51
|
Babaliari E, Kavatzikidou P, Mitraki A, Papaharilaou Y, Ranella A, Stratakis E. Combined effect of shear stress and laser-patterned topography on Schwann cell outgrowth: synergistic or antagonistic? Biomater Sci 2021; 9:1334-1344. [PMID: 33367414 DOI: 10.1039/d0bm01218a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the peripheral nervous system exhibits a higher rate of regeneration than that of the central nervous system through a spontaneous regeneration after injury, the functional recovery is fairly infrequent and misdirected. Thus, the development of successful methods to guide neuronal outgrowth, in vitro, is of great importance. In this study, a precise flow controlled microfluidic system with specific custom-designed chambers, incorporating laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves, was fabricated to assess the combined effect of shear stress and topography on Schwann cells' behavior. The microgrooves were positioned either parallel or perpendicular to the direction of the flow inside the chambers. Additionally, the cell culture results were combined with computational flow simulations to calculate accurately the shear stress values. Our results demonstrated that wall shear stress gradients may be acting either synergistically or antagonistically depending on the substrate groove orientation relative to the flow direction. The ability to control cell alignment in vitro could potentially be used in the fields of neural tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.) Vassilika Vouton, 70013 Heraklion, Greece.
| | | | | | | | | | | |
Collapse
|
52
|
Zhang W, Yang Y, Cui B. New perspectives on the roles of nanoscale surface topography in modulating intracellular signaling. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100873. [PMID: 33364912 PMCID: PMC7751896 DOI: 10.1016/j.cossms.2020.100873] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physical properties of biomaterials, such as elasticity, stiffness, and surface nanotopography, are mechanical cues that regulate a broad spectrum of cell behaviors, including migration, differentiation, proliferation, and reprogramming. Among them, nanoscale surface topography, i.e. nanotopography, defines the nanoscale shape and spatial arrangement of surface elements, which directly interact with the cell membranes and stimulate changes in the cell signaling pathways. In biological systems, the effects of nanotopography are often entangled with those of other mechanical and biochemical factors. Precise engineering of 2D nanopatterns and 3D nanostructures with well-defined features has provided a powerful means to study the cellular responses to specific topographic features. In this Review, we discuss efforts in the last three years to understand how nanotopography affects membrane receptor activation, curvature-induced cell signaling, and stem cell differentiation.
Collapse
Affiliation(s)
| | | | - Bianxiao Cui
- Department of Chemistry, Stanford University, ChEM-H/Wu Tsai Neuroscience Research Complex, S285, 290 Jane Stanford Way, Stanford, CA, 94305, United States
| |
Collapse
|
53
|
Juhl OJ, Latifi SM, Donahue HJ. Effect of carbonated hydroxyapatite submicron particles size on osteoblastic differentiation. J Biomed Mater Res B Appl Biomater 2021; 109:1369-1379. [PMID: 33506619 DOI: 10.1002/jbm.b.34797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/23/2020] [Accepted: 01/09/2021] [Indexed: 01/08/2023]
Abstract
Synthetic biomimetic carbonated hydroxyapatite (CHA) has shown significant promise in bone tissue engineering for its mechanical and chemical biocompatibility and osteogenic potential. Variations in the size of hydroxyapatite particles have also been shown to contribute to the hydroxyapatite's osteogenic success. However, synthesizing biomimetic CHA with optimal osteogenic properties using a simple synthesis methodology to make highly reproducible, biomimetic, and osteogenic CHA has not been evaluated fully. The objective of this study was to synthesize submicron CHA particles using a nanoemulsion method. We hypothesized that by varying the synthesis technique we could control particle size while still creating highly biomimetic CHA typically produced during nanoemulsion synthesis. Furthermore, we hypothesized that 500 nm CHA particles would induce greater osteoblastic differentiation compared to larger or smaller CHA particles. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and dynamic light scattering were used to characterize the chemical composition, shape, and size of CHA synthesized through variations in pH, temperature and stirring speed during synthesis. Manipulation of pH showed the ability to selectively tailor CHA particle size from 200-900 nm in a reproducible manner while maintaining the chemical composition. In addition, 500 nm particles elicited the most rapid increase in osteoblastic differentiation and did not decrease cell viability compared to 200 and 900 nm particles.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Seyed Mohsen Latifi
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Henry J Donahue
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
54
|
Kamguyan K, Zajforoushan Moghaddam S, Nazbar A, Haramshahi SMA, Taheri S, Bonakdar S, Thormann E. Cell-imprinted substrates: in search of nanotopographical fingerprints that guide stem cell differentiation. NANOSCALE ADVANCES 2021; 3:333-338. [PMID: 36131729 PMCID: PMC9419843 DOI: 10.1039/d0na00692k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Cell-imprinted substrates direct stem cell differentiation into various lineages, suggesting the idea of lineage-specific nanotopography. We herein examined the surface topography of five different imprinted cell patterns using AFM imaging and statistical analysis of amplitude, spatial, and hybrid roughness parameters. The results suggest that different cell imprints possess distinguished nanotopographical features.
Collapse
Affiliation(s)
- Khorshid Kamguyan
- Department of Chemistry, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | | | - Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran 1316943551 Tehran Iran
| | | | - Shiva Taheri
- National Cell Bank Department, Pasteur Institute of Iran 1316943551 Tehran Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran 1316943551 Tehran Iran
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
55
|
Kuvyrkou YU, Brezhneva N, Skorb EV, Ulasevich SA. The influence of the morphology of titania and hydroxyapatite on the proliferation and osteogenic differentiation of human mesenchymal stem cells. RSC Adv 2021; 11:3843-3853. [PMID: 35424371 PMCID: PMC8694191 DOI: 10.1039/d0ra08271f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/14/2020] [Indexed: 01/21/2023] Open
Abstract
Herein, the proliferation and osteogenic potential of human mesenchymal stem cells (hMSCs) on the disordered and ordered porous morphology of the titania surface and titania surface modified by hydroxyapatite (HA) are compared for the first time. In 5 days, the MTT-assay showed that the ordered porous morphology of electrochemically fabricated titania nanotubes (TNT) and TNT with chemically deposited hydroxyapatite (TNT–HA) was favorable for stem cell proliferation. In 14 days, RT-qPCR demonstrated that the disordered porous morphology of the sonochemically produced titania mesoporous surface (TMS) and TMS modified by the chemical deposition of HA (TMS–HA) led to the differentiation of hMSCs into the osteogenic direction in the absence of osteogenic inductors. These results originate from the mechanism of mechanotransduction, which sheds a light on the interaction of mesenchymal stem cells with the porous interface through focal adhesion, regulating the expression of genes determining stem cell self-renewal and osteogenic differentiation. The strong focal adhesion of hMSCs adjusted by the disordered TMS and TMS–HA is enough to induce osteogenic differentiation with the delay of cellular self-renewal. The weak focal adhesion of hMSCs tuned by the ordered TNT and TNT–HA affects only cellular self-renewal. The present research makes a new contribution to nanomedicine and engineering of porous implant interfaces for the replacement of bone injuries. Herein, the proliferation and osteogenic potential of human mesenchymal stem cells (hMSCs) on the disordered and ordered porous morphology of the titania surface and titania surface modified by hydroxyapatite (HA) are compared for the first time.![]()
Collapse
Affiliation(s)
- Yauheni U Kuvyrkou
- Republican Scientific and Practical Center of Transfusiology and Medical Biotechnologies Dolginovskiy tract 160 220053 Minsk Belarus.,Belarusian State Technological University Sverdlova str. 13a 220006 Minsk Belarus
| | - Nadzeya Brezhneva
- Chemistry Department, Belarusian State University Leningradskaya str. 14 220030 Minsk Belarus
| | | | | |
Collapse
|
56
|
Previdi A, Piazzoni C, Borghi F, Schulte C, Lorenzelli L, Giacomozzi F, Bucciarelli A, Malgaroli A, Lamanna J, Moro A, Racchetti G, Podestà A, Lenardi C, Milani P. Micropatterning of Substrates for the Culture of Cell Networks by Stencil-Assisted Additive Nanofabrication. MICROMACHINES 2021; 12:mi12010094. [PMID: 33477416 PMCID: PMC7829752 DOI: 10.3390/mi12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
The fabrication of in vitro neuronal cell networks where cells are chemically or electrically connected to form functional circuits with useful properties is of great interest. Standard cell culture substrates provide ensembles of cells that scarcely reproduce physiological structures since their spatial organization and connectivity cannot be controlled. Supersonic Cluster Beam Deposition (SCBD) has been used as an effective additive method for the large-scale fabrication of interfaces with extracellular matrix-mimicking surface nanotopography and reproducible morphological properties for cell culture. Due to the high collimation of SCBD, it is possible to exploit stencil masks for the fabrication of patterned films and reproduce features as small as tens of micrometers. Here, we present a protocol to fabricate micropatterned cell culture substrates based on the deposition of nanostructured cluster-assembled zirconia films by stencil-assisted SCBD. The effectiveness of this approach is demonstrated by the fabrication of micrometric patterns able to confine primary astrocytes. Calcium waves propagating in the astrocyte networks are shown.
