and group 5 wheat chromosomes. Our findings highlight the diversity of transcription factors and resistance genes, resulting from the differential expansion of the gene families. Both the chromosomes were found to be enriched with the "response to stimulus" category of genes providing resistance against biotic and abiotic stress. Phylogenetic study positioned the M genome closer to the D genome, with higher proximity to the A genome than the B genome. Over 4000 genes were impacted by SNPs on 5D, with 4-5% of those genes displaying non-disruptive variations that affect gene function.
Collapse
Affiliation(s)
- Inderjit S. Yadav
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Nidhi Rawat
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Gerard Lazo
- Agricultural Research Service, United States Department of Agriculture (USDA), Albany, CA, United States
| | - Yong Q. Gu
- Agricultural Research Service, United States Department of Agriculture (USDA), Albany, CA, United States
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Olomouc, Czechia
| | - Vijay K. Tiwari
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| |
Collapse
|
65
|
Upton RN, Correr FH, Lile J, Reynolds GL, Falaschi K, Cook JP, Lachowiec J. Design, execution, and interpretation of plant RNA-seq analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1135455. [PMID: 37457354 PMCID: PMC10348879 DOI: 10.3389/fpls.2023.1135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Genomics has transformed our understanding of the genetic architecture of traits and the genetic variation present in plants. Here, we present a review of how RNA-seq can be performed to tackle research challenges addressed by plant sciences. We discuss the importance of experimental design in RNA-seq, including considerations for sampling and replication, to avoid pitfalls and wasted resources. Approaches for processing RNA-seq data include quality control and counting features, and we describe common approaches and variations. Though differential gene expression analysis is the most common analysis of RNA-seq data, we review multiple methods for assessing gene expression, including detecting allele-specific gene expression and building co-expression networks. With the production of more RNA-seq data, strategies for integrating these data into genetic mapping pipelines is of increased interest. Finally, special considerations for RNA-seq analysis and interpretation in plants are needed, due to the high genome complexity common across plants. By incorporating informed decisions throughout an RNA-seq experiment, we can increase the knowledge gained.
Collapse
|
66
|
Großkinsky DK, Faure JD, Gibon Y, Haslam RP, Usadel B, Zanetti F, Jonak C. The potential of integrative phenomics to harness underutilized crops for improving stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1216337. [PMID: 37409292 PMCID: PMC10318926 DOI: 10.3389/fpls.2023.1216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Dominik K. Großkinsky
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
- Bordeaux Metabolome, INRAE, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Björn Usadel
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum, Jülich, Germany
- Biological Data Science, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Federica Zanetti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| |
Collapse
|
67
|
Yang M, Li H, Qiao H, Guo K, Xu R, Wei H, Wei J, Liu S, Xu C. Integrated Transcriptome and Metabolome Dynamic Analysis of Galls Induced by the Gall Mite Aceria pallida on Lycium barbarum Reveals the Molecular Mechanism Underlying Gall Formation and Development. Int J Mol Sci 2023; 24:9839. [PMID: 37372986 DOI: 10.3390/ijms24129839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Galls have become the best model for exploring plant-gall inducer relationships, with most studies focusing on gall-inducing insects but few on gall mites. The gall mite Aceria pallida is a major pest of wolfberry, usually inducing galls on its leaves. For a better understanding of gall mite growth and development, the dynamics of the morphological and molecular characteristics and phytohormones of galls induced by A. pallida were studied by histological observation, transcriptomics and metabolomics. The galls developed from cell elongation of the epidermis and cell hyperplasia of mesophylls. The galls grew quickly, within 9 days, and the mite population increased rapidly within 18 days. The genes involved in chlorophyll biosynthesis, photosynthesis and phytohormone synthesis were significantly downregulated in galled tissues, but the genes associated with mitochondrial energy metabolism, transmembrane transport, carbohydrates and amino acid synthesis were distinctly upregulated. The levels of carbohydrates, amino acids and their derivatives, and indole-3-acetic acid (IAA) and cytokinins (CKs), were markedly enhanced in galled tissues. Interestingly, much higher contents of IAA and CKs were detected in gall mites than in plant tissues. These results suggest that galls act as nutrient sinks and favor increased accumulation of nutrients for mites, and that gall mites may contribute IAA and CKs during gall formation.
Collapse
Affiliation(s)
- Mengke Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Huanle Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Rong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Sai Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Changqing Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
68
|
Hartenstein M, Albert M, Krause K. The plant vampire diaries: a historic perspective on Cuscuta research. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2944-2955. [PMID: 36882965 DOI: 10.1093/jxb/erad082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/01/2023] [Indexed: 05/21/2023]
Abstract
The angiosperm genus Cuscuta lives as an almost achlorophyllous root- and leafless holoparasite and has therefore occupied scientists for more than a century. The 'evolution' of Cuscuta research started with early studies that established the phylogenetic framework for this unusual genus. It continued to produce groundbreaking cytological, morphological, and physiological insight throughout the second half of the 20th century and culminated in the last two decades in exciting discoveries regarding the molecular basis of Cuscuta parasitism that were facilitated by the modern 'omics' tools and traceable fluorescent marker technologies of the 21st century. This review will show how present activities are inspired by those past breakthroughs. It will describe significant milestones and recurring themes of Cuscuta research and connect these to the remaining as well as newly evolving questions and future directions in this research field that is expected to sustain its strong growth in the future.
Collapse
Affiliation(s)
- Maleen Hartenstein
- Department of Biology, Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Markus Albert
- Department of Biology, Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| |
Collapse
|
69
|
Huang D, Zhong G, Zhang S, Jiang K, Wang C, Wu J, Wang B. Trichome-Specific Analysis and Weighted Gene Co-Expression Correlation Network Analysis (WGCNA) Reveal Potential Regulation Mechanism of Artemisinin Biosynthesis in Artemisia annua. Int J Mol Sci 2023; 24:ijms24108473. [PMID: 37239820 DOI: 10.3390/ijms24108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Trichomes are attractive cells for terpenoid biosynthesis and accumulation in Artemisia annua. However, the molecular process underlying the trichome of A. annua is not yet fully elucidated. In this study, an analysis of multi-tissue transcriptome data was performed to examine trichome-specific expression patterns. A total of 6646 genes were screened and highly expressed in trichomes, including artemisinin biosynthetic genes such as amorpha-4,11-diene synthase (ADS) and cytochrome P450 monooxygenase (CYP71AV1). Mapman and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that trichome-specific genes were mainly enriched in lipid metabolism and terpenoid metabolism. These trichome-specific genes were analyzed by a weighted gene co-expression network analysis (WGCNA), and the blue module linked to terpenoid backbone biosynthesis was determined. Hub genes correlated with the artemisinin biosynthetic genes were selected based on TOM value. ORA, Benzoate carboxyl methyltransferase (BAMT), Lysine histidine transporter-like 8 (AATL1), Ubiquitin-like protease 1 (Ulp1) and TUBBY were revealed as key hub genes induced by methyl jasmonate (MeJA) for regulating artemisinin biosynthesis. In summary, the identified trichome-specific genes, modules, pathways and hub genes provide clues and shed light on the potential regulatory mechanisms of artemisinin biosynthesis in trichomes in A. annua.
