51
|
Vesuna S, Kauvar IV, Richman E, Gore F, Oskotsky T, Sava-Segal C, Luo L, Malenka RC, Henderson JM, Nuyujukian P, Parvizi J, Deisseroth K. Deep posteromedial cortical rhythm in dissociation. Nature 2020; 586:87-94. [PMID: 32939091 PMCID: PMC7553818 DOI: 10.1038/s41586-020-2731-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Advanced imaging methods now allow cell-type-specific recording of neural activity across the mammalian brain, potentially enabling the exploration of how brain-wide dynamical patterns give rise to complex behavioural states1-12. Dissociation is an altered behavioural state in which the integrity of experience is disrupted, resulting in reproducible cognitive phenomena including the dissociation of stimulus detection from stimulus-related affective responses. Dissociation can occur as a result of trauma, epilepsy or dissociative drug use13,14, but despite its substantial basic and clinical importance, the underlying neurophysiology of this state is unknown. Here we establish such a dissociation-like state in mice, induced by precisely-dosed administration of ketamine or phencyclidine. Large-scale imaging of neural activity revealed that these dissociative agents elicited a 1-3-Hz rhythm in layer 5 neurons of the retrosplenial cortex. Electrophysiological recording with four simultaneously deployed high-density probes revealed rhythmic coupling of the retrosplenial cortex with anatomically connected components of thalamus circuitry, but uncoupling from most other brain regions was observed-including a notable inverse correlation with frontally projecting thalamic nuclei. In testing for causal significance, we found that rhythmic optogenetic activation of retrosplenial cortex layer 5 neurons recapitulated dissociation-like behavioural effects. Local retrosplenial hyperpolarization-activated cyclic-nucleotide-gated potassium channel 1 (HCN1) pacemakers were required for systemic ketamine to induce this rhythm and to elicit dissociation-like behavioural effects. In a patient with focal epilepsy, simultaneous intracranial stereoencephalography recordings from across the brain revealed a similarly localized rhythm in the homologous deep posteromedial cortex that was temporally correlated with pre-seizure self-reported dissociation, and local brief electrical stimulation of this region elicited dissociative experiences. These results identify the molecular, cellular and physiological properties of a conserved deep posteromedial cortical rhythm that underlies states of dissociation.
Collapse
Affiliation(s)
- Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ethan Richman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Felicity Gore
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Tomiko Oskotsky
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Clara Sava-Segal
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Paul Nuyujukian
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
52
|
Gaidica M, Hurst A, Cyr C, Leventhal DK. Interactions Between Motor Thalamic Field Potentials and Single-Unit Spiking Are Correlated With Behavior in Rats. Front Neural Circuits 2020; 14:52. [PMID: 32922268 PMCID: PMC7457120 DOI: 10.3389/fncir.2020.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022] Open
Abstract
Field potential (FP) oscillations are believed to coordinate brain activity over large spatiotemporal scales, with specific features (e.g., phase and power) in discrete frequency bands correlated with motor output. Furthermore, complex correlations between oscillations in distinct frequency bands (phase-amplitude, amplitude-amplitude, and phase-phase coupling) are commonly observed. However, the mechanisms underlying FP-behavior correlations and cross-frequency coupling remain unknown. The thalamus plays a central role in generating many circuit-level neural oscillations, and single-unit activity in motor thalamus (Mthal) is correlated with behavioral output. We, therefore, hypothesized that motor thalamic spiking coordinates motor system FPs and underlies FP-behavior correlations. To investigate this possibility, we recorded wideband motor thalamic (Mthal) electrophysiology as healthy rats performed a two-alternative forced-choice task. Delta (1–4 Hz), beta (13–30 Hz), low gamma (30–70 Hz), and high gamma (70–200 Hz) power were strongly modulated by task performance. As in the cortex, the delta phase was correlated with beta/low gamma power and reaction time. Most interestingly, subpopulations of Mthal neurons defined by their relationship to the behavior exhibited distinct relationships with FP features. Specifically, neurons whose activity was correlated with action selection and movement speed were entrained to delta oscillations. Furthermore, changes in their activity anticipated power fluctuations in beta/low gamma bands. These complex relationships suggest mechanisms for commonly observed FP-FP and spike-FP correlations, as well as subcortical influences on motor output.
