51
|
Hussain Z, Ullah S, Yan J, Wang Z, Ullah I, Ahmad Z, Zhang Y, Cao Y, Wang L, Mansoorianfar M, Pei R. Electrospun tannin-rich nanofibrous solid-state membrane for wastewater environmental monitoring and remediation. CHEMOSPHERE 2022; 307:135810. [PMID: 35932921 DOI: 10.1016/j.chemosphere.2022.135810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal, organic dyes, and bacterial contamination in water endanger human/animals' health, and therefore, the detection, adsorption, and capturing of contaminants are essential for environmental safety. Ligand-rich membranes are promising for sensors, adsorption, and bacterial decontamination. Herein, tannin (TA)-reinforced 3-aminopropyltriethoxysilane (APTES) crosslinked polycaprolactone (PCL) based nanofibrous membrane (PCL-TA-APTES) was fabricated via electrospinning. PCL-TA-APTES nanofibers possess superior thermal, mechanical, structural, chemical, and aqueous stability properties than the un-crosslinked membrane. It changed its color from yellowish to black in response to Fe2+/3+ ions due to supramolecular iron-tannin network (FeTA) interaction. Such selective sensing has been noticed after adsorption-desorption cycles. Fe3+ concentration, solution pH, contact time, and ligand concentration influence FeTA coordination. Under optimized conditions followed by image processing, the introduced membrane showed a colorimetric linear relationship against Fe3+ ions (16.58 μM-650 μM) with a limit of detection of 5.47 μM. The PCL-FeTA-APTES membrane could restrain phenolic group oxidation and result in a partial water-insoluble network. The adsorption filtration results showed that the PCL-FeTA-APTES membrane can be reused and had a higher methylene blue adsorption (32.04 mg/g) than the PCL-TA-APTES membrane (14.96 mg/g). The high capture efficiency of nanocomposite against Fe3+-based S. aureus suspension than Fe3+-free suspension demonstrated that Fe3+-bounded bacterium adhered to the nanocomposite through Fe3+/TA-dependent biointerface interactions. Overall, high surface area, rich phenolic ligand, porous microstructure, and super-wetting properties expedite FeTA coordination in the nanocomposite, crucial for Fe2+/3+ ions sensing, methylene blue adsorption-filtration, and capturing of Fe3+-bounded bacterium. These multifunctional properties could promise nanocomposite membrane practicability in wastewater and environmental protection.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zhili Wang
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Ismat Ullah
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zia Ahmad
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Ye Zhang
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yi Cao
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Mojtaba Mansoorianfar
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China.
| |
Collapse
|
52
|
Ultrasensitive Detection of Cu(II) and Pb(II) Using a Water-Soluble Perylene Probe. Molecules 2022; 27:molecules27207079. [PMID: 36296672 PMCID: PMC9608940 DOI: 10.3390/molecules27207079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
The selective detection of metal ions in water, using sustainable detection systems, is of crescent importance for monitoring water environments and drinking water safety. One of the key elements of future chemical sciences is the use of sustainable approaches in the design of new materials. In this study, we design and synthesize a low-cost, water-soluble potassium salt of 3,4,9,10-perylene tetracarboxylic acid (PTAS), which shows a selective optical response on the addition of Cu2+ and Pb2+ ions in aqueous solutions. By using a water-soluble chromophore, the interactions with the metal ions are definitely more intimate and efficient, with respect to standard methods employing cosolvents. The detection limits of PTAS for both Cu2+ and Pb2+ are found to be 2 µM by using a simple absorbance mode, and even lower (1 μM) with NMR experiments, indicating that this analyte–probe system is sensitive enough for the detection of copper ions in drinking water and lead ions in waste water. The complexation of PTAS with both ions is supported with NMR studies, which reveal the formation of new species between PTAS and analytes. By combining a low-cost water-soluble chromophore with efficient analyte–probe interactions due to the use of aqueous solutions, the results here obtained provide a basis for designing sustainable sensing systems.
Collapse
|
53
|
Li Z, Lin H, Wang L, Cao L, Sui J, Wang K. Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156515. [PMID: 35667437 DOI: 10.1016/j.scitotenv.2022.156515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the irrational use of agrochemicals has caused great harm to the environment and public health. Along with the rapid development of optical technology and nanotechnology, the research of optical sensing methods in agrochemical detection has been developed rapidly owing to its advantages of simplicity, fast response, and cost-effectiveness. In this review, the strategies of employing optical systems based on colorimetric sensor, fluorescence, chemiluminescence, terahertz spectroscopy, surface plasmon resonance, and surface-enhanced Raman spectroscopy for sensing agrochemicals were summarized. In addition, the challenges in the practical application of optical sensing technologies for agrochemical detection were discussed in-depth, and potential future trends and prospects of these techniques were addressed. A variety of nanomaterials have been developed for enhancing the sensitivity of optical sensing systems. The optical properties of nanomaterials are governed by their size, shape, and chemical structure. Although each optical sensing system holds its advantages, there are still many challenges that need to be overcome in practical applications. With the continuous developments in novel functional nanomaterials, sample preparation methods, and spectral processing algorithms, optical sensors are expected to have powerful potential for rapid testing of agrochemicals in the environment and foods.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China.