Collapse
Affiliation(s)
- Dawei Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guixian Zhong
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shiyang Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Kerui Jiang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jian Wu
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bo Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
70
|
Contiliani DF, Nebó JFCDO, Ribeiro RV, Landell MGDA, Pereira TC, Ming R, Figueira A, Creste S. Drought-triggered leaf transcriptional responses disclose key molecular pathways underlying leaf water use efficiency in sugarcane ( Saccharum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1182461. [PMID: 37223790 PMCID: PMC10200899 DOI: 10.3389/fpls.2023.1182461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Drought is a major constraint to sugarcane (Saccharum spp.) production and improving the water use efficiency (WUE) is a critical trait for the sustainability of this bioenergy crop. The molecular mechanism underlying WUE remains underexplored in sugarcane. Here, we investigated the drought-triggered physiological and transcriptional responses of two sugarcane cultivars contrasting for drought tolerance, 'IACSP97-7065' (sensitive) and 'IACSP94-2094' (tolerant). After 21 days without irrigation (DWI), only 'IACSP94-2094' exhibited superior WUE and instantaneous carboxylation efficiency, with the net CO2 assimilation being less impacted when compared with 'IACSP97-7065'. RNA-seq of sugarcane leaves at 21 DWI revealed a total of 1,585 differentially expressed genes (DEGs) for both genotypes, among which 'IACSP94-2094' showed 617 (38.9%) exclusive transcripts (212 up- and 405 down-regulated). Functional enrichment analyses of these unique DEGs revealed several relevant biological processes, such as photosynthesis, transcription factors, signal transduction, solute transport, and redox homeostasis. The better drought-responsiveness of 'IACSP94-2094' suggested signaling cascades that foster transcriptional regulation of genes implicated in the Calvin cycle and transport of water and carbon dioxide, which are expected to support the high WUE and carboxylation efficiency observed for this genotype under water deficit. Moreover, the robust antioxidant system of the drought-tolerant genotype might serve as a molecular shield against the drought-associated overproduction of reactive oxygen species. This study provides relevant data that may be used to develop novel strategies for sugarcane breeding programs and to understand the genetic basis of drought tolerance and WUE improvement of sugarcane.
Collapse
Affiliation(s)
- Danyel F. Contiliani
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Sugarcane Center, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| | | | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Tiago C. Pereira
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Ray Ming
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Silvana Creste
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Sugarcane Center, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
71
|
Santin M, Simoni S, Vangelisti A, Giordani T, Cavallini A, Mannucci A, Ranieri A, Castagna A. Transcriptomic Analysis on the Peel of UV-B-Exposed Peach Fruit Reveals an Upregulation of Phenolic- and UVR8-Related Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091818. [PMID: 37176875 PMCID: PMC10180693 DOI: 10.3390/plants12091818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
UV-B treatment deeply influences plant physiology and biochemistry, especially by activating the expression of responsive genes involved in UV-B acclimation through a UV-B-specific perception mechanism. Although the UV-B-related molecular responses have been widely studied in Arabidopsis, relatively few research reports deepen the knowledge on the influence of post-harvest UV-B treatment on fruit. In this work, a transcriptomic approach is adopted to investigate the transcriptional modifications occurring in the peel of UV-B-treated peach (Prunus persica L., cv Fairtime) fruit after harvest. Our analysis reveals a higher gene regulation after 1 h from the irradiation (88% of the differentially expressed genes-DEGs), compared to 3 h recovery. The overexpression of genes encoding phenylalanine ammonia-lyase (PAL), chalcone syntase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) revealed a strong activation of the phenylpropanoid pathway, resulting in the later increase in the concentration of specific flavonoid classes, e.g., anthocyanins, flavones, dihydroflavonols, and flavanones, 36 h after the treatment. Upregulation of UVR8-related genes (HY5, COP1, and RUP) suggests that UV-B-triggered activation of the UVR8 pathway occurs also in post-harvest peach fruit. In addition, a regulation of genes involved in the cell-wall dismantling process (PME) is observed. In conclusion, post-harvest UV-B exposure deeply affects the transcriptome of the peach peel, promoting the activation of genes implicated in the biosynthesis of phenolics, likely via UVR8. Thus, our results might pave the way to a possible use of post-harvest UV-B treatments to enhance the content of health-promoting compounds in peach fruits and extending the knowledge of the UVR8 gene network.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Samuel Simoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alessia Mannucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
72
|
Shumilina J, Kiryushkin AS, Frolova N, Mashkina V, Ilina EL, Puchkova VA, Danko K, Silinskaya S, Serebryakov EB, Soboleva A, Bilova T, Orlova A, Guseva ED, Repkin E, Pawlowski K, Frolov A, Demchenko KN. Integrative Proteomics and Metabolomics Analysis Reveals the Role of Small Signaling Peptide Rapid Alkalinization Factor 34 (RALF34) in Cucumber Roots. Int J Mol Sci 2023; 24:7654. [PMID: 37108821 PMCID: PMC10140933 DOI: 10.3390/ijms24087654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators.
Collapse
Affiliation(s)
- Julia Shumilina
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Valeria Mashkina
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Vera A. Puchkova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Katerina Danko
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | | | | | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Tatiana Bilova
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Egor Repkin
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| |
Collapse
|
73
|
Shao C, Tao S, Liang Y. Comparative transcriptome analysis of juniper branches infected by Gymnosporangium spp. highlights their different infection strategies associated with cytokinins. BMC Genomics 2023; 24:173. [PMID: 37020280 PMCID: PMC10077639 DOI: 10.1186/s12864-023-09276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Gymnosporangium asiaticum and G. yamadae can share Juniperus chinensis as the telial host, but the symptoms are completely different. The infection of G. yamadae causes the enlargement of the phloem and cortex of young branches as a gall, but not for G. asiaticum, suggesting that different molecular interaction mechanisms exist the two Gymnosporangium species with junipers. RESULTS Comparative transcriptome analysis was performed to investigate genes regulation of juniper in responses to the infections of G. asiaticum and G. yamadae at different stages. Functional enrichment analysis showed that genes related to transport, catabolism and transcription pathways were up-regulated, while genes related to energy metabolism and photosynthesis were down-regulated in juniper branch tissues after infection with G. asiaticum and G. yamadae. The transcript profiling of G. yamadae-induced gall tissues revealed that more genes involved in photosynthesis, sugar metabolism, plant hormones and defense-related pathways were up-regulated in the vigorous development stage of gall compared to the initial stage, and were eventually repressed overall. Furthermore, the concentration of cytokinins (CKs) in the galls tissue and the telia of G. yamadae was significantly higher than in healthy branch tissues of juniper. As well, tRNA-isopentenyltransferase (tRNA-IPT) was identified in G. yamadae with highly expression levels during the gall development stages. CONCLUSIONS In general, our study provided new insights into the host-specific mechanisms by which G. asiaticum and G. yamadae differentially utilize CKs and specific adaptations on juniper during their co-evolution.
