51
|
David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 2010; 8:e1000450. [PMID: 20711477 PMCID: PMC2919420 DOI: 10.1371/journal.pbio.1000450] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/02/2010] [Indexed: 12/20/2022] Open
Abstract
Several hundred proteins become insoluble and aggregation-prone as a consequence of aging in Caenorhabditis elegans. The data indicate that these proteins influence disease-related protein aggregation and toxicity. Aberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are predicted to be significantly enriched in β-sheets, which promote disease protein aggregation. Strikingly, these insoluble proteins are highly over-represented in aggregates found in human neurodegeneration. We examined several of these proteins in vivo and confirmed their propensity to aggregate with age. Different proteins aggregated in different tissues and cellular compartments. Protein insolubility and aggregation were significantly delayed or even halted by reduced insulin/IGF-1-signaling, which also slows aging. We found a significant overlap between proteins that become insoluble and proteins that influence lifespan and/or polyglutamine-repeat aggregation. Moreover, overexpressing one aggregating protein enhanced polyglutamine-repeat pathology. Together our findings indicate that widespread protein insolubility and aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease. In neurodegenerative diseases, such as Alzheimer's disease and Huntington's disease, specific proteins escape the cell's quality-control system and associate together, forming insoluble aggregates. Until now, little was known about whether proteins aggregate in a non-disease context. In this study, we discovered that the aging process itself, in the absence of disease, leads to the insolubilization and increased aggregation propensity of several hundred proteins in the roundworm Caenorhabditis elegans. These aggregation-prone proteins have distinct structural and functional proprieties. We asked if this inherent age-dependent protein aggregation impacts neurodegenerative diseases. We found that proteins similar to those aggregating in old worms have also been identified as minor components of human disease aggregates. In addition, we showed that higher levels of inherent protein aggregation aggravated toxicity in a C. elegans Huntington's disease model. Inherent protein aggregation is a new biomarker of aging. Understanding how to modulate it will lead to important insights into the mechanisms that underlie aging and protein aggregation diseases.
Collapse
Affiliation(s)
- Della C. David
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Noah Ollikainen
- Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California, United States of America
| | - Jonathan C. Trinidad
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Michael P. Cary
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Alma L. Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Cynthia Kenyon
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
52
|
Abstract
Excessive oxidative stress leaves a protein carbonylation fingerprint in biological systems. Carbonylation is an irreversible post-translational modification (PTM) that often leads to the loss of protein function and can be a component of multiple diseases. Protein carbonyl groups can be generated directly (by amino acids oxidation and the alpha-amidation pathway) or indirectly by forming adducts with lipid peroxidation products or glycation and advanced glycation end-products. Studies of oxidative stress are complicated by the low concentration of oxidation products and a wide array of routes by which proteins are carbonylated. The development of new selection and enrichment techniques coupled with advances in mass spectrometry are allowing the identification of hundreds of new carbonylated protein products from a broad range of proteins located at many sites in biological systems. The focus of this review is on the use of proteomics tools and methods to identify oxidized proteins along with specific sites of oxidative damage and the consequences of protein oxidation.
Collapse
Affiliation(s)
- Ashraf G. Madian
- Chemistry Department, Purdue University, West Lafayette, IN, USA, 47907
| | - Fred E. Regnier
- Chemistry Department, Purdue University, West Lafayette, IN, USA, 47907
| |
Collapse
|
53
|
Kassa RM, Kasensa NL, Monterroso VH, Kayton RJ, Klimek JE, David LL, Lunganza KR, Kayembe KT, Bentivoglio M, Juliano SL, Tshala-Katumbay DD. On the biomarkers and mechanisms of konzo, a distinct upper motor neuron disease associated with food (cassava) cyanogenic exposure. Food Chem Toxicol 2010; 49:571-8. [PMID: 20538033 DOI: 10.1016/j.fct.2010.05.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/29/2022]
Abstract
Konzo is a self-limiting central motor-system disease associated with food dependency on cassava and low dietary intake of sulfur amino acids (SAA). Under conditions of SAA-deficiency, ingested cassava cyanogens yield metabolites that include thiocyanate and cyanate, a protein-carbamoylating agent. We studied the physical and biochemical modifications of rat serum and spinal cord proteins arising from intoxication of young adult rats with 50-200mg/kg linamarin, or 200mg/kg sodium cyanate (NaOCN), or vehicle (saline) and fed either a normal amino acid- or SAA-deficient diet for up to 2 weeks. Animals under SAA-deficient diet and treatment with linamarin or NaOCN developed hind limb tremors or motor weakness, respectively. LC/MS-MS analysis revealed differential albumin carbamoylation in animals treated with NaOCN, vs. linamarin/SAA-deficient diet, or vehicle. 2D-DIGE and MALDI-TOF/MS-MS analysis of the spinal cord proteome showed differential expression of proteins involved in oxidative mechanisms (e.g. peroxiredoxin 6), endocytic vesicular trafficking (e.g. dynamin 1), protein folding (e.g. protein disulfide isomerase), and maintenance of the cytoskeleton integrity (e.g. α-spectrin). Studies are needed to elucidate the role of the aformentioned modifications in the pathogenesis of cassava-associated motor-system disease.
Collapse
Affiliation(s)
- Roman M Kassa
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Liddell JR, Robinson SR, Dringen R, Bishop GM. Astrocytes retain their antioxidant capacity into advanced old age. Glia 2010; 58:1500-9. [DOI: 10.1002/glia.21024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Xiong XD, Chen GH. Research progress on the age-related changes in proteins of the synaptic active zone. Physiol Behav 2010; 101:1-12. [PMID: 20433861 DOI: 10.1016/j.physbeh.2010.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 01/21/2023]
Abstract
Neurotransmitter release during synaptic transmission is mediated by the presynaptic active zone. Multiple protein components at the active zone region interact to regulate docking, priming and fusion of the synaptic vesicles with the presynaptic membrane to maintain normal neurotransmitter release. This review discusses research progress in questions of protein transcript and expression pattern changes at the synaptic active zone related to aging and whether these changes have the effects on learning and memory. We will specifically address normal synaptic structure and proteins; active zone structure and components; active zone functional regulation and age-related changes in active zone proteins.
Collapse
Affiliation(s)
- Xiang-Dong Xiong
- People's Hospital of Lu'an City (The Fifth Clinical College of Anhui Medical University), Lu'an City 237005, Anhui Province, PR China.
| | | |
Collapse
|
56
|
Shim JH, Cho SA, Seo MJ, Kim JH, Ryu NK, Yoo KH, Yang MH, Kim S, Bahk YY, Park JH. Proteomic analysis of time-dependent difference of protein expression profile changes during neuronal differentiation of mouse embryonic stem cells. Mol Cells 2010; 29:239-44. [PMID: 20112072 DOI: 10.1007/s10059-010-0022-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/24/2009] [Indexed: 10/19/2022] Open
Abstract
The study of ES cell-mediated neuronal differentiation allows elucidating the mechanism of neuronal development in spite of the complexity and the difficult accessibility. During the differentiation of embryonic stem cells into neuronal cell, the expression profiles in the level of protein were extensively investigated by proteomic analysis. These cells were analyzed for charges in proteome during the differentiation of ES cells by 2-dimensional electrophoresis (2-DE) and MALDI-TOF MS. Seven unique proteins were identified, some of which were differentially expressed at each stage. A complex system of neuronal differentiation can be activated in cultured embryonic stem cells and our two dimensional electrophoresis data should be useful for investigating some of the mechanism that regulates neuronal differentiation.