| |
Collapse
|
54
|
Huang X, Feng B, Liu M, Liu Z, Li S, Zeng W. Preclinical detection of lysophosphatidic acid: A new window for ovarian cancer diagnostics. Talanta 2022; 247:123561. [DOI: 10.1016/j.talanta.2022.123561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/17/2022]
|
55
|
Catalase-mimicking synthetic nano-enzymes can reduce lipopolysaccharide-induced reactive oxygen generation and promote rapid detection of hydrogen peroxide and l-cysteine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
56
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
57
|
Du Y, Ke Z, Zhang J, Feng G. Dual-signal output paper sensor based on coordinative self-assembly biomimetic nanozyme for point-of-care detection of biomarker. Biosens Bioelectron 2022; 216:114656. [DOI: 10.1016/j.bios.2022.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
|
58
|
Anselmo S, De Luca G, Ferrara V, Pignataro B, Sancataldo G, Vetri V. Insight into mechanisms of creatinine optical sensing using fluorescein-gold complex. Methods Appl Fluoresc 2022; 10. [PMID: 35901805 DOI: 10.1088/2050-6120/ac8524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022]
Abstract
Creatinine level in biological fluids is a clinically relevant parameter to monitor vital functions and it is well assessed that measuring creatinine levels in the human body can be of great utility to evaluate renal, muscular, or thyroid dysfunctions. The accurate detection of creatinine levels may have a critical role in providing information on health status and represents a tool for the early diagnosis of severe pathologies. Among different methods for creatinine detection that have been introduced and that are evolving with increasing speed, fluorescence-based and colorimetric sensors represent one of the best alternatives, thanks to their affordability, sensitivity and easy readability. In this work, we demonstrate that the fluorescein-Au3+ complex provides a rapid, selective, and sensitive tool for the quantification of creatinine concentrations in ranges typical of sweat and urine. UV-visible absorption, diffuse reflectance spectroscopy, steady state and time resolved fluorescence spectroscopy were used to shed light on the molecular mechanisms involved in the changes of optical properties, which underlie the multiplexed sensor analytical reply. Interestingly, sensing can be performed in solution or on solid nylon support accessing different physiological concentrations from micromolar to millimolar range. As a proof-of-concept, the nylon-based platform was used to demonstrate its effectiveness in creatinine detection on a solid and flexible substrate, showing its analytical colorimetric properties as an easy and disposable creatinine point-of-care test.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Giuseppe De Luca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, viale delle Scienze ed. 16, Palermo, 90128, ITALY
| | - Vittorio Ferrara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica, University of Palermo, viale delle Scienze ed. 18, Palermo, Sicilia, 90128, ITALY
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| |
Collapse
|
59
|
Abstract
In recent years, wearable sensors have enabled the unique mode of real-time and noninvasive monitoring to develop rapidly in medical care, sports, and other fields. Sweat contains a wide range of biomarkers such as metabolites, electrolytes, and various hormones. Combined with wearable technology, sweat can reflect human fatigue, disease, mental stress, dehydration, and so on. This paper comprehensively describes the analysis of sweat components such as glucose, lactic acid, electrolytes, pH, cortisol, vitamins, ethanol, and drugs by wearable sensing technology, and the application of sweat wearable devices in glasses, patches, fabrics, tattoos, and paper. The development trend of sweat wearable devices is prospected. It is believed that if the sweat collection, air permeability, biocompatibility, sensing array construction, continuous monitoring, self-healing technology, power consumption, real-time data transmission, specific recognition, and other problems of the wearable sweat sensor are solved, we can provide the wearer with important information about their health level in the true sense.
Collapse
|
60
|
Miskovic V, Malafronte E, Minetti C, Machrafi H, Varon C, Iorio CS. Thermotropic Liquid Crystals for Temperature Mapping. Front Bioeng Biotechnol 2022; 10:806362. [PMID: 35646874 PMCID: PMC9133408 DOI: 10.3389/fbioe.2022.806362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wound management in Space is an important factor to be considered in future Human Space Exploration. It demands the development of reliable wound monitoring systems that will facilitate the assessment and proper care of wounds in isolated environments, such as Space. One possible system could be developed using liquid crystal films, which have been a promising solution for real-time in-situ temperature monitoring in healthcare, but they are not yet implemented in clinical practice. To progress in the latter, the goal of this study is twofold. First, it provides a full characterization of a sensing element composed of thermotropic liquid crystals arrays embedded between two elastomer layers, and second, it discusses how such a system compares against non-local infrared measurements. The sensing element evaluated here has an operating temperature range of 34–38°C, and a quick response time of approximately 0.25 s. The temperature distribution of surfaces obtained using this system was compared to the one obtained using the infrared thermography, a technique commonly used to measure temperature distributions at the wound site. This comparison was done on a mimicked wound, and results indicate that the proposed sensing element can reproduce the temperature distributions, similar to the ones obtained using infrared imaging. Although there is a long way to go before implementing the liquid crystal sensing element into clinical practice, the results of this work demonstrate that such sensors can be suitable for future wound monitoring systems.
Collapse
Affiliation(s)
- Vanja Miskovic
- Service Chimie-Physique, Université Libre de Bruxelles, Brussels, Belgium
- *Correspondence: Vanja Miskovic,
| | - Elena Malafronte
- Service Chimie-Physique, Université Libre de Bruxelles, Brussels, Belgium
| | - Christophe Minetti
- Service Chimie-Physique, Université Libre de Bruxelles, Brussels, Belgium
| | - Hatim Machrafi
- Service Chimie-Physique, Université Libre de Bruxelles, Brussels, Belgium
- GIGA-In Silico Medicine, Université de Liége, Liège, Belgium
| | - Carolina Varon
- Service Chimie-Physique, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
61
|
Liang X, Du X, Liu A, Cai Z, Li J, Zhang M, Wang Q, Zeng J. Au/Ag2S dimeric nanostructures for highly specific plasmonic sensing of mercury(II). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
62
|
Zhu W, Hao N, Chen C, Qiu Y, Zuo Y, Wei J, Qian J, Wang K. Hierarchical Regulation of LaMnO 3 Dual-Pathway Strategy for Excellent Room-Temperature Organocatalytic Oxidation Performance. Inorg Chem 2022; 61:7459-7466. [PMID: 35486826 DOI: 10.1021/acs.inorgchem.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The performance-enhancing strategy of a single pathway for perovskite has been widely studied. In this work, the dual-pathway strategy of A-site Ce substitution and nitric acid selective dissolution was proposed. The catalytic oxidation performance of LaMnO3 exhibits the characteristic of hierarchical regulation, that is, a steplike improvement, which avoids the limitation of performance improvement of the single pathway. The B-site Mn with catalytic activity was in situ reconstituted on the surface to build a Mn-rich surface. The obtained sdLa0.7Ce0.3MnO3 has the advantages of good oxygen mobility, high Mn4+/Mn3+ molar ratio, and large specific surface area, and this material showed excellent catalytic oxidation performance for organics, which can realize colorimetric chemical oxygen demand detection at room temperature. Here, Ce substitution improved the oxidation capacity by improving the oxygen mobility and the ratio of Mn4+/Mn3+, and further nitric acid treatment not only accelerated the in situ reconstruction of B-site Mn but also increased the specific surface area.
