51
|
Lynch GF, Okubo TS, Hanuschkin A, Hahnloser RHR, Fee MS. Rhythmic Continuous-Time Coding in the Songbird Analog of Vocal Motor Cortex. Neuron 2017; 90:877-92. [PMID: 27196977 DOI: 10.1016/j.neuron.2016.04.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Songbirds learn and produce complex sequences of vocal gestures. Adult birdsong requires premotor nucleus HVC, in which projection neurons (PNs) burst sparsely at stereotyped times in the song. It has been hypothesized that PN bursts, as a population, form a continuous sequence, while a different model of HVC function proposes that both HVC PN and interneuron activity is tightly organized around motor gestures. Using a large dataset of PNs and interneurons recorded in singing birds, we test several predictions of these models. We find that PN bursts in adult birds are continuously and nearly uniformly distributed throughout song. However, we also find that PN and interneuron firing rates exhibit significant 10-Hz rhythmicity locked to song syllables, peaking prior to syllable onsets and suppressed prior to offsets-a pattern that predominates PN and interneuron activity in HVC during early stages of vocal learning.
Collapse
Affiliation(s)
- Galen F Lynch
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tatsuo S Okubo
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander Hanuschkin
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich 8057, Switzerland
| | - Richard H R Hahnloser
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich 8057, Switzerland
| | - Michale S Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
52
|
Abstract
Trial-to-trial variability in the execution of movements and motor skills is ubiquitous and widely considered to be the unwanted consequence of a noisy nervous system. However, recent studies have suggested that motor variability may also be a feature of how sensorimotor systems operate and learn. This view, rooted in reinforcement learning theory, equates motor variability with purposeful exploration of motor space that, when coupled with reinforcement, can drive motor learning. Here we review studies that explore the relationship between motor variability and motor learning in both humans and animal models. We discuss neural circuit mechanisms that underlie the generation and regulation of motor variability and consider the implications that this work has for our understanding of motor learning.
Collapse
Affiliation(s)
- Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Maurice A Smith
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
53
|
Alliende J, Giret N, Pidoux L, Del Negro C, Leblois A. Seasonal plasticity of song behavior relies on motor and syntactic variability induced by a basal ganglia-forebrain circuit. Neuroscience 2017; 359:49-68. [PMID: 28712792 DOI: 10.1016/j.neuroscience.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/28/2022]
Abstract
The plasticity of nervous systems allows animals to quickly adapt to a changing environment. In particular, seasonal plasticity of brain structure and behavior is often critical to survival or mating in seasonal climates. Songbirds provide striking examples of seasonal changes in neural circuits and vocal behavior and have emerged as a leading model for adult brain plasticity. While seasonal plasticity and the well-characterized process of juvenile song learning may share common neural mechanisms, the extent of their similarity remains unclear. Especially, it is unknown whether the basal ganglia (BG)-forebrain loop which implements song learning in juveniles by driving vocal exploration participates in seasonal plasticity. To address this issue, we performed bilateral lesions of the output structure of the song-related BG-forebrain circuit (the magnocellular nucleus of the anterior nidopallium) in canaries during the breeding season, when song is most stereotyped, and just after resuming singing in early fall, when canaries sing their most variable songs and may produce new syllable types. Lesions drastically reduced song acoustic variability, increased song and phrase duration, and decreased syntax variability in early fall, reverting at least partially seasonal changes observed between the breeding season and early fall. On the contrary, lesions did not affect singing behavior during the breeding season. Our results therefore indicate that the BG-forebrain pathway introduces acoustic and syntactic variability in song when canaries resume singing in early fall. We propose that BG-forebrain circuits actively participate in seasonal plasticity by injecting variability in behavior during non-breeding season. SIGNIFICANCE STATEMENT The study of seasonal plasticity in temperate songbirds has provided important insights into the mechanisms of structural and functional plasticity in the central nervous system. The precise function and mechanisms of seasonal song plasticity however remain poorly understood. We show here that a basal ganglia-forebrain circuit involved in the acquisition and maintenance of birdsong is actively inducing song variability outside the breeding season, when singing is most variable, while having little effect on the stereotyped singing during the breeding season. Our results suggest that seasonal plasticity reflects an active song-maintenance process akin to juvenile learning, and that basal ganglia-forebrain circuits can drive plasticity in a learned vocal behavior during the non-injury-induced degeneration and reconstruction of the neural circuit underlying its production.
Collapse
Affiliation(s)
- Jorge Alliende
- Center for Neurophysics, Physiology and Pathologies (UMR CNRS 8119), Institute for Neuroscience and Cognition, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Nicolas Giret
- Paris-Saclay Institute of Neuroscience, UMR CNRS 9197, Paris Sud University, 91405 Orsay, France
| | - Ludivine Pidoux
- Center for Neurophysics, Physiology and Pathologies (UMR CNRS 8119), Institute for Neuroscience and Cognition, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Catherine Del Negro
- Paris-Saclay Institute of Neuroscience, UMR CNRS 9197, Paris Sud University, 91405 Orsay, France
| | - Arthur Leblois
- Center for Neurophysics, Physiology and Pathologies (UMR CNRS 8119), Institute for Neuroscience and Cognition, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
54
|
Affiliation(s)
- Ofer Tchernichovski
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA.
| | - Dina Lipkind
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
| |
Collapse
|
55
|
Roberts TF, Hisey E, Tanaka M, Kearney M, Chattree G, Yang CF, Shah NM, Mooney R. Identification of a motor-to-auditory pathway important for vocal learning. Nat Neurosci 2017; 20:978-986. [PMID: 28504672 PMCID: PMC5572074 DOI: 10.1038/nn.4563] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor's song. Ablating these neurons in adults had little effect on previously learned songs but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of songs' temporal features that is normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing.