Collapse
Affiliation(s)
- Anita Previdi
- CIMaINa and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (A.P.); (C.P.); (F.B.); (C.S.); (A.P.); (C.L.)
| | - Claudio Piazzoni
- CIMaINa and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (A.P.); (C.P.); (F.B.); (C.S.); (A.P.); (C.L.)
| | - Francesca Borghi
- CIMaINa and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (A.P.); (C.P.); (F.B.); (C.S.); (A.P.); (C.L.)
| | - Carsten Schulte
- CIMaINa and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (A.P.); (C.P.); (F.B.); (C.S.); (A.P.); (C.L.)
| | - Leandro Lorenzelli
- Center for Materials and Microsystems (CMM), Bruno Kessler Foundation (FBK), Via Sommarive 18, 38123 Trento, Italy; (L.L.); (F.G.); (A.B.)
| | - Flavio Giacomozzi
- Center for Materials and Microsystems (CMM), Bruno Kessler Foundation (FBK), Via Sommarive 18, 38123 Trento, Italy; (L.L.); (F.G.); (A.B.)
| | - Alessio Bucciarelli
- Center for Materials and Microsystems (CMM), Bruno Kessler Foundation (FBK), Via Sommarive 18, 38123 Trento, Italy; (L.L.); (F.G.); (A.B.)
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (A.M.); (J.L.); (A.M.); (G.R.)
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (A.M.); (J.L.); (A.M.); (G.R.)
| | - Andrea Moro
- Center for Behavioral Neuroscience and Communication (BNC), Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (A.M.); (J.L.); (A.M.); (G.R.)
| | - Gabriella Racchetti
- Center for Behavioral Neuroscience and Communication (BNC), Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (A.M.); (J.L.); (A.M.); (G.R.)
| | - Alessandro Podestà
- CIMaINa and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (A.P.); (C.P.); (F.B.); (C.S.); (A.P.); (C.L.)
| | - Cristina Lenardi
- CIMaINa and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (A.P.); (C.P.); (F.B.); (C.S.); (A.P.); (C.L.)
| | - Paolo Milani
- CIMaINa and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (A.P.); (C.P.); (F.B.); (C.S.); (A.P.); (C.L.)
- Correspondence:
| |
Collapse
|
57
|
Bai L, Zhao Y, Chen P, Zhang X, Huang X, Du Z, Crawford R, Yao X, Tang B, Hang R, Xiao Y. Targeting Early Healing Phase with Titania Nanotube Arrays on Tunable Diameters to Accelerate Bone Regeneration and Osseointegration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006287. [PMID: 33377275 DOI: 10.1002/smll.202006287] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Blood coagulation and inflammation are the earliest biological responses to implant surfaces. Implant nano-surfaces can significantly impact the osseointegration through the influence on the early phase of bone regeneration. However, the interplay between blood clot property and inflammatory reaction on nanosurfaces is rarely understood. Herein, titania nanotube arrays (TNAs) with different diameters are fabricated on titanium. In vitro evaluation with the whole blood indicates that TNA with a diameter of 15 nm (TNA 15) enables noteworthy platelet activation resulting in distinct clot features compared with that of pure Ti and TNA with a diameter of 120 nm (TNA 120). Further co-culture with macrophages on the clot or in the clot-conditioned medium shows that the clot on TNA 15 downregulates the inflammation and manipulates a favorable osteoimmunomodulatory environment for osteogenesis. In vivo studies further demonstrate that TNA 15 could downregulate the inflammation-related genes while upregulating growth metabolism-related genes in an early healing hematoma. Additionally, TNA 15 promotes de novo bone formation with improved extending of osteocyte dendrites, demonstrating the desired osseointegration. These findings indicate that surface nano-dimensions can significantly influence clot formation and appropriate clot features can manipulate a favorable osteoimmunomodulatory environment for bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Long Bai
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Ya Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China
| | - Xiangyu Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Xiaobo Huang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Bin Tang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| |
Collapse
|
58
|
D'Urso M, Kurniawan NA. Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol 2020; 8:609653. [PMID: 33425874 PMCID: PMC7793682 DOI: 10.3389/fbioe.2020.609653] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are cells present throughout the human body that are primarily responsible for the production and maintenance of the extracellular matrix (ECM) within the tissues. They have the capability to modify the mechanical properties of the ECM within the tissue and transition into myofibroblasts, a cell type that is associated with the development of fibrotic tissue through an acute increase of cell density and protein deposition. This transition from fibroblast to myofibroblast-a well-known cellular hallmark of the pathological state of tissues-and the environmental stimuli that can induce this transition have received a lot of attention, for example in the contexts of asthma and cardiac fibrosis. Recent efforts in understanding how cells sense their physical environment at the micro- and nano-scales have ushered in a new appreciation that the substrates on which the cells adhere provide not only passive influence, but also active stimulus that can affect fibroblast activation. These studies suggest that mechanical interactions at the cell-substrate interface play a key role in regulating this phenotype transition by changing the mechanical and morphological properties of the cells. Here, we briefly summarize the reported chemical and physical cues regulating fibroblast phenotype. We then argue that a better understanding of how cells mechanically interact with the substrate (mechanosensing) and how this influences cell behaviors (mechanotransduction) using well-defined platforms that decouple the physical stimuli from the chemical ones can provide a powerful tool to control the balance between physiological tissue regeneration and pathological fibrotic response.
Collapse
Affiliation(s)
- Mirko D'Urso
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
59
|
Gentile F. Cell aggregation on nanorough surfaces. J Biomech 2020; 115:110134. [PMID: 33248702 DOI: 10.1016/j.jbiomech.2020.110134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
The ability to control adhesion and the spatial organization of cells over nanoscale surfaces is essential in tissue engineering, regenerative medicine, the growth of organoids and spheroids as an in-vitro-model of human development and disease. Nonetheless, despite the several different works that have explored the influence of nanotopography on cell adhesion and clustering, little is known about how the forces arising from membrane conformational change developing during cell adaptation to a nanorough surface, and the cell-cell adhesion forces, interact to guide cell assembly. Here, starting from the works of Decuzzi and Ferrari, who examined how the energy of a cell varies while adhering to a nanoscale surface, and of Armstrong and collaborators, who developed a continuous model of cell-cell adhesion and morphogenesis, we provide a description of how nanotopography can modulate cellular clustering. In simulations where the parameters of the model were varied over large intervals, we found that nanoroughness may induce cell aggregation from a homogenous, uniform state, also for weak cell-cell adhesion. Results of the model are relevant in bio-engineering and biomedical nanotechnology, and may be of interest for those involved in the design and fabrication of biomaterials and scaffolds for tissue formation and repair.
Collapse
Affiliation(s)
- F Gentile
- Department of Electrical Engineering and Information Technology, University Federico II, 80125 Naples, Italy; Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy.
| |
Collapse
|
60
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
61
|
Tran VD, Kumar S. Transduction of cell and matrix geometric cues by the actin cytoskeleton. Curr Opin Cell Biol 2020; 68:64-71. [PMID: 33075689 DOI: 10.1016/j.ceb.2020.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Engineered culture substrates have proven invaluable for investigating the role of cell and extracellular matrix geometry in governing cell behavior. While the mechanisms relating geometry to phenotype are complex, it is clear that the actin cytoskeleton plays a key role in integrating geometric inputs and transducing these cues into intracellular signals that drive downstream biology. Here, we review recent progress in elucidating the role of the cell and matrix geometry in regulating actin cytoskeletal architecture and mechanics. We address new developments in traditional two-dimensional culture paradigms and discuss efforts to extend these advances to three-dimensional systems, ranging from nanotextured surfaces to microtopographical systems (e.g. channels) to fully three-dimensional matrices.
Collapse
Affiliation(s)
- Vivien D Tran
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, USA.
| |
Collapse
|
62
|
Asif A, García‐López S, Heiskanen A, Martínez‐Serrano A, Keller SS, Pereira MP, Emnéus J. Pyrolytic Carbon Nanograss Enhances Neurogenesis and Dopaminergic Differentiation of Human Midbrain Neural Stem Cells. Adv Healthc Mater 2020; 9:e2001108. [PMID: 32902188 DOI: 10.1002/adhm.202001108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Advancements in research on the interaction of human neural stem cells (hNSCs) with nanotopographies and biomaterials are enhancing the ability to influence cell migration, proliferation, gene expression, and tailored differentiation toward desired phenotypes. Here, the fabrication of pyrolytic carbon nanograss (CNG) nanotopographies is reported and demonstrated that these can be employed as cell substrates boosting hNSCs differentiation into dopaminergic neurons (DAn), a long-time pursued goal in regenerative medicine based on cell replacement. In the near future, such structures can play a crucial role in the near future for stem-cell based cell replacement therapy (CRT) and bio-implants for Parkinson's disease (PD). The unique combination of randomly distributed nanograss topographies and biocompatible pyrolytic carbon material is optimized to provide suitable mechano-material cues for hNSCs adhesion, division, and DAn differentiation of midbrain hNSCs. The results show that in the presence of the biocoating poly-L-lysine (PLL), the CNG enhances hNSCs neurogenesis up to 2.3-fold and DAn differentiation up to 3.5-fold. Moreover, for the first time, consistent evidence is provided, that CNGs without any PLL coating are not only supporting cell survival but also lead to significantly enhanced neurogenesis and promote hNSCs to acquire dopaminergic phenotype compared to PLL coated topographies.