Collapse
Affiliation(s)
- Chenxi Shao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, No. 35, Qinghua Eastern Road, Beijing, 100083, China.
| |
Collapse
|
74
|
Szeliga M, Bakera B, Święcicka M, Tyrka M, Rakoczy-Trojanowska M. Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics 2023; 24:170. [PMID: 37016302 PMCID: PMC10074802 DOI: 10.1186/s12864-023-09252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland.
| | - Beata Bakera
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Magdalena Święcicka
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | | |
Collapse
|
75
|
Khodaeiaminjan M, Knoch D, Ndella Thiaw MR, Marchetti CF, Kořínková N, Techer A, Nguyen TD, Chu J, Bertholomey V, Doridant I, Gantet P, Graner A, Neumann K, Bergougnoux V. Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well-watered and osmotic stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1125672. [PMID: 37077626 PMCID: PMC10106628 DOI: 10.3389/fpls.2023.1125672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.
Collapse
Affiliation(s)
- Mortaza Khodaeiaminjan
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Cintia F. Marchetti
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Nikola Kořínková
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Alexie Techer
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Thu D. Nguyen
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Jianting Chu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Valentin Bertholomey
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Ingrid Doridant
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
- Unité Mixte de Recherche DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Andreas Graner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
76
|
Wang P, Wu X, Shi Z, Tao S, Liu Z, Qi K, Xie Z, Qiao X, Gu C, Yin H, Cheng M, Gu X, Liu X, Tang C, Cao P, Xu S, Zhou B, Gu T, Bian Y, Wu J, Zhang S. A large-scale proteogenomic atlas of pear. MOLECULAR PLANT 2023; 16:599-615. [PMID: 36733253 DOI: 10.1016/j.molp.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Pear is an important fruit tree that is widely distributed around the world. The first pear genome map was reported from our laboratory approximately 10 years ago. To further study global protein expression patterns in pear, we generated pear proteome data based on 24 major tissues. The tissue-resolved profiles provided evidence of the expression of 17 953 proteins. We identified 4294 new coding events and improved the pear genome annotation via the proteogenomic strategy based on 18 090 peptide spectra with peptide spectrum matches >1. Among the eight randomly selected new short coding open reading frames that were expressed in the style, four promoted and one inhibited the growth of pear pollen tubes. Based on gene coexpression module analysis, we explored the key genes associated with important agronomic traits, such as stone cell formation in fruits. The network regulating the synthesis of lignin, a major component of stone cells, was reconstructed, and receptor-like kinases were implicated as core factors in this regulatory network. Moreover, we constructed the online database PearEXP (http://www.peardb.org.cn) to enable access to the pear proteogenomic resources. This study provides a paradigm for in-depth proteogenomic studies of woody plants.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zebin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shutian Tao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Cheng
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueying Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Cao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Tingting Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Bian
- College of Life Sciences, Northwest University, Xi'an 710127, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
77
|
Carrillo L, Baroja-Fernández E, Renau-Morata B, Muñoz FJ, Canales J, Ciordia S, Yang L, Sánchez-López ÁM, Nebauer SG, Ceballos MG, Vicente-Carbajosa J, Molina RV, Pozueta-Romero J, Medina J. Ectopic expression of the AtCDF1 transcription factor in potato enhances tuber starch and amino acid contents and yield under open field conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1010669. [PMID: 36937996 PMCID: PMC10014720 DOI: 10.3389/fpls.2023.1010669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cycling Dof transcription factors (CDFs) have been involved in different aspects of plant growth and development. In Arabidopsis and tomato, one member of this family (CDF1) has recently been associated with the regulation of primary metabolism and abiotic stress responses, but their roles in crop production under open field conditions remain unknown. METHODS In this study, we compared the growth, and tuber yield and composition of plants ectopically expressing the CDF1 gene from Arabidopsis under the control of the 35S promoter with wild-type (WT) potato plants cultured in growth chamber and open field conditions. RESULTS In growth chambers, the 35S::AtCDF1 plants showed a greater tuber yield than the WT by increasing the biomass partition for tuber development. Under field conditions, the ectopic expression of CDF1 also promoted the sink strength of the tubers, since 35S::AtCDF1 plants exhibited significant increases in tuber size and weight resulting in higher tuber yield. A metabolomic analysis revealed that tubers of 35S::AtCDF1 plants cultured under open field conditions accumulated higher levels of glucose, starch and amino acids than WT tubers. A comparative proteomic analysis of tubers of 35S::AtCDF1 and WT plants cultured under open field conditions revealed that these changes can be accounted for changes in the expression of proteins involved in energy production and different aspects of C and N metabolism. DISCUSSION The results from this study advance our collective understanding of the role of CDFs and are of great interest for the purposes of improving the yield and breeding of crop plants.
Collapse
Affiliation(s)
- Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Begoña Renau-Morata
- Departamento de Biología Vegetal, Universitat de València. Vicent Andrés Estellés, Burjassot, Spain
| | - Francisco J. Muñoz
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sergio Ciordia
- Unidad Proteomica (CNB), Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| | - Lu Yang
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | | | - Sergio G. Nebauer
- Departamento de Producción Vegetal, Universitat Politècnica de València., València, Spain
| | - Mar G. Ceballos
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Rosa V. Molina
- Departamento de Producción Vegetal, Universitat Politècnica de València., València, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, Málaga, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| |
Collapse
|
78
|
Volpe V, Chialva M, Mazzarella T, Crosino A, Capitanio S, Costamagna L, Kohlen W, Genre A. Long-lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 237:2316-2331. [PMID: 36564991 DOI: 10.1111/nph.18697] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The establishment of arbuscular mycorrhiza (AM) between plants and Glomeromycotina fungi is preceded by the exchange of chemical signals: fungal released Myc-factors, including chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCO), activate plant symbiotic responses, while root-exuded strigolactones stimulate hyphal branching and boost CO release. Furthermore, fungal signaling reinforcement through CO application was shown to promote AM development in Medicago truncatula, but the cellular and molecular bases of this effect remained unclear. Here, we focused on long-term M. truncatula responses to CO treatment, demonstrating its impact on the transcriptome of both mycorrhizal and nonmycorrhizal roots over several weeks and providing an insight into the mechanistic bases of the CO-dependent promotion of AM colonization. CO treatment caused the long-lasting regulation of strigolactone biosynthesis and fungal accommodation-related genes. This was mirrored by an increase in root didehydro-orobanchol content, and the promotion of accommodation responses to AM fungi in root epidermal cells. Lastly, an advanced downregulation of AM symbiosis marker genes was observed at the latest time point in CO-treated plants, in line with an increased number of senescent arbuscules. Overall, CO treatment triggered molecular, metabolic, and cellular responses underpinning a protracted acceleration of AM development.