Collapse
Affiliation(s)
- Matt Gaidica
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Amy Hurst
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher Cyr
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Daniel K Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, United States
| |
Collapse
|
53
|
Campbell PW, Govindaiah G, Masterson SP, Bickford ME, Guido W. Synaptic properties of the feedback connections from the thalamic reticular nucleus to the dorsal lateral geniculate nucleus. J Neurophysiol 2020; 124:404-417. [PMID: 32609582 PMCID: PMC7500366 DOI: 10.1152/jn.00757.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The thalamic reticular nucleus (TRN) is a shell-like structure comprised of GABAergic neurons that surrounds the dorsal thalamus. While playing a key role in modulating thalamocortical interactions, TRN inhibition of thalamic activity is often thought of as having an all-or-none impact. Although TRN neurons have a dynamic firing range, it remains unclear how variable rates of TRN activity gate thalamocortical transmission. To address this, we examined the ultrastructural features and functional synaptic properties of the feedback connections in the mouse thalamus between TRN and the dorsal lateral geniculate nucleus (dLGN), the principal relay of retinal signals to visual cortex. Using electron microscopy to identify TRN input to dLGN, we found that TRN terminals formed synapses with non-GABAergic postsynaptic profiles. Compared with other nonretinal terminals in dLGN, those from TRN were relatively large and tended to contact proximal regions of relay cell dendrites. To evoke TRN activity in dLGN, we adopted an optogenetic approach by expressing ChR2, or a variant (ChIEF) in TRN terminals. Both in vitro and in vivo recordings revealed that repetitive stimulation of TRN terminals led to a frequency-dependent inhibition of dLGN activity, with higher rates of stimulation resulting in increasing levels of membrane hyperpolarization and corresponding decreases in spike firing. This relationship suggests that alterations in TRN activity lead to graded changes in relay cell spike firing.NEW & NOTEWORTHY The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.
Collapse
Affiliation(s)
- Peter W. Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Sean P. Masterson
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Martha E. Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
54
|
Neuroligin 2 regulates absence seizures and behavioral arrests through GABAergic transmission within the thalamocortical circuitry. Nat Commun 2020; 11:3744. [PMID: 32719346 PMCID: PMC7385104 DOI: 10.1038/s41467-020-17560-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Epilepsy and autism spectrum disorders (ASD) are two distinct brain disorders but have a high rate of co-occurrence, suggesting shared pathogenic mechanisms. Neuroligins are cell adhesion molecules important in synaptic function and ASD, but their role in epilepsy remains unknown. In this study, we show that Neuroligin 2 (NLG2) knockout mice exhibit abnormal spike and wave discharges (SWDs) and behavioral arrests characteristic of absence seizures. The anti-absence seizure drug ethosuximide blocks SWDs and rescues behavioral arrests and social memory impairment in the knockout mice. Restoring GABAergic transmission either by optogenetic activation of the thalamic reticular nucleus (nRT) presynaptic terminals or postsynaptic NLG2 expression in the thalamic neurons reduces the SWDs and behavioral arrests in the knockout mice. These results indicate that NLG2-mediated GABAergic transmission at the nRT-thalamic circuit represents a common mechanism underlying both epileptic seizures and ASD. Neuroligins are postsynaptic cell adhesion molecules that are involved in synapse function and autism spectrum disorder. The authors show that NLG2-mediated GABAergic transmission at the thalamic reticular nucleus-thalamic circuit is a common mechanism underlying epileptic seizures and ASD.
Collapse
|
55
|
Martinez-Garcia RI, Voelcker B, Zaltsman JB, Patrick SL, Stevens TR, Connors BW, Cruikshank SJ. Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature 2020; 583:813-818. [PMID: 32699410 PMCID: PMC7394732 DOI: 10.1038/s41586-020-2512-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
Abstract
Most sensory information destined for the neocortex is relayed through the thalamus, where considerable transformation occurs1,2. One means of transformation involves interactions between excitatory thalamocortical neurons that carry data to the cortex and inhibitory neurons of the thalamic reticular nucleus (TRN) that regulate the flow of those data3-6. Although the importance of the TRN has long been recognised7-9, understanding of its cell types, their organization and their functional properties has lagged behind that of the thalamocortical systems they control. Here we address this by investigating the somatosensory and visual circuits of the TRN in mice. In the somatosensory TRN we observed two groups of genetically defined neurons that are topographically segregated and physiologically distinct, and that connect reciprocally with independent thalamocortical nuclei through dynamically divergent synapses. Calbindin-expressing cells-located in the central core-connect with the ventral posterior nucleus, the primary somatosensory thalamocortical relay. By contrast, somatostatin-expressing cells-which reside along the surrounding edges of the TRN-synapse with the posterior medial thalamic nucleus, a higher-order structure that carries both top-down and bottom-up information10-12. The two TRN cell groups process their inputs in pathway-specific ways. Synapses from the ventral posterior nucleus to central TRN cells transmit rapid excitatory currents that depress deeply during repetitive activity, driving phasic spike output. Synapses from the posterior medial thalamic nucleus to edge TRN cells evoke slower, less depressing excitatory currents that drive more persistent spiking. Differences in the intrinsic physiology of TRN cell types, including state-dependent bursting, contribute to these output dynamics. The processing specializations of these two somatosensory TRN subcircuits therefore appear to be tuned to the signals they carry-a primary central subcircuit tuned to discrete sensory events, and a higher-order edge subcircuit tuned to temporally distributed signals integrated from multiple sources. The structure and function of visual TRN subcircuits closely resemble those of the somatosensory TRN. These results provide insights into how subnetworks of TRN neurons may differentially process distinct classes of thalamic information.
