51
|
Guo Y, Zhao P, Guo G, Hu Z, Tian L, Zhang K, Zhang W, Xing M. The Role of Oxidative Stress in Gastrointestinal Tract Tissues Induced by Arsenic Toxicity in Cocks. Biol Trace Elem Res 2015; 168:490-9. [PMID: 25971879 DOI: 10.1007/s12011-015-0357-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/26/2015] [Indexed: 01/08/2023]
Abstract
Arsenic (As) is a widely distributed trace element which is known to be associated with numerous adverse effects on human beings and animals. Arsenic trioxide (As2O3) is an inorganic arsenical-containing toxic compound. The effect of excessive amounts of As2O3 exposure on gastrointestinal tract tissue damage in cocks is still unknown. This study was conducted to investigate the effect of As2O3 exposure on gastrointestinal tract tissue damage in cocks. In total, 72 1-day-old male Hyline cocks were randomly divided into four groups and fed either a commercial diet or an As2O3 supplement diet containing 7.5, 15, and 30 mg/kg As2O3. The experiment lasted for 90 days and gastrointestinal tract tissue samples (gizzard, glandular stomach, duodenum, jejunum, ileum, cecum, and rectum) were collected at 30, 60, and 90 days. Catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) activities; malondialdehyde (MDA) contents; and hydroxyl radical (OH·)-mediated inhibition were examined. Furthermore, the results demonstrated that MDA content in the gastrointestinal tract was increased, while the activities of CAT, GSH, and GSH-Px and the ability to resist OH· was decreased in the As2O3 treatment groups. Extensive damage was observed in the gastrointestinal tract. These findings indicated that As2O3 exposure caused oxidative damage in the gastrointestinal tract of cocks due to alterations in antioxidant enzyme activities and elevation of free radicals.
Collapse
Affiliation(s)
- Ying Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| | - Panpan Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| | - Guangyang Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Zhibo Hu
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Li Tian
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Kexin Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Wen Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| |
Collapse
|
52
|
Alexa T, Marza A, Voloseniuc T, Tamba B. Enhanced analgesic effects of tramadol and common trace element coadministration in mice. J Neurosci Res 2015; 93:1534-41. [PMID: 26078209 DOI: 10.1002/jnr.23609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 01/22/2023]
Abstract
Chronic pain is managed mostly by the daily administration of analgesics. Tramadol is one of the most commonly used drugs, marketed in combination with coanalgesics for enhanced effect. Trace elements are frequent ingredients in dietary supplements and may enhance tramadol's analgesic effect either through synergic mechanisms or through analgesic effects of their own. Swiss Weber male mice were divided into nine groups and were treated with a combination of the trace elements Mg, Mn, and Zn in three different doses and a fixed dose of tramadol. Two groups served as positive (tramadol alone) and negative (saline) controls. Nociceptive assessment by tail-flick (TF) and hot-plate (HP) tests was performed at baseline and at 15, 30, 45, and 60 min after intraperitoneal administration. Response latencies were recorded and compared with the aid of ANOVA testing. All three trace elements enhanced tramadol's analgesic effect, as assessed by TF and HP test latencies. Coadministration of these trace elements led to an increase of approximately 30% in the average pain inhibition compared with the tramadol-alone group. The most effective doses were 0.6 mg/kg b.w. for Zn, 75 mg/kg b.w. for Mg, and 7.2 mg/kg b.w. for Mn. Associating trace elements such as Zn, Mg, and Mn with the standard administration of tramadol increases the drug's analgesic effect, most likely a consequence of their synergic action. These findings impact current analgesic treatment because the addition of these trace elements may reduce the tramadol dose required to obtain analgesia.
Collapse
Affiliation(s)
- Teodora Alexa
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania.,Regional Institute of Oncology Iaşi, Romania
| | - Aurelia Marza
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania
| | - Tudor Voloseniuc
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania
| | - Bogdan Tamba
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania.,A&B Pharm Corporation, Roman, Romania
| |
Collapse
|
53
|
Abstract
The understanding of manganese (Mn) biology, in particular its cellular regulation and role in neurological disease, is an area of expanding interest. Mn is an essential micronutrient that is required for the activity of a diverse set of enzymatic proteins (e.g., arginase and glutamine synthase). Although necessary for life, Mn is toxic in excess. Thus, maintaining appropriate levels of intracellular Mn is critical. Unlike other essential metals, cell-level homeostatic mechanisms of Mn have not been identified. In this review, we discuss common forms of Mn exposure, absorption, and transport via regulated uptake/exchange at the gut and blood-brain barrier and via biliary excretion. We present the current understanding of cellular uptake and efflux as well as subcellular storage and transport of Mn. In addition, we highlight the Mn-dependent and Mn-responsive pathways implicated in the growing evidence of its role in Parkinson's disease and Huntington's disease. We conclude with suggestions for future focuses of Mn health-related research.
Collapse
Affiliation(s)
- Kyle J Horning
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232; , ,
| | | | | | | | | |
Collapse
|
54
|
N-acetylcysteineamide protects against manganese-induced toxicity in SHSY5Y cell line. Brain Res 2015; 1608:157-66. [PMID: 25681547 DOI: 10.1016/j.brainres.2015.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is an essential trace element required for normal cellular functioning. However, overexposure of Mn can be neurotoxic resulting in the development of manganism, a syndrome that resembles Parkinson׳s disease. Although the pathogenetic basis of this disorder is unclear, several studies indicate that it is mainly associated with oxidative stress and mitochondrial energy failure. Therefore, this study is focused on (1) investigating the oxidative effects of Mn on neuroblastoma cells (SHSY5Y) and (2) elucidating whether a novel thiol antioxidant, N-acetylcysteineamide (NACA), provides any protection against Mn-induced neurotoxicity. Reactive oxygen species (ROS) were highly elevated after the exposure, indicating that mechanisms that induce oxidative stress were involved. Measures of oxidative stress parameters, such as glutathione (GSH), malondialdehyde (MDA), and activities of glutathione reductase (GR) and glutathione peroxidase (GPx) were altered in the Mn-treated groups. Loss of mitochondrial membrane potential, as assessed by flow cytometry and decreased levels of ATP, indicated that cytotoxicity was mediated through mitochondrial dysfunction. However, pretreatment with NACA protected against Mn-induced toxicity by inhibiting lipid peroxidation, scavenging ROS, and preserving intracellular GSH and mitochondrial membrane potential. NACA can potentially be developed into a promising therapeutic option for Mn-induced neurotoxicity. This article is part of a Special Issue entitled SI: Metals in neurodegeneration.
Collapse
|
55
|
Kim G, Lee HS, Seok Bang J, Kim B, Ko D, Yang M. A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:229-54. [PMID: 26023759 DOI: 10.1080/10590501.2015.1030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
People can be easily exposed to manganese (Mn), the twelfth most abundant element, through various exposure routes. However, overexposure to Mn causes manganism, a motor syndrome similar to Parkinson disease, via interference of the several neurotransmitter systems, particularly the dopaminergic system in areas. At cellular levels, Mn preferentially accumulates in mitochondria and increases the generation of reactive oxygen species, which changes expression and activity of manganoproteins. Many studies have provided invaluable insights into the causes, effects, and mechanisms of the Mn-induced neurotoxicity. To regulate Mn exposure, many countries have performed biological monitoring of Mn with three major biomarkers: exposure, susceptibility, and response biomarkers. In this study, we review current statuses of Mn exposure via various exposure routes including food, high susceptible population, effects of genetic polymorphisms of metabolic enzymes or transporters (CYP2D6, PARK9, SLC30A10, etc.), alterations of the Mn-responsive proteins (i.e., glutamine synthetase, Mn-SOD, metallothioneins, and divalent metal trnsporter1), and epigenetic changes due to the Mn exposure. To minimize the effects of Mn exposure, further biological monitoring of Mn should be done with more sensitive and selective biomarkers.