Collapse
Affiliation(s)
- Weiran Zhu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chen Chen
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yu Qiu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanli Zuo
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Wei
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
63
|
Adsorptive colorimetric determination of chromium(VI) ions at ultratrace levels using amine functionalized mesoporous silica. Sci Rep 2022; 12:5673. [PMID: 35383234 PMCID: PMC8983689 DOI: 10.1038/s41598-022-09689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022] Open
Abstract
There is an urgent need for a rapid, affordable and sensitive analytical method for periodic monitoring of heavy metals in water bodies. Herein, we report for the first time a versatile method for ultratrace level metal detection based on colorimetric sensing. The method integrates preconcentration using a nanomaterial with a colorimetric assay performed directly on the metal-enriched nanomaterial surface. This method circumvents the need for tedious sample pre-processing steps and the complex development of colorimetric probes, thereby reducing the complexity of the analytical procedure. The efficacy of the proposed method was demonstrated for chromium(VI) ions detection in water samples. Amine functionalized mesoporous silica (AMS) obtained from a one-pot synthesis was utilized as a pre-concentration material. The structural and chemical analysis of AMS was conducted to confirm its physico-chemical properties. The pre-concentration conditions were optimized to maximise the colorimetric signal. AMS exhibited a discernible colour change from white to purple (visible to the naked eye) for trace Cr(VI) ions concentration as low as 0.5 μg L-1. This method shows high selectivity for Cr(VI) ions with no colorimetric signal from other metal ions. We believe our method of analysis has a high scope for de-centralized monitoring of organic/inorganic pollutants in resource-constrained settings.
Collapse
|
64
|
Marimuthu M, Arumugam SS, Jiao T, Sabarinathan D, Li H, Chen Q. Metal organic framework based sensors for the detection of food contaminants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
65
|
Alharbi KH. A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn(II) Ions. Crit Rev Anal Chem 2022; 53:1472-1488. [PMID: 35108139 DOI: 10.1080/10408347.2022.2033611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Organic compounds display several electronic and structural features which enable their application in various fields, ranging from biological to non-biological. These compounds contain heteroatoms like sulfur, nitrogen and, oxygen, which provide coordination sites to act as ligands in the field of coordination chemistry and are used as chemosensors to detect various metal ions. This review article covers different organic compounds including Schiff bases, thiourea, pyridine, rhodamine, triazole, pyrene, coumarin, imidazole, diaminomaleonitrile, naphthoxazole, pyrimidine, thiophene, thioether, and other functional groups based chemosensors that contain heteroatoms like sulfur, nitrogen and, oxygen for fluorimetric and colorimetric detection of Zn(II) ions in different environmental, agricultural, and biological samples. Further, the sensing performances of these chemosensors have been compared and discussed which could help the readers for the future design of organic fluorescent and colorimetric chemosensors for the detection of Zn(II) ions. We hope this study will support the new thoughts to design a simple, efficient, selective, and sensitive chemosensor for the detection of Zn(II) ions in different samples (environmental, agricultural, and biological).
Collapse
Affiliation(s)
- Khadijah H Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
66
|
Sherazi STH, Mahesar SA, Sirajuddin, Yu X. Role of Capping Agent for the Colorimetric and Fluorescent Sensing of
Different Materials Using Metal Nanoparticles. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210617092818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The selection of capping agent depends on the method of synthesis, nature
of nanoparticles (NPs), and type of the compounds to be analyzed. Therefore, different types of
capping agents such as surfactants, drugs, amino acids, fatty acids, and polymers are used to increase
stability of NPs, avoid aggregation, keep NPs away from one another, thereby achieving
desired morphology as well as the size of NPs.
Introduction:
Recently, the fabrication of NPs has been extensively carried out using synthetic
chemical routes in a wide range of materials. In this review, a comprehensive assessment of the
colorimetric and fluorescent sensing of metal nanoparticles using different capped agents, such as
surfactants, drugs, amino acids, fatty acids, and polymers has been summarized for the present and
future strategies.
Method:
For the synthesis of metal nanoparticles, different methods, metals, and a variety of capping
agents are used to obtain new properties and explore opportunities for innovative applications.
Result:
Capping agents perform their significant role as stabilizers to avoid the over-growth and
coagulation of nanoparticles.
Conclusion:
Capping agents play an essential role in the colorimetric and fluorescent sensing of
metal nanoparticles for particular analytes.
Collapse
Affiliation(s)
| | - Sarfaraz Ahmed Mahesar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Pakistan
| | - Sirajuddin
- HEJ Research
Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi
75270, Pakistan
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling
712100, Shaanxi, P. R. China
| |
Collapse
|
67
|
Development of Hybrid DNA-Copper Phosphate Nanoflowers as Peroxidase Enzyme Mimics and for Colorimetric Sensing of Phenol. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
68
|
Konoplev G, Agafonova D, Bakhchova L, Mukhin N, Kurachkina M, Schmidt MP, Verlov N, Sidorov A, Oseev A, Stepanova O, Kozyrev A, Dmitriev A, Hirsch S. Label-Free Physical Techniques and Methodologies for Proteins Detection in Microfluidic Biosensor Structures. Biomedicines 2022; 10:207. [PMID: 35203416 PMCID: PMC8868674 DOI: 10.3390/biomedicines10020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays. In contrast to universally accepted analytical methods involving protein labeling, label-free approaches often allow the development of biosensors with minimal requirements for sample preparation by omitting expensive labelling reagents. The aim of the present work is to review the variety of physical label-free techniques of protein detection and characterization which are suitable for application in micro-fluidic structures and analyze the technological and material aspects of label-free biosensors that implement these methods. The most widely used optical and impedance spectroscopy techniques: absorption, fluorescence, surface plasmon resonance, Raman scattering, and interferometry, as well as new trends in photonics are reviewed. The challenges of materials selection, surfaces tailoring in microfluidic structures, and enhancement of the sensitivity and miniaturization of biosensor systems are discussed. The review provides an overview for current advances and future trends in microfluidics integrated technologies for label-free protein biomarkers detection and discusses existing challenges and a way towards novel solutions.