Collapse
Affiliation(s)
- Todd F. Roberts
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin Hisey
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masashi Tanaka
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew Kearney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gaurav Chattree
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cindy F. Yang
- Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Nirao M. Shah
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
56
|
Budzillo A, Duffy A, Miller KE, Fairhall AL, Perkel DJ. Dopaminergic modulation of basal ganglia output through coupled excitation-inhibition. Proc Natl Acad Sci U S A 2017; 114:5713-5718. [PMID: 28507134 PMCID: PMC5465888 DOI: 10.1073/pnas.1611146114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning and maintenance of skilled movements require exploration of motor space and selection of appropriate actions. Vocal learning and social context-dependent plasticity in songbirds depend on a basal ganglia circuit, which actively generates vocal variability. Dopamine in the basal ganglia reduces trial-to-trial neural variability when the bird engages in courtship song. Here, we present evidence for a unique, tonically active, excitatory interneuron in the songbird basal ganglia that makes strong synaptic connections onto output pallidal neurons, often linked in time with inhibitory events. Dopamine receptor activity modulates the coupling of these excitatory and inhibitory events in vitro, which results in a dynamic change in the synchrony of a modeled population of basal ganglia output neurons receiving excitatory and inhibitory inputs. The excitatory interneuron thus serves as one biophysical mechanism for the introduction or modulation of neural variability in this circuit.
Collapse
Affiliation(s)
- Agata Budzillo
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195
| | - Alison Duffy
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Kimberly E Miller
- Department of Otolaryngology, University of Washington, Seattle, WA 98195
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- University of Washington Institute for Neuroengineering, University of Washington, Seattle, WA 98195
- Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA 98195
| | - David J Perkel
- Department of Otolaryngology, University of Washington, Seattle, WA 98195;
- University of Washington Institute for Neuroengineering, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
| |
Collapse
|
57
|
Teşileanu T, Ölveczky B, Balasubramanian V. Rules and mechanisms for efficient two-stage learning in neural circuits. eLife 2017; 6. [PMID: 28374674 PMCID: PMC5380437 DOI: 10.7554/elife.20944] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/04/2017] [Indexed: 12/29/2022] Open
Abstract
Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in 'tutor' circuits (e.g., LMAN) should match plasticity mechanisms in 'student' circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.
Collapse
Affiliation(s)
- Tiberiu Teşileanu
- Initiative for the Theoretical Sciences, CUNY Graduate Center, New York, United States.,David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States
| | - Bence Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, United States
| | - Vijay Balasubramanian
- Initiative for the Theoretical Sciences, CUNY Graduate Center, New York, United States.,David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States.,Theoretische Natuurkunde, Vrije Universiteit Brussel & International Solvay Institutes, Brussels, Belgium
| |
Collapse
|
58
|
Murphy K, James LS, Sakata JT, Prather JF. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration. J Neurophysiol 2017; 118:800-816. [PMID: 28331007 DOI: 10.1152/jn.00623.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies.
Collapse
Affiliation(s)
- Karagh Murphy
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| | - Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| |
Collapse
|
59
|
Giret N, Edeline JM, Del Negro C. Neural mechanisms of vocal imitation: The role of sleep replay in shaping mirror neurons. Neurosci Biobehav Rev 2017; 77:58-73. [PMID: 28288397 DOI: 10.1016/j.neubiorev.2017.01.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/19/2023]
Abstract
Learning by imitation involves not only perceiving another individual's action to copy it, but also the formation of a memory trace in order to gradually establish a correspondence between the sensory and motor codes, which represent this action through sensorimotor experience. Memory and sensorimotor processes are closely intertwined. Mirror neurons, which fire both when the same action is performed or perceived, have received considerable attention in the context of imitation. An influential view of memory processes considers that the consolidation of newly acquired information or skills involves an active offline reprocessing of memories during sleep within the neuronal networks that were initially used for encoding. Here, we review the recent advances in the field of mirror neurons and offline processes in the songbird. We further propose a theoretical framework that could establish the neurobiological foundations of sensorimotor learning by imitation. We propose that the reactivation of neuronal assemblies during offline periods contributes to the integration of sensory feedback information and the establishment of sensorimotor mirroring activity at the neuronal level.
Collapse
Affiliation(s)
- Nicolas Giret
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| | - Jean-Marc Edeline
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| | - Catherine Del Negro
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| |
Collapse
|
60
|
Tachibana RO, Takahasi M, Hessler NA, Okanoya K. Maturation-dependent control of vocal temporal plasticity in a songbird. Dev Neurobiol 2017; 77:995-1006. [PMID: 28188699 DOI: 10.1002/dneu.22487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
Abstract
Birdsong is a unique model to address learning mechanisms of the timing control of sequential behaviors, with characteristic temporal structures consisting of serial sequences of brief vocal elements (syllables) and silent intervals (gaps). Understanding the neural mechanisms for plasticity of such sequential behavior should be aided by characterization of its developmental changes. Here, we assessed the level of acute vocal plasticity between young and adult Bengalese finches, and also quantified developmental change in variability of temporal structure. Acute plasticity was tested by delivering aversive noise bursts contingent on duration of a target gap, such that birds could avoid the noise by modifying their song. We found that temporal variability of song features decreased with birds' maturation. Noise-avoidance experiments demonstrated that maximal changes of gap durations were larger in young that in adult birds. After these young birds matured, the maximal change decreased to a similar level as adults. The variability of these target gaps also decreased as the birds matured. Such parallel changes suggest that the level of acute temporal plasticity could be predicted from ongoing temporal variability. Further, we found that young birds gradually began to stop their song at the target gap and restart from the introductory part of song, whereas adults did not. According to a synaptic chain model for timing sequence generation in premotor nuclei, adult learning would be interpreted as adaptive changes in conduction delays between chain-to-chain connections, whereas the learning of young birds could mainly depend on changes of the connections. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 995-1006, 2017.