Collapse
Affiliation(s)
- Afia Asif
- Department of Biotechnology and Biomedicine (DTU Bioengineering) Produktionstorvet Building 423, Room 122 Kgs. Lyngby 2800 Denmark
| | - Silvia García‐López
- Department of Molecular Biology Universidad Autónoma Madrid Madrid 28049 Spain
- Department of Molecular Neuropathology Center of Molecular Biology Severo Ochoa (UAM‐CSIC) Nicolás Cabrera 1 Madrid 28049 Spain
| | - Arto Heiskanen
- Department of Biotechnology and Biomedicine (DTU Bioengineering) Produktionstorvet Building 423, Room 122 Kgs. Lyngby 2800 Denmark
| | - Alberto Martínez‐Serrano
- Department of Molecular Biology Universidad Autónoma Madrid Madrid 28049 Spain
- Department of Molecular Neuropathology Center of Molecular Biology Severo Ochoa (UAM‐CSIC) Nicolás Cabrera 1 Madrid 28049 Spain
| | - Stephan S. Keller
- National Centre for Nano Fabrication and Characterization (DTU Nanolab) Ørsteds Plads, Building 347 Kgs. Lyngby 2800 Denmark
| | - Marta P. Pereira
- Department of Molecular Biology Universidad Autónoma Madrid Madrid 28049 Spain
- Department of Molecular Neuropathology Center of Molecular Biology Severo Ochoa (UAM‐CSIC) Nicolás Cabrera 1 Madrid 28049 Spain
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering) Produktionstorvet Building 423, Room 122 Kgs. Lyngby 2800 Denmark
| |
Collapse
|
63
|
Chen Y, Wang J, Li X, Hu N, Voelcker NH, Xie X, Elnathan R. Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001668. [PMID: 32844502 PMCID: PMC7461044 DOI: 10.1002/adma.202001668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Indexed: 05/07/2023]
Abstract
Engineered nano-bio cellular interfaces driven by 1D vertical nanostructures (1D-VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell-VNS interfacial interactions are probed and assessed, highlighting the use of 1D-VNS in immunomodulation, and intracellular delivery into immune cells-both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D-VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell-VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard-to-transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS-mediated intracellular delivery are discussed. By identifying up-to-date progress and fundamental challenges of current 1D-VNS technology in immune-cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D-VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor-T therapy.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- INM‐Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Roey Elnathan
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
| |
Collapse
|
64
|
Xue J, Pisignano D, Xia Y. Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000735. [PMID: 32775158 PMCID: PMC7404157 DOI: 10.1002/advs.202000735] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Indexed: 05/21/2023]
Abstract
Electrospun nanofibers have been extensively explored as a class of scaffolding materials for tissue regeneration, because of their unique capability to mimic some features and functions of the extracellular matrix, including the fibrous morphology and mechanical properties, and to a certain extent the chemical/biological cues. This work reviews recent progress in applying electrospun nanofibers to direct the migration of stem cells and control their differentiation into specific phenotypes. First, the physicochemical properties that make electrospun nanofibers well-suited as a supporting material to expand stem cells by controlling their migration and differentiation are introduced. Then various systems are analyzed in conjunction with mesenchymal, neuronal, and embryonic stem cells, as well as induced pluripotent stem cells. Finally, some perspectives on the challenges and future opportunities in combining electrospun nanofibers with stem cells are offered to address clinical issues.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Dario Pisignano
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- School of Chemistry and BiochemistrySchool of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
65
|
Fontelo R, Soares da Costa D, Reis R, Novoa-Carballal R, Pashkuleva I. Bactericidal nanopatterns generated by block copolymer self-assembly. Acta Biomater 2020; 112:174-181. [PMID: 32525051 DOI: 10.1016/j.actbio.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
We describe the bactericidal capacity of nanopatterned surfaces created by self-assembly of block copolymers. Distinct nanotopographies were generated by spin-coating with polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) followed by solvent vapor annealing. We demonstrate that the bactericidal efficiency of the developed coatings depends on the morphology and the chemistry of the surface: cylindrical nanotopographies presenting both blocks at the surface have stronger bactericidal effect on Escherichia coli than micellar patterns with only PS exposed at the surface. The identified mechanism of bacterial death is a mechanical stress exerted by the nanostructures on the cell-wall. Moreover, the developed nanopatterns are not cytotoxic, which makes them an excellent option for coating of implantable materials and devices. The proposed approach represents an efficient tool in the fight against bacteria, which acts via compromising the bacterial wall integrity. STATEMENT OF SIGNIFICANCE: Bacterial infections represent an important risk during biomaterial implantation in surgeries due to the increase of antibiotic resistance. Bactericidal surfaces are a promising solution to avoid the use of antibiotics, but most of those systems do not allow mammalian cell survival. Nanopatterned silicon surfaces have demonstrated to be simultaneously bactericidal and allow mammalian cell culture but are made by physical methods (e.g. plasma etching) applicable to few materials and small surfaces. In this article we show that block copolymer self-assembly can be used to develop surfaces that kill bacteria (E. coli) but do not harm mammalian cells. Block copolymer self-assembly has the advantage of being applicable to many different types of substrates and large surface areas.
Collapse
|
66
|
Xia L, Shang Y, Chen X, Li H, Xu X, Liu W, Yang G, Wang T, Gao X, Chai R. Oriented Neural Spheroid Formation and Differentiation of Neural Stem Cells Guided by Anisotropic Inverse Opals. Front Bioeng Biotechnol 2020; 8:848. [PMID: 32850719 PMCID: PMC7411081 DOI: 10.3389/fbioe.2020.00848] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023] Open
Abstract
Isotropic inverse opal structures have been extensively studied for the ability to manipulate cell behaviors such as attachment, migration, and spheroid formation. However, their use in regulate the behaviors of neural stem cells has not been fully explored, besides, the isotropic inverse opal structures usually lack the ability to induce the oriented cell growth which is fundamental in neural regeneration based on neural stem cell therapy. In this paper, the anisotropic inverse opal substrates were obtained by mechanically stretching the poly (vinylidene fluoride) (PVDF) inverse opal films. The anisotropic inverse opal substrates possessed good biocompatibility, optical properties and anisotropy, provided well guidance for the formation of neural spheroids, the alignment of neural stem cells, the differentiation of neural stem cells, the oriented growth of derived neurons and the dendritic complexity of the newborn neurons. Thus, we conclude that the anisotropic inverse opal substrates possess great potential in neural regeneration applications.
Collapse
Affiliation(s)
- Lin Xia
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yixuan Shang
- Department of Clinical Medical Engineering, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangbo Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Hangzhou Rongze Biotechnology Group Co., Ltd., Hangzhou, China
| | - He Li
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochen Xu
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guang Yang
- Department of Otorhinolaryngology, Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Research Institute of Otolaryngology, Nanjing, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Clinical Medical Engineering, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
67
|
Maffioli E, Galli A, Nonnis S, Marku A, Negri A, Piazzoni C, Milani P, Lenardi C, Perego C, Tedeschi G. Proteomic Analysis Reveals a Mitochondrial Remodeling of βTC3 Cells in Response to Nanotopography. Front Cell Dev Biol 2020; 8:508. [PMID: 32850772 PMCID: PMC7405422 DOI: 10.3389/fcell.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, using cluster-assembled zirconia substrates with tailored roughness produced by supersonic cluster beam deposition, we demonstrated that β cells can sense nanoscale features of the substrate and can translate these stimuli into a mechanotransductive pathway capable of preserveing β-cell differentiation and function in vitro in long-term cultures of human islets. Using the same proteomic approach, we now focused on the mitochondrial fraction of βTC3 cells grown on the same zirconia substrates and characterized the morphological and proteomic modifications induced by the nanostructure. The results suggest that, in βTC3 cells, mitochondria are perturbed by the nanotopography and activate a program involving metabolism modification and modulation of their interplay with other organelles. Data were confirmed in INS1E, a different β-cell model. The change induced by the nanostructure can be pro-survival and prime mitochondria for a metabolic switch to match the new cell needs.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| | - Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| | - Algerta Marku
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Armando Negri
- Department of Veterinary Medicine, University of Milano, Milan, Italy
| | - Claudio Piazzoni
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Paolo Milani
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Cristina Lenardi
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| |
Collapse
|
68
|
Yu L, Silva Santisteban TM, Liu Q, Hu C, Bi J, Wei M. Effect of three-dimensional porosity gradients of biomimetic coatings on their bonding strength and cell behavior. J Biomed Mater Res A 2020; 109:615-626. [PMID: 32608169 DOI: 10.1002/jbm.a.37046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/19/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Surface modification techniques are often used to enhance the properties of Ti-based materials as hard-tissue replacements. While the microstructure of the coating and the quality of the interface between the substrate and coating are essential to evaluate the reliability and applicability of the surface modification. In this study, both a hydroxyapatite (HA) coating and a collagen-hydroxyapatite (Col-HA) composite coating were deposited onto a Ti-6Al-4V substrate using a biomimetic coating process. Importantly, a gradient cross-sectional structure with a porous coating toward the surface, while a dense layer adjacent to the interface between the coating and substrate was observed in three-dimensional (3D) from both the HA and Col-HA coatings via a dual-beam focused ion beam-scanning electron microscope (FIB-SEM). Moreover, the pore distributions within the entire coatings were reconstructed in 3D using Avizo, and the pores size distributions along the coating depth were calculated using RStudio. By evaluating the mechanical property and biocompatibility of these materials and closely observing the cross-sectional cell-coating-substrate interfaces using FIB-SEM, it was revealed that the porous surface created by both coatings well supports osteoblast cell adhesion while the dense inner layer facilitates a good bonding between the coating and the substrate. Although the mechanical property of the coating decreased with the addition of collagen, it is still strong enough for implant handling and the biocompatibility was promoted.