Collapse
Affiliation(s)
- Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Andrea Crosino
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Serena Capitanio
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Lorenzo Costamagna
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, 6708, PB, the Netherlands
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| |
Collapse
|
79
|
Hou Y, Wong DCJ, Li Q, Zhou H, Zhu Z, Gong L, Liang J, Ren H, Liang Z, Wang Q, Xin H. Dissecting the effect of ethylene in the transcriptional regulation of chilling treatment in grapevine leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1084-1097. [PMID: 36921558 DOI: 10.1016/j.plaphy.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Ethylene (ETH) plays important roles in various development programs and stress responses in plants. In grapevines, ETH increased dramatically under chilling stress and is known to positively regulate cold tolerance. However, the role of ETH in transcriptional regulation during chilling stress of grapevine leaves is still not clear. To address this gap, targeted hormone profiling and transcriptomic analysis were performed on leaves of Vitis amurensis under chilling stress with and without aminoethoxyvinylglycine (AVG, a inhibitor of ETH synthesis) treatment. APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and WRKY transcription factors (TF) were only the two highly enriched TF families that were consistently up-regulated during chilling stress but inhibited by AVG. The comparison of leaf transcriptomes between chilling treatment and chilling with AVG allowed the identification of potential ETH-regulated genes. Potential genes that are positively regulated by ETH are enriched in solute transport, protein biosynthesis, phytohormone action, antioxidant and carbohydrate metabolism. Conversely, genes related to the synthesis and signaling of ETH, indole-3-acetic acid (IAA), abscisic acid (ABA) were up-regulated by chilling treatment but inhibited by AVG. The contents of ETH, ABA and IAA also paralleled with the transcriptome data, which suggests that the response of ABA and IAA during chilling stress may regulate by ETH signaling, and together may belong to an integrated network of hormonal signaling pathways underpinning chilling stress response in grapevine leaves. Together, these findings provide new clues for further studying the complex regulatory mechanism of ETH under low-temperature stress in plants more generally and new opportunities for breeding cold-resilient grapevines.
Collapse
Affiliation(s)
- Yujun Hou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Qingyun Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfei Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linzhong Gong
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Hongsong Ren
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, And CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
80
|
Rasouli F, Kiani-Pouya A, Movahedi A, Wang Y, Li L, Yu M, Pourkheirandish M, Zhou M, Chen Z, Zhang H, Shabala S. Guard Cell Transcriptome Reveals Membrane Transport, Stomatal Development and Cell Wall Modifications as Key Traits Involved in Salinity Tolerance in Halophytic Chenopodium quinoa. PLANT & CELL PHYSIOLOGY 2023; 64:204-220. [PMID: 36355785 DOI: 10.1093/pcp/pcac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
A comparative investigation was conducted to evaluate transcriptional changes in guard cells (GCs) of closely related halophytic (Chenopodium quinoa) and glycophytic (Spinacia oleracea) species. Plants were exposed to 3 weeks of 250 mM sodium chloride treatment, and GC-enriched epidermal fragments were mechanically prepared. In both species, salt-responsive genes were mainly related to categories of protein metabolism, secondary metabolites, signal transduction and transport systems. Genes related to abscisic acid (ABA) signaling and ABA biosynthesis were strongly induced in quinoa but not in spinach GCs. Also, expression of the genes encoding transporters of amino acids, proline, sugars, sucrose and potassium increased in quinoa GCs under salinity stress. Analysis of cell-wall-related genes suggests that genes involved in lignin synthesis (e.g. lignin biosynthesis LACCASE 4) were highly upregulated by salt in spinach GCs. In contrast, transcripts related to cell wall plasticity Pectin methylesterase3 (PME3) were highly induced in quinoa. Faster stomatal response to light and dark measured by observing kinetics of changes in stomatal conductance in quinoa might be associated with higher plasticity of the cell wall regulated by PME3 Furthermore, genes involved in the inhibition of stomatal development and differentiation were highly expressed by salt in quinoa, but not in spinach. These changes correlated with reduced stomatal density and index in quinoa, thus improving its water use efficiency. The fine modulation of transporters, cell wall modification and controlling stomatal development in GCs of quinoa may have resulted in high K+/Na+ ratio, lower stomatal conductance and higher stomatal speed for better adaptation to salinity stress in quinoa.
Collapse
Affiliation(s)
- Fatemeh Rasouli
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Ali Kiani-Pouya
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan Wang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Leiting Li
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Mohammad Pourkheirandish
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Zhonghua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2747, Australia
| | - Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
81
|
Depuydt T, De Rybel B, Vandepoele K. Charting plant gene functions in the multi-omics and single-cell era. TRENDS IN PLANT SCIENCE 2023; 28:283-296. [PMID: 36307271 DOI: 10.1016/j.tplants.2022.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Despite the increased access to high-quality plant genome sequences, the set of genes with a known function remains far from complete. With the advent of novel bulk and single-cell omics profiling methods, we are entering a new era where advanced and highly integrative functional annotation strategies are being developed to elucidate the functions of all plant genes. Here, we review different multi-omics approaches to improve functional and regulatory gene characterization and highlight the power of machine learning and network biology to fully exploit the complementary information embedded in different omics layers. Finally, we discuss the potential of emerging single-cell methods and algorithms to further increase the resolution, allowing generation of functional insights about plant biology.
Collapse
Affiliation(s)
- Thomas Depuydt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; Vlaams Instituut voor Biotechnologie, Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; Vlaams Instituut voor Biotechnologie, Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; Vlaams Instituut voor Biotechnologie, Center for Plant Systems Biology, Ghent, Belgium; Ghent University, Bioinformatics Institute Ghent, Ghent, Belgium.