Collapse
Affiliation(s)
- Ryosuke O Tachibana
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Miki Takahasi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Neal A Hessler
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Cognition and Behavior Joint Laboratory, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
61
|
Prather JF, Okanoya K, Bolhuis JJ. Brains for birds and babies: Neural parallels between birdsong and speech acquisition. Neurosci Biobehav Rev 2017; 81:225-237. [PMID: 28087242 DOI: 10.1016/j.neubiorev.2016.12.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 01/14/2023]
Abstract
Language as a computational cognitive mechanism appears to be unique to the human species. However, there are remarkable behavioral similarities between song learning in songbirds and speech acquisition in human infants that are absent in non-human primates. Here we review important neural parallels between birdsong and speech. In both cases there are separate but continually interacting neural networks that underlie vocal production, sensorimotor learning, and auditory perception and memory. As in the case of human speech, neural activity related to birdsong learning is lateralized, and mirror neurons linking perception and performance may contribute to sensorimotor learning. In songbirds that are learning their songs, there is continual interaction between secondary auditory regions and sensorimotor regions, similar to the interaction between Wernicke's and Broca's areas in human infants acquiring speech and language. Taken together, song learning in birds and speech acquisition in humans may provide useful insights into the evolution and mechanisms of auditory-vocal learning.
Collapse
Affiliation(s)
- Jonathan F Prather
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, USA.
| | - Kazuo Okanoya
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Johan J Bolhuis
- Cognitive Neurobiology and Helmholtz Institute, Departments of Psychology and Biology, Utrecht University, Utrecht, The Netherlands; Department of Zoology and St. Catharine's College, University of Cambridge, UK
| |
Collapse
|
62
|
Encoding Temporal Features of Skilled Movements-What, Whether and How? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 957:35-54. [PMID: 28035559 PMCID: PMC5638013 DOI: 10.1007/978-3-319-47313-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to reliably produce intelligible speech or fluently play a melody on a piano, learning the precise timing of muscle activations is essential. Surprisingly, the fundamental question of how memories of complex temporal dynamics of movement are stored across the brain is still unresolved. This review outlines the constraints that determine whether and how the timing of skilled movements is represented in the central nervous system and introduces different computational and neural mechanisms that can be harnessed for temporal encoding. It concludes by proposing a schematic model of how these different mechanisms may complement and interact with each other in fast feedback loops to achieve skilled motor timing.
Collapse
|
63
|
Gadagkar V, Puzerey PA, Chen R, Baird-Daniel E, Farhang AR, Goldberg JH. Dopamine neurons encode performance error in singing birds. Science 2016; 354:1278-1282. [PMID: 27940871 PMCID: PMC5464363 DOI: 10.1126/science.aah6837] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Many behaviors are learned through trial and error by matching performance to internal goals. Yet neural mechanisms of performance evaluation remain poorly understood. We recorded basal ganglia-projecting dopamine neurons in singing zebra finches as we controlled perceived song quality with distorted auditory feedback. Dopamine activity was phasically suppressed after distorted syllables, consistent with a worse-than-predicted outcome, and was phasically activated at the precise moment of the song when a predicted distortion did not occur, consistent with a better-than-predicted outcome. Error response magnitude depended on distortion probability. Thus, dopaminergic error signals can evaluate behaviors that are not learned for reward and are instead learned by matching performance outcomes to internal goals.
Collapse
Affiliation(s)
- Vikram Gadagkar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ruidong Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Eliza Baird-Daniel
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Alexander R Farhang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
64
|
Woolley SC. Social context differentially modulates activity of two interneuron populations in an avian basal ganglia nucleus. J Neurophysiol 2016; 116:2831-2840. [PMID: 27628208 DOI: 10.1152/jn.00622.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 11/22/2022] Open
Abstract
Basal ganglia circuits are critical for the modulation of motor performance across behavioral states. In zebra finches, a cortical-basal ganglia circuit dedicated to singing is necessary for males to adjust their song performance and transition between spontaneous singing, when they are alone ("undirected" song), and a performance state, when they sing to a female ("female-directed" song). However, we know little about the role of different basal ganglia cell types in this behavioral transition or the degree to which behavioral context modulates the activity of different neuron classes. To investigate whether interneurons in the songbird basal ganglia encode information about behavioral state, I recorded from two interneuron types, fast-spiking interneurons (FSI) and external pallidal (GPe) neurons, in the songbird basal ganglia nucleus area X during both female-directed and undirected singing. Both cell types exhibited higher firing rates, more frequent bursting, and greater trial-by-trial variability in firing when male zebra finches produced undirected songs compared with when they produced female-directed songs. However, the magnitude and direction of changes to the firing rate, bursting, and variability of spiking between when birds sat silently and when they sang undirected and female-directed song varied between FSI and GPe neurons. These data indicate that social modulation of activity important for eliciting changes in behavioral state is present in multiple cell types within area X and suggests that social interactions may adjust circuit dynamics during singing at multiple points within the circuit.
Collapse
Affiliation(s)
- Sarah C Woolley
- Department of Biology and Center for Brain, Language, and Music, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
65
|
Abstract
UNLABELLED Although the brain relies on auditory information to calibrate vocal behavior, the neural substrates of vocal learning remain unclear. Here we demonstrate that lesions of the dopaminergic inputs to a basal ganglia nucleus in a songbird species (Bengalese finches, Lonchura striata var. domestica) greatly reduced the magnitude of vocal learning driven by disruptive auditory feedback in a negative reinforcement task. These lesions produced no measureable effects on the quality of vocal performance or the amount of song produced. Our results suggest that dopaminergic inputs to the basal ganglia selectively mediate reinforcement-driven vocal plasticity. In contrast, dopaminergic lesions produced no measurable effects on the birds' ability to restore song acoustics to baseline following the cessation of reinforcement training, suggesting that different forms of vocal plasticity may use different neural mechanisms. SIGNIFICANCE STATEMENT During skill learning, the brain relies on sensory feedback to improve motor performance. However, the neural basis of sensorimotor learning is poorly understood. Here, we investigate the role of the neurotransmitter dopamine in regulating vocal learning in the Bengalese finch, a songbird with an extremely precise singing behavior that can nevertheless be reshaped dramatically by auditory feedback. Our findings show that reduction of dopamine inputs to a region of the songbird basal ganglia greatly impairs vocal learning but has no detectable effect on vocal performance. These results suggest a specific role for dopamine in regulating vocal plasticity.