Collapse
Affiliation(s)
- Rosa I Martinez-Garcia
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bettina Voelcker
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Center for Neural Science, New York University, New York, NY, USA
| | - Julia B Zaltsman
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Saundra L Patrick
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Tanya R Stevens
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Barry W Connors
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Scott J Cruikshank
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA. .,The UAB Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA. .,UAB Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
56
|
Kimura A. Cross-modal modulation of cell activity by sound in first-order visual thalamic nucleus. J Comp Neurol 2020; 528:1917-1941. [PMID: 31983057 DOI: 10.1002/cne.24865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
Cross-modal auditory influence on cell activity in the primary visual cortex emerging at short latencies raises the possibility that the first-order visual thalamic nucleus, which is considered dedicated to unimodal visual processing, could contribute to cross-modal sensory processing, as has been indicated in the auditory and somatosensory systems. To test this hypothesis, the effects of sound stimulation on visual cell activity in the dorsal lateral geniculate nucleus were examined in anesthetized rats, using juxta-cellular recording and labeling techniques. Visual responses evoked by light (white LED) were modulated by sound (noise burst) given simultaneously or 50-400 ms after the light, even though sound stimuli alone did not evoke cell activity. Alterations of visual response were observed in 71% of cells (57/80) with regard to response magnitude, latency, and/or burst spiking. Suppression predominated in response magnitude modulation, but de novo responses were also induced by combined stimulation. Sound affected not only onset responses but also late responses. Late responses were modulated by sound given before or after onset responses. Further, visual responses evoked by the second light stimulation of a double flash with a 150-700 ms interval were also modulated by sound given together with the first light stimulation. In morphological analysis of labeled cells projection cells comparable to X-, Y-, and W-like cells and interneurons were all susceptible to auditory influence. These findings suggest that the first-order visual thalamic nucleus incorporates auditory influence into parallel and complex thalamic visual processing for cross-modal modulation of visual attention and perception.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
57
|
Varela C, Wilson MA. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. eLife 2020; 9:48881. [PMID: 32525480 PMCID: PMC7319772 DOI: 10.7554/elife.48881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep oscillations in the neocortex and hippocampus are critical for the integration of new memories into stable generalized representations in neocortex. However, the role of the thalamus in this process is poorly understood. To determine the thalamic contribution to non-REM oscillations (sharp-wave ripples, SWRs; slow/delta; spindles), we recorded units and local field potentials (LFPs) simultaneously in the limbic thalamus, mPFC, and CA1 in rats. We report that the cycles of neocortical spindles provide a key temporal window that coordinates CA1 SWRs with sparse but consistent activation of thalamic units. Thalamic units were phase-locked to delta and spindles in mPFC, and fired at consistent lags with other thalamic units within spindles, while CA1 units that were active during spatial exploration were engaged in SWR-coupled spindles after behavior. The sparse thalamic firing could promote an incremental integration of recently acquired memory traces into neocortical schemas through the interleaved activation of thalamocortical cells.
Collapse
Affiliation(s)
- Carmen Varela
- Massachusetts Institute of Technology, Cambridge, United States.,Florida Atlantic University, Boca Raton, United States
| | | |
Collapse
|
58
|
TRPM4 Conductances in Thalamic Reticular Nucleus Neurons Generate Persistent Firing during Slow Oscillations. J Neurosci 2020; 40:4813-4823. [PMID: 32414784 DOI: 10.1523/jneurosci.0324-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
During sleep, neurons in the thalamic reticular nucleus (TRN) participate in distinct types of oscillatory activity. While the reciprocal synaptic circuits between TRN and sensory relay nuclei are known to underlie the generation of sleep spindles, the mechanisms regulating slow (<1 Hz) forms of thalamic oscillations are not well understood. Under in vitro conditions, TRN neurons can generate slow oscillations in a cell-intrinsic manner, with postsynaptic Group 1 metabotropic glutamate receptor activation triggering long-lasting plateau potentials thought to be mediated by both T-type Ca2+ currents and Ca2+-activated nonselective cation currents (ICAN). However, the identity of ICAN and the possible contribution of thalamic circuits to slow rhythmic activity remain unclear. Using thalamic slices derived from adult mice of either sex, we recorded slow forms of rhythmic activity in TRN neurons, which were driven by fast glutamatergic thalamoreticular inputs but did not require postsynaptic Group 1 metabotropic glutamate receptor activation. For a significant fraction of TRN neurons, synaptic inputs or brief depolarizing current steps led to long-lasting plateau potentials and persistent firing (PF), and in turn, resulted in sustained synaptic inhibition in postsynaptic relay neurons of the ventrobasal thalamus (VB). Pharmacological approachesindicated that plateau potentials were triggered by Ca2+ influx through T-type Ca2+ channels and mediated by Ca2+- and voltage-dependent transient receptor potential melastatin 4 (TRPM4) channels. Together, our results suggest that thalamic circuits can generate slow oscillatory activity, mediated by an interplay of TRN-VB synaptic circuits that generate rhythmicity and TRN cell-intrinsic mechanisms that control PF and oscillation frequency.SIGNIFICANCE STATEMENT Slow forms of thalamocortical rhythmic activity are thought to be essential for memory consolidation during sleep and the efficient removal of potentially toxic metabolites. In vivo, thalamic slow oscillations are regulated by strong bidirectional synaptic pathways linking neocortex and thalamus. Therefore, in vitro studies in the isolated thalamus offer important insights about the ability of individual neurons and local circuits to generate different forms of rhythmic activity. We found that circuits formed by GABAergic neurons in the thalamic reticular nucleus and glutamatergic relay neurons in the ventrobasal thalamus generated slow oscillatory activity, which was accompanied by persistent firing in thalamic reticular nucleus neurons. Our results identify both cell-intrinsic and synaptic mechanisms that mediate slow forms of rhythmic activity in thalamic circuits.