| |
Collapse
|
82
|
Tan QW, Lim PK, Chen Z, Pasha A, Provart N, Arend M, Nikoloski Z, Mutwil M. Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses. Nat Commun 2023; 14:986. [PMID: 36813788 PMCID: PMC9946954 DOI: 10.1038/s41467-023-36517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Abiotic stresses negatively impact ecosystems and the yield of crops, and climate change will increase their frequency and intensity. Despite progress in understanding how plants respond to individual stresses, our knowledge of plant acclimatization to combined stresses typically occurring in nature is still lacking. Here, we used a plant with minimal regulatory network redundancy, Marchantia polymorpha, to study how seven abiotic stresses, alone and in 19 pairwise combinations, affect the phenotype, gene expression, and activity of cellular pathways. While the transcriptomic responses show a conserved differential gene expression between Arabidopsis and Marchantia, we also observe a strong functional and transcriptional divergence between the two species. The reconstructed high-confidence gene regulatory network demonstrates that the response to specific stresses dominates those of others by relying on a large ensemble of transcription factors. We also show that a regression model could accurately predict the gene expression under combined stresses, indicating that Marchantia performs arithmetic multiplication to respond to multiple stresses. Lastly, two online resources ( https://conekt.plant.tools and http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi ) are provided to facilitate the study of gene expression in Marchantia exposed to abiotic stresses.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Zhong Chen
- Amoeba Education Hub, 1 West Coast Road, 128020, Singapore, Singapore
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
83
|
Julca I, Mutwil-Anderwald D, Manoj V, Khan Z, Lai SK, Yang LK, Beh IT, Dziekan J, Lim YP, Lim SK, Low YW, Lam YI, Tjia S, Mu Y, Tan QW, Nuc P, Choo LM, Khew G, Shining L, Kam A, Tam JP, Bozdech Z, Schmidt M, Usadel B, Kanagasundaram Y, Alseekh S, Fernie A, Li HY, Mutwil M. Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36807520 DOI: 10.1111/jipb.13469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Vaishnervi Manoj
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zahra Khan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lay K Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Ing T Beh
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jerzy Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yoon P Lim
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Shen K Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yee W Low
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Yuen I Lam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiao W Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Le M Choo
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Gillian Khew
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Loo Shining
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Bjoern Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Hoi Y Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
84
|
Nawae W, Naktang C, Charoensri S, U-thoomporn S, Narong N, Chusri O, Tangphatsornruang S, Pootakham W. Resequencing of durian genomes reveals large genetic variations among different cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1137077. [PMID: 36875624 PMCID: PMC9978785 DOI: 10.3389/fpls.2023.1137077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Durian (Durio zibethinus), which yields the fruit known as the "King of Fruits," is an important economic crop in Southeast Asia. Several durian cultivars have been developed in this region. In this study, we resequenced the genomes of three popular durian cultivars in Thailand, including Kradumthong (KD), Monthong (MT), and Puangmanee (PM) to investigate genetic diversities of cultivated durians. KD, MT, and PM genome assemblies were 832.7, 762.6, and 821.6 Mb, and their annotations covered 95.7, 92.4, and 92.7% of the embryophyta core proteins, respectively. We constructed the draft durian pangenome and analyzed comparative genomes with related species in Malvales. Long terminal repeat (LTR) sequences and protein families in durian genomes had slower evolution rates than that in cotton genomes. However, protein families with transcriptional regulation function and protein phosphorylation function involved in abiotic and biotic stress responses appeared to evolve faster in durians. The analyses of phylogenetic relationships, copy number variations (CNVs), and presence/absence variations (PAVs) suggested that the genome evolution of Thai durians was different from that of the Malaysian durian, Musang King (MK). Among the three newly sequenced genomes, the PAV and CNV profiles of disease resistance genes and the expressions of methylesterase inhibitor domain containing genes involved in flowering and fruit maturation in MT were different from those in KD and PM. These genome assemblies and their analyses provide valuable resources to gain a better understanding of the genetic diversity of cultivated durians, which may be useful for the future development of new durian cultivars.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Salisa Charoensri
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Sonicha U-thoomporn
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Nattapol Narong
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Orwintinee Chusri
- Chantaburi Horticulture Research Center, Horticulture Research Institute, Department of Agriculture, Chantaburi, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
85
|
Zhong Y, Wu W, Sun C, Zou P, Liu Y, Dai S, Zhou R. Chromosomal-level genome assembly of Melastoma candidum provides insights into trichome evolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1126319. [PMID: 36778698 PMCID: PMC9911893 DOI: 10.3389/fpls.2023.1126319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Melastoma, consisting of ~100 species diversified in tropical Asia and Oceania in the past 1-2 million years, represents an excellent example of rapid speciation in flowering plants. Trichomes on hypanthia, twigs and leaves vary markedly among species of this genus and are the most important diagnostic traits for species identification. These traits also play critical roles in contributing to differential adaptation of these species to their own habitats. Here we sequenced the genome of M. candidum, a common, erect-growing species from southern China, with the aim to provide genomic insights into trichome evolution in this genus. We generated a high-quality, chromosome-level genome assembly of M. candidum, with the genome size of 256.2 Mb and protein-coding gene number of 40,938. The gene families specific to, and significantly expanded in Melastoma are enriched for GO terms related to trichome initiation and differentiation. We provide evidence that Melastoma and its sister genus Osbeckia have undergone two whole genome duplications (WGDs) after the triplication event (γ) shared by all core eudicots. Preferential retention of trichome development-related transcription factor genes such as C2H2, bHLH, HD-ZIP, WRKY, and MYB after both WGDs might provide raw materials for trichome evolution and thus contribute to rapid species diversification in Melastoma. Our study provides candidate transcription factor genes related to trichome evolution in Melastoma, which can be used to evolutionary and functional studies of trichome diversification among species of this genus.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Sun
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peishan Zou
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Seping Dai
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
86
|
Guo X, Yan N, Liu L, Yin X, Chen Y, Zhang Y, Wang J, Cao G, Fan C, Hu Z. Transcriptomic comparison of seeds and silique walls from two rapeseed genotypes with contrasting seed oil content. FRONTIERS IN PLANT SCIENCE 2023; 13:1082466. [PMID: 36714692 PMCID: PMC9880416 DOI: 10.3389/fpls.2022.1082466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Silique walls play pivotal roles in contributing photoassimilates and nutrients to fuel seed growth. However, the interaction between seeds and silique walls impacting oil biosynthesis is not clear during silique development. Changes in sugar, fatty acid and gene expression during Brassica napus silique development of L192 with high oil content and A260 with low oil content were investigated to identify key factors affecting difference of their seed oil content. During the silique development, silique walls contained more hexose and less sucrose than seeds, and glucose and fructose contents in seeds and silique walls of L192 were higher than that of A260 at 15 DAF, and sucrose content in the silique walls of L192 were lower than that of A260 at three time points. Genes related to fatty acid biosynthesis were activated over time, and differences on fatty acid content between the two genotypes occurred after 25 DAF. Genes related to photosynthesis expressed more highly in silique walls than in contemporaneous seeds, and were inhibited over time. Gene set enrichment analysis suggested photosynthesis were activated in L192 at 25 and 35 DAF in silique walls and at both 15 and 35 DAF in the seed. Expressions of sugar transporter genes in L192 was higher than that in A260, especially at 35 DAF. Expressions of genes related to fatty acid biosynthesis, such as BCCP2s, bZIP67 and LEC1s were higher in L192 than in A260, especially at 35 DAF. Meanwhile, genes related to oil body proteins were expressed at much lower levels in L192 than in A260. According to the WGCNA results, hub modules, such as ME.turquoise relative to photosynthesis, ME.green relative to embryo development and ME.yellow relative to lipid biosynthesis, were identified and synergistically regulated seed development and oil accumulation. Our results are helpful for understanding the mechanism of oil accumulation of seeds in oilseed rape for seed oil content improvement.