Collapse
Affiliation(s)
- Georgii Konoplev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Darina Agafonova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Liubov Bakhchova
- Institute for Automation Technology, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
| | - Nikolay Mukhin
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marharyta Kurachkina
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marc-Peter Schmidt
- Faculty of Electrical Engineering, University of Applied Sciences Dresden, 01069 Dresden, Germany;
| | - Nikolay Verlov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, National Research Centre Kurchatov Institute, 188300 Gatchina, Russia;
| | - Alexander Sidorov
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Fuculty of Photonics, ITMO University, 197101 Saint Petersburg, Russia
| | - Aleksandr Oseev
- FEMTO-ST Institute, CNRS UMR-6174, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Oksana Stepanova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Andrey Kozyrev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Alexander Dmitriev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FSBSI “IEM”), 197376 Saint Petersburg, Russia;
| | - Soeren Hirsch
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| |
Collapse
|
69
|
Bao L, Jones LO, Garrote Cañas AM, Yan Y, Pask CM, Hardie MJ, Mosquera MA, Schatz GC, Sergeeva NN. Multipurpose made colorimetric materials for amines, pH change and metal ion detection. RSC Adv 2022; 12:2684-2692. [PMID: 35425282 PMCID: PMC8979084 DOI: 10.1039/d1ra07811a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023] Open
Abstract
Sensors are routinely developed for specific applications, but multipurpose sensors are challenging, due to stability and poor functional design. We report organic materials that operate in solution and gas phase. They show a strong response behaviour to at least three types of environmental changes: pH, amine and metal ion binding/detection. We have confirmed and validated our findings using various analytical and computational methods. We found that the changes in polarity of the solvent and pH not only red shift the tail of the absorption spectra, but also extend the peak optical absorption of these structures by up to 100 nm, with consequential effects on the optical gap and colour changes of the materials. Acid–base response has been studied by spectrophotometric titrations with trifluoroacetic acid (TFA) and triethyl amine (TEA). The experiments show excellent reversibility with greater sensitivity to base than acid for all compounds. Analysis into metal sensing using Zn(ii) and Cu(ii) ions as analytes show that the materials can successfully bind the cations forming stable complexes. Moreover, a strong suppression of signal with copper gives an operative modality to detect the copper ion as low as 2.5 × 10−6 M. The formation of the metal complexes was also confirmed by growing crystals using a slow diffusion method; subsequent single crystal X-ray analysis reveals the ratio of ligand to metal to be 2 to 1. To test sensitivity towards various amine vapours, paper-based sensors have been fabricated. The sensors show a detection capability at 1 ppm of amine concentration. We have employed CIE L*a*b* colour space as the evaluation method, this provides numeric comparison of the samples from different series and allows comparison of small colour differences, which are generally undetectable by the human-eye. It shows that the CIE L*a*b* method can assess both sensitivity to a particular class of analytes and a specificity response to individual amines in this subclass offering an inexpensive and versatile methodology. Multi-responsive colorimetric sensors based on the hydrazone motif, which are perfectly suited for chemo sensing applications have been developed.![]()
Collapse
Affiliation(s)
- Lihong Bao
- School of Chemistry, University of Leeds LS2 9JT UK .,School of Material Design and Engineering, Beijing Institute of Fashion Technology 100029 Beijing China
| | - Leighton O Jones
- Department of Chemistry, Northwestern University Evanston 60208 Illinois USA
| | | | - Yunhan Yan
- School of Chemistry, University of Leeds LS2 9JT UK
| | | | - Michaele J Hardie
- Department of Chemistry, Northwestern University Evanston 60208 Illinois USA
| | - Martin A Mosquera
- Department of Chemistry and Biochemistry, Montana State University Bozeman 59717 Montana USA
| | - George C Schatz
- Department of Chemistry, Northwestern University Evanston 60208 Illinois USA
| | - Natalia N Sergeeva
- School of Chemistry, University of Leeds LS2 9JT UK .,The Leeds Institute of Textiles and Colour, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
70
|
Bhatt S, Vyas G, Paul P. Rosmarinic Acid-Capped Silver Nanoparticles for Colorimetric Detection of CN - and Redox-Modulated Surface Reaction-Aided Detection of Cr(VI) in Water. ACS OMEGA 2022; 7:1318-1328. [PMID: 35036793 PMCID: PMC8757454 DOI: 10.1021/acsomega.1c05946] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Rosmarinic acid-capped silver nanoparticles (Ro-AgNPs) were prepared and applied as a probe for selective colorimetric detection of cyanide (CN-) and chromium(VI) [Cr(VI)] under different conditions in aqueous media. The carbon atom of CN- interacts with the AgNPs, and the carbon atom donates electrons from the HOMO to the vacant orbitals of the coordinatively unsaturated surface atom (Ag0). After donating electrons, CN- attached onto the surface of the nanoparticles becomes very reactive and interacts with dissolved oxygen and generates reactive oxygen species (ROS) such as superoxide (O2 -), singlet oxygen (1O2), and so forth. In this process, Ag0 oxidizes to Ag+ and combines with CN- forming water-insoluble AgCN, and the ROS (O2 -) formed reacts with Ag/Ag+ to form Ag2O. The oxidation of Ag0 to Ag+ resulted in dissolution of AgNPs, which causes disappearance of the surface plasmon resonance band and color change from yellow to colorless. For detection of Cr(VI), ascorbic acid and CN- were added first; the ascorbic acid replaced the rosmarinic acid and then reduced the added Cr(VI) to Cr(III), and, in this process, ascorbic acid was oxidized to dehydroascorbic acid, which moved away from the nanoparticles' surface. CN- then interacted with the surface Ag0 atom, got activated, and interacted with dissolved oxygen forming Ag+ and ROS, which then followed the same process as described for CN- to form AgCN and Ag2O with a color change. The limits of detection were found to be 0.01 and 0.03 μM for CN- and Cr(VI), respectively. The material was also used for sensing CN- and Cr(VI) in real samples, and the results obtained were satisfactory. For field application, agarose-based strips were prepared by immobilizing the nanoparticles onto the agarose film and successfully used for the detection of CN- and Cr(VI) in water.
Collapse
Affiliation(s)
- Shreya Bhatt
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Vyas
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parimal Paul
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
71
|
Das J, Mishra HN. Recent advances in sensors for detecting food pathogens, contaminants, and toxins: a review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03951-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
72
|
Kongasseri A, Deivasigamani P, Mohan AM. Probe tethered monolithic architectures as facile solid-state chemosensors for the on-site colorimetric recognition of Co(II) in aqueous and industrial samples. ENVIRONMENTAL RESEARCH 2022; 203:111861. [PMID: 34389353 DOI: 10.1016/j.envres.2021.111861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
In this work, we report two novel solid-state opto-chemosensors that proffer exclusive selectivity and excellent sensitivity for the naked-eye detection of ultra-trace Co2+ ions. The opto-chemosensors are concocted using structurally engineered porous silica and polymer monolith templates that are uniformly arranged with a chromoionophoric probe i.e., (Z)-2-mercapto-5-(quinolin-8-yldiazenyl)pyrimidine-4,6-diol (AQTBA). The probe anchored monolithic opto-chemosensors induces sequential color transitions, from yellowish-orange to dark brown, with incremental addition of Co2+ ions. The optimized ground state structure of the AQTBA probe and its AQTBA-Co2+ complex are analyzed using a gaussian 16 program at B3LYP level, with a 6-311+ G (d, p) basis set. The structural and surface morphology of the opto-sensors are characterized using various microscopic, spectroscopic, and diffraction techniques, which discloses a uniform pattern of pore network that proffers rapid ion diffusion kinetics to the probe chelating sites. The proposed monolithic sensors exhibit a high degree of tolerance towards various foreign cations and anions, thus revealing its exclusive selectivity in targeting ultra-trace concentrations of Co2+. The silica and polymer monolithic sensors exhibit a broad linear response range of 0-200 ppb, with a detection limit of 0.35 and 0.07 ppb for Co2+ ions, respectively. The unique features of the proposed sensors are their faster response kinetics (120 s), greater reusability (nine cycles), excellent chemical and thermal durability (pH ≤ 12.0; T ≤ 200 °C), with reliable data reproducibility (recovery ≥99.3 %; RSD ≤2.3 %). The proposed solid-state opto-chemosensors paves way for maximum waste reduction strategy, along with the feasibility for real-time monitoring of environmental and industrial water samples.