Collapse
|
66
|
Coen P, Xie M, Clemens J, Murthy M. Sensorimotor Transformations Underlying Variability in Song Intensity during Drosophila Courtship. Neuron 2016; 89:629-44. [PMID: 26844835 DOI: 10.1016/j.neuron.2015.12.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/05/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022]
Abstract
Diverse animal species, from insects to humans, utilize acoustic signals for communication. Studies of the neural basis for song or speech production have focused almost exclusively on the generation of spectral and temporal patterns, but animals can also adjust acoustic signal intensity when communicating. For example, humans naturally regulate the loudness of speech in accord with a visual estimate of receiver distance. The underlying mechanisms for this ability remain uncharacterized in any system. Here, we show that Drosophila males modulate courtship song amplitude with female distance, and we investigate each stage of the sensorimotor transformation underlying this behavior, from the detection of particular visual stimulus features and the timescales of sensory processing to the modulation of neural and muscle activity that generates song. Our results demonstrate an unanticipated level of control in insect acoustic communication and uncover novel computations and mechanisms underlying the regulation of acoustic signal intensity.
Collapse
Affiliation(s)
- Philip Coen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Marjorie Xie
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
67
|
Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences. Proc Natl Acad Sci U S A 2016; 113:E1720-7. [PMID: 26951661 DOI: 10.1073/pnas.1523754113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington's disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements.
Collapse
|
68
|
Benichov JI, Benezra SE, Vallentin D, Globerson E, Long MA, Tchernichovski O. The Forebrain Song System Mediates Predictive Call Timing in Female and Male Zebra Finches. Curr Biol 2016; 26:309-18. [PMID: 26774786 PMCID: PMC4747672 DOI: 10.1016/j.cub.2015.12.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/10/2015] [Accepted: 12/05/2015] [Indexed: 12/30/2022]
Abstract
The dichotomy between vocal learners and non-learners is a fundamental distinction in the study of animal communication. Male zebra finches (Taeniopygia guttata) are vocal learners that acquire a song resembling their tutors', whereas females can only produce innate calls. The acoustic structure of short calls, produced by both males and females, is not learned. However, these calls can be precisely coordinated across individuals. To examine how birds learn to synchronize their calls, we developed a vocal robot that exchanges calls with a partner bird. Because birds answer the robot with stereotyped latencies, we could program it to disrupt each bird's responses by producing calls that are likely to coincide with the bird's. Within minutes, the birds learned to avoid this disruptive masking (jamming) by adjusting the timing of their responses. Notably, females exhibited greater adaptive timing plasticity than males. Further, when challenged with complex rhythms containing jamming elements, birds dynamically adjusted the timing of their calls in anticipation of jamming. Blocking the song system cortical output dramatically reduced the precision of birds' response timing and abolished their ability to avoid jamming. Surprisingly, we observed this effect in both males and females, indicating that the female song system is functional rather than vestigial. We suggest that descending forebrain projections, including the song-production pathway, function as a general-purpose sensorimotor communication system. In the case of calls, it enables plasticity in vocal timing to facilitate social interactions, whereas in the case of songs, plasticity extends to developmental changes in vocal structure.
Collapse
Affiliation(s)
- Jonathan I Benichov
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA; Doctoral Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA.
| | - Sam E Benezra
- Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Daniela Vallentin
- Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eitan Globerson
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel; Jerusalem Academy of Music and Dance, Jerusalem 91904, Israel
| | - Michael A Long
- Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Ofer Tchernichovski
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA
| |
Collapse
|
69
|
Acute off-target effects of neural circuit manipulations. Nature 2015; 528:358-63. [PMID: 26649821 DOI: 10.1038/nature16442] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
Rapid and reversible manipulations of neural activity in behaving animals are transforming our understanding of brain function. An important assumption underlying much of this work is that evoked behavioural changes reflect the function of the manipulated circuits. We show that this assumption is problematic because it disregards indirect effects on the independent functions of downstream circuits. Transient inactivations of motor cortex in rats and nucleus interface (Nif) in songbirds severely degraded task-specific movement patterns and courtship songs, respectively, which are learned skills that recover spontaneously after permanent lesions of the same areas. We resolve this discrepancy in songbirds, showing that Nif silencing acutely affects the function of HVC, a downstream song control nucleus. Paralleling song recovery, the off-target effects resolved within days of Nif lesions, a recovery consistent with homeostatic regulation of neural activity in HVC. These results have implications for interpreting transient circuit manipulations and for understanding recovery after brain lesions.
Collapse
|
70
|
Growth and splitting of neural sequences in songbird vocal development. Nature 2015; 528:352-7. [PMID: 26618871 PMCID: PMC4957523 DOI: 10.1038/nature15741] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022]
Abstract
Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviors, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a ‘prototype’ syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a common precursor sequence.