Collapse
Affiliation(s)
- Xupeng Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Na Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Linpo Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiangzhen Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, Yunnan, China
| | - Guozhi Cao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
87
|
Sahoo DK, Hegde C, Bhattacharyya MK. Identification of multiple novel genetic mechanisms that regulate chilling tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 13:1094462. [PMID: 36714785 PMCID: PMC9878698 DOI: 10.3389/fpls.2022.1094462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cold stress adversely affects the growth and development of plants and limits the geographical distribution of many plant species. Accumulation of spontaneous mutations shapes the adaptation of plant species to diverse climatic conditions. METHODS The genome-wide association study of the phenotypic variation gathered by a newly designed phenomic platform with the over six millions single nucleotide polymorphic (SNP) loci distributed across the genomes of 417 Arabidopsis natural variants collected from various geographical regions revealed 33 candidate cold responsive genes. RESULTS Investigation of at least two independent insertion mutants for 29 genes identified 16 chilling tolerance genes governing diverse genetic mechanisms. Five of these genes encode novel leucine-rich repeat domain-containing proteins including three nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins. Among the 16 identified chilling tolerance genes, ADS2 and ACD6 are the only two chilling tolerance genes identified earlier. DISCUSSION The 12.5% overlap between the genes identified in this genome-wide association study (GWAS) of natural variants with those discovered previously through forward and reverse genetic approaches suggests that chilling tolerance is a complex physiological process governed by a large number of genetic mechanisms.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Chinmay Hegde
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
88
|
MacWilliams JR, D Nabity P, Mauck KE, Kaloshian I. Transcriptome analysis of aphid-resistant and susceptible near isogenic lines reveals candidate resistance genes in cowpea (Vigna unguiculata). BMC PLANT BIOLOGY 2023; 23:22. [PMID: 36631779 PMCID: PMC9832699 DOI: 10.1186/s12870-022-04021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cowpea (Vigna unguiculata) is a crucial crop for regions of the world that are prone to both heat and drought; however, the phytotoxic cowpea aphid (Aphis craccivora) impairs plant physiology at low population levels. Both antibiotic and antixenotic forms of resistance to the aphid have been mapped to two quantitative trait loci (QTLs) and near isogenic lines (NILs). The molecular mechanism for this resistance response remains unknown. RESULTS To understand the genes underlying susceptibility and resistance, two cowpea lines with shared heritage were infested along a time course and characterized for transcriptome variation. Aphids remodeled cowpea development and signaling relative to host plant resistance and the duration of feeding, with resource acquisition and mobilization determining, in part, susceptibility to aphid attack. Major differences between the susceptible and resistant cowpea were identified including two regions of interest housing the most genetic differences between the lines. Candidate genes enabling aphid resistance include both conventional resistance genes (e.g., leucine rich repeat protein kinases) as well as multiple novel genes with no known orthologues. CONCLUSIONS Our results demonstrate that feeding by the cowpea aphid globally remodels the transcriptome of cowpea, but how this occurs depends on both the duration of feeding and host-plant resistance. Constitutive expression profiles of the resistant genotype link aphid resistance to a finely-tuned resource management strategy that ultimately reduces damage (e.g., chlorosis) and delays cell turnover, while impeding aphid performance. Thus, aphid resistance in cowpea is a complex, multigene response that involves crosstalk between primary and secondary metabolism.
Collapse
Affiliation(s)
- Jacob R MacWilliams
- Graduate Program in Biochemistry and Molecular Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Paul D Nabity
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA.
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, 92521, USA.
| | - Kerry E Mauck
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, 92521, USA
- Department of Entomology, University of California Riverside, Riverside, CA, 92521, USA
| | - Isgouhi Kaloshian
- Graduate Program in Biochemistry and Molecular Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Nematology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
89
|
Hu XL, You C, Zhu K, Li X, Gong J, Ma H, Sun X. Nanopore long-read RNAseq reveals transcriptional variations in citrus species. FRONTIERS IN PLANT SCIENCE 2023; 13:1077797. [PMID: 36684788 PMCID: PMC9845879 DOI: 10.3389/fpls.2022.1077797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The number of studies on plant transcriptomes using ONT RNAseq technology is rapidly increasing in recent. It is a powerful method to decipher transcriptomic complexity, particularly alternative splicing (AS) event detection. Citrus plants are the most important widely grown fruit crops. Exploring different AS events in citrus contributes to transcriptome improvement and functional genome study. Here, we performed ONT RNAseq in 9 species (Atalantia buxifolia, Citrus clementina, C. grandis, C. ichangensis, C. reticulata, C. sinensis, Clausena lansium, Fortunella hindsii, and Poncirus trifoliata), accompanied with Illumina sequencing. Non-redundant full-length isoforms were identified between 41,957 and 76,974 per species. Systematic analysis including different types of isoforms, number of isoforms per gene locus, isoform distribution, ORFs and lncRNA prediction and functional annotation were performed mainly focused on novel isoforms, unraveling the capability of novel isoforms detection and characterization. For AS events prediction, A3, RI, and AF were overwhelming types across 9 species. We analyzed isoform similarity and evolutionary relationships in all species. We identified that multiple isoforms derived from orthologous single copy genes among different species were annotated as enzymes, nuclear-related proteins or receptors. Isoforms with extending sequences on 5', 3', or both compared with reference genome were filtered out to provide information for transcriptome improvement. Our results provide novel insight into comprehending complex transcriptomes in citrus and valuable information for further investigation on the function of genes with diverse isoforms.
Collapse
Affiliation(s)
- Xiao-Li Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Congjun You
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
90
|
Chirinos X, Ying S, Rodrigues MA, Maza E, Djari A, Hu G, Liu M, Purgatto E, Fournier S, Regad F, Bouzayen M, Pirrello J. Transition to ripening in tomato requires hormone-controlled genetic reprogramming initiated in gel tissue. PLANT PHYSIOLOGY 2023; 191:610-625. [PMID: 36200876 PMCID: PMC9806557 DOI: 10.1093/plphys/kiac464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Ripening is the last stage of the developmental program in fleshy fruits. During this phase, fruits become edible and acquire their unique sensory qualities and post-harvest potential. Although our knowledge of the mechanisms that regulate fruit ripening has improved considerably over the past decades, the processes that trigger the transition to ripening remain poorly deciphered. While transcriptomic profiling of tomato (Solanum lycopersicum L.) fruit ripening to date has mainly focused on the changes occurring in pericarp tissues between the Mature Green and Breaker stages, our study addresses the changes between the Early Mature Green and Late Mature Green stages in the gel and pericarp separately. The data showed that the shift from an inability to initiate ripening to the capacity to undergo full ripening requires extensive transcriptomic reprogramming that takes place first in the locular tissues before extending to the pericarp. Genome-wide transcriptomic profiling revealed the wide diversity of transcription factor (TF) families engaged in the global reprogramming of gene expression and identified those specifically regulated at the Mature Green stage in the gel but not in the pericarp, thereby providing potential targets toward deciphering the initial factors and events that trigger the transition to ripening. The study also uncovered an extensive reformed homeostasis for most plant hormones, highlighting the multihormonal control of ripening initiation. Our data unveil the antagonistic roles of ethylene and auxin during the onset of ripening and show that auxin treatment delays fruit ripening via impairing the expression of genes required for System-2 autocatalytic ethylene production that is essential for climacteric ripening. This study unveils the detailed features of the transcriptomic reprogramming associated with the transition to ripening of tomato fruit and shows that the first changes occur in the locular gel before extending to pericarp and that a reformed auxin homeostasis is essential for the ripening to proceed.
Collapse
Affiliation(s)
| | | | - Maria Aurineide Rodrigues
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
- Institute of Biosciences, Department of Botany, Universidade de São Paulo, São Paulo, 11461 Brazil
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Guojian Hu
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sylvie Fournier
- Metatoul-AgromiX platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Farid Regad
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | | |
Collapse
|
91
|
Luo Y, Liu W, Sun J, Zhang ZR, Yang WC. Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome. J Genet Genomics 2023; 50:7-19. [PMID: 35470091 DOI: 10.1016/j.jgg.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plant-rhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation. Here, we report a comprehensive proteome atlas of the soybean symbiosome membrane (SM), peribacteroid space (PBS), and root microsomal fraction (RMF) using state-of-the-art label-free quantitative proteomic technology. In total, 1759 soybean proteins with diverse functions are detected in the SM, and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS. The diversity of SM proteins detected suggests multiple origins of the SM. Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM, indicative of the key pathways in nitrogen assimilation. The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface. Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved, and suggest approaches for symbiosis engineering.