Collapse
Affiliation(s)
- Le Yu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio, USA
| | | | - Qinqing Liu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Changmin Hu
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mei Wei
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA.,Department of Mechanical Engineering, Ohio University, Athens, Ohio, USA
| |
Collapse
|
69
|
Chighizola M, Previdi A, Dini T, Piazzoni C, Lenardi C, Milani P, Schulte C, Podestà A. Adhesion force spectroscopy with nanostructured colloidal probes reveals nanotopography-dependent early mechanotransductive interactions at the cell membrane level. NANOSCALE 2020; 12:14708-14723. [PMID: 32618323 DOI: 10.1039/d0nr01991g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanosensing, the ability of cells to perceive and interpret the microenvironmental biophysical cues (such as the nanotopography), impacts strongly cellular behaviour through mechanotransductive processes and signalling. These events are predominantly mediated by integrins, the principal cellular adhesion receptors located at the cell/extracellular matrix (ECM) interface. Because of the typical piconewton force range and nanometre length scale of mechanotransductive interactions, achieving a detailed understanding of the spatiotemporal dynamics occurring at the cell/microenvironment interface is challenging; sophisticated interdisciplinary methodologies are required. Moreover, an accurate control over the nanotopographical features of the microenvironment is essential, in order to systematically investigate and precisely assess the influence of the different nanotopographical motifs on the mechanotransductive process. In this framework, we were able to study and quantify the impact of microenvironmental nanotopography on early cellular adhesion events by means of adhesion force spectroscopy based on innovative colloidal probes mimicking the nanotopography of natural ECMs. These probes provided the opportunity to detect nanotopography-specific modulations of the molecular clutch force loading dynamics and integrin clustering at the level of single binding events, in the critical time window of nascent adhesion formation. Following this approach, we found that the nanotopographical features are responsible for an excessive force loading in single adhesion sites after 20-60 s of interaction, causing a drop in the number of adhesion sites. However, by manganese treatment we demonstrated that the availability of activated integrins is a critical regulatory factor for these nanotopography-dependent dynamics.
Collapse
Affiliation(s)
- M Chighizola
- C.I.Ma.I.Na. and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Xia J, Yuan Y, Wu H, Huang Y, Weitz DA. Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells. Biomaterials 2020; 248:120014. [PMID: 32276040 PMCID: PMC7262959 DOI: 10.1016/j.biomaterials.2020.120014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
The nanopore size and roughness of nanoporous surface are two critical variables in determining stem cell fate, but little is known about the contribution from each cue individually. To address this gap, we use two-dimensional nanoporous membranes with controlled nanopore size and roughness to culture bone marrow-derived mesenchymal stem cells (BMSCs), and study their behaviors such as attachment, spreading and differentiation. We find that increasing the roughness of nanoporous surface has no noticeable effect on cell attachment, and only slightly decreases cell spreading areas and inhibits osteogenic differentiation. However, BMSCs cultured on membranes with larger nanopores have significantly fewer attached cells and larger spreading areas. Moreover, these cells cultured on larger nanopores undergo enhanced osteogenic differentiation by expressing more alkaline phosphatase, osteocalcin, osteopontin, and secreting more collagen type I. These results suggest that although both nanopore size and roughness can affect BMSCs, nanopore size plays a more significant role than roughness in controlling BMSC behavior.
Collapse
Affiliation(s)
- Jing Xia
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yuan Yuan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Huayin Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yuting Huang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
71
|
The impact of altered mechanobiology on aortic valve pathophysiology. Arch Biochem Biophys 2020; 691:108463. [PMID: 32590066 DOI: 10.1016/j.abb.2020.108463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/28/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvulopathy worldwide. Until recently, CAVD was viewed as a passive, degenerative process and an inevitable consequence of aging. Recent improvements in disease modeling, imaging, and analysis have greatly enhanced our understanding of CAVD. The aortic valve and its constituent cells are subjected to extreme changes in mechanical forces, so it follows that any changes in the underlying mechanobiology of the valve and its cells would have dire effects on function. Further, the mechanobiology of the aortic valve is intimately intertwined with numerous molecular pathways, with signal transduction between these aspects afforded by the dynamic plasma membrane. Changes to the plasma membrane itself, its regulation of the extracellular matrix, or the relay of signals into or out of the cell would negatively impact cell and tissue function. PURPOSE OF REVIEW This review seeks to detail past and current published reports related to the mechanobiology of the aortic valve with a special emphasis on the implications of altered mechanobiology in the context of calcific aortic valve disease. RECENT FINDINGS Investigations characterizing membrane composition and dynamics have provided new insights into the earliest stages of calcific aortic valve disease. Recent studies have suggested that the activation or suppression of key pathways contribute to disease progression but may also offer therapeutic targets. SUMMARY This review highlights the critical involvement of mechanobiology and membrane dynamics in normal aortic valve physiology as well as valve pathology.
Collapse
|
72
|
Jiang W, Zhang C, Tran L, Wang SG, Hakim AD, Liu H. Engineering Nano-to-Micron-Patterned Polymer Coatings on Bioresorbable Magnesium for Controlling Human Endothelial Cell Adhesion and Morphology. ACS Biomater Sci Eng 2020; 6:3878-3898. [DOI: 10.1021/acsbiomaterials.0c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Larry Tran
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemical Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Sebo Gene Wang
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemistry, College of Natural and Agricultural Sciences, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ammar Dilshad Hakim
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan Liu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
73
|
Zheng H, Tian Y, Gao Q, Yu Y, Xia X, Feng Z, Dong F, Wu X, Sui L. Hierarchical Micro-Nano Topography Promotes Cell Adhesion and Osteogenic Differentiation via Integrin α2-PI3K-AKT Signaling Axis. Front Bioeng Biotechnol 2020; 8:463. [PMID: 32509748 PMCID: PMC7248375 DOI: 10.3389/fbioe.2020.00463] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Surface topography dictates important aspects of cell biological behaviors. In our study, hierarchical micro-nano topography (SLM-AHT) with micro-scale grooves and nano-scale pores was fabricated and compared with smooth topography (S) and irregular micro-scale topography (SLA) surfaces to investigate mechanism involved in cell-surface interactions. Integrin α2 had a higher expression level on SLM-AHT surface compared with S and SLA surfaces, and the expression levels of osteogenic markers icluding Runx2, Col1a1, and Ocn were concomitantly upregulated on SLM-AHT surface. Moreover, formation of mature focal adhesions were significantly enhanced in SLM-AHT group. Noticablely, silencing integrin α2 could wipe out the difference of osteogenic gene expression among surfaces with different topography, indicating a crucial role of integrin α2 in topography induced osteogenic differentiation. In addition, PI3K-AKT signaling was proved to be regulated by integrin α2 and consequently participate in this process. Taken together, our findings illustrated that integrin α2-PI3K-AKT signaling axis plays a key role in hierarchical micro-nano topography promoting cell adhesion and osteogenic differentiation.