Collapse
Affiliation(s)
- Jung Hee Shim
- Department of Biological science, Sookmyung Women's University, Seoul, 140-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 2010; 45:563-72. [PMID: 20159033 DOI: 10.1016/j.exger.2010.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 01/18/2010] [Accepted: 02/02/2010] [Indexed: 11/21/2022]
Abstract
Activity and stability of life-supporting proteins are determined not only by their abundance and by post-translational modifications, but also by specific protein-protein interactions. This holds true both for signal-transduction and energy-converting cascades. For vital processes such as life-span control and senescence, to date predominantly age-dependent alterations in abundance and to lesser extent in post-translational modifications of proteins are examined to elucidate the cause of ageing at the molecular level. In mitochondria of rat cortex, we quantified profound changes in the proportion of supramolecular assemblies (supercomplexes) of the respiratory chain complexes I, III(2), IV as well as of the MF(o)F(1) ATP synthase (complex V) by 2D-native/SDS electrophoresis and fluorescent staining. Complex I was present solely in supercomplexes and those lacking complex IV were least stable in aged animals (2.4-fold decline). The ATP synthase was confirmed as a prominent target of age-associated degradation by an overall decline in abundance of 1.5-fold for the monomer and an 2.8-fold increase of unbound F(1). Oligomerisation of the ATP synthase increases during ageing and might modulate the cristae architecture. These data could explain the link between ageing and respiratory control as well as ROS generation.
Collapse
|
58
|
Abstract
OBJECTIVE The potential relation between metabolic activity within the central nervous system and retention of cognitive functioning capacity was assessed. METHODS A detailed literature review was conducted and summarized. RESULTS A large body of scientific evidence describes the interactions among cognitive activity, oxidative stress, neurodegeneration, neuroprotection, cognitive aging, and retention of cognitive functioning ability. CONCLUSION Maintenance of redox balance within the central nervous system can forestall cognitive decline and promote cognitive longevity.
Collapse
|
59
|
Gionfriddo JR, Freeman KS, Groth A, Scofield VL, Alyahya K, Madl JE. alpha-Luminol prevents decreases in glutamate, glutathione, and glutamine synthetase in the retinas of glaucomatous DBA/2J mice. Vet Ophthalmol 2009; 12:325-32. [PMID: 19751494 DOI: 10.1111/j.1463-5224.2009.00722.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To test the hypothesis that in DBA/2J mice, oxidative stress decreases glutamine synthetase (GS) levels resulting in a loss of neuronal glutamate and that the antioxidant alpha-luminol (GVT) decreases this stress and glutamate loss in some types of glaucoma. ANIMALS DBA/2J mice were separated into two groups, of which one was not treated, and the other treated with GVT in the drinking water. At 7 months of age, retinas were examined from five untreated DBA/2J mice, seven GVT-treated mice, and five C57BL/6 mice (negative controls). METHODS Serial 0.5 microm plastic sections were immunogold stained for glutamate, GS, and total glutathione, followed by image analysis for staining patterns and density. RESULTS Focal decreases in glutamate immunostaining were common in the inner nuclear layer (INL) of DBA/2J retinas, but not in C57BL/6 or GVT-treated DBA/2J retinas. Decreases in glutathione and GS immunostaining were found in DBA/2J retinal regions where neuronal glutamate immunostaining was reduced. Retinas from GVT-treated DBA/2J had no significant decreases in INL levels of glutamate, glutathione, or GS. CONCLUSIONS Retinas of dogs with primary glaucoma are reported to have focal depletion of neuronal glutamate. In DBA/2J mice, similar changes occur prior to the development of clinical disease. In these focal glutamate-depleted regions, levels of glutathione and GS are also reduced, consistent with the hypothesis that oxidative stress contributes to retinal changes in glaucoma. The ability of GVT, an antioxidant, to inhibit retinal abnormalities in DBA/2J mice provides further support for this hypothesis.
Collapse
Affiliation(s)
- Juliet R Gionfriddo
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | |
Collapse
|
60
|
Bortner JD, Das A, Umstead TM, Freeman WM, Somiari R, Aliaga C, Phelps DS, El-Bayoumy K. Down-regulation of 14-3-3 isoforms and annexin A5 proteins in lung adenocarcinoma induced by the tobacco-specific nitrosamine NNK in the A/J mouse revealed by proteomic analysis. J Proteome Res 2009; 8:4050-61. [PMID: 19563208 DOI: 10.1021/pr900406g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen in the A/J mouse model. Here we identified and validated, using two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry and immunoblotting, proteins that are differentially expressed in the lungs of mice treated with NNK versus vehicle control treatment. We also determined whether protein levels in the lungs of NNK-treated mice could be further modulated by the chemopreventive agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC). The proteins identified in this study are SEC14-like 3, dihydropyrimidinase-like 2, proteasome subunit alpha type 5, annexin A5, 14-3-3 protein isoforms (theta, epsilon, sigma, and zeta), Rho GDP dissociation inhibitor alpha, myosin light polypeptide 6, tubulin-alpha-1, vimentin, Atp5b protein, alpha-1-antitrypsin, and Clara cell 10 kDa protein (CC10). Among those proteins, we demonstrated for the first time that 14-3-3 isoforms (theta, epsilon, and sigma) and annexin A5 were significantly down-regulated in mouse lung adenocarcinoma induced by NNK and were recovered by p-XSC. These proteins are involved in a variety of biological functions that are critical in lung carcinogenesis. Identification of these proteins in surrogate tissue in future studies would be highly useful in early detection of lung adenocarcinoma and clinical chemoprevention trials.
Collapse
Affiliation(s)
- James D Bortner
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Wigren HK, Rytkönen KM, Porkka-Heiskanen T. Basal forebrain lactate release and promotion of cortical arousal during prolonged waking is attenuated in aging. J Neurosci 2009; 29:11698-707. [PMID: 19759316 PMCID: PMC6665766 DOI: 10.1523/jneurosci.5773-08.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 07/23/2009] [Accepted: 08/08/2009] [Indexed: 12/12/2022] Open
Abstract
The wake-promoting basal forebrain (BF) is critically involved in sustaining cortical arousal. In the present study, we investigated how aging affects the capacity of the BF to cope with continuous activation during prolonged waking. Increased neuronal activity induces lactate release in the activated brain area, and BF stimulation increases cortical arousal. We used in vivo microdialysis to measure lactate levels in the BF, and electroencephalography (EEG) to measure cortical arousal, during 3 h sleep deprivation (SD) in three age groups of rats. Lactate increased during SD in young but not in aged (middle-aged and old) rats. The increase in high-frequency (HF) EEG theta power (7-9 Hz), a marker of cortical arousal and active waking, was attenuated in the aged. Furthermore, a positive correlation between BF lactate release and HF EEG theta increase was found in young but not in aged rats. We hypothesized that these age-related attenuations result from reduced capacity of the BF to respond to increased neuronal activation. This was tested by stimulating the BF with glutamate receptor agonist NMDA. Whereas BF stimulation increased waking in young and old rats, lactate increase and the HF EEG theta increase were attenuated in the old. Also, the homeostatic increase in sleep intensity after SD was attenuated in aged rats. Our results suggest that an age-related attenuation in BF function reduces cortical arousal during prolonged waking. As the quality of waking is important in regulating the subsequent sleep, reduced cortical arousal during SD may contribute to the age-related reduction in sleep intensity.