Collapse
Affiliation(s)
- Yu Luo
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Liu
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Sun
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Rong Zhang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
92
|
Gouesbet G. Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. Methods Mol Biol 2023; 2642:257-294. [PMID: 36944884 DOI: 10.1007/978-1-0716-3044-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plant functioning and responses to abiotic stresses largely involve regulations at the transcriptomic level via complex interactions of signal molecules, signaling cascades, and regulators. Nevertheless, all the signaling networks involved in responses to abiotic stresses have not yet been fully established. The in-depth analysis of transcriptomes in stressed plants has become a relevant state-of-the-art methodology to study these regulations and signaling pathways that allow plants to cope with or attempt to survive abiotic stresses. The plant science and molecular biology community has developed databases about genes, proteins, protein-protein interactions, protein-DNA interactions and ontologies, which are valuable sources of knowledge for deciphering such regulatory and signaling networks. The use of these data and the development of bioinformatics tools help to make sense of transcriptomic data in specific contexts, such as that of abiotic stress signaling, using functional biological approaches. The aim of this chapter is to present and assess some of the essential online tools and resources that will allow novices in bioinformatics to decipher transcriptomic data in order to characterize the cellular processes and functions involved in abiotic stress responses and signaling. The analysis of case studies further describes how these tools can be used to conceive signaling networks on the basis of transcriptomic data. In these case studies, particular attention was paid to the characterization of abiotic stress responses and signaling related to chemical and xenobiotic stressors.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)] - UMR 6553, Rennes, France.
| |
Collapse
|
93
|
Rao X, Cheng N, Mathew IE, Hirschi KD, Nakata PA. Crucial role of Arabidopsis glutaredoxin S17 in heat stress response revealed by transcriptome analysis. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:58-70. [PMID: 36099929 DOI: 10.1071/fp22002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Heat stress can have detrimental effects on plant growth and development. However, the mechanisms by which the plant is able to perceive changes in ambient temperature, transmit this information, and initiate a temperature-induced response are not fully understood. Previously, we showed that heterologous expression of an Arabidopsis thaliana L. monothiol glutaredoxin AtGRXS17 enhances thermotolerance in various crops, while disruption of AtGRXS17 expression caused hypersensitivity to permissive temperature. In this study, we extend our investigation into the effect of AtGRXS17 and heat stress on plant growth and development. Although atgrxs17 plants were found to exhibit a slight decrease in hypocotyl elongation, shoot meristem development, and root growth compared to wild-type when grown at 22°C, these growth phenotypic differences became more pronounced when growth temperatures were raised to 28°C. Transcriptome analysis revealed significant changes in genome-wide gene expression in atgrxs17 plants compared to wild-type under conditions of heat stress. The expression of genes related to heat stress factors, auxin response, cellular communication, and abiotic stress were altered in atgrxs17 plants in response to heat stress. Overall, our findings indicate that AtGRXS17 plays a critical role in controlling the transcriptional regulation of plant heat stress response pathways.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| | - Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Iny E Mathew
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
94
|
Tu M, Zeng J, Zhang J, Fan G, Song G. Unleashing the power within short-read RNA-seq for plant research: Beyond differential expression analysis and toward regulomics. FRONTIERS IN PLANT SCIENCE 2022; 13:1038109. [PMID: 36570898 PMCID: PMC9773216 DOI: 10.3389/fpls.2022.1038109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
RNA-seq has become a state-of-the-art technique for transcriptomic studies. Advances in both RNA-seq techniques and the corresponding analysis tools and pipelines have unprecedently shaped our understanding in almost every aspects of plant sciences. Notably, the integration of huge amount of RNA-seq with other omic data sets in the model plants and major crop species have facilitated plant regulomics, while the RNA-seq analysis has still been primarily used for differential expression analysis in many less-studied plant species. To unleash the analytical power of RNA-seq in plant species, especially less-studied species and biomass crops, we summarize recent achievements of RNA-seq analysis in the major plant species and representative tools in the four types of application: (1) transcriptome assembly, (2) construction of expression atlas, (3) network analysis, and (4) structural alteration. We emphasize the importance of expression atlas, coexpression networks and predictions of gene regulatory relationships in moving plant transcriptomes toward regulomics, an omic view of genome-wide transcription regulation. We highlight what can be achieved in plant research with RNA-seq by introducing a list of representative RNA-seq analysis tools and resources that are developed for certain minor species or suitable for the analysis without species limitation. In summary, we provide an updated digest on RNA-seq tools, resources and the diverse applications for plant research, and our perspective on the power and challenges of short-read RNA-seq analysis from a regulomic point view. A full utilization of these fruitful RNA-seq resources will promote plant omic research to a higher level, especially in those less studied species.
Collapse
Affiliation(s)
- Min Tu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
95
|
Badmi R, Tengs T, Brurberg MB, Elameen A, Zhang Y, Haugland LK, Fossdal CG, Hytönen T, Krokene P, Thorstensen T. Transcriptional profiling of defense responses to Botrytis cinerea infection in leaves of Fragaria vesca plants soil-drenched with β-aminobutyric acid. FRONTIERS IN PLANT SCIENCE 2022; 13:1025422. [PMID: 36570914 PMCID: PMC9772985 DOI: 10.3389/fpls.2022.1025422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Grey mold caused by the necrotrophic fungal pathogen Botrytis cinerea can affect leaves, flowers, and berries of strawberry, causing severe pre- and postharvest damage. The defense elicitor β-aminobutyric acid (BABA) is reported to induce resistance against B. cinerea and many other pathogens in several crop plants. Surprisingly, BABA soil drench of woodland strawberry (Fragaria vesca) plants two days before B. cinerea inoculation caused increased infection in leaf tissues, suggesting that BABA induce systemic susceptibility in F. vesca. To understand the molecular mechanisms involved in B. cinerea susceptibility in leaves of F. vesca plants soil drenched with BABA, we used RNA sequencing to characterize the transcriptional reprogramming 24 h post-inoculation. The number of differentially expressed genes (DEGs) in infected vs. uninfected leaf tissue in BABA-treated plants was 5205 (2237 upregulated and 2968 downregulated). Upregulated genes were involved in pathogen recognition, defense response signaling, and biosynthesis of secondary metabolites (terpenoid and phenylpropanoid pathways), while downregulated genes were involved in photosynthesis and response to auxin. In control plants not treated with BABA, we found a total of 5300 DEGs (2461 upregulated and 2839 downregulated) after infection. Most of these corresponded to those in infected leaves of BABA-treated plants but a small subset of DEGs, including genes involved in 'response to biologic stimulus', 'photosynthesis' and 'chlorophyll biosynthesis and metabolism', differed significantly between treatments and could play a role in the induced susceptibility of BABA-treated plants.