Collapse
Affiliation(s)
- Huimin Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yujuan Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qian Gao
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yingjie Yu
- Health Science Center, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianyou Xia
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhipeng Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Feng Dong
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
74
|
Tang SW, Tong WY, Pang SW, Voelcker NH, Lam YW. Deconstructing, Replicating, and Engineering Tissue Microenvironment for Stem Cell Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:540-554. [PMID: 32242476 DOI: 10.1089/ten.teb.2020.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most crucial components of regenerative medicine is the controlled differentiation of embryonic or adult stem cells into the desired cell lineage. Although most of the reported protocols of stem cell differentiation involve the use of soluble growth factors, it is increasingly evident that stem cells also undergo differentiation when cultured in the appropriate microenvironment. When cultured in decellularized tissues, for instance, stem cells can recapitulate the morphogenesis and functional specialization of differentiated cell types with speed and efficiency that often surpass the traditional growth factor-driven protocols. This suggests that the tissue microenvironment (TME) provides stem cells with a holistic "instructive niche" that harbors signals for cellular reprogramming. The translation of this into medical applications requires the decoding of these signals, but this has been hampered by the complexity of TME. This problem is often addressed by a reductionist approach, in which cells are exposed to substrates decorated with simple, empirically designed geometries, textures, and chemical compositions ("bottom-up" approach). Although these studies are invaluable in revealing the basic principles of mechanotransduction mechanisms, their physiological relevance is often uncertain. This review examines the recent progress of an alternative, "top-down" approach, in which the TME is treated as a holistic biological entity. This approach is made possible by recent advances in systems biology and fabrication technologies that enable the isolation, characterization, and reconstitution of TME. It is hoped that these new techniques will elucidate the nature of niche signals so that they can be extracted, replicated, and controlled. This review summarizes these emerging techniques and how the data they generated are changing our view on TME. Impact statement This review summarizes the current state of art of the understanding of instructive niche in the field of tissue microenvironment. Not only did we survey the use of different biochemical preparations as stimuli of stem cell differentiation and summarize the recent effort in dissecting the biochemical composition of these preparations, through the application of extracellular matrix (ECM) arrays and proteomics, but we also introduce the use of open-source, high-content immunohistochemistry projects in contributing to the understanding of tissue-specific composition of ECM. We believe this review would be highly useful for our peer researching in the same field. "Mr. Tulkinghorn is always the same… so oddly out of place and yet so perfectly at home." -Charles Dickens, Bleak House.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| | - Wing Yin Tong
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication, Clayton, Australia.,Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong
| | - Nicolas H Voelcker
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication, Clayton, Australia.,Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
75
|
Patel KD, Kim TH, Mandakhbayar N, Singh RK, Jang JH, Lee JH, Kim HW. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomater 2020; 108:97-110. [PMID: 32165193 DOI: 10.1016/j.actbio.2020.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Tailoring the surface of biomaterial scaffolds has been a key strategy to modulate the cellular interactions that are helpful for tissue healing process. In particular, nanotopological surfaces have been demonstrated to regulate diverse behaviors of stem cells, such as initial adhesion, spreading and lineage specification. Here, we tailor the surface of biopolymer nanofibers with carbon nanotubes (CNTs) to create a unique bi-modal nanoscale topography (500 nm nanofiber with 25 nm nanotubes) and report the performance in modulating diverse in vivo responses including inflammation, angiogenesis, and bone regeneration. When administered to a rat subcutaneous site, the CNT-coated nanofiber exhibited significantly reduced inflammatory signs (down-regulated pro-inflammatory cytokines and macrophages gathering). Moreover, the CNT-coated nanofibers showed substantially promoted angiogenic responses, with enhanced neoblood vessel formation and angiogenic marker expression. Such stimulated tissue healing events by the CNT interfacing were evidenced in a calvarium bone defect model. The in vivo bone regeneration of the CNT- coated nanofibers was significantly accelerated, with higher bone mineral density and up-regulated osteogenic signs (OPN, OCN, BMP2) of in vivo bone forming cells. The in vitro studies using MSCs could demonstrate accelerated adhesion and osteogenic differentiation and mineralization, supporting the osteo-promoting mechanism behind the in vivo bone forming event. These findings highlight that the CNTs interfacing of biopolymer nanofibers is highly effective in reducing inflammation, promoting angiogenesis, and driving adhesion and osteogenesis of MSCs, which eventually orchestrate to accelerate tissue healing and bone regeneration process. STATEMENT OF SIGNIFICANCE: Here we demonstrate that the interfacing of biopolymer nanofibers with carbon nanotubes (CNTs) could modulate multiple interactions of cells and tissues that are ultimately helpful for the tissue healing and bone regeneration process. The CNT-coated scaffolds significantly reduced the pro-inflammatory signals while stimulating the angiogenic marker expressions. Furthermore, the CNT-coated scaffolds increased the bone matrix production of bone forming cells in vivo as well as accelerated the adhesion and osteogenic differentiation of MSCs in vitro. These collective findings highlight that the CNTs coated on the biopolymer nanofibers allow the creation of a promising platform for nanoscale engineering of biomaterial surface that can favor tissue healing and bone regeneration process, through a series of orchestrated events in anti-inflammation, pro-angiogenesis, and stem cell stimulation.
Collapse
Affiliation(s)
- Kapil D Patel
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae-Hyun Kim
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University, Incheon, Republic of Korea
| | - Jung-Hwan Lee
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
76
|
Guadarrama Bello D, Fouillen A, Badia A, Nanci A. Nanoporosity Stimulates Cell Spreading and Focal Adhesion Formation in Cells with Mutated Paxillin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14924-14932. [PMID: 32155329 DOI: 10.1021/acsami.0c01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have evaluated the response to nanotopography of CHO-K1 cells that express wild-type paxillin or paxillin with mutations at serine 273 that inhibit phosphorylation. Cells were grown on nanoporous and polished titanium surfaces. With all cell types, immunofluorescence showed that adhesion and spreading were minimally affected on the treated surface and that the actin filaments were more abundant and well-aligned. Scanning electron microscopy revealed changes in cell shape and abundant filopodia with lateral nanoprotrusions in response to nanoporosity. Gene expression of proteins associated with cellular adhesion and protrusions was significantly increased on the nanoporous surface regardless of the cell type. In particular, α-actinin, Rac1, Cdc42, and ITGα1 were upregulated in S273 cells with alanine substitutions, whereas FAK, Pxn, and Src were downregulated, leading to improved focal adhesion formation. These findings suggest that the surface nanoporosity can "compensate for" the genetic mutations that affect the biomechanical relationship of cells to surfaces.
Collapse
Affiliation(s)
- Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Antonella Badia
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Québec H3C3J7, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec H3C3J7, Canada
| |
Collapse
|
77
|
Le Thi B, Shi R, Long BD, Ramesh S, Xingling S, Sugiura Y, Ishikawa K. Biological responses of MC3T3-E1 on calcium carbonate coatings fabricated by hydrothermal reaction on titanium. ACTA ACUST UNITED AC 2020; 15:035004. [PMID: 31914435 DOI: 10.1088/1748-605x/ab6939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Titainum (Ti) implants have been successfully used in orthopaedic and dental surgery. However, poor early bone tissue integration is still a common cause of implant failure. This could be modulated by improving the material bonding or adhesion directly to the bone by surface roughening and/or a bioresorbable and osteoconductive coating. In this study, we report on the biological behaviours of the Ti substrate with modified surface roughness and/or a calcium carbonate (CaCO3) coating. The roughened Ti surface was prepared using an acid etching reaction, and the CaCO3 coating on the substrates was synthesized by the hydrothermal treatment of Ti in calcium citrate complexes. This study demonstrates that surface roughening of Ti alone does not improve the biological response of the MC3T3-E1 cells, but a CaCO3 coating on the smooth Ti surface increases cell responses, and these effects are further enhanced by the combination of coating a roughened Ti surface with CaCO3. The larger the cell area, the greater the cell proliferation and increased bone-like nodule formation were observed on the CaCO3 coating of the roughened Ti surface. This observation was also supported by a higher ALP value. The cell behaviours found in the current study further support the development of CaCO3 coatings towards clinical application.
Collapse
Affiliation(s)
- Bang Le Thi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Japan. School of Materials Science and Engineering, Hanoi University of Science and Engineering, Vietnam
| | | | | | | | | | | | | |
Collapse
|
78
|
Cao Y, Desai TA. TiO 2-Based Nanotopographical Cues Attenuate the Restenotic Phenotype in Primary Human Vascular Endothelial and Smooth Muscle Cells. ACS Biomater Sci Eng 2020; 6:923-932. [PMID: 32529030 PMCID: PMC7288980 DOI: 10.1021/acsbiomaterials.9b01475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coronary and peripheral stents are implants that are inserted into blocked arteries to restore blood flow. After stent deployment, the denudation of the endothelial cell (EC) layer and the resulting inflammatory cascade can lead to restenosis, the renarrowing of the vessel wall due to the hyperproliferation and excessive matrix secretion of smooth muscle cells (SMCs). Despite advances in drug-eluting stents (DES), restenosis remains a clinical challenge and can require repeat revascularizations. In this study, we investigated how vascular cell phenotype can be modulated by nanotopographical cues on the stent surface, with the goal of developing an alternative strategy to DES for decreasing restenosis. We fabricated TiO2 nanotubes and demonstrated that this topography can decrease SMC surface coverage without affecting endothelialization. In addition, to our knowledge, this is the first study reporting that TiO2 nanotube topography dampens the response to inflammatory cytokine stimulation in both endothelial and smooth muscle cells. We observed that compared to flat titanium surfaces, nanotube surfaces attenuated tumor necrosis factor alpha (TNFα)-induced vascular cell adhesion molecule-1 (VCAM-1) expression in ECs by 1.8-fold and decreased TNFα-induced SMC growth by 42%. Further, we found that the resulting cellular phenotype is sensitive to changes in nanotube diameter and that 90 nm diameter nanotubes leads to the greatest magnitude in cell response compared to 30 or 50 nm nanotubes.