Collapse
Affiliation(s)
- Aswanidevi Kongasseri
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
73
|
Ahmed SR, Ortega GA, Kumar S, Srinivasan S, Rajabzadeh AR. Strong nanozymatic activity of thiocyanate capped gold nanoparticles: an enzyme–nanozyme cascade reaction based dual mode ethanol detection in saliva. NEW J CHEM 2022. [DOI: 10.1039/d1nj03648c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article reports on the strong nanozymatic activity of thiocyanide capped gold nanoparticles (TC-AuNPs) in the presence of 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2.
Collapse
Affiliation(s)
- Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, L8S 4L7, Canada
| | - Greter A. Ortega
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, L8S 4L7, Canada
| | - Satish Kumar
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, L8S 4L7, Canada
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, L8S 4L7, Canada
| |
Collapse
|
74
|
Pusta A, Tertiș M, Cristea C, Mirel S. Wearable Sensors for the Detection of Biomarkers for Wound Infection. BIOSENSORS 2021; 12:1. [PMID: 35049629 PMCID: PMC8773884 DOI: 10.3390/bios12010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Infection represents a major complication that can affect wound healing in any type of wound, especially in chronic ones. There are currently certain limitations to the methods that are used for establishing a clinical diagnosis of wound infection. Thus, new, rapid and easy-to-use strategies for wound infection diagnosis need to be developed. To this aim, wearable sensors for infection diagnosis have been recently developed. These sensors are incorporated into the wound dressings that are used to treat and protect the wound, and are able to detect certain biomarkers that can be correlated with the presence of wound infection. Among these biomarkers, the most commonly used ones are pH and uric acid, but a plethora of others (lactic acid, oxygenation, inflammatory mediators, bacteria metabolites or bacteria) have also been detected using wearable sensors. In this work, an overview of the main types of wearable sensors for wound infection detection will be provided. These sensors will be divided into electrochemical, colorimetric and fluorimetric sensors and the examples will be presented and discussed comparatively.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Mihaela Tertiș
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
75
|
Highly sensitive and quantitative biodetection with lipid-polymer hybrid nanoparticles having organic room-temperature phosphorescence. Biosens Bioelectron 2021; 199:113889. [PMID: 34968954 DOI: 10.1016/j.bios.2021.113889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
A versatile organic room-temperature phosphorescence (RTP)-based "turn on" biosensor platform has been devised with high sensitivity by combining oxygen-sensitive lipid-polymer hybrid RTP nanoparticles with a signal-amplifying enzymatic oxygen scavenging reaction in aqueous solutions. When integrated with a sandwich-DNA hybridization assay on 96-well plates, our phosphorimetric sensor demonstrates sequence-specific detection of a cell-free cancer biomarker, a TP53 gene fragment, with a sub-picomolar (0.5 p.m.) detection limit. This assay is compatible with detecting cell-free nucleic acids in human urine samples. Simply by re-programming the detection probe, our unique methodology can be adapted to a broad range of biosensor applications for biomarkers of great clinical importance but difficult to detect due to their low abundance in vivo.
Collapse
|
76
|
Roniboss A, Nishanth Rao R, Chanda K, Balamurali M. Hydrazide derived colorimetric sensor for selective detection of cyanide ions. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
77
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
78
|
El-Naggar ME, Abu Ali OA, Saleh DI, Abu-Saied MA, Khattab TA. Preparation of green and sustainable colorimetric cotton assay using natural anthocyanins for sweat sensing. Int J Biol Macromol 2021; 190:894-903. [PMID: 34534584 DOI: 10.1016/j.ijbiomac.2021.09.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Herein, we develop a novel smart cotton swab as a diagnostic assay for onsite monitoring of sweat pH changes toward potential applications in monitoring human healthcare and drug exam. Anthocyanin (Ac) can be extracted from Brassica oleracea var. capitata f. rubra using a simple procedure. Then, it can be used as a direct dye into cotton fibers using potash alum as mordant (M) to fix the anthocyanin dye onto the surface of the cotton fabric (Cot). This was monitored by generating mordant/anthocyanin nanoparticles (MAcNPs) onto the fabric surface. The cotton sensor assay demonstrated colorimetric changes in the ultraviolet-visible absorbance spectral analysis associated with a blueshift from 588 to 422 nm with increasing the pH of a perspiration simulant fluid. The biochromic performance of the dyed cotton diagnostic assay depended essentially on the halochromic activity of the anthocyanin spectroscopic probe to demonstrate a color change from pink to green due to intramolecular charge transfer occurring on the anthocyanin chromophore. After dyeing, no significant defects were detected in air-permeability and bend length. High colorfastness was investigated for the dyed cotton fabrics.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt.
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dalia I Saleh
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - M A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Tawfik A Khattab
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| |
Collapse
|
79
|
Hola E, Gruchała A, Popielarz R, Ortyl J. Non-destructive visual inspection of photocurable coatings based on fluorescent response of naked-eye visible colorimetric and fluorescent sensors. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
80
|
Gold and Silver Nanoparticle-Based Colorimetric Sensors: New Trends and Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110305] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gold and Silver nanoparticles (AuNPs and AgNPs) are perfect platforms for developing sensing colorimetric devices thanks to their high surface to volume ratio and distinctive optical properties, particularly sensitive to changes in the surrounding environment. These characteristics ensure high sensitivity in colorimetric devices. Au and Ag nanoparticles can be capped with suitable molecules that can act as specific analyte receptors, so highly selective sensors can be obtained. This review aims to highlight the principal strategies developed during the last decade concerning the preparation of Au and Ag nanoparticle-based colorimetric sensors, with particular attention to environmental and health monitoring applications.