Collapse
Affiliation(s)
- Raghuram Badmi
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - May Bente Brurberg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Abdelhameed Elameen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Yupeng Zhang
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Lisa Karine Haugland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Carl Gunnar Fossdal
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Genetics, Genomics and Breeding, National Institute of Agricultural Botany- East Malling Research Station, East Malling, United Kingdom
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Tage Thorstensen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
96
|
Cervantes-Pérez SA, Thibivilliers S, Laffont C, Farmer AD, Frugier F, Libault M. Cell-specific pathways recruited for symbiotic nodulation in the Medicago truncatula legume. MOLECULAR PLANT 2022; 15:1868-1888. [PMID: 36321199 DOI: 10.1016/j.molp.2022.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots. A gene expression map of the Medicago root was generated, comprising 25 clusters, which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes. A focus on root hair, cortex, endodermis, and pericycle cell types, showing the strongest differential regulation in response to a short-term (48 h) rhizobium inoculation, revealed not only known genes and functional pathways, validating the sNucRNA-seq approach, but also numerous novel genes and pathways, allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
97
|
Kendrick R, Chotewutmontri P, Belcher S, Barkan A. Correlated retrograde and developmental regulons implicate multiple retrograde signals as coordinators of chloroplast development in maize. THE PLANT CELL 2022; 34:4897-4919. [PMID: 36073948 PMCID: PMC9709983 DOI: 10.1093/plcell/koac276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/02/2022] [Indexed: 05/09/2023]
Abstract
Signals emanating from chloroplasts influence nuclear gene expression, but roles of retrograde signals during chloroplast development are unclear. To address this gap, we analyzed transcriptomes of non-photosynthetic maize mutants and compared them to transcriptomes of stages of normal leaf development. The transcriptomes of two albino mutants lacking plastid ribosomes resembled transcriptomes at very early stages of normal leaf development, whereas the transcriptomes of two chlorotic mutants with thylakoid targeting or plastid transcription defects resembled those at a slightly later stage. We identified ∼2,700 differentially expressed genes, which fall into six major categories based on the polarity and mutant-specificity of the change. Downregulated genes were generally expressed late in normal development and were enriched in photosynthesis genes, whereas upregulated genes act early and were enriched for functions in chloroplast biogenesis and cytosolic translation. We showed further that target-of-rapamycin (TOR) signaling was elevated in mutants lacking plastid ribosomes and declined in concert with plastid ribosome buildup during normal leaf development. Our results implicate three plastid signals as coordinators of photosynthetic differentiation. One signal requires plastid ribosomes and activates photosynthesis genes. A second signal reflects attainment of chloroplast maturity and represses chloroplast biogenesis genes. A third signal, the consumption of nutrients by developing chloroplasts, represses TOR, promoting termination of cell proliferation during leaf development.
Collapse
Affiliation(s)
- Rennie Kendrick
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
98
|
Tirnaz S, Zandberg J, Thomas WJW, Marsh J, Edwards D, Batley J. Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies. FRONTIERS IN PLANT SCIENCE 2022; 13:1008904. [PMID: 36466237 PMCID: PMC9712971 DOI: 10.3389/fpls.2022.1008904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
Global agricultural industries are under pressure to meet the future food demand; however, the existing crop genetic diversity might not be sufficient to meet this expectation. Advances in genome sequencing technologies and availability of reference genomes for over 300 plant species reveals the hidden genetic diversity in crop wild relatives (CWRs), which could have significant impacts in crop improvement. There are many ex-situ and in-situ resources around the world holding rare and valuable wild species, of which many carry agronomically important traits and it is crucial for users to be aware of their availability. Here we aim to explore the available ex-/in- situ resources such as genebanks, botanical gardens, national parks, conservation hotspots and inventories holding CWR accessions. In addition we highlight the advances in availability and use of CWR genomic resources, such as their contribution in pangenome construction and introducing novel genes into crops. We also discuss the potential and challenges of modern breeding experimental approaches (e.g. de novo domestication, genome editing and speed breeding) used in CWRs and the use of computational (e.g. machine learning) approaches that could speed up utilization of CWR species in breeding programs towards crop adaptability and yield improvement.
Collapse
|
99
|
De-la-Cruz IM, Kariñho-Betancourt E, Núñez-Farfán J, Oyama K. Gene family evolution and natural selection signatures in Datura spp. (Solanaceae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.916762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Elucidating the diversification process of congeneric species makes it necessary to identify the factors promoting species variation and diversification. Comparative gene family analysis allows us to elucidate the evolutionary history of species by identifying common genetic/genomic mechanisms underlying species responses to biotic and abiotic environments at the genomic level. In this study, we analyzed the high-quality transcriptomes of four Datura species, D. inoxia, D. pruinosa, D. stramonium, and D. wrightii. We performed a thorough comparative gene family analysis to infer the role of selection in molecular variation, changes in protein physicochemical properties, and gain/loss of genes during their diversification processes. The results revealed common and species-specific signals of positive selection, physicochemical divergence and/or expansion of metabolic genes (e.g., transferases and oxidoreductases) associated with terpene and tropane metabolism and some resistance genes (R genes). The gene family analysis presented here is a valuable tool for understanding the genome evolution of economically and ecologically significant taxa such as the Solanaceae family.
Collapse
|
100
|
Effect of the Interaction between Elevated Carbon Dioxide and Iron Limitation on Proteomic Profiling of Soybean. Int J Mol Sci 2022; 23:ijms232113632. [DOI: 10.3390/ijms232113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Elevated atmospheric CO2 (eCO2) and iron (Fe) availability are important factors affecting plant growth that may impact the proteomic profile of crop plants. In this study, soybean plants treated under Fe-limited (0.5 mM) and Fe-sufficient (20 mM) conditions were grown at ambient (400 μmol mol−1) and eCO2 (800 μmol mol−1) in hydroponic solutions. Elevated CO2 increased biomass from 2.14 to 3.14 g plant−1 and from 1.18 to 2.91 g plant−1 under Fe-sufficient and Fe-limited conditions, respectively, but did not affect leaf photosynthesis. Sugar concentration increased from 10.92 to 26.17 μmol g FW−1 in roots of Fe-sufficient plants and from 8.75 to 19.89 μmol g FW−1 of Fe-limited plants after exposure to eCO2. In leaves, sugar concentration increased from 33.62 to 52.22 μmol g FW−1 and from 34.80 to 46.70 μmol g FW−1 in Fe-sufficient and Fe-limited conditions, respectively, under eCO2. However, Fe-limitation decreases photosynthesis and biomass. Pathway enrichment analysis showed that cell wall organization, glutathione metabolism, photosynthesis, stress-related proteins, and biosynthesis of secondary compounds changed in root tissues to cope with Fe-stress. Moreover, under eCO2, at sufficient or limited Fe supply, it was shown an increase in the abundance of proteins involved in glycolysis, starch and sucrose metabolism, biosynthesis of plant hormones gibberellins, and decreased levels of protein biosynthesis. Our results revealed that proteins and metabolic pathways related to Fe-limitation changed the effects of eCO2 and negatively impacted soybean production.
Collapse
|