Collapse
Affiliation(s)
- Yiqi Cao
- UC San Francisco, San Francisco, California
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Group in Bioengineering, San Francisco, California
| |
Collapse
|
79
|
Cembran A, Bruggeman KF, Williams RJ, Parish CL, Nisbet DR. Biomimetic Materials and Their Utility in Modeling the 3-Dimensional Neural Environment. iScience 2020; 23:100788. [PMID: 31954980 PMCID: PMC6970178 DOI: 10.1016/j.isci.2019.100788] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The brain is a complex 3-dimensional structure, the organization of which provides a local environment that directly influences the survival, proliferation, differentiation, migration, and plasticity of neurons. To probe the effects of damage and disease on these cells, a synthetic environment is needed. Three-dimensional culturing of stem cells, neural progenitors, and neurons within fabricated biomaterials has demonstrated superior biomimetic properties over conventional 2-dimensional cultureware, offering direct recapitulation of both cell-cell and cell-extracellular matrix interactions. Within this review we address the benefits of deploying biomaterials as advanced cell culture tools capable of influencing neuronal fate and as in vitro models of the native in vivo microenvironment. We highlight recent and promising biomaterials approaches toward understanding neural network and their function relevant to neurodevelopment and provide our perspective on how these materials can be engineered and programmed to study both the healthy and diseased nervous system.
Collapse
Affiliation(s)
- Arianna Cembran
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | | | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
80
|
Hou Y, Yu L, Xie W, Camacho LC, Zhang M, Chu Z, Wei Q, Haag R. Surface Roughness and Substrate Stiffness Synergize To Drive Cellular Mechanoresponse. NANO LETTERS 2020; 20:748-757. [PMID: 31820645 DOI: 10.1021/acs.nanolett.9b04761] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Material surface topographic features have been shown to be crucial for tissue regeneration and surface treatment of implanted devices. Many biomaterials were investigated with respect to the response of cells on surface roughness. However, some conclusions even conflicted with each other due to the unclear interplay of surface topographic features and substrate elastic features as well as the lack of mechanistic studies. Herein, wide-scale surface roughness gradient hydrogels, integrating the surface roughness from nanoscale to microscale with controllable stiffness, were developed via soft lithography with precise surface morphology. Based on this promising platform, we systematically studied the mechanosensitive response of human mesenchymal stem cells (MSCs) to a broad range of roughnesses (200 nm to 1.2 μm for Rq) and different substrate stiffnesses. We observed that MSCs responded to surface roughness in a stiffness-dependent manner by reorganizing the surface hierarchical structure. Surprisingly, the cellular mechanoresponse and osteogenesis were obviously enhanced on very soft hydrogels (3.8 kPa) with high surface roughness, which was comparable to or even better than that on smooth stiff substrates. These findings extend our understanding of the interactions between cells and biomaterials, highlighting an effective noninvasive approach to regulate stem cell fate via synergetic physical cues.
Collapse
Affiliation(s)
- Yong Hou
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Wenyan Xie
- Institute of Pharmacy , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany
| | - Luis Cuellar Camacho
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering , Sichuan University , 610065 Chengdu , China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering , Sichuan University , 610065 Chengdu , China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
81
|
Lv Y, Huang Y, Xu M, Heng BC, Yang C, Cao C, Hu Z, Liu W, Chi X, Gao M, Zhang X, Wei Y, Deng X. The miR-193a-3p-MAP3k3 Signaling Axis Regulates Substrate Topography-Induced Osteogenesis of Bone Marrow Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901412. [PMID: 31921551 PMCID: PMC6947707 DOI: 10.1002/advs.201901412] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Substrate topographical features induce osteogenic differentiation of bone marrow stem cells (BMSCs), but the underlying mechanisms are unclear. As microRNAs (miRNAs) play key roles in osteogenesis and bone regeneration, it would be meaningful to elucidate the roles of miRNAs in the intracellular signaling cascade of topographical cue-induced osteogenic differentiation. In this study, the miRNA expression profile of the topographical feature-induced osteogenic differentiation group is different from that of the chemical-factors-induced osteogenic differentiation group. miR-193a-3p is sensitive to substrate topographical features and its downregulation enhances osteogenic differentiation only in the absence of osteogenesis-inducing medium. Also, substrate topographical features specifically activate a nonclassical osteogenetic pathway-the mitogen-activated protein kinase (MAPK) pathway. Loss- and gain-of-function experiments demonstrate that miR-193a-3p regulates the MAPK pathway by targeting the MAP3k3 gene. In conclusion, this data indicates that different osteogenic-lineage-related intracellular signaling cascades are triggered in BMSCs subjected to biophysical or chemical stimulation. Moreover, the miR-193a-3p-MAP3k3 signaling axis plays a pivotal role in the transduction of biophysical cues from the substrate to regulate the osteogenic lineage specification of BMSCs, and hence may be a promising molecular target for bone regenerative therapies.
Collapse
Affiliation(s)
- Yan Lv
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Ying Huang
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Mingming Xu
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Boon Chin Heng
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Congchong Yang
- Department of Cariology and EndodontologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Cen Cao
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Zhewen Hu
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Wenwen Liu
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaopei Chi
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Min Gao
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuehui Zhang
- Department of Dental Materials and Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yan Wei
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryNMPA Key Laboratory for Dental MaterialsNational Engineering Laboratory for Digital and Material Technology of StomatologyBeijing Laboratory of Biomedical MaterialsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| |
Collapse
|
82
|
Schulte C. Cluster-assembled nanostructured materials for cell biology. CLUSTER BEAM DEPOSITION OF FUNCTIONAL NANOMATERIALS AND DEVICES 2020. [DOI: 10.1016/b978-0-08-102515-4.00010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
83
|
Sunarso, Tsuchiya A, Toita R, Tsuru K, Ishikawa K. Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization. Int J Mol Sci 2019; 21:E198. [PMID: 31892154 PMCID: PMC6981423 DOI: 10.3390/ijms21010198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
Biomedical applications of poly(ether ether ketone) (PEEK) are hindered by its inherent bioinertness and lack of osseointegration capability. In the present study, to enhance osteogenic activity and, hence, the osseointegration capability of PEEK, we proposed a strategy of combined phosphate and calcium surface-functionalization, in which ozone-gas treatment and wet chemistry were used for introduction of hydroxyl groups and modification of phosphate and/or calcium, respectively. Surface functionalization significantly elevated the surface hydrophilicity without changing the surface roughness or topography. The cell study demonstrated that immobilization of phosphate or calcium increased the osteogenesis of rat mesenchymal stem cells compared with bare PEEK, including cell proliferation, alkaline phosphatase activity, and bone-like nodule formation. Interestingly, further enhancement was observed for samples co-immobilized with phosphate and calcium. Furthermore, in the animal study, phosphate and calcium co-functionalized PEEK demonstrated significantly enhanced osseointegration, as revealed by a greater direct bone-to-implant contact ratio and bond strength between the bone and implant than unfunctionalized and phosphate-functionalized PEEK, which paves the way for the orthopedic and dental application of PEEK.
Collapse
Affiliation(s)
- Sunarso
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Department of Dental Materials, Faculty of Dentistry, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka 814-0193, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
| |
Collapse
|
84
|
3D Printed Wavy Scaffolds Enhance Mesenchymal Stem Cell Osteogenesis. MICROMACHINES 2019; 11:mi11010031. [PMID: 31881771 PMCID: PMC7019315 DOI: 10.3390/mi11010031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022]
Abstract
There is a growing interest in developing 3D porous scaffolds with tunable architectures for bone tissue engineering. Surface topography has been shown to control stem cell behavior including differentiation. In this study, we printed 3D porous scaffolds with wavy or linear patterns to investigate the effect of wavy scaffold architecture on human mesenchymal stem cell (hMSC) osteogenesis. Five distinct wavy scaffolds were designed using sinusoidal waveforms with varying wavelengths and amplitudes, and orthogonal scaffolds were designed using linear patterns. We found that hMSCs attached to wavy patterns, spread by taking the shape of the curvatures presented by the wavy patterns, exhibited an elongated shape and mature focal adhesion points, and differentiated into the osteogenic lineage. When compared to orthogonal scaffolds, hMSCs on wavy scaffolds showed significantly enhanced osteogenesis, indicated by higher calcium deposition, alkaline phosphatase activity, and osteocalcin staining. This study aids in the development of 3D scaffolds with novel architectures to direct stem osteogenesis for bone tissue engineering.
Collapse
|
85
|
Gao A, Liao Q, Xie L, Wang G, Zhang W, Wu Y, Li P, Guan M, Pan H, Tong L, Chu PK, Wang H. Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration. Biomaterials 2019; 230:119642. [PMID: 31787332 DOI: 10.1016/j.biomaterials.2019.119642] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022]
Abstract
The adverse macrophage-mediated immune response elicited by the surface of polyetheretherketone (PEEK) is responsible for the formation of fibrous encapsulation and resulting inferior osseointegration of PEEK implants in the dental and orthopedic fields. Therefore, endowing the PEEK surface with immunomodulatory ability is an appealing strategy to enhance implant-bone integration. Herein, a reliable and cost-effective method to construct adherent films with tunable nanoporous structures on PEEK is described. The functionalized surface not only suppresses the acute inflammatory response of macrophages, but also provides a favorable milieu for osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Whole genome expression analysis reveals that the suppression effect arises from synergistic inhibition of focal adhesion, Toll-like receptor, and NOD-like receptor signaling pathways, as well as the attenuating loop through the JAK-STAT and TNF signaling pathways in macrophages. Further in vivo studies confirm that the functionalized surface induces less fibrous capsule formation and an improved bone regeneration. The nanoporous films fabricated on PEEK harmonize the early macrophage-mediated inflammatory response and subsequent hBMSCs-centered osteogenic functions consequently yielding superior osseointegration.