Collapse
Affiliation(s)
- Gyuri Kim
- a Research Center for Cell Fate Control, Department of Toxicology, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | | | | | | | | | | |
Collapse
|
56
|
Melatonin Antagonizes Mn-Induced Oxidative Injury Through the Activation of Keap1–Nrf2–ARE Signaling Pathway in the Striatum of Mice. Neurotox Res 2014; 27:156-71. [DOI: 10.1007/s12640-014-9489-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/19/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
57
|
Chtourou Y, Garoui EM, Boudawara T, Zeghal N. Protective role of silymarin against manganese-induced nephrotoxicity and oxidative stress in rat. ENVIRONMENTAL TOXICOLOGY 2014; 29:1147-1154. [PMID: 23339144 DOI: 10.1002/tox.21845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 12/15/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
Metal toxicity may occur after exposure from many sources. Oxidative stress is thought to be involved in manganese-induced toxicity and leads to various health disorders. Silymarin (SIL), a natural flavonoid, has been reported to have many benefits and medicinal properties. The aim of this study was to assess the toxicity of manganese (Mn) on oxidative stress and DNA damage in the kidney of rats and its alleviation by SIL. Manganese was given orally in drinking water (20 mg MnCl2 /mL) with or without SIL administration (100 mg /kg intraperitoneally) for 30 days. Our data showed that SIL significantly prevented Mn induced nephrotoxicity, indicated by both diagnostic indicators of kidney injury like plasma urea, uric acid and creatinine and urinary electrolyte levels and by histopathological analysis. Moreover, Mn-induced profound elevation of the production of reactive oxygen species (ROS) and altered the levels of oxidative stress related biomarkers in kidney tissue. This is evidenced by the increase of lipid peroxidation, protein carbonylation, DNA fragmentation and urinary hydrogen peroxide, while, the activities of enzymatic antioxidant and glutathione level were decreased. Treatment with SIL reduced the alterations in the renal and urine markers, decreasing lipid peroxidation markers, increasing the antioxidant cascade and decreasing the Mn-induced damage. All these changes were supported by histopathological observations. These findings suggested that the inhibition of Mn-induced damage by SIL was due at least in part to its antioxidant activity and its capacity to modulate the oxidative damage.
Collapse
Affiliation(s)
- Yassine Chtourou
- Department of Life Sciences, Animal Physiology Laboratory, UR/08-73, University of Sfax, Faculty of Sciences, BP 1171, 3000 Sfax, Tunisia
| | | | | | | |
Collapse
|
58
|
Lu T, Hu Z, Zeng L, Jiang Z. Changes in secretory pathway Ca(2+)-ATPase 2 following focal cerebral ischemia/reperfusion injury. Neural Regen Res 2014; 8:76-82. [PMID: 25206375 PMCID: PMC4107497 DOI: 10.3969/j.issn.1673-5374.2013.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/18/2012] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate changes in secretory pathway Ca2+-ATPase 2 expression following cerebral ischemia/reperfusion injury, and to define the role of Ca2+-ATPases in oxidative stress. A rat model of cerebral ischemia/reperfusion injury was established using the unilateral middle cerebral artery occlusion method. Immunohistochemistry and reverse transcription-PCR assay results showed that compared with the control group, the expression of secretory pathway Ca2+-ATPase 2 protein and mRNA in the cerebral cortex and hippocampus of male rats did not significantly change during the ischemic period. However, secretory pathway Ca2+-ATPase 2 protein and mRNA expression reduced gradually at 1, 3, and 24 hours during the reperfusion period. Our experimental findings indicate that levels of secretory pathway Ca2+-ATPase 2 protein and mRNA expression in brain tissue change in response to cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Tonglin Lu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
59
|
Exil V, Ping L, Yu Y, Chakraborty S, Caito SW, Wells KS, Karki P, Lee E, Aschner M. Activation of MAPK and FoxO by manganese (Mn) in rat neonatal primary astrocyte cultures. PLoS One 2014; 9:e94753. [PMID: 24787138 PMCID: PMC4008430 DOI: 10.1371/journal.pone.0094753] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 03/19/2014] [Indexed: 01/27/2023] Open
Abstract
Environmental exposure to manganese (Mn) leads to a neurodegenerative disease that has shared clinical characteristics with Parkinson's disease (PD). Mn-induced neurotoxicity is time- and dose-dependent, due in part to oxidative stress. We ascertained the molecular targets involved in Mn-induced neurodegeneration using astrocyte culture as: (1) Astrocytes are vital for information processing within the brain, (2) their redox potential is essential in mitigating reactive oxygen species (ROS) levels, and (3) they are targeted early in the course of Mn toxicity. We first tested protein levels of Mn superoxide dismutase -2 (SOD-2) and glutathione peroxidase (GPx-1) as surrogates of astrocytic oxidative stress response. We assessed levels of the forkhead winged-helix transcription factor O (FoxO) in response to Mn exposure. FoxO is highly regulated by the insulin-signaling pathway. FoxO mediates cellular responses to toxic stress and modulates adaptive responses. We hypothesized that FoxO is fundamental in mediating oxidative stress response upon Mn treatment, and may be a biomarker of Mn-induced neurodegeneration. Our results indicate that 100 or 500 µM of MnCl2 led to increased levels of FoxO (dephosphorylated and phosphorylated) compared with control cells (P<0.01). p-FoxO disappeared from the cytosol upon Mn exposure. Pre-treatment of cultured cells with (R)-(−)-2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine analog rescued the cytosolic FoxO. At these concentrations, MAPK phosphorylation, in particular p38 and ERK, and PPAR gamma coactivator-1 (PGC-1) levels were increased, while AKT phosphorylation remained unchanged. FoxO phosphorylation level was markedly reduced with the use of SB203580 (a p38 MAPK inhibitor) and PD98059 (an ERK inhibitor). We conclude that FoxO phosphorylation after Mn exposure occurs in parallel with, and independent of the insulin-signaling pathway. FoxO levels and its translocation into the nucleus are part of early events compensating for Mn-induced neurotoxicity and may serve as valuable targets for neuroprotection in the setting of Mn-induced neurodegeneration.
Collapse
Affiliation(s)
- Vernat Exil
- Department of Pediatrics, Thomas P. Graham Division of Pediatric Cardiology, Monroe Carrell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| | - Li Ping
- Department of Pediatrics, Division of Pediatric Toxicology, Monroe Carrell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Yingchun Yu
- Department of Pediatrics, Division of Pediatric Toxicology, Monroe Carrell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Sudipta Chakraborty
- Department of Pediatrics, Division of Pediatric Toxicology, Monroe Carrell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Samuel W. Caito
- Department of Pediatrics, Division of Pediatric Toxicology, Monroe Carrell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - K. Sam Wells
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pratap Karki
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Michael Aschner
- Department of Pediatrics, Division of Pediatric Toxicology, Monroe Carrell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
60
|
Alaimo A, Gorojod RM, Beauquis J, Muñoz MJ, Saravia F, Kotler ML. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS One 2014; 9:e91848. [PMID: 24632637 PMCID: PMC3954806 DOI: 10.1371/journal.pone.0091848] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may provide new therapeutic tools for the treatment of Manganism and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Agustina Alaimo
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Roxana M. Gorojod
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Juan Beauquis
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Manuel J. Muñoz
- Departamento de Fisiología, Biología Molecular y Celular and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Saravia
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Mónica L. Kotler
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
61
|
da Silva Santos V, Bisen-Hersh E, Yu Y, Cabral ISR, Nardini V, Culbreth M, Teixeira da Rocha JB, Barbosa F, Aschner M. Anthocyanin-rich açaí (Euterpe oleracea Mart.) extract attenuates manganese-induced oxidative stress in rat primary astrocyte cultures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:390-404. [PMID: 24617543 DOI: 10.1080/15287394.2014.880392] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Manganese (Mn) is an essential element for human health. However, at high concentrations Mn may be neurotoxic. Mn accumulates in astrocytes, affecting their redox status. In view of the high antioxidant and anti-inflammatory properties of the exotic Brazilian fruit açaí (Euterpe oleracea Mart.), its methanolic extract was obtained by solid-phase extraction (SPE). This açaí extract showed considerable anthocyanins content and direct antioxidant capacity. The açaí extract scavenged 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) with an EC₅₀ of 19.1 ppm, showing higher antioxidant activity compared to butylated hydroxytoluene (BHT), but lower than ascorbic acid and quercetin. This obtained açaí extract also attenuated Mn-induced oxidative stress in primary cultured astrocytes. Specifically, the açaí extract at an optimal and nutritionally relevant concentration of 0.1 μg/ml prevented Mn-induced oxidative stress by (1) restoring GSH/GSSG ratio and net glutamate uptake, (2) protecting astrocytic membranes from lipid peroxidation, and (3) decreasing Mn-induced expression of erythroid 2-related factor (Nrf2) protein. A larger quantity of açaí extract exacerbated the effects of Mn on these parameters except with respect to lipid peroxidation assessed by means of F₂-isoprostanes. These studies indicate that at nutritionally relevant concentration, anthocyanins obtained from açaí protect astrocytes against Mn neurotoxicity, but at high concentrations, the "pro-oxidant" effects of its constituents likely prevail. Future studies may be profitably directed at potential protective effects of açaí anthocyanins in nutraceutical formulations.