Collapse
|
81
|
Mercaptosuccinic-Acid-Functionalized Gold Nanoparticles for Highly Sensitive Colorimetric Sensing of Fe(III) Ions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of reliable and highly sensitive methods for heavy metal detection is a critical task for protecting the environment and human health. In this study, a qualitative colorimetric sensor that used mercaptosuccinic-acid-functionalized gold nanoparticles (MSA-AuNPs) to detect trace amounts of Fe(III) ions was developed. MSA-AuNPs were prepared using a one-step reaction, where mercaptosuccinic acid (MSA) was used for both stabilization, which was provided by the presence of two carboxyl groups, and functionalization of the gold nanoparticle (AuNP) surface. The chelating properties of MSA in the presence of Fe(III) ions and the concentration-dependent aggregation of AuNPs showed the effectiveness of MSA-AuNPs as a sensing probe with the use of an absorbance ratio of A530/A650 as an analytical signal in the developed qualitative assay. Furthermore, the obvious Fe(III)-dependent change in the color of the MSA-AuNP solution from red to gray-blue made it possible to visually assess the metal content in a concentration above the detection limit with an assay time of less than 1 min. The detection limit that was achieved (23 ng/mL) using the proposed colorimetric sensor is more than 10 times lower than the maximum allowable concentration for drinking water defined by the World Health Organization (WHO). The MSA-AuNPs were successfully applied for Fe(III) determination in tap, spring, and drinking water, with a recovery range from 89.6 to 126%. Thus, the practicality of the MSA-AuNP-based sensor and its potential for detecting Fe(III) in real water samples were confirmed by the rapidity of testing and its high sensitivity and selectivity in the presence of competing metal ions.
Collapse
|
82
|
Bhattu M, Verma M, Kathuria D. Recent advancements in the detection of organophosphate pesticides: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4390-4428. [PMID: 34486591 DOI: 10.1039/d1ay01186c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are generally utilized for the protection of crops from pests. Because the use of OPPs in various agricultural operations has expanded dramatically, precise monitoring of their concentration levels has become the critical issue, which will help in the protection of ecological systems and food supply. However, the World Health Organization (WHO) has classified them as extremely dangerous chemical compounds. Taking their immense use and toxicity into consideration, the development of easy, rapid and highly sensitive techniques is necessary. Despite the fact that there are numerous conventional ways for detecting OPPs, the development of portable sensors is required to make routine analysis considerably more convenient. Some of these advanced techniques include colorimetric sensors, fluorescence sensors, molecular imprinted polymer-based sensors, and surface plasmon resonance-based sensors. This review article specifically focuses on the colorimetric, fluorescence and electrochemical sensors. In this article, the sensing strategies of these developed sensors, analytical conditions and their respective limit of detection are compiled.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Deepika Kathuria
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| |
Collapse
|
83
|
Duffy E, Huttunen K, Lahnavik R, Smeaton AF, Morrin A. Visualising household air pollution: Colorimetric sensor arrays for monitoring volatile organic compounds indoors. PLoS One 2021; 16:e0258281. [PMID: 34614030 PMCID: PMC8494322 DOI: 10.1371/journal.pone.0258281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Indoor air quality monitoring as it relates to the domestic setting is an integral part of human exposure monitoring and health risk assessment. Hence there is a great need for easy to use, fast and economical indoor air quality sensors to monitor the volatile organic compound composition of the air which is known to be significantly perturbed by the various source emissions from activities in the home. To meet this need, paper-based colorimetric sensor arrays were deployed as volatile organic compound detectors in a field study aiming to understand which activities elicit responses from these sensor arrays in household settings. The sensor array itself is composed of pH indicators and aniline dyes that enable molecular recognition of carboxylic acids, amines and carbonyl-containing compounds. The sensor arrays were initially deployed in different rooms in a single household having different occupant activity types and levels. Sensor responses were shown to differ for different room settings on the basis of occupancy levels and the nature of the room emission sources. Sensor responses relating to specific activities such as cooking, cleaning, office work, etc were noted in the temporal response. Subsequently, the colorimetric sensor arrays were deployed in a broader study across 9 different households and, using multivariate analysis, the sensor responses were shown to correlate strongly with household occupant activity and year of house build. Overall, this study demonstrates the significant potential for this type of simple approach to indoor air pollution monitoring in residential environments.
Collapse
Affiliation(s)
- Emer Duffy
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Kati Huttunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Roosa Lahnavik
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alan F. Smeaton
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Aoife Morrin
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|
84
|
Recent advances in assessing qualitative and quantitative aspects of cereals using nondestructive techniques: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
85
|
Hassan MM, Xu Y, Zareef M, Li H, Rong Y, Chen Q. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: a review. Crit Rev Food Sci Nutr 2021; 63:2851-2872. [PMID: 34565253 DOI: 10.1080/10408398.2021.1980765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The abuse of pesticides in agricultural land during pre- and post-harvest causes an increase of residue in agricultural products and pollution in the environment, which ultimately affects human health. Hence, it is crucially important to develop an effective detection method to quantify the trace amount of residue in food and water. However, with the rapid development of nanotechnology and considering the exclusive properties of nanomaterials, optical, and their integrated system have gained exclusive interest for accurately sensing of pesticides in food and agricultural samples to ensure food safety thanks to their unique benefit of high sensitivity, low detection limit, good selectivity and so on and making them a trending hotspot. This review focuses on recent progress in the past five years on nanomaterial-based optical, such as colorimetric, fluorescence, surface-enhanced Raman scattering (SERS), and their integrated system for the monitoring of benzimidazole fungicide (including, carbendazim, thiabendazole, and thiophanate-methyl) residue in food and water samples. This review firstly provides a brief introduction to mentioned techniques, detection mechanism, applied nanomaterials, label-free detection, target-specific detection, etc. then their specific application. Finally, challenges and perspectives in the respective field are discussed.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- College of Food and Biological Engineering, Jimei University, Xiamen PR China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen PR China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
86
|
Wang T, Pang Q, Tong Z, Xiang H, Xiao N. A hydrazone-based spectroscopic off-on probe for sensing of basic arginine and lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119824. [PMID: 33901944 DOI: 10.1016/j.saa.2021.119824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
A simple probe BHN based on naphthol and benzothiazole is reported for detecting of arginine (Arg) and lysine (Lys) with high selectivity and sensitivity. The BHN in aqueous solution upon reacting with Arg or Lys induced a visible color change from colorless to yellow. The probe BHN can also be employed for fluorescence turn-on sensing of Arg and Lys with the limits of detection (LOD) of 5.20 × 10-2 μM and 3.69 × 10-2 μM, respectively. The naked eye colorimetric and fluorimetric detecting is lack of sensitive to other common amino acids including Gly, Ala, Ser, Pro, Val, Thr, Cys, Leu, Ile, Asn, Asp, Glu, Gln, Met, His, and Phe. The sensing mechanism has been proposed by pH investigation and 1H NMR spectra.