Collapse
|
71
|
James LS, Sakata JT. Predicting plasticity: acute context-dependent changes to vocal performance predict long-term age-dependent changes. J Neurophysiol 2015; 114:2328-39. [PMID: 26311186 DOI: 10.1152/jn.00688.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the factors that predict and guide variation in behavioral change can lend insight into mechanisms of motor plasticity and individual differences in behavior. The performance of adult birdsong changes with age in a manner that is similar to rapid context-dependent changes to song. To reveal mechanisms of vocal plasticity, we analyzed the degree to which variation in the direction and magnitude of age-dependent changes to Bengalese finch song could be predicted by variation in context-dependent changes. Using a repeated-measures design, we found that variation in age-dependent changes to the timing, sequencing, and structure of vocal elements ("syllables") was significantly predicted by variation in context-dependent changes. In particular, the degree to which the duration of intersyllable gaps, syllable sequencing at branch points, and fundamental frequency of syllables within spontaneous [undirected (UD)] songs changed over time was correlated with the degree to which these features changed from UD song to female-directed (FD) song in young-adult finches (FDyoung). As such, the structure of some temporal features of UD songs converged over time onto the structure of FDyoung songs. This convergence suggested that the FDyoung song could serve as a stable target for vocal motor plasticity. Consequently, we analyzed the stability of FD song and found that the temporal structure of FD song changed significantly over time in a manner similar to UD song. Because FD song is considered a state of heightened performance, these data suggest that age-dependent changes could reflect practice-related improvements in vocal motor performance.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
72
|
Mehaffey WH, Doupe AJ. Naturalistic stimulation drives opposing heterosynaptic plasticity at two inputs to songbird cortex. Nat Neurosci 2015; 18:1272-80. [PMID: 26237364 DOI: 10.1038/nn.4078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022]
Abstract
Songbirds learn precisely sequenced motor skills (songs) subserved by distinct brain areas, including the premotor cortical analog HVC, which is essential for producing learned song, and a 'cortical'-basal ganglia loop required for song plasticity. Inputs from these nuclei converge in RA (robust nucleus of the arcopallium), making it a likely locus for song learning. However, activity-dependent synaptic plasticity has never been described in either input. Using a slice preparation, we found that stimulation patterns based on singing-related activity were able to drive opposing changes in the strength of RA's inputs: when one input was potentiated, the other was depressed, with the direction and magnitude of changes depending on the relative timing of stimulation of the inputs. Moreover, pharmacological manipulations that blocked synaptic plasticity in vitro also prevented reinforcement-driven changes to song in vivo. Together, these findings highlight the importance of precise timing in the basal ganglia-motor cortical interactions subserving adaptive motor skills.
Collapse
Affiliation(s)
- W Hamish Mehaffey
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA.,Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Allison J Doupe
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA.,Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
73
|
Bednark JG, Campbell MEJ, Cunnington R. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements. Front Hum Neurosci 2015; 9:421. [PMID: 26283945 PMCID: PMC4515550 DOI: 10.3389/fnhum.2015.00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/10/2015] [Indexed: 11/14/2022] Open
Abstract
Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g., rhythm) and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis (MVPA), we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the supplementary motor area (SMA) and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia.
Collapse
Affiliation(s)
- Jeffery G Bednark
- Queensland Brain Institute, The University of Queensland St. Lucia, QLD, Australia
| | - Megan E J Campbell
- Queensland Brain Institute, The University of Queensland St. Lucia, QLD, Australia
| | - Ross Cunnington
- Queensland Brain Institute, The University of Queensland St. Lucia, QLD, Australia ; School of Psychology, The University of Queensland St. Lucia, QLD, Australia
| |
Collapse
|
74
|
Woolley S, Kao M. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control. Neuroscience 2015; 296:39-47. [DOI: 10.1016/j.neuroscience.2014.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
75
|
Kawai R, Markman T, Poddar R, Ko R, Fantana AL, Dhawale AK, Kampff AR, Ölveczky BP. Motor cortex is required for learning but not for executing a motor skill. Neuron 2015; 86:800-12. [PMID: 25892304 DOI: 10.1016/j.neuron.2015.03.024] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/15/2014] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
Abstract
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning.
Collapse
Affiliation(s)
- Risa Kawai
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Timothy Markman
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Rajesh Poddar
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Raymond Ko
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Antoniu L Fantana
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ashesh K Dhawale
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam R Kampff
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Bence P Ölveczky
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
76
|
Matheson LE, Sakata JT. Catecholaminergic contributions to vocal communication signals. Eur J Neurosci 2015; 41:1180-94. [DOI: 10.1111/ejn.12885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Laura E. Matheson
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| | - Jon T. Sakata
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| |
Collapse
|
77
|
Motor-related signals in the auditory system for listening and learning. Curr Opin Neurobiol 2015; 33:78-84. [PMID: 25827273 DOI: 10.1016/j.conb.2015.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
In the auditory system, corollary discharge signals are theorized to facilitate normal hearing and the learning of acoustic behaviors, including speech and music. Despite clear evidence of corollary discharge signals in the auditory cortex and their presumed importance for hearing and auditory-guided motor learning, the circuitry and function of corollary discharge signals in the auditory cortex are not well described. In this review, we focus on recent developments in the mouse and songbird that provide insights into the circuitry that transmits corollary discharge signals to the auditory system and the function of these signals in the context of hearing and vocal learning.
Collapse
|
78
|
Abstract
Sensory feedback is crucial for learning and performing many behaviors, but its role in the execution of complex motor sequences is poorly understood. To address this, we consider the forebrain nucleus HVC in the songbird, which contains the premotor circuitry for song production and receives multiple convergent sensory inputs. During singing, projection neurons within HVC exhibit precisely timed synaptic events that may represent the ongoing motor program or song-related sensory feedback. To distinguish between these possibilities, we recorded the membrane potential from identified HVC projection neurons in singing zebra finches. External auditory perturbations during song production did not affect synaptic inputs in these neurons. Furthermore, the systematic removal of three sensory feedback streams (auditory, proprioceptive, and vagal) did not alter the frequency or temporal precision of synaptic activity observed. These findings support a motor origin for song-related synaptic events and suggest an updated circuit model for generating behavioral sequences.