Collapse
Affiliation(s)
- Henna-Kaisa Wigren
- Institute of Biomedicine/Physiology, Biomedicum Helsinki, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | |
Collapse
|
62
|
Crumeyrolle-Arias M, Buneeva O, Zgoda V, Kopylov A, Cardona A, Tournaire MC, Pozdnev V, Glover V, Medvedev A. Isatin binding proteins in rat brain: In situ imaging, quantitative characterization of specific [3H]isatin binding, and proteomic profiling. J Neurosci Res 2009; 87:2763-72. [DOI: 10.1002/jnr.22104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
63
|
Femtomolar detection of autoantibodies by magnetic relaxation nanosensors. Anal Biochem 2009; 392:96-102. [DOI: 10.1016/j.ab.2009.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 11/19/2022]
|
64
|
Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 2009; 10:635-46. [DOI: 10.1038/nrn2701] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
65
|
Vazquez J, Hall SC, Greco MA. Protein expression is altered during spontaneous sleep in aged Sprague Dawley rats. Brain Res 2009; 1298:37-45. [PMID: 19729003 DOI: 10.1016/j.brainres.2009.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 07/28/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
Age-related changes in brain function include those affecting learning, memory, and sleep-wakefulness. Sleep-wakefulness is an essential behavior that results from the interaction of multiple brain regions, peptides, and neurotransmitters. The biological function(s) of sleep, however, remains unknown due to a paucity of information available at the cellular level. Aged rats exhibit alterations in the circadian and homeostatic influences associated with sleep-wake regulation. We recently showed that alterations in cortical profiles occur after timed bouts of spontaneous sleep in young rats. Examination of the cellular response to sleep-wake in old rats may thus provide insight(s) into the biological function(s) of sleep. To test this hypothesis, we monitored cortical profiles in the frontal cortex of young and old Sprague-Dawley rats after timed bouts of spontaneous sleep-wake behavior. Proteins were separated by two-dimensional electrophoresis (2-DE), visualized by fluorescent staining, imaged, and analyzed as a function of behavioral state and age. Old rats showed a 6-fold increase in total protein expression, independent of the behavioral state at sacrifice. When analyzed according to age and behavioral state, there was a decrease (approximately 46%) in the number of phospho-spots present during SWS in aged animals. SWS-associated spots present only in old animals were associated with multiple functions including vesicular transport, cell signaling, oxidation state, cytoskeletal support, and energy metabolism. These data suggest that the intracellular response to the signaling associated with spontaneous sleep is affected by age and is consistent with the idea that the ability of sleep to fulfill its function(s) may become diminished with age.
Collapse
Affiliation(s)
- Jacqueline Vazquez
- Behavioral Biochemistry Laboratory, Biosciences Division, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | | | | |
Collapse
|
66
|
Smith RW, Cash P, Ellefsen S, Nilsson GE. Proteomic changes in the crucian carp brain during exposure to anoxia. Proteomics 2009; 9:2217-29. [PMID: 19322784 DOI: 10.1002/pmic.200800662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
67
|
Rasheed Z, Khan MWA, Ali R. Hydroxyl radical modification of human serum albumin generated cross reactive antibodies. Autoimmunity 2009; 39:479-88. [PMID: 17060027 DOI: 10.1080/08916930600918472] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hydroxyl radical-mediated in vitro modification of human serum albumin (HSA) showed 59.2% hyperchromicity at lambdamax, 30% loss of alpha helical structure and 71.4% loss of tryptophan fluorescence. The reactive oxygen species (ROS)-modified HSA was highly immunogenic in rabbits as compare to native HSA. The antibody binding was inhibited to the extent of 97% with the immunogen as inhibitor, indicating the induction of immunogen specific antibodies. Experimentally induced antibodies against modified HSA exhibited diverse antigen binding characteristics. Native plasmid DNA, ROS-modified plasmid DNA and ROS-chromatin were found to be an effective inhibitor of induced antibody-immunogen interaction. Induced antibodies against native HSA showed negligible binding to the above mentioned nucleic acid antigens. Band shift assay reiterated the recognition towards nucleic acid antigens. Thus, the induced antibodies against *OH modified HSA resembled the diverse antigen-binding characteristics of naturally occurring systemic lupus erythematosus (SLE) anti-DNA autoantibodies.
Collapse
Affiliation(s)
- Zafar Rasheed
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh, 202002, India.
| | | | | |
Collapse
|
68
|
Wang Q, Zhao X, He S, Liu Y, An M, Ji J. Differential proteomics analysis of specific carbonylated proteins in the temporal cortex of aged rats: the deterioration of antioxidant system. Neurochem Res 2009; 35:13-21. [PMID: 19562484 DOI: 10.1007/s11064-009-0023-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 06/15/2009] [Indexed: 01/02/2023]
Abstract
Oxidative stress plays a pivotal role in normal brain aging and various neurodegenerative diseases, including Alzheimer's disease (AD). Irreversible protein carbonylation, a widely used marker for oxidative stress, rises during aging. The temporal cortex is essential for learning and memory and particularly susceptible to oxidative stress during aging and in AD patients. In this study, we used 2-DE, MALDI-TOF/TOF MS, and Western blotting to analyze the differentially carbonylated proteins in the rat temporal cortex between 1-month-old and 24-month-old. We showed that the carbonyl levels of ten protein spots corresponding to six gene products: SOD1, SOD2, peroxiredoxin 1, peptidylprolyl isomerase A, cofilin 1, and adenylate kinase 1, significantly increased in the temporal cortex of aged rats. These proteins are associated with antioxidant defense, the cytoskeleton, and energy metabolism. Several oxidized proteins identified in aged rat brain are known to be involved in neurodegenerative disorders as well. Our findings indicate that these carbonylated proteins may be implicated in the decline of normal brain aging process and provide insights into the mechanisms underlying age-associated dysfunction of temporal cortex.
Collapse
Affiliation(s)
- Qingsong Wang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 100871 Beijing, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
69
|
Pienaar IS, Schallert T, Hattingh S, Daniels WMU. Behavioral and quantitative mitochondrial proteome analyses of the effects of simvastatin: implications for models of neural degeneration. J Neural Transm (Vienna) 2009; 116:791-806. [PMID: 19504041 DOI: 10.1007/s00702-009-0247-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/15/2009] [Indexed: 01/20/2023]
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin, is used for lowering elevated low-density lipoprotein cholesterol concentrations. This translates into reduced cardiovascular disease-related morbidity and mortality, while the drugs' anti-oxidant and anti-inflammatory properties have earmarked it as a potential treatment strategy against various neurological conditions. Statins have been shown to protect neurons from degeneration in a number of animal models. Although no mechanism completely explains the multiple benefits exerted by statins, emerging evidence suggests that in some degenerative and brain injury models, mitochondrial impairment may play a contributive rate. However, [corrected] evidence lacks to support a directly influencing role for statins on mitochondria-related proteins and motor behavior. Mitochondrial dysfunction may increase oxygen free radical production, which in turn leaves cells susceptible to energy failure, apoptosis and related events [corrected] which could prove fatal. The potential link between simvastatin treatment and mitochondrial function would be supported if key mitochondrial proteins were altered by simvastatin exposure. Using mass spectroscopy (MS), we identified 24 mitochondrial proteins that differed significantly (P < 0.05) in relative abundancy as a result of simvastatin treatment. The identified proteins represented many facets of mitochondrial integrity, with the majority forming part of the electron transport chain machinery, which is necessary for energy production. In a follow-up study, we then addressed whether simvastatin is capable of altering sensorimotor function in a mitochondrial toxin-induced animal model. Rats were pre-treated with simvastatin for 14 days, followed by a single unihemispheric (substantia nigra; SN) injection of rotenone, a mitochondrial complex I (Co-I) inhibitor. Results showed that simvastatin improved motor performance in rotenone-infused rats. The data are consistent with the possibility that alteration of mitochondrial function may contribute to the beneficial effects associated with statin use.