Collapse
Affiliation(s)
- Tianran Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Qidan Pang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhipu Tong
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hanyue Xiang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Nao Xiao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
87
|
Qiu Z, Xue Y, Li J, Zhang Y, Liang X, Wen C, Gong H, Zeng J. Highly sensitive colorimetric detection of NH3 based on Au@Ag@AgCl core-shell nanoparticles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
88
|
Li J, Zuo X, Liu H, Xie Y, Huang Y. Influence of pH on aptamer-based gold nanoparticles colorimetric sensors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02182-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
89
|
S K, Sam B, George L, N SY, Varghese A. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes. J Fluoresc 2021; 31:1251-1276. [PMID: 34255257 DOI: 10.1007/s10895-021-02770-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Fluorescein molecules are extensively used to develop fluorescent probes for various analytes due to their excellent photophysical properties and the spirocyclic structure. The main structural modification of fluorescein occurs at the carboxyl group where different groups can be easily introduced to produce the spirolactam structure which is non-fluorescent. The spirolactam ring opening accounts for the fluorescence and the dual sensing of analytes using fluorescent sensors is still a topic of high interest. There is an increase in the number of dual sensors developed in the past five years and quite a good number of fluorescein derivatives were also reported based on reversible mechanisms. This review analyses environmentally and biologically important cations such as Cu2+, Hg2+, Fe3+, Pd2+, Zn2+, Cd2+, and Mg2+; anions (F-, OCl-) and small molecules (thiols, CO and H2S). Structural modifications, binding mechanisms, different strategies and a comparative study for selected cations, anions and molecules are outlined in the article.
Collapse
Affiliation(s)
- Keerthana S
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Bincy Sam
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Sudhakar Y N
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
90
|
Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021; 6:2787-2801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin-interfaced wearable systems with integrated colorimetric assays, microfluidic channels, and electrochemical sensors offer powerful capabilities for noninvasive, real-time sweat analysis. This Perspective details recent progress in the development and translation of novel wearable sensors for personalized assessment of sweat dynamics and biomarkers, with precise sampling and real-time analysis. Sensor accuracy, system ruggedness, and large-scale deployment in remote environments represent key opportunity areas, enabling broad deployment in the context of field studies, clinical trials, and recent commercialization. On-body measurements in these contexts show good agreement compared to conventional laboratory-based sweat analysis approaches. These device demonstrations highlight the utility of biochemical sensing platforms for personalized assessment of performance, wellness, and health across a broad range of applications.
Collapse
Affiliation(s)
- Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
| | - Amer Mansour
- Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637, United States
| | - John A. Wright
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Jeffrey B. Model
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Donald E. Wright
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
- Departments of Materials Science and Engineering, Mechanical Engineering, Electrical and Computer Engineering, and Chemistry, Northwestern University, Evanston, Illinois 60202, United States
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Ma̅noa, Honolulu, Hawaii 96822, United States
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai’i at Ma̅noa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
91
|
Moradpour Z, Helmi Kohnehshahri M, Vahabi Shekarloo M, Jalili V, Zendehdel R. Peroxidase-like reaction by a synergistic inorganic catalyst colloid: a new method for hydrogen peroxide detecting in air samples. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04887-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
92
|
Meng Z, Guo S, Zhou Y, Li M, Wang M, Ying B. Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduct Target Ther 2021; 6:316. [PMID: 34433805 PMCID: PMC8386162 DOI: 10.1038/s41392-021-00731-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) presents us with a serious public health crisis. To combat the virus and slow its spread, wider testing is essential. There is a need for more sensitive, specific, and convenient detection methods of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Advanced detection can greatly improve the ability and accuracy of the clinical diagnosis of COVID-19, which is conducive to the early suitable treatment and supports precise prophylaxis. In this article, we combine and present the latest laboratory diagnostic technologies and methods for SARS-CoV-2 to identify the technical characteristics, considerations, biosafety requirements, common problems with testing and interpretation of results, and coping strategies of commonly used testing methods. We highlight the gaps in current diagnostic capacity and propose potential solutions to provide cutting-edge technical support to achieve a more precise diagnosis, treatment, and prevention of COVID-19 and to overcome the difficulties with the normalization of epidemic prevention and control.
Collapse
Affiliation(s)
- Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
93
|
Li C, Xue B, Wang S, Zhang X, Zhao C, Yang X, Zhao R, Dai L, Su S, Xu H, Shen Z, Qiu Z, Wang J. An Innovative Digestion Method: Ultrasound-Assisted Electrochemical Oxidation for the Onsite Extraction of Heavy Metal Elements in Dairy Farm Slurry. MATERIALS 2021; 14:ma14164562. [PMID: 34443084 PMCID: PMC8400106 DOI: 10.3390/ma14164562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Dairy farm slurry is an important biomass resource that can be used as a fertilizer and in energy utilization and chemical production. This study aimed to establish an innovative ultrasound-assisted electrochemical oxidation (UAEO) digestion method for the rapid and onsite analysis of the heavy metal (HM) contamination level of dairy slurry. The effects of UAEO operating parameters on digestion efficiency were tested based on Cu and Zn concentrations in a dairy slurry sample. The results showed that Cu and Zn digestion efficiency was (96.8 ± 2.6) and (98.5 ± 2.9)%, respectively, with the optimal UAEO operating parameters (digestion time: 45 min; ultrasonic power: 400 W; NaCl concentration: 10 g/L). The digestion recovery rate experiments were then operated with spiked samples to verify the digestion effect on broad-spectrum HMs. When the digestion time reached 45 min, all digestion recovery rates exceeded 90%. Meanwhile, free chlorine concentration, particle size distribution, and micromorphology were investigated to demonstrate the digestion mechanism. It was found that 414 mg/L free chorine had theoretically enough oxidative ability, and the ultrasound intervention could deal with the blocky undissolved particles attributed to its crushing capacity. The results of particle size distribution showed that the total volume and bulky particle proportion had an obvious decline. The micromorphology demonstrated that the ultrasound intervention fragmented the bulky particles, and electrochemical oxidation made irregular blocky structures form arc edge and cellular structures. The aforementioned results indicated that UAEO was a novel and efficient method. It was fast and convenient. Additionally, it ensured digestion efficiency and thus had a good application prospect.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Bin Xue
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Shang Wang
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Xi Zhang
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Chen Zhao
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Xiaobo Yang
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Run Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Shengqi Su
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Haoqi Xu
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Zhiqiang Shen
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Zhigang Qiu
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
- Correspondence: (Z.Q.); (J.W.); Tel.: +86-22-84655052 (J.W.); Fax: +86-22-23328809 (J.W.)