Collapse
Affiliation(s)
- Vivian da Silva Santos
- a Department of Pediatrics , Vanderbilt University Medical Center , Nashville , Tennessee , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Wang L, Ding D, Salvi R, Roth JA. Nicotinamide adenine dinucleotide prevents neuroaxonal degeneration induced by manganese in cochlear organotypic cultures. Neurotoxicology 2013; 40:65-74. [PMID: 24308914 DOI: 10.1016/j.neuro.2013.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 01/17/2023]
Abstract
Manganese (Mn) is an essential trace mineral for normal growth and development. Persistent exposures to high atmospheric levels of Mn have deleterious effects on CNS and peripheral nerves including those associated with the auditory system. Nicotinamide adenine dinucleotide (NAD) is a coenzyme which functions in the electron transfer system within the mitochondria. One of the most notable protective functions of NAD is to delay axonal degenerations caused by various neurodegenerative injuries. We hypothesized that NAD might also protect auditory nerve fibers (ANF) and SGN from Mn injury. To test this hypothesis, cochlear organotypic cultures were treated with different doses of Mn (0.5-3.0 mM) alone or combined with 20 mM NAD. Results demonstrate that the percentage of hair cells, ANF and SGN decreased with increasing Mn concentration. The addition of 20 mM NAD did not significantly reduce hair cells loss in the presence of Mn, whereas the density of ANF and SGN increased significantly in the presence of NAD. NAD suppressed Mn-induced TUNEL staining and caspase activation suggesting it prevents apoptotic cell death. These results suggest that excess Mn has ototoxic and neurotoxic effects on the auditory system and that NAD may prevent Mn-induced axonal degeneration and avoid or delay hearing loss caused by excess Mn exposure.
Collapse
Affiliation(s)
- Lu Wang
- Department of Otolaryngology, Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, United States
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, United States; Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, United States
| | - Jerome A Roth
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
63
|
Wollenhaupt SGN, Soares AT, Salgueiro WG, Noremberg S, Reis G, Viana C, Gubert P, Soares FA, Affeldt RF, Lüdtke DS, Santos FW, Denardin CC, Aschner M, Avila DS. Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 2013; 64:192-9. [PMID: 24296137 DOI: 10.1016/j.fct.2013.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 01/12/2023]
Abstract
Organochalcogens are promising pharmacological agents that possess significant biological activities. Nevertheless, because of the complexity of mammalian models, it has been difficult to determine the molecular pathways and specific proteins that are modulated in response to treatments with these compounds. The nematode worm Caenorhabditis elegans is an alternative experimental model that affords easy genetic manipulations, green fluorescent protein tagging and in vivo live analysis of toxicity. Abundant evidence points to oxidative stress in mediating manganese (Mn)-induced toxicity. In this study we challenged worms with Mn, and investigated the efficacy of inedited selenium- and tellurium-xylofuranosides in reversing and/or protecting the worms from Mn-induced toxicity. In addition, we investigated their putative mechanism of action. First, we determined the lethal dose 50% (LD50) and the effects of the xylofuranosides on various toxic parameters. This was followed by studies on the ability of xylofuranosides to afford protection against Mn-induced toxicity. Both Se- and Te-xylofuranosides increased the expression of superoxide dismutase (SOD-3). Furthermore, we observed that the xylofuranosides induced nuclear translocation of the transcription factor DAF-16/FOXO, which in the worm is known to regulate stress responsiveness, aging and metabolism. These findings suggest that xylofuranosides attenuate toxicity Mn-induced, by regulating the DAF-16/FOXO signaling pathway.
Collapse
Affiliation(s)
- Suzi G N Wollenhaupt
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Willian G Salgueiro
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Simone Noremberg
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Gabriel Reis
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Carine Viana
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Priscila Gubert
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Felix A Soares
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Ricardo F Affeldt
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Francielli W Santos
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Cristiane C Denardin
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Daiana S Avila
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil.
| |
Collapse
|
64
|
Defects in base excision repair sensitize cells to manganese in S. cerevisiae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:295635. [PMID: 24282812 PMCID: PMC3825218 DOI: 10.1155/2013/295635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022]
Abstract
Manganese (Mn) is essential for normal physiologic functioning; therefore, deficiencies and excess intake of manganese can result in disease. In humans, prolonged exposure to manganese causes neurotoxicity characterized by Parkinson-like symptoms. Mn(2+) has been shown to mediate DNA damage possibly through the generation of reactive oxygen species. In a recent publication, we showed that Mn induced oxidative DNA damage and caused lesions in thymines. This study further investigates the mechanisms by which cells process Mn(2+)-mediated DNA damage using the yeast S. cerevisiae. The strains most sensitive to Mn(2+) were those defective in base excision repair, glutathione synthesis, and superoxide dismutase mutants. Mn(2+) caused a dose-dependent increase in the accumulation of mutations using the CAN1 and lys2-10A mutator assays. The spectrum of CAN1 mutants indicates that exposure to Mn results in accumulation of base substitutions and frameshift mutations. The sensitivity of cells to Mn(2+) as well as its mutagenic effect was reduced by N-acetylcysteine, glutathione, and Mg(2+). These data suggest that Mn(2+) causes oxidative DNA damage that requires base excision repair for processing and that Mn interferes with polymerase fidelity. The status of base excision repair may provide a biomarker for the sensitivity of individuals to manganese.
Collapse
|
65
|
In vitro manganese exposure disrupts MAPK signaling pathways in striatal and hippocampal slices from immature rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:769295. [PMID: 24324973 PMCID: PMC3845707 DOI: 10.1155/2013/769295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl₂; 10-1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.
Collapse
|
66
|
Liu XF, Zhang LM, Guan HN, Zhang ZW, Xu SW. Effects of oxidative stress on apoptosis in manganese-induced testicular toxicity in cocks. Food Chem Toxicol 2013; 60:168-76. [DOI: 10.1016/j.fct.2013.07.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/19/2013] [Accepted: 07/22/2013] [Indexed: 01/21/2023]
|
67
|
Culotta VC, Daly MJ. Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. Antioxid Redox Signal 2013; 19:933-44. [PMID: 23249283 PMCID: PMC3763226 DOI: 10.1089/ars.2012.5093] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn²⁺, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn²⁺ with superoxide and specifically shield proteins from oxidative damage. RECENT ADVANCES There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn²⁺ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance. CRITICAL ISSUES What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn²⁺-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae. FUTURE DIRECTIONS Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn²⁺. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes.
Collapse
Affiliation(s)
- Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | |
Collapse
|
68
|
Masuda M, Braun-sommargren M, Crooks D, Smith DR. Golgi phosphoprotein 4 (GPP130) is a sensitive and selective cellular target of manganese exposure. Synapse 2013; 67:205-15. [PMID: 23280773 PMCID: PMC3987769 DOI: 10.1002/syn.21632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/13/2012] [Indexed: 11/09/2022]
Abstract
Chronic elevated exposure to manganese (Mn) is associated with neurocognitive and fine motor deficits in children. However, relatively little is understood about cellular responses to Mn spanning the transition between physiologic to toxic levels of exposure. Here, we investigated the specificity, sensitivity, and time course of the Golgi Phosphoprotein 4 (GPP130) response to Mn exposure in AF5 GABAergic neuronal cells, and we determined the extent to which GPP130 degradation occurs in brain cells in vivo in rats subchronically exposed to Mn. Our results show that GPP130 degradation in AF5 cells was specific to Mn, and did not occur following exposure to cobalt, copper, iron, nickel, or zinc. GPP130 degradation occurred without measurable increases in intracellular Mn levels and at Mn exposures as low as 0.54 µM. GPP130 protein was detectable by immunofluorescence in only ∼15-30% of cells in striatal and cortical rat brain slices, and Mn-exposed animals exhibited a significant reduction in both the number of GPP130-positive cells, and the overall levels of GPP130 protein, demonstrating the in vivo relevance of this Mn-specific response within the primary target organ of Mn toxicity. These results provide insight into specific mechanism(s) of cellular Mn regulation and toxicity within the brain, including the selective susceptibility of cells to Mn cytotoxicity.
Collapse
Affiliation(s)
- Melisa Masuda
- Department of Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, California 95064
| | | | - Dan Crooks
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, California 95064
| |
Collapse
|
69
|
Abstract
Human exposure to neurotoxic metals is a global public health problem. Metals which cause neurological toxicity, such as lead (Pb) and manganese (Mn), are of particular concern due to the long-lasting and possibly irreversible nature of their effects. Pb exposure in childhood can result in cognitive and behavioural deficits in children. These effects are long-lasting and persist into adulthood even after Pb exposure has been reduced or eliminated. While Mn is an essential element of the human diet and serves many cellular functions in the human body, elevated Mn levels can result in a Parkinson's disease (PD)-like syndrome and developmental Mn exposure can adversely affect childhood neurological development. Due to the ubiquitous presence of both metals, reducing human exposure to toxic levels of Mn and Pb remains a world-wide public health challenge. In this review we summarize the toxicokinetics of Pb and Mn, describe their neurotoxic mechanisms, and discuss common themes in their neurotoxicity.