Collapse
Affiliation(s)
- Ilse S Pienaar
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | |
Collapse
|
70
|
Oikawa S, Yamada T, Minohata T, Kobayashi H, Furukawa A, Tada-Oikawa S, Hiraku Y, Murata M, Kikuchi M, Yamashima T. Proteomic identification of carbonylated proteins in the monkey hippocampus after ischemia-reperfusion. Free Radic Biol Med 2009; 46:1472-7. [PMID: 19272443 DOI: 10.1016/j.freeradbiomed.2009.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/12/2009] [Accepted: 02/18/2009] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species (ROS) are known to participate in neurodegeneration after ischemia-reperfusion. With the aid of ROS, the calpain-induced lysosomal rupture provokes ischemic neuronal death in the cornu Ammonis (CA) 1 of the hippocampus; however, the target proteins of ROS still remain unknown. Here a proteomic analysis was done to identify and characterize ROS-induced carbonyl modification of proteins in the CA1 of the macaque monkey after transient whole-brain ischemia followed by reperfusion. We found that carbonyl modification of heat shock 70-kDa protein 1 (Hsp70-1), a major stress-inducible member of the Hsp70 family, was extensively increased before the neuronal death in the CA1 sector, and the carbonylation site was identified to be Arg469 of Hsp70-1. The CA1 neuronal death conceivably occurs by calpain-mediated cleavage of carbonylated Hsp70 that becomes prone to proteolysis with the resultant lysosomal rupture. In addition, the carbonyl levels of dihydropyrimidinase-like 2 isoform 2, glial fibrillary acidic protein, and beta-actin were remarkably increased in the postischemic CA1. Therefore, ischemia-reperfusion-induced oxidative damage to these proteins in the CA1 may lead to loss of the neuroprotective function, which contributes to neuronal death.
Collapse
Affiliation(s)
- Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Villani GRD, Di Domenico C, Musella A, Cecere F, Di Napoli D, Di Natale P. Mucopolysaccharidosis IIIB: oxidative damage and cytotoxic cell involvement in the neuronal pathogenesis. Brain Res 2009; 1279:99-108. [PMID: 19409882 DOI: 10.1016/j.brainres.2009.03.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 11/25/2022]
Abstract
Sanfilippo B syndrome (Mucopolysaccharidosis IIIB, MPS IIIB) is a lysosomal storage disease due to mutations in the gene encoding alpha-N-acetylglucosaminidase and is characterized by a severe neurological disorder. Although several studies have been reported for the murine model of the disease, the molecular basis and the sequence of events leading to neurodegeneration remain to be clarified. We previously suggested the possible involvement of the reactive oxygen species in the disease pathogenesis. In the present paper we extended the analysis of oxidative stress by evaluating the production of superoxide ions throughout the CNS and by evaluating the effect of the stress on the cellular macromolecules. These approaches applied to one-month-old, three-month-old and six-month-old mice revealed that oxidative stress is present in the affected cerebrum and cerebellum tissues from one month from birth, and that it results primarily in protein oxidation, both in the cerebrum and cerebellum, with lipid peroxidation, and especially DNA oxidation, appearing milder and restricted essentially to the cerebellum. We also identified additional genes possibly associated with the neuropathology of MPS IIIB disease. Real time RT-PCR analysis revealed an altered expression of the Sod1, Ret, Bmp4, Tgfb, Gzmb and Prf1 genes. Since Gzmb and Prf1 are proteins secreted by NK/cytotoxic T-cells, these data suggest the involvement of cytotoxic cells in the neuronal pathogenesis. Extending our previous study, findings reported in the present paper show that oxidative stress and all the analyzed stress-related pathological changes occur very early in the disease course, most likely before one month of age.
Collapse
Affiliation(s)
- Guglielmo R D Villani
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
72
|
A metabolic and functional overview of brain aging linked to neurological disorders. Biogerontology 2009; 10:377-413. [DOI: 10.1007/s10522-009-9226-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/02/2009] [Indexed: 12/21/2022]
|
73
|
Amelina H, Cristobal S. Proteomic study on gender differences in aging kidney of mice. Proteome Sci 2009; 7:16. [PMID: 19358702 PMCID: PMC2673210 DOI: 10.1186/1477-5956-7-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 04/09/2009] [Indexed: 11/23/2022] Open
Abstract
Background This study aims to analyze sex differences in mice aging kidney. We applied a proteomic technique based on subfractionation, and liquid chromatography coupled with 2-DE. Samples from male and female CD1-Swiss outbred mice from 28 weeks, 52 weeks, and 76 weeks were analysed by 2-DE, and selected proteins were identified by matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Results This proteomic analysis detected age-related changes in protein expression in 55 protein-spots, corresponding to 22 spots in males and 33 spots in females. We found a protein expression signature (PES) of aging composed by 8 spots, common for both genders. The identified proteins indicated increases in oxidative and proteolytic proteins and decreases in glycolytic proteins, and antioxidant enzymes. Conclusion Our results provide insights into the gender differences associated to the decline of kidney function in aging. Thus, we show that proteomics can provide valuable information on age-related changes in expression levels of proteins and related modifications. This pilot study is still far from providing candidates for aging-biomarkers. However, we suggest that the analysis of these proteins could suggest mechanisms of cellular aging in kidney, and improve the kidney selection for transplantation.
Collapse
Affiliation(s)
- Hanna Amelina
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.
| | | |
Collapse
|
74
|
Sung JH, Cho EH, Kim MO, Koh PO. Identification of proteins differentially expressed by melatonin treatment in cerebral ischemic injury--a proteomics approach. J Pineal Res 2009; 46:300-6. [PMID: 19196433 DOI: 10.1111/j.1600-079x.2008.00661.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously reported that melatonin protects neuronal cells against ischemic brain damage. In this study, we identified proteins that were differentially expressed by melatonin treatment during ischemic brain injury. Rats were subjected to cerebral ischemia by middle cerebral artery occlusion (MCAO). Adult male rats were treated with melatonin (5 mg/kg) or vehicle prior to MCAO and brains were collected at 24 hr after MCAO. Proteins derived from the cerebral cortex were analyzed using two-dimensional gel electrophoresis. Protein spots with a greater than 2.5-fold change in intensity were identified by mass spectrometry. Among these proteins, gamma-enolase, stathmin, thioredoxin, peroxiredoxin-6, hippocalcin, protein phosphatase 2A, adenosylhomocysteinase, ubiquitin carboxy-terminal hydrolase L1, and NAD-specific isocitrate dehydrogenase subunit alpha were significantly decreased in the vehicle-treated group in comparison to the melatonin-treated group. The identified proteins consist of cell differentiation and stabilization proteins, as well as an antioxidant enzyme. In contrast, dehydroprimidinase-related protein 2 (DRP-2), a target of protein oxidation in neurodegeneration, was significantly increased in vehicle-treated animals, while melatonin prevented the injury-induced increase of DRP-2. Thus, the results of this study suggest that melatonin prevents cell death resulting from ischemic brain injury and that its neuroprotective effects are mediated by both the up- and down-regulation of various proteins.
Collapse
Affiliation(s)
- Jin-Hee Sung
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | | | | | | |
Collapse
|
75
|
Vazquez J, Hall SC, Witkowska HE, Greco MA. Rapid alterations in cortical protein profiles underlie spontaneous sleep and wake bouts. J Cell Biochem 2008; 105:1472-84. [DOI: 10.1002/jcb.21970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
76
|
Freeman WM, VanGuilder HD, Bennett C, Sonntag WE. Cognitive performance and age-related changes in the hippocampal proteome. Neuroscience 2008; 159:183-95. [PMID: 19135133 DOI: 10.1016/j.neuroscience.2008.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/06/2008] [Accepted: 12/02/2008] [Indexed: 12/26/2022]
Abstract
Declining cognitive performance is associated with increasing age, even in the absence of overt pathological processes. We and others have reported that declining cognitive performance is associated with age-related changes in brain glucose utilization, long-term potentiation and paired-pulse facilitation, protein expression, neurotransmitter levels, and trophic factors. However, it is unclear whether these changes are causes or symptoms of the underlying alterations in dendritic and synaptic morphology that occur with age. In this study, we examined the hippocampal proteome for age- and cognition-associated changes in behaviorally stratified young and old rats, using two-dimensional in-gel electrophoresis and MS/MS. Comparison of old cognitively intact with old cognitively impaired animals revealed additional changes that would not have been detected otherwise. Interestingly, not all age-related changes in protein expression were associated with cognitive decline, and distinct differences in protein expression were found when comparing old cognitively intact with old cognitively impaired rats. A large number of protein changes with age were related to the glycolysis/gluconeogenesis pathway. In total, the proteomic changes suggest that age-related alterations act synergistically with other perturbations to result in cognitive decline. This study also demonstrates the importance of examining behaviorally-defined animals in proteomic studies, as comparison of young to old animals regardless of behavioral performance would have failed to detect many cognitive impairment-specific protein expression changes evident when behavioral stratification data were used.