Collapse
Affiliation(s)
- Ang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Qing Liao
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lingxia Xie
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuzheng Wu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haobo Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
86
|
Patel KD, Buitrago JO, Parthiban SP, Lee JH, Singh RK, Knowles JC, Kim HW. Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:5190-5203. [DOI: 10.1021/acsabm.9b00859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom
| | - Jennifer O. Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - S. Prakash Parthiban
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom
- The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, U.K
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
| |
Collapse
|
87
|
Xia L, Zhu W, Wang Y, He S, Chai R. Regulation of Neural Stem Cell Proliferation and Differentiation by Graphene-Based Biomaterials. Neural Plast 2019; 2019:3608386. [PMID: 31737061 PMCID: PMC6817925 DOI: 10.1155/2019/3608386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/16/2019] [Indexed: 01/23/2023] Open
Abstract
The transplantation of neural stem cells (NSCs) has become an emerging treatment for neural degeneration. A key factor in such treatments is to manipulate NSC behaviors such as proliferation and differentiation, resulting in the eventual regulation of NSC fate. Novel bionanomaterials have shown usefulness in guiding the proliferation and differentiation of NSCs due to the materials' unique morphological and topological properties. Among the nanomaterials, graphene has drawn increasing attention for neural regeneration applications based on the material's excellent physicochemical properties, surface modifications, and biocompatibility. In this review, we summarize recent works on the use of graphene-based biomaterials for regulating NSC behaviors and the potential use of these materials in clinical treatment. We also discuss the limitations of graphene-based nanomaterials for use in clinical practice. Finally, we provide some future prospects for graphene-based biomaterial applications in neural regeneration.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Bioelectronics, MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 210096, China
| | - Wenjuan Zhu
- Zhangjiagang City First People's Hospital, The Affiliated Zhangjiagang Hospital of Suzhou University, Zhangjiagang 215600, China
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 210096, China
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| |
Collapse
|
88
|
Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc Natl Acad Sci U S A 2019; 116:23143-23151. [PMID: 31591250 DOI: 10.1073/pnas.1910166116] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Surface topography profoundly influences cell adhesion, differentiation, and stem cell fate control. Numerous studies using a variety of materials demonstrate that nanoscale topographies change the intracellular organization of actin cytoskeleton and therefore a broad range of cellular dynamics in live cells. However, the underlying molecular mechanism is not well understood, leaving why actin cytoskeleton responds to topographical features unexplained and therefore preventing researchers from predicting optimal topographic features for desired cell behavior. Here we demonstrate that topography-induced membrane curvature plays a crucial role in modulating intracellular actin organization. By inducing precisely controlled membrane curvatures using engineered vertical nanostructures as topographies, we find that actin fibers form at the sites of nanostructures in a curvature-dependent manner with an upper limit for the diameter of curvature at ∼400 nm. Nanotopography-induced actin fibers are branched actin nucleated by the Arp2/3 complex and are mediated by a curvature-sensing protein FBP17. Our study reveals that the formation of nanotopography-induced actin fibers drastically reduces the amount of stress fibers and mature focal adhesions to result in the reorganization of actin cytoskeleton in the entire cell. These findings establish the membrane curvature as a key linkage between surface topography and topography-induced cell signaling and behavior.
Collapse
|
89
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
90
|
Li M, Xi N, Wang Y, Liu L. Nanotopographical Surfaces for Regulating Cellular Mechanical Behaviors Investigated by Atomic Force Microscopy. ACS Biomater Sci Eng 2019; 5:5036-5050. [DOI: 10.1021/acsbiomaterials.9b00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Kowloon 999077, Hong Kong, China
| | | | | |
Collapse
|
91
|
Farzamfar S, Nazeri N, Salehi M, Valizadeh A, Marashi SM, Savari Kouzehkonan G, Ghanbari H. Will Nanotechnology Bring New Hope for Stem Cell Therapy? Cells Tissues Organs 2019; 206:229-241. [PMID: 31288229 DOI: 10.1159/000500517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/21/2019] [Indexed: 01/05/2025] Open
Abstract
The potential of stem cell therapy has been shown in preclinical trials for the treatment of damage and replacement of organs and degenerative diseases. After many years of research, its clinical application is limited. Currently there is not a single stem cell therapy product or procedure. Nanotechnology is an emerging field in medicine and has huge potential due to its unique characteristics such as its size, surface effects, tunnel effects, and quantum size effect. The importance of application of nanotechnology in stem cell technology and cell-based therapies has been recognized. In particular, the effects of nanotopography on stem cell differentiation, proliferation, and adhesion have become an area of intense research in tissue engineering and regenerative medicine. Despite the many opportunities that nanotechnology can create to change the fate of stem cell technology and cell therapies, it poses several risks since some nanomaterials are cytotoxic and can affect the differentiation program of stem cells and their viability. Here we review some of the advances and the prospects of nanotechnology in stem cell research and cell-based therapies and discuss the issues, obstacles, applications, and approaches with the aim of opening new avenues for further research.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Nazeri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Majid Salehi
- Tissue Engineering and Stem Cell Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Valizadeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Savari Kouzehkonan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
92
|
Li M, Xi N, Wang Y, Liu L. Tunable Hybrid Biopolymeric Hydrogel Scaffolds Based on Atomic Force Microscopy Characterizations for Tissue Engineering. IEEE Trans Nanobioscience 2019; 18:597-610. [PMID: 31217123 DOI: 10.1109/tnb.2019.2922968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developing adequate biomaterials to engineer cell-scaffold interactions has become a promising way for physically regulating the biological behaviors of cells in the field of tissue engineering. Biopolymeric hydrogels have shown great merits as cellular scaffolds due to their biocompatible and biodegradable characteristics. In particular, the advent of atomic force microscopy (AFM) provides a powerful tool for characterizing native specimens at the micro/nanoscale, but utilizing AFM to investigate the detailed structures and properties of hydrogel scaffolds has been still scarce. In this paper, hybrid natural biopolymers are used to form hydrogel scaffolds which exhibit tunable structural and mechanical properties characterized by AFM peak force tapping imaging, and the applications of the formed hydrogel scaffolds in tissue engineering are studied. AFM morphological images showed that the cross-linking reactions of sodium alginate and gum arabic via calcium cations yielded the porous hydrogel scaffolds. By altering the component ratios, AFM mechanical images showed that the porous and mechanical properties (Young's modulus and adhesion force) of the hydrogel scaffolds were tunable. Next, the nanoscale structural and mechanical dynamics of the fabricated hydrogel scaffolds during the degradation process were revealed by AFM peak force tapping imaging. The experimental results on three different types of cells showed that the fabricated hydrogel scaffolds facilitate the formation of cellular spheroids. The research provides a novel idea to design tunable hydrogel scaffolds based on AFM characterizations for investigating cell-scaffold interactions, which will have potential impacts on tissue engineering.
Collapse
|
93
|
Matellan C, Del Río Hernández AE. Where No Hand Has Gone Before: Probing Mechanobiology at the Cellular Level. ACS Biomater Sci Eng 2018; 5:3703-3719. [PMID: 33405886 DOI: 10.1021/acsbiomaterials.8b01206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Physical forces and other mechanical stimuli are fundamental regulators of cell behavior and function. Cells are also biomechanically competent: they generate forces to migrate, contract, remodel, and sense their environment. As the knowledge of the mechanisms of mechanobiology increases, the need to resolve and probe increasingly small scales calls for novel technologies to mechanically manipulate cells, examine forces exerted by cells, and characterize cellular biomechanics. Here, we review novel methods to quantify cellular force generation, measure cell mechanical properties, and exert localized piconewton and nanonewton forces on cells, receptors, and proteins. The combination of these technologies will provide further insight on the effect of mechanical stimuli on cells and the mechanisms that convert these stimuli into biochemical and biomechanical activity.