Collapse
Affiliation(s)
| | - Tomas R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
70
|
Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonçalves FM, Pedro DZ, Lopes SC, Pilati C, Prediger RDS, Farina M, Erikson KM, Aschner M, Leal RB. Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 2013; 87:1231-44. [PMID: 23385959 DOI: 10.1007/s00204-013-1017-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson's disease-like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to its toxicity. Moreover, the mechanisms mediating developmental Mn-induced neurotoxicity are not completely understood. The present study investigated the developmental neurotoxicity elicited by Mn exposure (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 to PN27 in rats. Neurochemical analyses were carried out on PN29, with a particular focus on striatal alterations in intracellular signaling pathways (MAPKs, Akt and DARPP-32), oxidative stress generation and cell death. Motor alterations were evaluated later in life at 3, 4 or 5 weeks of age. Mn exposure (20 mg/kg) increased p38(MAPK) and Akt phosphorylation, but decreased DARPP-32-Thr-34 phosphorylation. Mn (10 and 20 mg/kg) increased caspase activity and F2-isoprostane production (a biological marker of lipid peroxidation). Paralleling the changes in striatal biochemical parameters, Mn (20 mg/kg) also caused motor impairment, evidenced by increased falling latency in the rotarod test, decreased distance traveled and motor speed in the open-field test. Notably, the antioxidant Trolox™ reversed the Mn (20 mg/kg)-dependent augmentation in p38(MAPK) phosphorylation and reduced the Mn (20 mg/kg)-induced caspase activity and F2-isoprostane production. Trolox™ also reversed the Mn-induced motor coordination deficits. These findings are the first to show that long-term exposure to Mn during a critical period of neurodevelopment causes motor coordination dysfunction with parallel increment in oxidative stress markers, p38(MAPK) phosphorylation and caspase activity in the striatum. Moreover, we establish Trolox™ as a potential neuroprotective agent given its efficacy in reversing the Mn-induced neurodevelopmental effects.
Collapse
Affiliation(s)
- Fabiano M Cordova
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Manganese is an important metal for human health, being absolutely necessary for development, metabolism, and the antioxidant system. Nevertheless, excessive exposure or intake may lead to a condition known as manganism, a neurodegenerative disorder that causes dopaminergic neuronal death and parkinsonian-like symptoms. Hence, Mn has a paradoxal effect in animals, a Janus-faced metal. Extensive work has been carried out to understand Mn-induced neurotoxicity and to find an effective treatment. This review focuses on the requirement for Mn in human health as well as the diseases associated with excessive exposure to this metal.
Collapse
Affiliation(s)
- Daiana Silva Avila
- Biochemistry Graduation Program, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil,
| | | | | |
Collapse
|
72
|
Abstract
The review addresses issues pertinent to Mn accumulation and its mechanisms of transport, its neurotoxicity and mechanisms of neurodegeneration. The role of mitochondria and glia in this process is emphasized. We also discuss gene x environment interactions, focusing on the interplay between genes linked to Parkinson's disease (PD) and sensitivity to Mn.
Collapse
Affiliation(s)
- Jerome Roth
- Department of Pharmacology and Toxicology, University at Buffalo School of Medicine, 11 Cary Hall, Buffalo, NY, 14214, USA
| | | | | |
Collapse
|
73
|
Streifel K, Miller J, Mouneimne R, Tjalkens RB. Manganese inhibits ATP-induced calcium entry through the transient receptor potential channel TRPC3 in astrocytes. Neurotoxicology 2013; 34:160-6. [PMID: 23131343 PMCID: PMC3557543 DOI: 10.1016/j.neuro.2012.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/05/2012] [Accepted: 10/25/2012] [Indexed: 11/26/2022]
Abstract
Chronic exposure to elevated levels of manganese (Mn(2+)) causes neuronal injury and inflammatory activation of glia. Astrocytes selectively accumulate Mn(2+), which inhibits mitochondrial respiration and increases production of reactive oxygen species. We previously reported that sub-acute exposure to low micromolar levels of Mn(2+) in primary astrocytes inhibited ATP-induced calcium (Ca(2+)) signaling, associated with decreased levels of endoplasmic reticulum Ca(2+) and increased mitochondrial Ca(2+) loads. In the present studies, we postulated that the mechanism underlying the capacity of Mn(2+) to inhibit these purinergic signals in astrocytes could be due to competition with Ca(2+) for entry through a plasma membrane channel. These data demonstrate that acutely applied Mn(2+) rapidly inhibited ATP-induced Ca(2+) waves and transients in primary striatal astrocytes. Mn(2+) also decreased influx of extracellular Ca(2+) induced by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a direct activator of the transient receptor potential channel, TRPC3. The TRPC3 inhibitor, pyrazole-3, prevented ATP- and OAG-dependent transport of Mn(2+) from extracellular stores, demonstrated by a dramatic reduction in the rate of fluorescence quenching of Fura-2. These data indicate that Mn(2+) can acutely inhibit ATP-dependent Ca(2+) signaling in astrocytes by blocking Ca(2+) entry through the receptor-operated cation channel, TRPC3. Loss of normal astrocytic responses to purinergic signals due to accumulation of Mn(2+) could therefore comprise critical homeostatic functions necessary for metabolic and trophic support of neurons.
Collapse
Affiliation(s)
- Karin Streifel
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Colorado State University
| | - James Miller
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Colorado State University
| | - Rola Mouneimne
- Department of Veterinary Integrative Biosciences, Texas A&M University
| | - Ronald B. Tjalkens
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Colorado State University
| |
Collapse
|
74
|
Kim SI, Jang YS, Han SH, Choi MJ, Go EH, Cheon YP, Lee JS, Lee SH. Effect of manganese exposure on the reproductive organs in immature female rats. Dev Reprod 2012; 16:295-300. [PMID: 25949103 PMCID: PMC4282234 DOI: 10.12717/dr.2012.16.4.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 11/28/2022]
Abstract
Manganese (Mn(2+)) is a trace element that is essential for normal physiology, and is predominantly obtained from food. Several lines of evidence, however, demonstrated that overexposure to MnCl2 exerts serious neurotoxicity, immunotoxicity and developmental toxicity, particularly in male. The present study aimed to evaluate the effect of 0, 1.0, 3.3, and 10 mg/kg/day doses of MnCl2 on the reproductive organs in the immature female rats. Rats (PND 22; S.D. strain) were exposed to MnCl2 (MnCl2 ∙ 4H2O) dissolved in drinking water for 2 weeks. The animals were sacrificed on PND 35, then the tissues were immediately removed and weighed. Histological studies were performed using the uteri tissue samples. Serum LH and FSH levels were measured with the specific ELISA kits. Body weights of the experimental group animals were not significantly different from those of control group animals. However, ovarian tissue weights in 1 mg and 3.3 mg MnCl2 dose groups were significantly lower than those of control animals (p<0.05 and p<0.01, respectively). Uterine tissue weights of 3.3 mg dose MnCl2 groups were significantly lower than those of control animals (p<0.01), while the 1 mg MnCl2 dose and 10 mg MnCl2 dose failed to induce any change in uterine weight. Similarly, only 3.3 mg MnCl2 dose could induce the significant decrease in the oviduct weight compared to the control group (p<0.05). Non-reproductive tissues such as adrenal and kidney failed to respond to all doses of MnCl2 exposure. The uterine histology revealed that the MnCl2 exposure could affect the myometrial cell proliferation particularly in 3.3 mg dose and 10mg dose group. Serum FSH levels were significantly decreased in 1mg MnCl2 dose and 10 MnCl2 mg groups (p<0.05 and p<0.01, respectively). In contrast, treatment with 1 mg MnCl2 dose induced a significant increment of serum LH level (p<0.05). The present study demonstrated that MnCl2 exposure is capable of inducing abnormal development of reproductive tissues, at least to some extent, and altered gonadotropin secretions in immature female rats. Combined with the well-defined actions of this metal on GnRH and prolactin secretion, one can suggest the Mn(2+) might be a potential environmental mediator which is involved in the female pubertal process.