Collapse
Affiliation(s)
- W M Freeman
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
77
|
Reed TT, Pierce WM, Turner DM, Markesbery WR, Allan Butterfield D. Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule. J Cell Mol Med 2008; 13:2019-2029. [PMID: 18752637 DOI: 10.1111/j.1582-4934.2008.00478.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in multiple cognitive domains. Its pathological hallmarks include senile plaques and neurofibrillary tangles. Mild cognitive impairment (MCI) is the earliest detectable stage of AD with limited symptomology and no dementia. The yearly conversion rate of patients from MCI to AD is 10-15%, although conversion back to normal is possible in a small percentage. Early diagnosis of AD is important in an attempt to intervene or slow the advancement of the disease. Early AD (EAD) is a stage following MCI and characterized by full-blown dementia; however, information involving EAD is limited. Oxidative stress is well-established in MCI and AD, including protein oxidation. Protein nitration also is an important oxidative modification observed in MCI and AD, and proteomic analysis from our laboratory identified nitrated proteins in both MCI and AD. Therefore, in the current study, a proteomics approach was used to identify nitrated brain proteins in the inferior parietal lobule from four subjects with EAD. Eight proteins were found to be significantly nitrated in EAD: peroxiredoxin 2, triose phosphate isomerase, glutamate dehydrogenase, neuropolypeptide h3, phosphoglycerate mutase1, H(+)- transporting ATPase, alpha-enolase and fructose-1,6-bisphosphate aldolase. Many of these proteins are also nitrated in MCI and late-stage AD, making this study the first to our knowledge to link nitrated proteins in all stages of AD. These results are discussed in terms of potential involvement in the progression of this dementing disorder.
Collapse
Affiliation(s)
- Tanea T Reed
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - William M Pierce
- Department of Pharmacology, University of Louisville School of Medicine and VAMC, Louisville, KY, USA
| | - Delano M Turner
- Department of Pharmacology, University of Louisville School of Medicine and VAMC, Louisville, KY, USA
| | - William R Markesbery
- Departments of Pathology and Neurology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Center of Membrane Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
78
|
Thiriet N, Amar L, Toussay X, Lardeux V, Ladenheim B, Becker KG, Cadet JL, Solinas M, Jaber M. Environmental enrichment during adolescence regulates gene expression in the striatum of mice. Brain Res 2008; 1222:31-41. [PMID: 18585688 DOI: 10.1016/j.brainres.2008.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/02/2008] [Accepted: 05/04/2008] [Indexed: 11/30/2022]
Abstract
We have previously shown that environmental enrichment decreases the activating and rewarding effects of the psychostimulant cocaine and increases resistance to the neurotoxic effect of the Parkinson-inducing drug MPTP. These effects were accompanied by an increase in the striatal expression of the neurotrophin BDNF, an increase in the striatal levels of delta-Fos B and by a decrease in striatal levels of the dopamine transporter, the main molecular target for cocaine and MPTP. Here, we used cDNA arrays to investigate the effects of rearing mice in enriched environments from weaning to adulthood on the profile of expression of genes in the striatum focusing on genes involved in intracellular signalling and functioning. We found that mice reared in an enriched environment show several alterations in the levels of mRNA coding for proteins involved in cell proliferation, cell differentiation, signal transduction, transcription and translation, cell structure and metabolism. Several of these findings were further confirmed by real-time quantitative PCR and, in the case of protein kinase C lambda, also by western blot. These findings are the first description of alterations in striatal gene expression by an enriched environment. The striatal gene expression regulation by environment that we report here may play a role in the resistance to the effects of drugs of abuse and dopaminergic neurotoxins previously reported.
Collapse
Affiliation(s)
- Nathalie Thiriet
- Institut de Biologie et Physiologie Cellulaires, University of Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Hunsucker SW, Solomon B, Gawryluk J, Geiger JD, Vacano GN, Duncan MW, Patterson D. Assessment of post-mortem-induced changes to the mouse brain proteome. J Neurochem 2008; 105:725-37. [DOI: 10.1111/j.1471-4159.2007.05183.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
80
|
Sultana R, Butterfield DA. Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer's disease: Insight into the role of oxidative stress. Proteomics Clin Appl 2008; 2:685-96. [PMID: 21136866 DOI: 10.1002/prca.200780024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease. AD is characterized by the presence of senile plaques, neurofibrillary tangles, and synaptic loss. Amyloid β-peptide (Aβ), a component of senile plaques, has been proposed to play an important role in oxidative stress in AD brain and could be one of the key factors in the pathogenesis of AD. In the present review, we discuss some of the AD animal models that express Aβ, and compare the proteomics-identified oxidatively modified proteins between AD brain and those of Aβ models. Such a comparison would allow better understanding of the role of Aβ in AD pathogenesis thereby helping in developing potential therapeutics to treat or delay AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
81
|
Nonenzymatic posttranslational protein modifications in ageing. Exp Gerontol 2008; 43:247-57. [DOI: 10.1016/j.exger.2007.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 11/07/2007] [Accepted: 12/04/2007] [Indexed: 12/16/2022]
|
82
|
Rasheed Z, Sheikh Z, Ahmad R, Rasheed N, Sheikh N, Ali R, Ali R. Enhanced recognition of reactive oxygen species damaged human serum albumin by circulating systemic lupus erythematosus autoantibodies. Autoimmunity 2008; 40:512-20. [PMID: 17966041 DOI: 10.1080/08916930701574331] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with autoantibodies as a near universal feature of the disease. Earlier investigations from our laboratory revealed increased oxidative damage in SLE patients. Therefore, we hypothesized that oxidative by-products, such as hydroxyl radical (*OH), could lead to neoantigens like *OH damaged human serum albumin (HSA), which could in turn initiate autoimmunity in SLE. In the present study, the binding characteristics of SLE autoantibodies with native and *OH damaged HSA were assessed. SLE patients (n = 74) were examined by direct binding ELISA and the results were compared with healthy age- and sex-matched controls (n = 44). High degree of specific binding by 52.7% of patients sera towards *OH damaged HSA, in comparison to its native analogue (p < 0.05) was observed. Normal human sera showed negligible binding with either antigen. Competitive ELISA and gel retardation assays reiterate the direct binding results. The increase in total serum protein carbonyl levels in the SLE patients was largely due to an increase in oxidized albumin. HSA of SLE patients (SLE-HSA) and normal subjects (normal-HSA) were purified. Spectroscopic analysis confirmed that the SLE-HSA samples contained higher levels of carbonyls than normal-HSA (p < 0.01). SLE-HSA was conformationally altered, with more exposure of its hydrophobic regions. Collectively, the oxidation of plasma proteins, especially HSA, might enhance oxidative stress in SLE patients.