Collapse
|
79
|
Motor skill learning between selection and execution. Trends Cogn Sci 2015; 19:227-33. [PMID: 25746123 DOI: 10.1016/j.tics.2015.02.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 11/23/2022]
Abstract
Learning motor skills evolves from the effortful selection of single movement elements to their combined fast and accurate production. We review recent trends in the study of skill learning which suggest a hierarchical organization of the representations that underlie such expert performance, with premotor areas encoding short sequential movement elements (chunks) or particular component features (timing/spatial organization). This hierarchical representation allows the system to utilize elements of well-learned skills in a flexible manner. One neural correlate of skill development is the emergence of specialized neural circuits that can produce the required elements in a stable and invariant fashion. We discuss the challenges in detecting these changes with fMRI.
Collapse
|
80
|
Garst-Orozco J, Babadi B, Ölveczky BP. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches. eLife 2014; 3:e03697. [PMID: 25497835 PMCID: PMC4290448 DOI: 10.7554/elife.03697] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 12/13/2014] [Indexed: 01/18/2023] Open
Abstract
Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural ‘noise’. This identifies a simple and general mechanism for learning-related regulation of motor variability. DOI:http://dx.doi.org/10.7554/eLife.03697.001 ‘Practice makes perfect’ captures the essence of how we learn new skills. When learning to play a musical instrument, for example, it often takes hours of practice before we can play a single piece of music properly for the first time. And as we get better, the variability in our performance—which is an advantage during the early stages of learning—becomes less. Likewise, songbirds need lots of practice in order to master the intricate songs they need to sing to attract mates. Studies in songbirds show that the neural circuits in the brain that are responsible for producing song and for generating vocal variability both converge on a motor control region called the robust nucleus of the arcopallium (or RA for short). However, the details of how learning a song leads to reduced variability in vocal performance are poorly understood. Now Garst-Orozco et al. have investigated the relationship between learning and variability by studying brain slices of zebra finches. Their experiments reveal that the inputs received by RA neurons from a higher-order brain region that controls song change with practice, with some inputs becoming stronger and others being eliminated as the birds' singing ability improves. However, inputs received by RA neurons from the circuit that generates vocal variability do not change despite the song becoming increasingly precise. Using a computer simulation, Garst-Orozco et al. show that the sensitivity of RA neurons to variable or ‘noisy’ input is reduced when inputs from the brain region that controls song are adaptively strengthened and eliminated. This ensures that when the notes and syllables that make up the bird's song have finally been learned, they will be uttered with high fidelity and precision. Intriguingly, motor skill learning in mammals have been associated with neural connectivity changes very similar to those described by Garst-Orozco et al., suggesting that insights from songbirds may lead to a better understanding of how ‘practice makes perfect’ also works in humans. DOI:http://dx.doi.org/10.7554/eLife.03697.002
Collapse
Affiliation(s)
| | - Baktash Babadi
- Center for Brain Science, Harvard University, Cambridge, United States
| | - Bence P Ölveczky
- Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
81
|
Male mate preferences in mutual mate choice: finches modulate their songs across and within male-female interactions. Anim Behav 2014; 97:1-12. [PMID: 25242817 DOI: 10.1016/j.anbehav.2014.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Male songbirds use song to advertise their attractiveness as potential mates, and the properties of those songs have a powerful influence on female mate preferences. One idea is that males may exert themselves maximally in each song performance, consistent with female evaluation and formation of mate preferences being the primary contributors to mate choice. Alternatively, males may modulate their song behaviour to different degrees in the presence of different females, consistent with both male and female mate preferences contributing to mutual mate choice. Here we consider whether male Bengalese finches, Lonchura striata domestica, express mate preferences at the level of individual females, and whether those preferences are manifest as changes in song behaviour that are sufficient to influence female mate choice. We tested this idea by recording songs performed by individual unmated males during a series of 1 h interactions with each of many unmated females. Across recording sessions, males systematically varied both the quantity and the quality of the songs that they performed to different females. Males also varied their song properties throughout the course of each interaction, and behavioural tests using female birds revealed that songs performed at the onset of each interaction were significantly more attractive than songs performed by the same male later during the same interaction. This demonstration of context-specific variation in the properties of male reproductive signals and a role for that variation in shaping female mate preference reveals that male mate preferences play an important role in mutual mate choice in this species. Because these birds thrive so well in the laboratory and are so amenable to observation and experimentation across generations, these results yield a new model system that may prove especially advantageous in disentangling the role of male and female mate preferences in shaping mutual mate choice and its long-term benefits or consequences.
Collapse
|
82
|
Tchernichovski O, Marcus G. Vocal learning beyond imitation: mechanisms of adaptive vocal development in songbirds and human infants. Curr Opin Neurobiol 2014; 28:42-7. [PMID: 25005823 PMCID: PMC4177410 DOI: 10.1016/j.conb.2014.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/21/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Studies of vocal learning in songbirds typically focus on the acquisition of sensory templates for song imitation and on the consequent process of matching song production to templates. However, functional vocal development also requires the capacity to adaptively diverge from sensory templates, and to flexibly assemble vocal units. Examples of adaptive divergence include the corrective imitation of abnormal songs, and the decreased tendency to copy over-abundant syllables. Such frequency-dependent effects might mirror tradeoffs between the assimilation of group identity (culture) while establishing individual and flexibly expressive songs. Intriguingly, although the requirements for vocal plasticity vary across songbirds, and more so between birdsong and language, the capacity to flexibly assemble vocal sounds develops in a similar, stepwise manner across species. Therefore, universal features of vocal learning go well beyond the capacity to imitate.
Collapse
Affiliation(s)
- Ofer Tchernichovski
- Department of Psychology, Hunter College, City University of New York, United States.
| | - Gary Marcus
- Department of Psychology, New York University, United States
| |
Collapse
|
83
|
Elemans CPH. The singer and the song: the neuromechanics of avian sound production. Curr Opin Neurobiol 2014; 28:172-8. [PMID: 25171107 DOI: 10.1016/j.conb.2014.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 01/24/2023]
Abstract
Song is crucial to songbirds for establishing territories and signaling genetic quality and an important driver in speciation. Songbirds also have become a widely used experimental model system to study the neural basis of vocal learning, a form of imitation learning with strong parallels to human speech learning. While there is a strong focus on central processing of song production, we still have limited insights into the functional output of the motor neural circuits. This review focuses on recent developments in motor control, biomechanics and feedback mechanisms of sound production in songbirds.