Collapse
Affiliation(s)
- Soo In Kim
- Dept. of Green Life Science, Sangmyung University, Seoul 110-743, Korea
| | - Yeon Seok Jang
- Dept. of Green Life Science, Sangmyung University, Seoul 110-743, Korea
| | - Seung Hee Han
- Dept. of Green Life Science, Sangmyung University, Seoul 110-743, Korea
| | - Myeong Jin Choi
- Dept. of Green Life Science, Sangmyung University, Seoul 110-743, Korea
| | - Eun Hye Go
- Dept. of Green Life Science, Sangmyung University, Seoul 110-743, Korea
| | - Yong-Pil Cheon
- Dept. of Biology, Sungshin Women's University, Seoul 142-732, Korea
| | - Jung Sick Lee
- Dept. of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Korea
| | - Sung-Ho Lee
- Dept. of Green Life Science, Sangmyung University, Seoul 110-743, Korea
| |
Collapse
|
75
|
Luo L, Xu H, Li Y, Du Z, Sun X, Ma Z, Hu Y. Manganese-enhanced MRI optic nerve tracking: effect of intravitreal manganese dose on retinal toxicity. NMR IN BIOMEDICINE 2012; 25:1360-1368. [PMID: 22573611 DOI: 10.1002/nbm.2808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/20/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
The aim of this study was to provide data on the dose dependence of manganese-enhanced MRI (MEMRI) in the visual pathway of experimental rats and to study the toxicity of MnCl₂ to the retina. Sprague-Dawley rats were intravitreally injected with 2 μL of 0, 10, 25, 50, 75, 100, 150 and 300 mM MnCl₂, respectively. The contrast-to-noise ratio (CNR) of MEMRI for optic nerve enhancement was measured at different concentrations of MnCl₂. Simultaneously, the toxicity of manganese was evaluated by counting retinal ganglion cells and by retinal histological examination using light microscopy and transmission electron microscopy. The CNR increased with increasing concentration of MnCl₂ up to 75 mM. Retinal ganglion cell densities were reduced significantly when the concentration of MnCl₂ in the intravitreal injection was equal to or greater than 75 mM. Increasing numbers of ribosomes in retinal ganglion cells were first detected at 25 mM of MnCl₂. The retinal toxicity of MnCl₂ at higher concentration also included mitochondrial pathology and cell disruption of retinal ganglion cells, as well as abnormalities of photoreceptor and retinal pigment epithelium cells. It can be concluded that intravitreal injection of MnCl₂ induces retinal cell damage that appears to start from 25 mM. The concentration of MnCl₂ should not exceed 25 mm through intravitreal injection for visual pathway MEMRI in the rat.
Collapse
Affiliation(s)
- Lisha Luo
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Gunter TE, Gerstner B, Gunter KK, Malecki J, Gelein R, Valentine WM, Aschner M, Yule DI. Manganese transport via the transferrin mechanism. Neurotoxicology 2012; 34:118-27. [PMID: 23146871 DOI: 10.1016/j.neuro.2012.10.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 11/15/2022]
Abstract
Excessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn(2+) is transported into cells via a number of mechanisms, while Mn(3+) is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn(2+), Mn(3+) and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity. While uptake of Fe(3+) via the Tf mechanism is well understood, uptake of Mn(3+) via this mechanism has not been systematically studied. The stability of the Mn(3+)Tf complex allowed us to form and purify this complex and label it with a fluorescent (Alexa green) tag. Using purified and labeled Mn(3+)Tf and biophysical tools, we have developed a novel approach to study Mn(3+)Tf transport independently of other Mn transport mechanisms. This approach was used to compare the uptake of Mn(3+)Tf into neuronal cell lines with published descriptions of Fe(3+) uptake via the Tf mechanism, and to obtain quantitative information on Mn uptake via the Tf mechanism. Results confirm that in these cell lines significant Mn(3+) is transported by the Tf mechanism similarly to Fe(3+)Tf transport; although Mn(3+)Tf transport is markedly slower than other Mn transport mechanisms. This novel approach may prove useful for studying Mn toxicity in other systems and cell types.
Collapse
Affiliation(s)
- Thomas E Gunter
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Jeong KY, Lee C, Cho JH, Kang JH, Na HS. New method of manganese-enhanced Magnetic Resonance Imaging (MEMRI) for rat brain research. Exp Anim 2012; 61:157-64. [PMID: 22531731 DOI: 10.1538/expanim.61.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Manganese (Mn(2+))-enhanced MRI (MEMRI) is known to provide insight into functional and anatomical biology. However, this method, which uses Mn(2+) as a MRI-detectable contrast agent, has drawbacks such as the toxicity to cells beyond a certain level of Mn(2+). In this study, we attempt to determine a new method of ICV administration, the optimal concentration of administered Mn(2+) and the optimal MEMRI acquisition time following administration. Male Sprague-Dawley rats were used in the following experimental sessions: (1) intracerebroventricular (ICV) cannula implantation in the region of the cisterna magna, (2) serial dilution of MnCl(2) (20-80 mM), (3) ICV administration of MnCl(2) through the cannula, and (4) T(1)-weighted MRI measurements. We confirmed that cannula implantation in the region of the cisterna magna was a new ICV injection method for the administration of a contrast agent. The optimal concentration for MEMRI was 20/50 mM/µl of MnCl(2). The MEMRI data acquired at different time points indicate that most signal enhancement is maintained during 14-48 h after contrast agent injection, and 24 h was the optimal time to acquire images of the rat brain. The present study offers optimized parameters for contrast agent injection that would be a good basis for studies using MEMRI to research the rat brain.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Neuroscience Research Institute and Department of Biotechnology and Science, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | | | | | | | | |
Collapse
|
78
|
Sepúlveda MR, Wuytack F, Mata AM. High levels of Mn²⁺ inhibit secretory pathway Ca²⁺/Mn²⁺-ATPase (SPCA) activity and cause Golgi fragmentation in neurons and glia. J Neurochem 2012; 123:824-36. [PMID: 22845487 DOI: 10.1111/j.1471-4159.2012.07888.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/19/2012] [Accepted: 07/18/2012] [Indexed: 11/28/2022]
Abstract
Excess Mn(2+) in humans causes a neurological disorder known as manganism, which shares symptoms with Parkinson's disease. However, the cellular mechanisms underlying Mn(2+) -neurotoxicity and the involvement of Mn(2+) -transporters in cellular homeostasis and repair are poorly understood and require further investigation. In this work, we have analyzed the effect of Mn(2+) on neurons and glia from mice in primary cultures. Mn(2+) overload compromised survival of both cell types, specifically affecting cellular integrity and Golgi organization, where the secretory pathway Ca(2+) /Mn(2+) -ATPase is localized. This ATP-driven Mn(2+) transporter might take part in Mn(2+) accumulation/detoxification at low loads of Mn(2+) , but its ATPase activity is inhibited at high concentration of Mn(2+) . Glial cells appear to be significantly more resistant to this toxicity than neurons and their presence in cocultures provided some protection to neurons against degeneration induced by Mn(2+) . Interestingly, the Mn(2+) toxicity was partially reversed upon Mn(2+) removal by wash out or by the addition of EDTA as a chelating agent, in particular in glial cells. These studies provide data on Mn(2+) neurotoxicity and may contribute to explore new therapeutic approaches for reducing Mn(2+) poisoning.
Collapse
Affiliation(s)
- M Rosario Sepúlveda
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | |
Collapse
|
79
|
Abdolmohammad-Zadeh H, Sadeghi G. A nano-structured material for reliable speciation of chromium and manganese in drinking waters, surface waters and industrial wastewater effluents. Talanta 2012; 94:201-8. [DOI: 10.1016/j.talanta.2012.03.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/08/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
80
|
Zhao F, Zhang JB, Cai TJ, Liu XQ, Liu MC, Ke T, Chen JY, Luo WJ. Manganese induces p21 expression in PC12 cells at the transcriptional level. Neuroscience 2012; 215:184-95. [PMID: 22542671 DOI: 10.1016/j.neuroscience.2012.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/01/2012] [Accepted: 04/13/2012] [Indexed: 01/28/2023]
Abstract
Manganese is a common environmental and occupational pollutant. Excessive intake of manganese can cause toxicity known as manganism. Recently it has been demonstrated that unusual expression of cell cycle proteins and aberrant cell cycle progression in the central nervous system are involved in the pathogenesis of neurodegenerative diseases. The present studies were initiated to investigate whether p21 are induced after manganese exposure and its potential effects in vitro, with particular attention being given to understand the underlying regulatory mechanism of p21 induction by manganese in this process. We found that manganese induced DAergic cells injury and upregulation of p21 levels in nigrostriatal regions. Treatment of the PC12 cells with manganese resulted in a time- and concentration-dependent loss of cell viability. Analysis of cell cycle profile indicated that manganese blocked cell cycle progression by arresting the cell cycle at G2/M phase. Moreover, manganese treatment resulted in an increase in the mRNA and protein levels of p21, but did not have the same effect on other related factors. Silencing p21 by RNA interference showed a marked reversal of both G2/M arrest and the decrease in cell viability induced by manganese. Manganese did not stabilize the p21 protein and mRNA, and caused a marked increase in p21 mRNA levels together with an increase in its promoter activity, indicating a transcriptional mechanism. Overall, the in vivo and in vitro data suggest that exposure to manganese can increase p21 levels. An altered cell cycle status of PC12 cells can be induced by manganese through p21 up-regulation, and the induction of p21 occurs at the transcriptional level via promoter activation and mRNA induction.