Collapse
Affiliation(s)
- Zafar Rasheed
- Department of Biochemistry, Faculty of Medicine, AMU, Aligarh, India.
| | | | | | | | | | | | | |
Collapse
|
83
|
Hydroxyl radical damaged immunoglobulin G in patients with rheumatoid arthritis: biochemical and immunological studies. Clin Biochem 2008; 41:663-9. [PMID: 18359293 DOI: 10.1016/j.clinbiochem.2008.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 12/06/2007] [Accepted: 02/21/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The role of hydroxyl radical (OH) damaged Immunoglobulin G (IgG) in rheumatoid arthritis (RA) has been investigated. DESIGN AND METHODS The study was hypothesized that oxidative by-products, like OH-damage IgG, help to initiate autoimmunity in RA. To test this hypothesis, IgG was modified by OH. Immunogenicity of native and modified IgG was probed by inducing polyclonal antibodies in rabbits. Autoantibodies from 77 RA sera were screened by direct binding and competition ELISA. RESULTS The OH caused extensive damage to IgG. The OH-IgG was found to be highly immunogenic in rabbits as compare to native IgG. High degree of specific binding by 72.7% RA sera autoantibodies towards OH-IgG was observed, in comparison to its native analogue (p<0.05). CONCLUSION The OH modification of IgG causes perturbations, resulting in the generation of neo-epitopes, and making it a potential immunogen. The IgG modified with the .OH may be one of the factors for the induction of circulating RA autoantibodies.
Collapse
|
84
|
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10:405-43. [PMID: 18370853 DOI: 10.1089/ars.2007.1760] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive degeneration of motor neurons occurring both as a sporadic and a familial disease. The etiology of ALS remains unknown, but one fifth of instances are due to specific gene defects, the best characterized of which is point mutations in the gene coding for Cu/Zn superoxide dismutase (SOD1). Because sporadic and familial ALS affect the same neurons with similar pathology, it is hoped that understanding these gene defects will help in devising therapies effective in both forms. A wealth of evidence has been collected in rodents made transgenic for mutant SOD1, which represent the best available models for familial ALS. Mutant SOD1 likely induces selective vulnerability of motor neurons through a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities and defective axonal transport, excitotoxicity, inadequate growth factor signaling, and inflammation. Damage within motor neurons is enhanced by noxious signals originating from nonneuronal neighboring cells, where mutant SOD1 induces an inflammatory response that accelerates disease progression. The clinical implication of these findings is that promising therapeutic approaches can be derived from multidrug treatments aimed at the simultaneous interception of damage in both motor neurons and nonmotor neuronal cells.
Collapse
|
85
|
Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis 2008; 30:107-20. [PMID: 18325775 DOI: 10.1016/j.nbd.2007.12.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/29/2007] [Accepted: 12/23/2007] [Indexed: 11/17/2022] Open
Abstract
Numerous investigations point to the importance of oxidative imbalance in mediating AD pathogenesis. Accumulated evidence indicates that lipid peroxidation is an early event during the evolution of the disease and occurs in patients with mild cognitive impairment (MCI). Because MCI represents a condition of increased risk for Alzheimer's disease (AD), early detection of disease markers is under investigation. Previously we showed that HNE-modified proteins, markers of lipid peroxidation, are elevated in MCI hippocampus and inferior parietal lobule compared to controls. Using a redox proteomic approach, we now report the identity of 11 HNE-modified proteins that had significantly elevated HNE levels in MCI patients compared with controls that span both brain regions: Neuropolypeptide h3, carbonyl reductase (NADPH), alpha-enolase, lactate dehydrogenase B, phosphoglycerate kinase, heat shock protein 70, ATP synthase alpha chain, pyruvate kinase, actin, elongation factor Tu, and translation initiation factor alpha. The enzyme activities of lactate dehydrogenase, ATP synthase, and pyruvate kinase were decreased in MCI subjects compared with controls, suggesting a direct correlation between oxidative damage and impaired enzyme activity. We suggest that impairment of target proteins through the production of HNE adducts leads to protein dysfunction and eventually neuronal death, thus contributing to the biological events that may lead MCI patients to progress to AD.
Collapse
Affiliation(s)
- Tanea Reed
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Poon HF, Abdullah L, Reed J, Doore SM, Laird C, Mathura V, Mullan M, Crawford F. Improving image analysis in 2DGE-based redox proteomics by labeling protein carbonyl with fluorescent hydroxylamine. Biol Proced Online 2007; 9:65-72. [PMID: 18385803 PMCID: PMC2274965 DOI: 10.1251/bpo134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 09/24/2007] [Accepted: 12/09/2007] [Indexed: 11/23/2022] Open
Abstract
Recent advances in redox proteomics have provided significant insight into the role of oxidative modifications in cellular signalling and metabolism. At present, these techniques rely heavily on Western blots to visualize the oxidative modification and corresponding two dimensional (2D) gels for detection of total protein levels, resulting in the duplication of efforts. A major limitation associated with this methodology includes problematic matching up of gels and blots due to the differences in processing and/or image acquisition. In this study, we present a new method which allows detection of protein oxidation and total protein on the same gel to improve matching in image analysis. Furthermore, the digested protein spots are compatible with standard MALDI mass spectrometry protein identification. The methodology highlighted here may be useful in facilitating the development of biomarkers, assessing potential therapeutic targets and elucidating new mechanisms of redox signalling in redox-related conditions.
Collapse
Affiliation(s)
- H Fai Poon
- Roskamp Institute, Sarasota, FL 34243 USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Mi J, Garcia-Arcos I, Alvarez R, Cristobal S. Age-related subproteomic analysis of mouse liver and kidney peroxisomes. Proteome Sci 2007; 5:19. [PMID: 18042274 PMCID: PMC2231346 DOI: 10.1186/1477-5956-5-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/27/2007] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Despite major recent advances in the understanding of peroxisomal functions and how peroxisomes arise, only scant information is available regarding this organelle in cellular aging. The aim of this study was to characterize the changes in the protein expression profile of aged versus young liver and kidney peroxisome-enriched fractions from mouse and to suggest possible mechanisms underlying peroxisomal aging. Peroxisome-enriched fractions from 10 weeks, 18 months and 24 months C57bl/6J mice were analyzed by quantitative proteomics. RESULTS Peroxisomal proteins were enriched by differential and density gradient centrifugation and proteins were separated by two-dimensional electrophoresis (2-DE), quantified and identified by mass spectrometry (MS). In total, sixty-five proteins were identified in both tissues. Among them, 14 proteins were differentially expressed in liver and 21 proteins in kidney. The eight proteins differentially expressed in both tissues were involved in beta-oxidation, alpha-oxidation, isoprenoid biosynthesis, amino acid metabolism, and stress response. Quantitative proteomics, clustering methods, and prediction of transcription factors, all indicated that there is a decline in protein expression at 18 months and a recovery at 24 months. CONCLUSION These results indicate that some peroxisomal proteins show a tissue-specific functional response to aging. This response is probably dependent on their differential regeneration capacity. The differentially expressed proteins could lead several cellular effects: such as alteration of fatty acid metabolism that could alert membrane protein functions, increase of the oxidative stress and contribute to decline in bile salt synthesis. The ability to detect age-related variations in the peroxisomal proteome can help in the search for reliable and valid aging biomarkers.
Collapse
Affiliation(s)
- Jia Mi
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Itsaso Garcia-Arcos
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Ruben Alvarez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Susana Cristobal
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
88
|
Fasano M, Bergamasco B, Lopiano L. The proteomic approach in Parkinson's disease. Proteomics Clin Appl 2007; 1:1428-35. [DOI: 10.1002/prca.200700264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Indexed: 12/26/2022]
|
89
|
Groebe K, Krause F, Kunstmann B, Unterluggauer H, Reifschneider NH, Scheckhuber CQ, Sastri C, Stegmann W, Wozny W, Schwall GP, Poznanović S, Dencher NA, Jansen-Dürr P, Osiewacz HD, Schrattenholz A. Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 2007; 42:887-98. [PMID: 17689904 DOI: 10.1016/j.exger.2007.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 01/07/2023]
Abstract
According to the 'free radical theory of ageing', the generation and accumulation of reactive oxygen species are key events during ageing of biological systems. Mitochondria are a major source of ROS and prominent targets for ROS-induced damage. Whereas mitochondrial DNA and membranes were shown to be oxidatively modified with ageing, mitochondrial protein oxidation is not well understood. The purpose of this study was an unbiased investigation of age-related changes in mitochondrial proteins and the molecular pathways by which ROS-induced protein oxidation may disturb cellular homeostasis. In a differential comparison of mitochondrial proteins from young and senescent strains of the fungal ageing model Podospora anserina, from brains of young (5 months) vs. older rats (17 and 31 months), and human cells, with normal and chemically accelerated in vitro ageing, we found certain redundant posttranslationally modified isoforms of subunits of ATP synthase affected across all three species. These appear to represent general susceptible hot spot targets for oxidative chemical changes of proteins accumulating during ageing, and potentially initiating various age-related pathologies and processes. This type of modification is discussed using the example of SAM-dependent O-methyltransferase from P. anserina (PaMTH1), which surprisingly was found to be enriched in mitochondrial preparations of senescent cultures.