Collapse
Affiliation(s)
- Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
94
|
Fukuda N, Kanazawa M, Tsuru K, Tsuchiya A, Sunarso, Toita R, Mori Y, Nakashima Y, Ishikawa K. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia. Sci Rep 2018; 8:16887. [PMID: 30442906 PMCID: PMC6237893 DOI: 10.1038/s41598-018-35313-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/02/2018] [Indexed: 01/04/2023] Open
Abstract
This study was aimed to investigate the osseointegration ability of poly(ether ether ketone) (PEEK) implants with modified surface roughness and/or surface chemistry. The roughened surface was prepared by a sandblast method, and the phosphate groups on the substrates were modified by a two-step chemical reaction. The in vitro osteogenic activity of rat mesenchymal stem cells (MSCs) on the developed substrates was assessed by measuring cell proliferation, alkaline phosphatase activity, osteocalcin expression, and bone-like nodule formation. Surface roughening alone did not improve MSC responses. However, phosphorylation of smooth substrates increased cell responses, which were further elevated in combination with surface roughening. Moreover, in a rabbit tibia implantation model, this combined surface modification significantly enhanced the bone-to-implant contact ratio and corresponding bone-to-implant bonding strength at 4 and 8 weeks post-implantation, whereas modification of surface roughness or surface chemistry alone did not. This study demonstrates that combination of surface roughness and chemical modification on PEEK significantly promotes cell responses and osseointegration ability in a synergistic manner both in vitro and in vivo. Therefore, this is a simple and promising technique for improving the poor osseointegration ability of PEEK-based orthopedic/dental implants.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Masayuki Kanazawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka, 814-0193, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Sunarso
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Dental Materials, Faculty of Dentistry, University of Indonesia, Jalan Salemba Raya No. 4, Jakarta, Pusat, 10430, Indonesia
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| |
Collapse
|
95
|
Lee MS, Lee DH, Jeon J, Oh SH, Yang HS. Topographically Defined, Biodegradable Nanopatterned Patches to Regulate Cell Fate and Acceleration of Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38780-38790. [PMID: 30360116 DOI: 10.1021/acsami.8b14745] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
If only allowed to proceed naturally, the bone-healing process can take several weeks, months, or even years depending on the injury size. In terms of bone-healing speed, many studies have been conducted investigating the deliverance of various growth factors of implantable biomaterials to shorten the time for bone regeneration. However, there may be side effects such as nerve pain, infection, or ectopic bone formation. As an alternative method, we focused on biophysical guidance, which provided similar topographical cues to the cellular environment to recruit host cells for bone defect healing. In this study, we hypothesized that aligned nanotopographical features have enhanced osteoblast recruitment, migration, and differentiation without external stimuli. We designed and fabricated a biodegradable poly(lactic- co-glycolic acid) nanopatterned patch using simple solvent casting and capillary force lithography. We confirmed that a biodegradable nanopatterned patch (BNP) accelerated the migration of osteoblasts according to the orientation of the patterned direction. These highly aligned osteoblasts may contribute to in vitro osteogenic differentiation, such as alkaline phosphate activity, mineralization, and calcium deposition, compared to the biodegradable flat patch (BFP). To demonstrate bone defect healing by BNP guidance in vivo, we implanted either whole or bridge BNP on the critical size defect of mouse calvarial ( ø 4 mm) or tibia bone (3 × 7 mm2). Only the BNP-treated group showed faster new bone formation and compact bone regeneration at the calvarial or tibia bone defect area compared to BFP at 4 or 8 weeks. Bridge BNP guided, in particular, the regeneration of new bone formation along the parallel direction of nanopatterned substrates. Here, we show that a BNP with biophysical guidance should be suitable for use in bone tissue regeneration through accelerated migration of the intact host cell.
Collapse
|
96
|
Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:995-1005. [DOI: 10.1016/j.msec.2018.06.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 01/24/2023]
|
97
|
He J, Sun C, Gu Z, Yang Y, Gu M, Xue C, Xie Z, Ren H, Wang Y, Liu Y, Liu M, Ding F, Leong KW, Gu X. Morphology, Migration, and Transcriptome Analysis of Schwann Cell Culture on Butterfly Wings with Different Surface Architectures. ACS NANO 2018; 12:9660-9668. [PMID: 30125084 DOI: 10.1021/acsnano.8b00552] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It has been shown that material surface topography greatly affects cell attachment, growth, proliferation, and differentiation. However, the underlying molecular mechanisms for cell-material interactions are still not understood well. Here, two kinds of butterfly wings with different surface architectures were employed for addressing such an issue. Papilio ulysses telegonus (P.u.t.) butterfly wing surface is composed of micro/nanoconcaves, whereas Morpho menelaus (M.m.) butterfly wings are decorated with grooves. RSC96 cells grown on M.m. wings showed a regular sorting pattern along with the grooves. On the contrary, the cells seeded on P.u.t. wings exhibited random arrangement. Transcriptome sequencing and bioinformatics analysis revealed that huntingtin (Htt)-regulated lysosome activity is a potential key factor for determining cell growth behavior on M.m. butterfly wings. Gene silence further confirmed this notion. In vivo experiments showed that the silicone tubes fabricated with M.m. wings markedly facilitate rat sciatic nerve regeneration after injury. Lysosome activity and Htt expression were greatly increased in the M.m. wing-fabricated graft-bridged nerves. Collectively, our data provide a theoretical basis for employing butterfly wings to construct biomimetic nerve grafts and establish Htt lysosome as a crucial regulator for cell-material interactions.
Collapse
Affiliation(s)
- Jianghong He
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| | - Cheng Sun
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Yumin Yang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| | - Miao Gu
- Chengde Medical College , Chengde 067000 , China
| | - Chengbin Xue
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair , Affiliated Hospital of Nantong University , Nantong 226001 , China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Hechun Ren
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| | - Yongjun Wang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| | - Yan Liu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| | - Mei Liu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| | - Fei Ding
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| | - Kam W Leong
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Xiaosong Gu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair , Affiliated Hospital of Nantong University , Nantong 226001 , China
| |
Collapse
|
98
|
Yang G, Yang H, Shi L, Wang T, Zhou W, Zhou T, Han W, Zhang Z, Lu W, Hu J. Enhancing Corrosion Resistance, Osteoinduction, and Antibacterial Properties by Zn/Sr Additional Surface Modification of Magnesium Alloy. ACS Biomater Sci Eng 2018; 4:4289-4298. [PMID: 33418825 DOI: 10.1021/acsbiomaterials.8b00781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guangzheng Yang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Huawei Yang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Taolei Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Wuchao Zhou
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China
| | - Tian Zhou
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zhiyuan Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Lu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jingzhou Hu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
99
|
Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering. Int J Mol Sci 2018; 19:ijms19103212. [PMID: 30336625 PMCID: PMC6214009 DOI: 10.3390/ijms19103212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023] Open
Abstract
We report the study of novel biodegradable electrospun scaffolds from poly(butylene 1,4-cyclohexandicarboxylate-co-triethylene cyclohexanedicarboxylate) (P(BCE-co-TECE)) as support for in vitro and in vivo muscle tissue regeneration. We demonstrate that chemical composition, i.e., the amount of TECE co-units (constituted of polyethylene glycol-like moieties), and fibre morphology, i.e., aligned microfibrous or sub-microfibrous scaffolds, are crucial in determining the material biocompatibility. Indeed, the presence of ether linkages influences surface wettability, mechanical properties, hydrolytic degradation rate, and density of cell anchoring points of the studied materials. On the other hand, electrospun scaffolds improve cell adhesion, proliferation, and differentiation by favouring cell alignment along fibre direction (fibre morphology), also allowing for better cell infiltration and oxygen and nutrient diffusion (fibre size). Overall, C2C12 myogenic cells highly differentiated into mature myotubes when cultured on microfibres realised with the copolymer richest in TECE co-units (micro-P73 mat). Lastly, when transplanted in the tibialis anterior muscles of healthy, injured, or dystrophic mice, micro-P73 mat appeared highly vascularised, colonised by murine cells and perfectly integrated with host muscles, thus confirming the suitability of P(BCE-co-TECE) scaffolds as substrates for skeletal muscle tissue engineering.
Collapse
|
100
|
Ozguldez HO, Cha J, Hong Y, Koh I, Kim P. Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells. Biomater Res 2018; 22:32. [PMID: 30323947 PMCID: PMC6173882 DOI: 10.1186/s40824-018-0141-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear. In this study, we therefore examined the effect of nanotopography on the expression of ECM proteins by hMSCs by analyzing the quantity and structure of the ECM on a nanogrooved surface. Methods To develop the nanoengineered, hMSC-derived ECM, we fabricated the nanogrooves on a coverglass using a UV-curable polyurethane acrylate (PUA). Then, hMSCs were cultivated on the nanogrooves, and the cells at the full confluency were decellularized. To analyze the effect of nanotopography on the hMSCs, the hMSCs were re-seeded on the nanoengineered, hMSC-derived ECM. Results hMSCs cultured within the nano-engineered hMSC-derived ECM sheet showed a different pattern of expression of ECM proteins from those cultured on ECM-free, nanogrooved surface. Moreover, hMSCs on the nano-engineered ECM sheet had a shorter vinculin length and were less well-aligned than those on the other surface. In addition, the expression pattern of ECM-related genes by hMSCs on the nanoengineered ECM sheet was altered. Interestingly, the expression of genes for osteogenesis-related ECM proteins was downregulated, while that of genes for chondrogenesis-related ECM proteins was upregulated, on the nanoengineered ECM sheet. Conclusions The nanoengineered ECM influenced the phenotypic features of hMSCs, and that hMSCs can remodel their ECM microenvironment in the presence of a nanostructured ECM to guide differentiation into a specific lineage. Electronic supplementary material The online version of this article (10.1186/s40824-018-0141-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hatice O Ozguldez
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 South Korea
| | - Junghwa Cha
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 South Korea
| | - Yoonmi Hong
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 South Korea
| | - Ilkyoo Koh
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 South Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 South Korea
| |
Collapse
|