Collapse
Affiliation(s)
- F Zhao
- Department of Occupational and Environmental Health and The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Leoni L, Dhyani A, La Riviere P, Vogt S, Lai B, Roman BB. β-Cell subcellular localization of glucose-stimulated Mn uptake by X-ray fluorescence microscopy: implications for pancreatic MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 6:474-81. [PMID: 22144025 DOI: 10.1002/cmmi.447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Manganese (Mn) is a calcium (Ca) analog that has long been used as a magnetic resonance imaging (MRI) contrast agent for investigating cardiac tissue functionality, for brain mapping and for neuronal tract tracing studies. Recently, we have extended its use to investigate pancreatic β-cells and showed that, in the presence of MnCl(2), glucose-activated pancreatic islets yield significant signal enhancement in T(1)-weigheted MR images. In this study, we exploited for the first time the unique capabilities of X-ray fluorescence microscopy (XFM) to both visualize and quantify the metal in pancreatic β-cells at cellular and subcellular levels. MIN-6 insulinoma cells grown in standard tissue culture conditions had only a trace amount of Mn, 1.14 ± 0.03 × 10(-11)µg/µm(2), homogenously distributed across the cell. Exposure to 2 mM glucose and 50 µM MnCl(2) for 20 min resulted in nonglucose-dependent Mn uptake and the overall cell concentration increased to 8.99 ± 2.69 × 10(-11) µg/µm(2). When cells were activated by incubation in 16 mM glucose in the presence of 50 µM MnCl(2), a significant increase in cytoplasmic Mn was measured, reaching 2.57 ± 1.34 × 10(-10) µg/µm(2). A further rise in intracellular concentration was measured following KCl-induced depolarization, with concentrations totaling 1.25 ± 0.33 × 10(-9) and 4.02 ± 0.71 × 10(-10) µg/µm(2) in the cytoplasm and nuclei, respectively. In both activated conditions Mn was prevalent in the cytoplasm and localized primarily in a perinuclear region, possibly corresponding to the Golgi apparatus and involving the secretory pathway. These data are consistent with our previous MRI findings, confirming that Mn can be used as a functional imaging reporter of pancreatic β-cell activation and also provide a basis for understanding how subcellular localization of Mn will impact MRI contrast.
Collapse
Affiliation(s)
- Lara Leoni
- Department of Radiology, Committee on Medical Physics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
82
|
The binding and transport of alternative metals by transferrin. Biochim Biophys Acta Gen Subj 2012; 1820:362-78. [DOI: 10.1016/j.bbagen.2011.07.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022]
|
83
|
Zhen Z, Xie J. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Am J Cancer Res 2012; 2:45-54. [PMID: 22272218 PMCID: PMC3263515 DOI: 10.7150/thno.3448] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/02/2011] [Indexed: 12/17/2022] Open
Abstract
MRI is one of the most important imaging tools in clinics. It interrogates nuclei of atoms in a living subject, providing detailed delineation with high spatial and temporal resolutions. To compensate the innate low sensitivity, MRI contrast probes were developed and widely used. These are typically paramagnetic or superparamagnetic materials, functioning by reducing relaxation times of nearby protons. Previously, gadolinium(Gd)-based T1 contrast probes were dominantly used. However, it was found recently that their uses are occasionally associated with nephrogenic system fibrosis (NSF), which suggests a need of finding alternatives. Among the efforts, manganese-containing nanoparticles have attracted much attention. By careful engineering, manganese nanoparticles with comparable r1 relaxivities can be yielded. Moreover, other functionalities, be a targeting motif, a therapeutic agent or a second imaging component, can be loaded onto these nanoparticles, resulting in multifunctional nanoplatforms.
Collapse
|
84
|
Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP. The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 2011; 292:90-8. [PMID: 22154916 DOI: 10.1016/j.tox.2011.11.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND Manganese (Mn) is a naturally occurring element and an essential nutrient for humans and animals. However, exposure to high levels of Mn may cause neurotoxic effects. The pathological mechanisms associated with Mn neurotoxicity are poorly understood, but several reports have established it is mediated, at least in part, by oxidative stress. OBJECTIVES The present study was undertaken to test the hypothesis that a decrease in acetylcholinesterase (AChE) activity mediates Mn-induced neurotoxicity. METHODS Groups of 6 rats received 4 or 8 intraperitoneal (i.p.) injections of 25mg MnCl(2)/kg/day, every 48 h. Twenty-four hours after the last injection, brain AChE activity and the levels of F(2)-isoprostanes (F(2)-IsoPs) and F(4)-neuroprostanes (F(4)-NPs) (biomarkers of oxidative stress), as well as prostaglandin E(2) (PGE(2)) (biomarker of neuroinflammation) were analyzed. RESULTS The results showed that after either 4 or 8 Mn doses, brain AChE activity was significantly decreased (p<0.05), to 60 ± 16% and 55 ± 13% of control levels, respectively. Both treated groups exhibited clear signs of neurobehavioral toxicity, characterized by a significant (p<0.001) decrease in ambulation and rearings in open-field. Furthermore, Mn treatment caused a significant increase (p<0.05) in brain F(2)-IsoPs and PGE(2) levels, but only after 8 doses. In rats treated with 4 Mn doses, a significant increase (p<0.05) in brain F(4)-NPs levels was found. To evaluate cellular responses to oxidative stress, we assessed brain nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and Mn-superoxide dismutase (Mn-SOD, SOD2) protein expression levels. A significant increase in Mn-SOD protein expression (p<0.05) and a trend towards increased Nrf2 protein expression was noted in rat brains after 4 Mn doses vs. the control group, but the expression of these proteins was decreased after 8 Mn doses. Taken together, these results suggest that the inhibitory effect of Mn on AChE activity promotes increased levels of neuronal oxidative stress and neuroinflammatory biomarkers.
Collapse
Affiliation(s)
- Dinamene Santos
- I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
85
|
Electrophysiological and biochemical response in rats on intratracheal instillation of manganese. Open Life Sci 2011. [DOI: 10.2478/s11535-011-0080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractChronic exposure to excess manganese via inhalation of metal fumes causes central nervous system damage. For modelling Mn aerosol inhalation, male Wistar rats were intratracheally instilled with MnCl2 solution (0.5 mg/kg b.w. MnCl2; n=12) 5 days a week for 5 weeks. At the end of the treatment, somatosensory cortical evoked potentials, elicited by double-pulse stimulation, were recorded from the animals in urethane anaesthesia. Body weight gain, organ weights, and Mn level in brain, lung and blood samples were also measured. In brain samples, gene expression level of MnSOD (Mn superoxide dismutase) was determined. The effect of Mn was mainly seen on the evoked potential amplitudes, and on the second:first ratio of these. Tissue Mn concentration was elevated in brain and lungs, but changed hardly in the blood. Relative weight of heart, thymus, lungs and brain was significantly altered. The level of MnSOD transcript in brain tissue decreased. The observed effects showed that Mn had access to the brain and that somatosensory cortical responses evoked by double-pulse stimulation might be suitable biomarkers of Mn intoxication.
Collapse
|
86
|
Richardson C, Roberts E, Nelms S, Roberts NB. Optimisation of whole blood and plasma manganese assay by ICP-MS without use of a collision cell. Clin Chem Lab Med 2011; 50:317-23. [PMID: 22081999 DOI: 10.1515/cclm.2011.775] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/11/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Manganese (Mn) toxicity has been reported in patients receiving total parenteral nutrition. To avoid unnecessary exposure it is recommended by NICE (National Institute for Clinical Excellence) that blood Mn concentrations are monitored. The aim of the study was to develop a method using inductively coupled plasma mass spectrometry (ICP-MS) for the reliable determination of Mn in plasma and whole blood, as indices of acute and chronic exposure. METHODS Whole blood and plasma samples were prepared by appropriate dilution (diluent containing 0.005% Triton X-100, 0.2% propan-2-ol, 0.2% butan-1-ol and 1% nitric acid) addition of an internal standard gallium, followed by centrifugation to remove cell debris. Thermo Fisher Scientific ExCell and X Series ICP-MS instruments were used to define and correct for polyatomic interference on Mn assay. RESULTS Mn was quantified at mass 55 using aqueous calibration and the polyatomic interference from FeH was successfully eliminated by modified (Xt) skimmer cones but not with the collision cell (collision gas 7% H2 in He, flow rate 4-7 mL/min). The assay was validated showing good precision, limit of detection and percentage recovery. Good agreement was observed with the All Laboratory Trimmed Mean of External Quality Assurance samples y (in house)=1.1 (ALTM)-45.0 between values of 250 and 750 nmol/L. CONCLUSIONS A method has been developed using ICP-MS for the analysis of whole blood and plasma Mn incorporating a novel method of eliminating interference by utilizing the different geometries of the Xt interface cones. The procedure is simple and robust with good precision and recovery over a wide dynamic range.