Collapse
|
90
|
Vaishnav RA, Getchell ML, Poon HF, Barnett KR, Hunter SA, Pierce WM, Klein JB, Butterfield DA, Getchell TV. Oxidative stress in the aging murine olfactory bulb: redox proteomics and cellular localization. J Neurosci Res 2007; 85:373-85. [PMID: 17131389 DOI: 10.1002/jnr.21130] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A recent proteomics analysis from our laboratory demonstrated that several oxidative stress response proteins showed significant changes in steady-state levels in olfactory bulbs (OBs) of 20- vs. 1.5-month-old mice. Oxidative stress may result in protein oxidation. In this study, we investigated two forms of protein oxidative modification in murine OBs: carbonylation and nitration. Redox proteomics with two-dimensional gel electrophoresis, Western blotting, protein digestion, and mass spectrometry was used to quantify total and specific protein carbonylation and to identify differentially carbonylated proteins and determine the carbonylation status of previously identified proteins in OBs of 1.5- and 20-month-old mice. Immunohistochemistry was used to demonstrate the relative intensity and localization of protein nitration in OBs of 1.5-, 6-, and 20-month-old mice. Total protein carbonylation was significantly greater in OBs of 20- vs. 1.5-month-old mice. Aldolase 1 (ALDO1) showed significantly more carbonylation in OBs from 20- vs. 1.5-month-old mice; heat shock protein 9A and dihydropyrimidinase-like 2 showed significantly less. Several previously investigated proteins were also carbonylated, including ferritin heavy chain (FTH). Nitration, identified by 3-nitrotyrosine immunoreactivity, was least abundant at 1.5 months, intermediate at 6 months, and greatest at 20 months and was localized primarily in blood vessels. Proteins that were specific targets of oxidation were also localized: ALDO1 in astrocytes of the granule cell layer and FTH in mitral/tufted cells. These results indicate that specific carbonylated proteins, including those in astrocytes and mitral/tufted neurons, and nitrated proteins in the vasculature are molecular substrates of age-related olfactory dysfunction.
Collapse
Affiliation(s)
- Radhika A Vaishnav
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Dalle-Donne I, Carini M, Vistoli G, Gamberoni L, Giustarini D, Colombo R, Maffei Facino R, Rossi R, Milzani A, Aldini G. Actin Cys374 as a nucleophilic target of alpha,beta-unsaturated aldehydes. Free Radic Biol Med 2007; 42:583-98. [PMID: 17291982 DOI: 10.1016/j.freeradbiomed.2006.11.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
We have recently shown that actin can be modified by the Michael addition of 4-hydroxynonenal to Cys374. Here, we have exposed purified actin at increasing acrolein concentrations and have identified the sites of acrolein addition using LC-ESI-MS/MS. Acrolein reacted with Cys374, His87, His173, and, minimally, His40. Cys374 adduction by both 4-hydroxynonenal and acrolein negligibly affected the polymerization of aldehyde-modified (carbonylated) actin, as shown by fluorescence measurements. Differently, acrolein binding at histidine residues, when Cys374 was completely saturated, inhibited polymerization in a dose-dependent manner. Molecular modeling analyses indicated that structural distortions of the ATP-binding site, induced by four acrolein-Michael adducts, could explain the changes in the polymerization process. Aldehyde binding to Cys374 does not alter significantly actin polymerization because this residue is located in a very flexible region, whose covalent modifications do not alter the protein folding. These data demonstrate that Cys374 represents the primary target site of alpha,beta-unsaturated aldehyde addition to actin in vitro. As Cys374 is a preferential target for various oxidative/nitrosative modifications, and actin is one of the main carbonylated proteins in vivo, these findings also suggest that the highly reactive Cys374 could serve as a carbonyl scavenger of reactive alpha,beta-unsaturated aldehydes and other electrophilic lipids.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biology, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Polidori MC, Griffiths HR, Mariani E, Mecocci P. Hallmarks of protein oxidative damage in neurodegenerative diseases: focus on Alzheimer’s disease. Amino Acids 2007; 32:553-9. [PMID: 17273806 DOI: 10.1007/s00726-006-0431-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 06/30/2006] [Indexed: 10/23/2022]
Abstract
The pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, has been linked to a condition of oxidative and nitrosative stress, arising from the imbalance between increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and antioxidant defences or efficiency of repair or removal systems. The effects of free radicals are expressed by the accumulation of oxidative damage to biomolecules: nucleic acids, lipids and proteins. In this review we focused our attention on the large body of evidence of oxidative damage to protein in Alzheimer's disease brain and peripheral cells as well as in their role in signalling pathways. The progress in the understanding of the molecular alterations underlying Alzheimer's disease will be useful in developing successful preventive and therapeutic strategies, since available drugs can only temporarily stabilize the disease, but are not able to block the neurodegenerative process.
Collapse
Affiliation(s)
- M C Polidori
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
93
|
Chakravarti B, Chakravarti DN. Oxidative modification of proteins: age-related changes. Gerontology 2006; 53:128-39. [PMID: 17164550 DOI: 10.1159/000097865] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aging is a complex biological phenomenon which involves progressive loss of different physiological functions of various tissues of living organisms. It is the inevitable fate of life and is a major risk factor for death and different pathological disorders. Based on a wide variety of studies performed in humans as well as in various animal models and microbial systems, reactive oxygen species (ROS) are believed to play a key role in the aging process. The production of ROS is influenced by cellular metabolic activities as well as environmental factors. ROS can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since, in general, proteins are the key molecules that play the ultimate role in various structural and functional aspects of living organisms, this review will focus on the age-related oxidative modifications of proteins as well as on mechanism for removal or repair of the oxidized proteins. The topics covered include protein oxidation as a marker of oxidative stress, experimental evidence indicating the role of ROS in protein oxidation, protein carbonyl content, enzymatic degradation of oxidized proteins, and effects of caloric restriction on protein oxidation in the context of aging. Finally, we will discuss different strategies which have been or can be undertaken to slow down the oxidative damage of proteins and the aging process.