Collapse
Affiliation(s)
- Coen P H Elemans
- Department of Biology, University of Southern Denmark, Odense DK-5230, Denmark.
| |
Collapse
|
84
|
Kornysheva K, Diedrichsen J. Human premotor areas parse sequences into their spatial and temporal features. eLife 2014; 3:e03043. [PMID: 25117541 PMCID: PMC4123716 DOI: 10.7554/elife.03043] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Skilled performance is characterized by precise and flexible control of movement sequences in space and time. Recent theories suggest that integrated spatio-temporal trajectories are generated by intrinsic dynamics of motor and premotor networks. This contrasts with behavioural advantages that emerge when a trained spatial or temporal feature of sequences is transferred to a new spatio-temporal combination arguing for independent neural representations of these sequence features. We used a new fMRI pattern classification approach to identify brain regions with independent vs integrated representations. A distinct regional dissociation within motor areas was revealed: whereas only the contralateral primary motor cortex exhibited unique patterns for each spatio-temporal sequence combination, bilateral premotor areas represented spatial and temporal features independently of each other. These findings advocate a unique function of higher motor areas for flexible recombination and efficient encoding of complex motor behaviours. DOI:http://dx.doi.org/10.7554/eLife.03043.001 Once a pianist has learned to play a song, he or she can nearly effortlessly reproduce the sequence of finger movements needed to play the song with a particular rhythm. A skilled pianist can also improvise, pairing the same keystrokes with a different rhythm or playing the same rhythm with a slightly different sequence of keys. This ability to flexibly modify and recombine sequences of physical movements in space and time enables humans to exhibit great creativity in music, language, and many other tasks that require motor skills. However, the underlying brain mechanisms that allow this flexibility are only beginning to be explored. Some scientists have theorized that networks of brain cells in the parts of the brain that control movement store a sequence in time and space as one inseparable unit. However, this theory doesn't explain why pianists and other skilled individuals can separate and recombine the physical movements and timing of a sequence in new ways. An alternate idea is that the brain captures the information necessary to execute a series of physical movements separately from the timing at which the movements are to be carried out. This would allow these features to be put together in new ways. Kornysheva and Diedrichsen taught a group of volunteers a series of finger movements paired with particular rhythms. Half the volunteers performed the task using their left hand and the other half with their right hand. After training the volunteers performed better when producing sequences they had been trained on, even in trials where either the rhythm or the finger sequence was slightly changed. The volunteers were also asked to perform the trained movements while their brain activity was monitored in a functional magnetic resonance imaging (fMRI) machine. Kornysheva and Diedrichsen looked for areas that showed similar patterns of increases and decreases in activity whenever a particular sequence was performed. This identified areas that showed unique patterns for each trained sequence combination of finger movements and rhythm, which could be distinguished from areas where the activity patterns for sequences remained similar across rhythms or across finger movements. Kornysheva and Diedrichsen found that a region of the brain that controls movement encodes sequences on the opposite side of the brain from the moving hand. In this part of the brain, the movement and timing were encoded together as one unit. However, in premotor areas—which are known to help individuals to plan movements—the timing and the finger movements appeared to be encoded separately in overlapping patches on both sides of the brain. This automatic separation appears to be a fundamental function of the premotor cortex, enabling behavioural flexibility and the storage of complex sequences of movements in space and time. DOI:http://dx.doi.org/10.7554/eLife.03043.002
Collapse
Affiliation(s)
- Katja Kornysheva
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom Department of Neuroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Jörn Diedrichsen
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
85
|
Bertram R, Daou A, Hyson RL, Johnson F, Wu W. Two neural streams, one voice: pathways for theme and variation in the songbird brain. Neuroscience 2014; 277:806-17. [PMID: 25106128 DOI: 10.1016/j.neuroscience.2014.07.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 07/27/2014] [Indexed: 11/25/2022]
Abstract
Birdsong offers a unique model system to understand how a developing brain - once given a set of purely acoustic targets - teaches itself the vocal-tract gestures necessary to imitate those sounds. Like human infants, to juvenile male zebra finches (Taeniopygia guttata) falls the burden of initiating the vocal-motor learning of adult sounds. In both species, adult caregivers provide only a set of sounds to be imitated, with little or no information about the vocal-tract gestures used to produce the sounds. Here, we focus on the central control of birdsong and review the recent discovery that zebra finch song is under dual premotor control. Distinct forebrain pathways for structured (theme) and unstructured (variation) singing not only raise new questions about mechanisms of sensory-motor integration, but also provide a fascinating new research opportunity. A cortical locus for a motor memory of the learned song is now firmly established, meaning that anatomical, physiological, and computational approaches are poised to reveal the neural mechanisms used by the brain to compose the songs of birds.
Collapse
Affiliation(s)
- R Bertram
- Department of Mathematics, Program in Neuroscience, Program in Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4510, United States
| | - A Daou
- Department of Mathematics, Program in Neuroscience, Program in Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4510, United States
| | - R L Hyson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, United States
| | - F Johnson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, United States.
| | - W Wu
- Department of Statistics, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4330, United States
| |
Collapse
|
86
|
Ding L, Perkel DJ. Two tales of how expectation of reward modulates behavior. Curr Opin Neurobiol 2014; 29:142-7. [PMID: 25062505 DOI: 10.1016/j.conb.2014.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
Expectation of reward modulates many types of behaviors. Here we highlight two lines of research on reward-modulated perceptual decision making in primates and social context-modulated singing in songbirds, respectively. These two seemingly distinct behaviors are both known to involve cortico-basal ganglia-thalamic circuits. The underlying computations may be conceptualized using a simple, common framework. We summarize and compare our current knowledge of the two fields to motivate new experiments for each field, with the goal of finding general principles for how the brain implements reward-modulated behavior.