Collapse
Affiliation(s)
- Claire Richardson
- Department of Clinical Biochemistry, MacEwen Building, Glasgow Royal Infirmary, Glasgow, Scotland, UK.
| | | | | | | |
Collapse
|
87
|
The Role of the Golgi-Resident SPCA Ca2+/Mn2+ Pump in Ionic Homeostasis and Neural Function. Neurochem Res 2011; 37:455-68. [DOI: 10.1007/s11064-011-0644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 12/23/2022]
|
88
|
Bagga P, Patel AB. Regional cerebral metabolism in mouse under chronic manganese exposure: implications for manganism. Neurochem Int 2011; 60:177-85. [PMID: 22107705 DOI: 10.1016/j.neuint.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/14/2011] [Accepted: 10/28/2011] [Indexed: 01/09/2023]
Abstract
Chronic manganese (Mn) exposure in rodents, non-human primates and humans has been linked to Parkinson's disease like condition known as Manganism. Mn being a cofactor for many enzymes in brain has been known to be accumulated in various regions differentially and thus exert toxic effect upon chronic overexposure. In present study, neuropathology of Manganism was investigated by evaluating regional neuronal and astroglial metabolism in mice under chronic Mn exposure. Male C57BL6 mice were treated with MnCl(2) (25 mg/kg, i.p.) for 21 days. Cerebral metabolism was studied by co-infusing [U-(13)C(6)]glucose and [2-(13)C]acetate, and monitoring (13)C labeling of amino acids in brain tissue extract using (1)H-[(13)C] and (13)C-[(1)H]-NMR spectroscopy. Glutamate, choline, N-acetyl aspartate and myo-inositol were found to be reduced in thalamus and hypothalamus indicating a loss in neuronal and astroglial cells due to Mn neurotoxicity. Reduced labeling of Glu(C4) from [U-(13)C(6)]glucose and [2-(13)C]acetate indicates an impairment of glucose oxidation by glutamatergic neurons and glutamate-glutamine neurotransmitter cycle in cortex, striatum, thalamus-hypothalamus and olfactory bulb with chronic Mn exposure. Additionally, reduced labeling of Gln(C4) from [2-(13)C]acetate indicates a decrease in acetate oxidation by astroglia in the same regions. However, GABAergic function was alleviated only in thalamus-hypothalamus. Our findings indicate that chronic Mn impairs excitatory (glutamatergic) function in the majority of regions of brain while inhibitory (GABAergic) activity is perturbed only in basal ganglia.
Collapse
Affiliation(s)
- Puneet Bagga
- NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | | |
Collapse
|
89
|
Chtourou Y, Fetoui H, Garoui EM, Boudawara T, Zeghal N. Improvement of cerebellum redox states and cholinergic functions contribute to the beneficial effects of silymarin against manganese-induced neurotoxicity. Neurochem Res 2011; 37:469-79. [PMID: 22033861 DOI: 10.1007/s11064-011-0632-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/03/2011] [Accepted: 10/05/2011] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) is a potent neurotoxin involved in the initiation and progression of various cognitive disorders. Oxidative stress is reported as one of accepted mechanisms of Mn toxicity. The present study was designed to explore the effects of silymarin, a natural antioxidant, in attenuating the toxicity induced by Mn in rat cerebellum. In this investigation, rats were treated orally with MnCl₂ (20 mg/ml) for 30 days, subsets of these animals were treated intraperitoneally daily with silymarin (100 mg/kg) along with respective controls. Mn exposure caused a marked oxidative stress in cerebellum as indicated by a significant decrease in the activities of enzymatic antioxidants like superoxide dismutase, catalase and glutathione peroxidase and in the levels of non-enzymatic antioxidants like reduced glutathione (GSH), total thiols and vitamin C. Conversely an increase was obtained in lipid and protein markers such as thiobarbituric reactive acid substances, lipid hydroperoxide and protein carbonyl products contents. A significant increase in acetylcholinesterase and a decrease in Na⁺/K⁺-ATPase activities were also shown, with a substantial rise in the expression of acetylcholinesterase and inducible nitric oxide synthase (iNOS), and nitric oxide levels. The potential effect of SIL to prevent Mn induced neurotoxicity was also reflected by histopathological observations. Rats exposed to Mn showed a reduced number and morphological alterations of cerebellar Purkinje cells. These phenomenons were completely reversed by SIL co-treatment. We concluded that silymarin may protect against Mn-induced oxidative stress in cerebellum by inhibiting both lipid and protein oxidation and by activating acetylcholinesterase and inducible nitric oxide synthase (iNOS) gene expression.
Collapse
Affiliation(s)
- Yassine Chtourou
- Animal Physiology Laboratory, Life Sciences Department, UR/08-73, Sfax Faculty of Sciences, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
90
|
Calpain activation is involved in acute manganese neurotoxicity in the rat striatum in vivo. Exp Neurol 2011; 233:182-92. [PMID: 21985864 DOI: 10.1016/j.expneurol.2011.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/25/2011] [Accepted: 09/26/2011] [Indexed: 12/31/2022]
Abstract
Manganese is essential for life, yet chronic exposure to this metal can cause a neurodegenerative disease named manganism that affects motor function. In the present study we have evaluated Mn neurotoxicity after its administration in the rat striatum. The participation of the calcium-dependent protease calpain and the apoptosis-related protease caspase-3, in Mn-induced cell death was monitored in the striatum and globus pallidus. Mn induced the activation of both proteases, although calpain activation seems to be an earlier event. Moreover, while the broad-spectrum caspase inhibitor QVD did not significantly prevent Mn-induced cell death, the specific calpain inhibitor MDL-28170 did. The role of NMDA glutamate receptors on calpain activity was also investigated; blockage of these receptors by MK-801 and memantine did not prevent calpain activation, nor Mn-induced cell death. Finally, studies in striatal homogenates suggest a direct activation of calpain by Mn ions. Altogether the present study suggests that additional mechanisms to excitotoxicity are involved in Mn-induced cell death, placing calpain as an important mediator of acute Mn neurotoxicity in vivo.
Collapse
|
91
|
Alaimo A, Gorojod RM, Kotler ML. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells. Neurochem Int 2011; 59:297-308. [DOI: 10.1016/j.neuint.2011.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 01/24/2023]
|
92
|
Milatovic D, Gupta RC, Yu Y, Zaja-Milatovic S, Aschner M. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury. Toxicol Appl Pharmacol 2011; 256:219-26. [PMID: 21684300 DOI: 10.1016/j.taap.2011.06.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 01/19/2023]
Abstract
Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p<0.01) increase in biomarkers of oxidative damage, F(2)-isoprostanes (F(2)-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 μM) for 2h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F(2)-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100mg/kg, s.c.) 24h. Additionally, pretreatment with vitamin E (100mg/kg, i.p.) or ibuprofen (140 μg/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F(2)-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative processes.
Collapse
Affiliation(s)
- Dejan Milatovic
- Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
93
|
Chtourou Y, Trabelsi K, Fetoui H, Mkannez G, Kallel H, Zeghal N. Manganese induces oxidative stress, redox state unbalance and disrupts membrane bound ATPases on murine neuroblastoma cells in vitro: protective role of silymarin. Neurochem Res 2011; 36:1546-57. [PMID: 21533646 PMCID: PMC3139064 DOI: 10.1007/s11064-011-0483-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2011] [Indexed: 02/07/2023]
Abstract
Manganese (Mn) is an essential trace element required for ubiquitous enzymatic reactions. Chronic overexposure to this metal may promote potent neurotoxic effects. The mechanism of Mn toxicity is not well established, but several studies indicate that oxidative stress play major roles in the Mn-induced neurodegenerative processes. Silymarin (SIL) has antioxidant properties and stabilizes intracellular antioxidant defense systems. The aim of this study was to evaluate the toxic effects of MnCl2 on the mouse neuroblastoma cell lines (Neuro-2A), to characterize the toxic mechanism associated with Mn exposure and to investigate whether SIL could efficiently protect against neurotoxicity induced by Mn. A significant increase in LDH release activity was observed in Neuro-2A cells associated with a significant decrease in cellular viability upon 24 h exposure to MnCl2 at concentrations of 200 and 800 μM (P < 0.05) when compared with control unexposed cells. In addition, exposure cells to MnCl2 (200 and 800 μM), increases oxidant biomarkers and alters enzymatic and non enzymatic antioxidant systems. SIL treatment significantly reduced the levels of LDH, nitric oxide, reactive oxygen species and the oxidants/antioxidants balance in Neuro-2A cells as compared to Mn-exposed cells. These results suggested that silymarin is a powerful antioxidant through a mechanism related to its antioxidant activity, able to interfere with radical-mediated cell death. SIL may be useful in diseases known to be aggravated by reactive oxygen species and in the development of novel treatments for neurodegenerative disorders such as Alzheimer or Parkinson diseases.