| | - Jingfeng Wang
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
- Correspondence: (Z.Q.); (J.W.); Tel.: +86-22-84655052 (J.W.); Fax: +86-22-23328809 (J.W.)
| |
Collapse
|
94
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
95
|
Dual functional MOF as a selective fluorescent naked-eye detector and effective sorbent for mercury ion. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
96
|
Sivakumar R, Lee NY. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. CHEMOSPHERE 2021; 275:130096. [PMID: 33677270 DOI: 10.1016/j.chemosphere.2021.130096] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 05/14/2023]
Abstract
Emerging smartphone-based point-of-care tests (POCTs) are cost-effective, precise, and easy to implement in resource-limited areas. Thus, they are considered a potential alternative to conventional diagnostic testing. This review explores food safety and the detection of metal ions in environmental water based on unprecedented smartphone technology. Specifically, we provide an overview of various methods used for target analyte detection (antibiotics, enzymes, mycotoxins, pathogens, pesticides, small molecules, and metal ions), such as colorimetric, fluorescence, microscopic imaging, and electrochemical methods. This paper performs a comprehensive review of smartphone-based POCTs developed in the last three years (2018-2020) and evaluates their relative advantages and limitations. Moreover, we discuss the imperative role of new technology in the progress of POCTs. Sensor materials (metal nanoparticles, carbon dots, quantum dots, organic substrates, etc.) and detection techniques (paper-based, later flow assay, microfluidic platform, etc.) involved in POCTs based on smartphones, and the challenges faced by these techniques, are addressed.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
97
|
Gao J, Liu H, Wu K, Yan J, Li H, Yang R, Tong C, Pang L, Li J. Biocatalyst and colorimetric biosensor of carcinoembryonic antigen constructed via chicken egg white-copper phosphate organic/inorganic hybrid nanoflowers. J Colloid Interface Sci 2021; 601:50-59. [PMID: 34077844 DOI: 10.1016/j.jcis.2021.05.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/09/2023]
Abstract
In this article, the dual-functional chicken egg white-copper phosphate organic-inorganic hybrid nanoflowers (Cu-NFs), combining the functions of signal amplification and biological recognition, were prepared through a simple one-pot method. The Cu-NFs exhibit excellent biocatalytic activity of peroxidase and polyphenol oxidase. Besides, a biotin-labeled secondary antibody encapsulated Cu-NFs-2 (Cu-NFs-2@Biotin-NHS-Ab2) capture probe was prepared by using the interaction between avidin in the egg white and biotin. Based upon this superiority, the as-prepared Cu-NFs-2 were used in labeled avidin-biotin enzyme-linked immunosorbent assay (Cu-NFs-2 based-LAB-ELISA) to construct a sensitive colorimetric biosensor for the ultrasensitive detection of carcinoembryonic antigen (CEA). Under weak alkaline (pH = 7.5) conditions, the as-developed colorimetric sensor displayed a wide linear range of 0.05-40 ng/mL with a detection limit of 3.52 pg/mL. Furthermore, this colorimetric sensor has been successfully applied to the detection of CEA in human serum samples. Therefore, the as-developed colorimetric sensor has broad application prospects in the field of medical diagnosis and portable detection.
Collapse
Affiliation(s)
- Jiaojiao Gao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China; College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Kexin Wu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jifeng Yan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Huayu Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Ruixuan Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Cheng Tong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Lingyan Pang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Junqi Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
98
|
A Rapid Visual Detection of Ascorbic Acid Through Morphology Transformation of Silver Triangular Nanoplates. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
99
|
Ryu H, Li B, De Guise S, McCutcheon J, Lei Y. Recent progress in the detection of emerging contaminants PFASs. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124437. [PMID: 33162244 DOI: 10.1016/j.jhazmat.2020.124437] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 05/26/2023]
Abstract
As an emerging contaminant, per- and polyfluoroalkyl substances (PFASs) make up a large group of persistent anthropogenic chemicals, which are difficult to degrade in the environment. Notwithstanding their wide range of applications in consumer products and industrial processes, PFASs have been detected in the environment as well as in human body. Due to their potential adverse human health effects, the U.S. Environmental Protection Agency (EPA) set the combined concentration of PFOA and PFOS in drinking water at 70 ng/L or 70 ppt (parts per trillion) as a lifetime health advisory level. Current standard detection methods for PFASs heavily rely on chromatographic techniques coupled with mass spectrometry. Although these methods provide accurate, specific, and sensitive measurements, their applications are greatly limited in advanced analytical laboratories because it necessitates expensive instrumentations, professional operators, complicated sample pretreatment, and considerable analysis time. Therefore, other detection methods beyond chromatographic based techniques, such as optical and electrochemical techniques, have also been extensively explored for simple, accessible, inexpensive, rapid, and sensitive detection of PFASs, particularly PFOA and PFOS. The purpose of this review is to provide recent progress in alternative detection platforms relying on non-MS based techniques for PFASs analysis. Starting with a brief introduction about the importance of monitoring PFASs, recent advances in various PFASs detection methods are grouped and discussed based on the difference of signals, with an emphasis on the working principles of different techniques, the sensing mechanism, and the sensing performance. The review is closed with the conclusion and discussion of future trends.
Collapse
Affiliation(s)
- Heejeong Ryu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA.
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, CT 06269, USA
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, CT 06269, USA
| | - Jeffrey McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA.
| |
Collapse
|
100
|
Lin KW, Chang YC. Embedded Immunodetection System for Fecal Occult Blood. BIOSENSORS-BASEL 2021; 11:bios11040106. [PMID: 33916834 PMCID: PMC8066604 DOI: 10.3390/bios11040106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
In this paper, a rapid test system with high sensitivity, linearity, and stability is presented for fecal occult blood (FOB) detection. The coloration results of the immune response are used as the basis for the determination of the detection target in combination with an immunochromatographic strip. The rapid test system can be used to detect and calculate the concentration of the sample, so detection of the immune coloration response is more accurate in a quantitative analysis. The system is composed of both hardware and software. The programs used for the analysis and programmed by Python include the main program, polarization calibration, QR Code decoding, Bluetooth transmission, and image processing. After verification of each part of the system, it was found that the rapid test system successfully detects from 0 ng/mL to 400 ng/mL of FOB with coefficients of variation (CV) below 3.7% and 1000 ng/mL with a CV only at 7.41%.
Collapse
Affiliation(s)
| | - Yu-Chi Chang
- Correspondence: ; Tel.: +886-6-275-7575 (ext. 63350)
| |
Collapse
|