Collapse
Affiliation(s)
- Bulbul Chakravarti
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, USA.
| | | |
Collapse
|
94
|
Opii WO, Joshi G, Head E, William Milgram N, Muggenburg BA, Klein JB, Pierce WM, Cotman CW, Allan Butterfield D. Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer's disease. Neurobiol Aging 2006; 29:51-70. [PMID: 17055614 PMCID: PMC2203613 DOI: 10.1016/j.neurobiolaging.2006.09.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/06/2006] [Accepted: 09/14/2006] [Indexed: 01/28/2023]
Abstract
Aging and age-related disorders such as Alzheimer's disease (AD) are usually accompanied by oxidative stress as one of the main mechanisms contributing to neurodegeneration and cognitive decline. Aging canines develop cognitive dysfunction and neuropathology similar to those seen in humans, and the use of antioxidants results in reductions in oxidative damage and in improvement in cognitive function in this canine model of human aging. In the present study, the effect of a long-term treatment with an antioxidant-fortified diet and a program of behavioral enrichment on oxidative damage was studied in aged canines. To identify the neurobiological mechanisms underlying these treatment effects, the parietal cortex from 23 beagle dogs (8.1-12.4 years) were treated for 2.8 years in one of four treatment groups: i.e., control food-control behavioral enrichment (CC); control food-behavioral enrichment (CE); antioxidant food-control behavioral enrichment (CA); enriched environment-antioxidant-fortified food (EA). We analyzed the levels of the oxidative stress biomarkers, i.e., protein carbonyls, 3-nitrotyrosine (3-NT), and the lipid peroxidation product, 4-hydroxynonenal (HNE), and observed a decrease in their levels on all treatments when compared to control, with the most significant effects found in the combined treatment, EA. Since EA treatment was most effective, we also carried out a comparative proteomics study to identify specific brain proteins that were differentially expressed and used a parallel redox proteomics approach to identify specific brain proteins that were less oxidized following EA. The specific protein carbonyl levels of glutamate dehydrogenase [NAD (P)], glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alpha-enolase, neurofilament triplet L protein, glutathione-S-transferase (GST) and fascin actin bundling protein were significantly reduced in brain of EA-treated dogs compared to control. We also observed significant increases in expression of Cu/Zn superoxide dismutase, fructose-bisphosphate aldolase C, creatine kinase, glutamate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase. The increased expression of these proteins and in particular Cu/Zn SOD correlated with improved cognitive function. In addition, there was a significant increase in the enzymatic activities of glutathione-S-transferase (GST) and total superoxide dismutase (SOD), and significant increase in the protein levels of heme oxygenase (HO-1) in EA treated dogs compared to control. These findings suggest that the combined treatment reduces the levels of oxidative damage and improves the antioxidant reserve systems in the aging canine brain, and may contribute to improvements in learning and memory. These observations provide insights into a possible neurobiological mechanism underlying the effects of the combined treatment. These results support the combination treatments as a possible therapeutic approach that could be translated to the aging human population who are at risk for age-related neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- Wycliffe. O. Opii
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Gururaj Joshi
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Elizabeth Head
- Institute for Brain Aging and Dementia, Department of Neurology, University of California, Irvine, California, 92697-4540
| | - N William Milgram
- Division of Life Sciences, University of Toronto, Toronto, Canada, M1C 1A4
| | | | - Jon B. Klein
- Department of Medicine, Kidney Disease Program, University of Louisville, Louisville, KY
| | | | - Carl. W. Cotman
- Institute for Brain Aging and Dementia, Department of Neurology, University of California, Irvine, California, 92697-4540
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
- *Address Correspondence to: Prof. D. Allan Butterfield, Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA, Ph: 859-257-3184; FAX: 859-257-5876; E-Mail:
| |
Collapse
|
95
|
Sigdel TK, Cilliers R, Gursahaney PR, Thompson P, Easton JA, Crowder MW. Probing the adaptive response of Escherichia coli to extracellular Zn(II). Biometals 2006; 19:461-71. [PMID: 16937252 DOI: 10.1007/s10534-005-4962-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/08/2005] [Indexed: 11/25/2022]
Abstract
The adaptive response of Escherichia coli cells to differing intracellular and extracellular Zn(II) concentrations was evaluated by two-dimensional gel electrophoresis and peptide identifications. Twenty-one Zn(II)-responsive proteins, which were previously not known to be associated with Zn(II), were identified. Most of the proteins were related to cellular metabolism and include membrane transporters and glycolytic and TCA-associated enzymes. The expression levels of no known Zn(II) transporters were identified with these studies. The results of these studies suggest a role of Zn(II) in the expression levels of several E. coli proteins, and the results are discussed in light of recent genomic profiling studies on the adaptive response of E. coli cells to stress by Zn(II) excess.
Collapse
Affiliation(s)
- Tara K Sigdel
- Department of Chemistry and Biochemistry, Miami University, 112 Hughes Hall, Oxford, OH 45056, USA
| | | | | | | | | | | |
Collapse
|
96
|
Rasheed Z, Ali R. Reactive oxygen species damaged human serum albumin in patients with type 1 diabetes mellitus: biochemical and immunological studies. Life Sci 2006; 79:2320-8. [PMID: 16945391 DOI: 10.1016/j.lfs.2006.07.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/04/2006] [Accepted: 07/31/2006] [Indexed: 12/13/2022]
Abstract
The role of hydroxyl radical (.OH) damaged human serum albumin (HSA) in type 1 diabetes has been investigated in the present study. Hydroxyl radical induced modification on HSA has been studied by UV absorption spectroscopy, ANS fluorescence and carbonyl estimation. Hydroxyl radical modified HSA was found to be highly immunogenic in rabbits as compared to native HSA. The binding characteristics of circulating autoantibodies in type 1 diabetes patients against native and modified HSA were assessed. Diabetes patients (n=31) were examined by direct binding ELISA and the results were compared with healthy age-matched controls (n=22). High degree of specific binding by 54.8% of patients sera towards .OH modified HSA, in comparison to its native analogue (p<0.05) was observed. Sera from those type 1 diabetes patients having smoking history, high aging with high degree of disease showed substantially stronger binding to .OH modified HSA over native HSA in particular. Normal human sera showed negligible binding with either antigen. Competitive inhibition ELISA reiterates the direct binding results. Gel retardation assay further substantiated the enhanced recognition of modified HSA by circulating autoantibodies in diabetes patients. The increase in total serum protein carbonyl levels in the diabetes patients was largely due to an increase in oxidized albumin. HSA of diabetes mellitus patients (DM-HSA) and normal subjects (normal-HSA) were purified on a Sephacryl S-200 HR column. Spectroscopic analysis confirmed that the DM-HSA samples contained higher levels of carbonyls than normal-HSA (p<0.001). DM-HSA was conformationally altered, with more exposure of its hydrophobic regions. Collectively, the oxidation of plasma proteins, especially HSA, might enhance oxidative stress in type 1 diabetes mellitus patients.
Collapse
Affiliation(s)
- Zafar Rasheed
- Department of Biochemistry, Faculty of Medicine, J.N. Medical College, A.M.U. Aligarh 202002, India.
| | | |
Collapse
|
97
|
Schulenborg T, Schmidt O, van Hall A, Meyer HE, Hamacher M, Marcus K. Proteomics in neurodegeneration – disease driven approaches. J Neural Transm (Vienna) 2006; 113:1055-73. [PMID: 16835692 DOI: 10.1007/s00702-006-0512-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
Proteins as a product from genetic information execute and determine how development, growth, aging and disease factors are orchestrated within the lifetime of an organism. Differential protein expression and/or modification are always context dependent i.e. they happen within a specific context of a tissue, organ, environmental situation and individual fate. Consequently, the function/dysfunction (in a certain disease) of a specific gene cannot be predicted comprehensively by its sequence only. Genetic information can only be understood when genes and proteins are analyzed in the context of the biological system and specific networks they are involved in. In regard to neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD) many proteins are known for long years to be the cause or the consequence of the pathomechanism of the respective disease. The treatment of these neurodegenerative diseases represents a major challenge for the pharmaceutical industry, whereas the understanding of their pathogenesis is still in its infancy. With the development of several powerful techniques for proteome analysis it is now possible to investigate the expression of thousands of proteins in single cells, tissues or whole organisms at the same time. These developments opened new doors in medical sciences, and identification of cellular alterations associated with e.g. neurodegeneration will result in the identification of novel diagnostic as well as therapeutic targets. In this review, general considerations and strategies of proteomics technologies, the advantages and challenges as well as the special needs for analyzing brain tissue in the context of AD and AD are described and summarized.
Collapse
Affiliation(s)
- T Schulenborg
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|