Collapse
Affiliation(s)
- Yassine Chtourou
- Animal Physiology Laboratory, Life Sciences Department, Faculty of Sciences, UR/08-73, Sfax University, BP 1171, 3000, Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
94
|
Jiang Z, Hu Z, Zeng L, Lu W, Zhang H, Li T, Xiao H. The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med 2011; 50:907-17. [PMID: 21241794 DOI: 10.1016/j.freeradbiomed.2011.01.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/30/2010] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species (ROS)/reactive nitrogen species (RNS) and ROS/RNS-mediated oxidative stress have well-established roles in many physiological and pathological processes and are associated with the pathogenesis of many diseases, such as hypertension, ischemia/reperfusion injury, diabetes mellitus, atherosclerosis, stroke, cancer, and neurodegenerative disorders. It is generally accepted that mitochondria play an essential role in oxidative stress because they are responsible for the primary generation of superoxide radicals. Little attention, however, has been paid to the importance of the Golgi apparatus (GA) in this process. The GA is a pivotal organelle in cell metabolism and participates in modifying, sorting, and packaging macromolecules for cell secretion or use within the cell. It is inevitably involved in the process of oxidative stress, which can cause modification and damage of lipids, proteins, DNA, and other structural constituents. Here we discuss the connections between the GA and oxidative stress and highlight the role of the GA in oxidative stress-related Ca(2+)/Mn(2+) homeostasis, cell apoptosis, sphingolipid metabolism, signal transduction, and antioxidation. We also provide a novel perspective on the subcellular significance of oxidative stress and its pathological implications and present "GA stress" as a new concept to explain the GA-specific stress response.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | | | | | | | | | | | | |
Collapse
|
95
|
Al-Rmalli SW, Jenkins RO, Haris PI. Betel quid chewing as a source of manganese exposure: total daily intake of manganese in a Bangladeshi population. BMC Public Health 2011; 11:85. [PMID: 21299859 PMCID: PMC3056750 DOI: 10.1186/1471-2458-11-85] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 02/07/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND A relationship between betel quid chewing in Bangladeshi populations and the development of skin lesions and tremor has been previously reported, for people exposed to high levels of arsenic (As) through drinking contaminated groundwater. Exposure to manganese (Mn) is also known to induce neurotoxicity and levels of Mn in Bangladeshi groundwater are also high. The present study evaluates betel quid chewing as an overlooked source of Mn exposure in a Bangladeshi population. METHODS Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine (1) urinary Mn levels for 15 chewers and 22 non-chewers from the ethnic Bangladeshi community in the United Kingdom, and (2) Mn levels in betel quids, its individual components and other Bangladeshi foods. RESULTS Betel quid chewers displayed a significantly higher (P = 0.009) mean Mn concentration in urine (1.93 μg L(-1)) compared to non-chewers (0.62 μg L(-1)). High levels of Mn were detected in Piper betel leaves with an overall average of 135 mg kg(-1) (range 26 -518 mg kg(-1)). The mean concentration of Mn in betel quid was 41 mg kg(-1) (SD 27) and the daily intake of Mn in the Bangladeshi population was estimated to be 20.3 mg/day. Chewing six betel quids could contribute up to 18% of the maximum recommended daily intake of Mn. CONCLUSION We have demonstrated that Mn in betel quids is an overlooked source of exposure to Mn in humans. Chewers display a 3.1 fold increased urinary Mn concentration compared to non-chewers. The practice of betel quid chewing contributes a high proportion of the maximum recommended daily intake of Mn, which could make chewers in Bangladesh more vulnerable to Mn neurotoxicity.
Collapse
Affiliation(s)
- Shaban W Al-Rmalli
- Faculty of Health and Life sciences, De Montfort University, The Gateway, Leicester, UK
| | | | | |
Collapse
|
96
|
Marreilha Dos Santos AP, Lopes Santos M, Batoréu MC, Aschner M. Prolactin is a peripheral marker of manganese neurotoxicity. Brain Res 2011; 1382:282-90. [PMID: 21262206 DOI: 10.1016/j.brainres.2011.01.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/21/2022]
Abstract
UNLABELLED Excessive exposure to Mn induces neurotoxicity, referred to as manganism. Exposure assessment relies on Mn blood and urine analyses, both of which show poor correlation to exposure. Accordingly, there is a critical need for better surrogate biomarkers of Mn exposure. The aim of this study was to examine the relationship between Mn exposure and early indicators of neurotoxicity, with particular emphasis on peripheral biomarkers. Male Wistar rats (180-200g) were injected intraperitoneally with 4 or 8 doses of Mn (10mg/kg). Mn exposure was evaluated by analysis of Mn levels in brain and blood along with biochemical end-points (see below). RESULTS Brain Mn levels were significantly increased both after 4 and 8 doses of Mn compared with controls (p<0.001). Blood levels failed to reflect a dose-dependent increase in brain Mn, with only the 8-dose-treated group showing significant differences (p<0.001). Brain glutathione (GSH) levels were significantly decreased in the 8-dose-treated animals (p<0.001). A significant and dose-dependent increase in prolactin levels was found for both treated groups (p<0.001) compared to controls. In addition, a decrease in motor activity was observed in the 8-dose-treated group compared to controls. CONCLUSIONS (1) The present study demonstrates that peripheral blood level is a poor indicator of Mn brain accumulation and exposure; (2) Mn reduces GSH brain levels, likely reflecting oxidative stress; (3) Mn increases blood prolactin levels, indicating changes in the integrity of the dopaminergic system. Taken together these results suggest that peripheral prolactin levels may serve as reliable predictive biomarkers of Mn neurotoxicity.
Collapse
|
97
|
Jain S, Ferrando SJ. Manganese Neurotoxicity Presenting with Depression, Psychosis and Catatonia. PSYCHOSOMATICS 2011; 52:74-7. [DOI: 10.1016/j.psym.2010.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 12/22/2022]
|
98
|
Ordoñez-Librado JL, Anaya-Martínez V, Gutierrez-Valdez AL, Colín-Barenque L, Montiel-Flores E, Avila-Costa MR. Manganese inhalation as a Parkinson disease model. PARKINSONS DISEASE 2010; 2011:612989. [PMID: 21209715 PMCID: PMC3010681 DOI: 10.4061/2011/612989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/13/2010] [Indexed: 12/24/2022]
Abstract
The present study examines the effects of divalent and trivalent Manganese (Mn2+/Mn3+) mixture inhalation on mice to obtain a novel animal model of Parkinson disease (PD) inducing bilateral and progressive dopaminergic cell death, correlate those alterations with motor disturbances, and determine whether L-DOPA treatment improves the behavior, to ensure that the alterations are of dopaminergic origin. CD-1 male mice inhaled a mixture of Manganese chloride and Manganese acetate, one hour twice a week for five months. Before Mn exposure, animals were trained to perform motor function tests and were evaluated each week after the exposure. By the end of Mn exposure, 10 mice were orally treated with 7.5 mg/kg L-DOPA. After 5 months of Mn mixture inhalation, striatal dopamine content decreased 71%, the SNc showed important reduction in the number of TH-immunopositive neurons, mice developed akinesia, postural instability, and action tremor; these motor alterations were reverted with L-DOPA treatment. Our data provide evidence that Mn2+/Mn3+ mixture inhalation produces similar morphological, neurochemical, and behavioral alterations to those observed in PD providing a useful experimental model for the study of this neurodegenerative disease.
Collapse
Affiliation(s)
- José Luis Ordoñez-Librado
- Laboratorio de Neuromorfologia, Facultad de Estudios Superiores Iztacala, UNAM, Avenida de los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, Edo Mex, Mexico
| | | | | | | | | | | |
Collapse
|
99
|
Gunter TE, Gerstner B, Lester T, Wojtovich AP, Malecki J, Swarts SG, Brookes PS, Gavin CE, Gunter KK. An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicol Appl Pharmacol 2010; 249:65-75. [PMID: 20800605 DOI: 10.1016/j.taap.2010.08.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 11/25/2022]
Abstract
Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays--a measure of ATP production--under rapid phosphorylation conditions to explore sites of Mn(2+) inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which do not affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of the components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn(2+) inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn(2+) inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F₁F₀ ATP synthase. In mitochondria fueled by either succinate or glutamate+malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn(2+) inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase.
Collapse
Affiliation(s)
- Thomas E Gunter
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci U S A 2010; 107:15335-9. [PMID: 20702768 DOI: 10.1073/pnas.1009648107] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Manganese is an essential transition metal that, among other functions, can act independently of proteins to either defend against or promote oxidative stress and disease. The majority of cellular manganese exists as low molecular-weight Mn(2+) complexes, and the balance between opposing "essential" and "toxic" roles is thought to be governed by the nature of the ligands coordinating Mn(2+). Until now, it has been impossible to determine manganese speciation within intact, viable cells, but we here report that this speciation can be probed through measurements of (1)H and (31)P electron-nuclear double resonance (ENDOR) signal intensities for intracellular Mn(2+). Application of this approach to yeast (Saccharomyces cerevisiae) cells, and two pairs of yeast mutants genetically engineered to enhance or suppress the accumulation of manganese or phosphates, supports an in vivo role for the orthophosphate complex of Mn(2+) in resistance to oxidative stress, thereby corroborating in vitro studies that demonstrated superoxide dismutase activity for this species.
Collapse
|