Collapse
Affiliation(s)
- Long Ding
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Perkel
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Department of Otolaryngology, University of Washington, Seattle, WA 98195-6515, USA.
| |
Collapse
|
87
|
James LS, Sakata JT. Vocal motor changes beyond the sensitive period for song plasticity. J Neurophysiol 2014; 112:2040-52. [PMID: 25057147 DOI: 10.1152/jn.00217.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behavior is critically shaped during sensitive periods in development. Birdsong is a learned vocal behavior that undergoes dramatic plasticity during a sensitive period of sensorimotor learning. During this period, juvenile songbirds engage in vocal practice to shape their vocalizations into relatively stereotyped songs. By the time songbirds reach adulthood, their songs are relatively stable and thought to be "crystallized." Recent studies, however, highlight the potential for adult song plasticity and suggest that adult song could naturally change over time. As such, we investigated the degree to which temporal and spectral features of song changed over time in adult Bengalese finches. We observed that the sequencing and timing of song syllables became more stereotyped over time. Increases in the stereotypy of syllable sequencing were due to the pruning of infrequently produced transitions and, to a lesser extent, increases in the prevalence of frequently produced transitions. Changes in song tempo were driven by decreases in the duration and variability of intersyllable gaps. In contrast to significant changes to temporal song features, we found little evidence that the spectral structure of adult song syllables changed over time. These data highlight differences in the degree to which temporal and spectral features of adult song change over time and support evidence for distinct mechanisms underlying the control of syllable sequencing, timing, and structure. Furthermore, the observed changes to temporal song features are consistent with a Hebbian framework of behavioral plasticity and support the notion that adult song should be considered a form of vocal practice.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
88
|
Abstract
Motor variability can facilitate motor exploration necessary for learning. In this issue of Neuron, Woolley et al. (2014) record at different stages of the songbird basal ganglia and show that social-context modulation of motor variability first emerges in the pallidum.
Collapse
|
89
|
Woolley SC, Rajan R, Joshua M, Doupe AJ. Emergence of context-dependent variability across a basal ganglia network. Neuron 2014; 82:208-23. [PMID: 24698276 DOI: 10.1016/j.neuron.2014.01.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Context dependence is a key feature of cortical-basal ganglia circuit activity, and in songbirds the cortical outflow of a basal ganglia circuit specialized for song, LMAN, shows striking increases in trial-by-trial variability and bursting when birds sing alone rather than to females. To reveal where this variability and its social regulation emerge, we recorded stepwise from corticostriatal (HVC) neurons and their target spiny and pallidal neurons in Area X. We find that corticostriatal and spiny neurons both show precise singing-related firing across both social settings. Pallidal neurons, in contrast, exhibit markedly increased trial-by-trial variation when birds sing alone, created by highly variable pauses in firing. This variability persists even when recurrent inputs from LMAN are ablated. These data indicate that variability and its context sensitivity emerge within the basal ganglia network, suggest a network mechanism for this emergence, and highlight variability generation and regulation as basal ganglia functions.
Collapse
Affiliation(s)
- Sarah C Woolley
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Raghav Rajan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Indian Institute of Science Education and Research, Pashan Road, Pune 411008, Maharashra, India
| | - Mati Joshua
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Allison J Doupe
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
90
|
Hamaguchi K, Tschida KA, Yoon I, Donald BR, Mooney R. Auditory synapses to song premotor neurons are gated off during vocalization in zebra finches. eLife 2014; 3:e01833. [PMID: 24550254 PMCID: PMC3927426 DOI: 10.7554/elife.01833] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/10/2014] [Indexed: 11/13/2022] Open
Abstract
Songbirds use auditory feedback to learn and maintain their songs, but how feedback interacts with vocal motor circuitry remains unclear. A potential site for this interaction is the song premotor nucleus HVC, which receives auditory input and contains neurons (HVCX cells) that innervate an anterior forebrain pathway (AFP) important to feedback-dependent vocal plasticity. Although the singing-related output of HVCX cells is unaltered by distorted auditory feedback (DAF), deafening gradually weakens synapses on HVCX cells, raising the possibility that they integrate feedback only at subthreshold levels during singing. Using intracellular recordings in singing zebra finches, we found that DAF failed to perturb singing-related synaptic activity of HVCX cells, although many of these cells responded to auditory stimuli in non-singing states. Moreover, in vivo multiphoton imaging revealed that deafening-induced changes to HVCX synapses require intact AFP output. These findings support a model in which the AFP accesses feedback independent of HVC. DOI: http://dx.doi.org/10.7554/eLife.01833.001.
Collapse
Affiliation(s)
- Kosuke Hamaguchi
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Katherine A Tschida
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Inho Yoon
- Department of Electrical and Computer Engineering, Duke University, Durham, United States
| | - Bruce R Donald
- Department of Electrical and Computer Engineering, Duke University, Durham, United States
- Department of Computer Science, Duke University, Durham, United States
- Department of Biochemistry, Duke University Medical Center, Durham, United States
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| |
Collapse
|
91
|
Wu HG, Miyamoto YR, Gonzalez Castro LN, Ölveczky BP, Smith MA. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat Neurosci 2014; 17:312-21. [PMID: 24413700 DOI: 10.1038/nn.3616] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/02/2013] [Indexed: 12/29/2022]
Abstract
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.
Collapse
Affiliation(s)
- Howard G Wu
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. [2]
| | - Yohsuke R Miyamoto
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. [2]
| | | | - Bence P Ölveczky
- 1] Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Maurice A Smith
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. [2] Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|