Collapse
|
59
|
Kissinger ST, Wu Q, Quinn CJ, Anderson AK, Pak A, Chubykin AA. Visual Experience-Dependent Oscillations and Underlying Circuit Connectivity Changes Are Impaired in Fmr1 KO Mice. Cell Rep 2020; 31:107486. [PMID: 32268079 PMCID: PMC7201849 DOI: 10.1016/j.celrep.2020.03.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 11/19/2022] Open
Abstract
Fragile X syndrome (FX), the most common inherited form of autism and intellectual disability, is a condition associated with visual perceptual learning deficits. We recently discovered that perceptual experience can encode visual familiarity via persistent low-frequency oscillations in the mouse primary visual cortex (V1). Here, we combine this paradigm with a multifaceted experimental approach to identify neurophysiological impairments of these oscillations in FX mice. Extracellular recordings reveal shorter durations, lower power, and lower frequencies of peak oscillatory activity in FX mice. Directed information analysis of extracellularly recorded spikes reveals differences in functional connectivity from multiple layers in FX mice after the perceptual experience. Channelrhodopsin-2 assisted circuit mapping (CRACM) reveals increased synaptic strength from L5 pyramidal onto L4 fast-spiking cells after experience in wild-type (WT), but not FX, mice. These results suggest differential encoding of visual stimulus familiarity in FX via persistent oscillations and identify circuit connections that may underlie these changes.
Collapse
Affiliation(s)
- Samuel T Kissinger
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Qiuyu Wu
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Quinn
- Department of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Adam K Anderson
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandr Pak
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
60
|
GABA B receptors: modulation of thalamocortical dynamics and synaptic plasticity. Neuroscience 2020; 456:131-142. [PMID: 32194227 DOI: 10.1016/j.neuroscience.2020.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/03/2023]
Abstract
GABAB-receptors (GABAB-Rs) are metabotropic, G protein-coupled receptors for the neurotransmitter GABA. Their activation induces slow inhibitory control of the neuronal excitability mediated by pre- and postsynaptic inhibition. Presynaptically GABAB-Rs reduce GABA and glutamate release inhibiting presynaptic Ca2+ channels in both inhibitory and excitatory synapses while postsynaptic GABAB-Rs induce robust slow hyperpolarization by the activation of K+ channels. GABAB-Rs are activated by non-synaptic or volume transmission, which requires high levels of GABA release, either by the simultaneous discharge of GABAergic interneurons or very intense discharges in the thalamus or by means of the activation of a neurogliaform interneurons in the cortex. The main receptor subunits GABAB1a, GABAB1b and GABAB2 are strongly expressed in neurons and glial cells throughout the central nervous system and GABAB-R activation is related to many neuronal processes such as the modulation of rhythmic activity in several brain regions. In the thalamus, GABAB-Rs modulate the generation of the main thalamic rhythm, spindle waves. In the cerebral cortex, GABAB-Rs also modulate the most prominent emergent oscillatory activity-slow oscillations-as well as faster oscillations like gamma frequency. Further, recent studies evaluating the complexity expressed by the cortical network, a parameter associated with consciousness levels, have found that GABAB-Rs enhance this complexity, while their blockade decreases it. This review summarizes the current results on how the activation of GABAB-Rs affects the interchange of information between brain areas by controlling rhythmicity as well as synaptic plasticity.
Collapse
|
61
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
62
|
Sritharan SY, Contreras-Hernández E, Richardson AG, Lucas TH. Primate somatosensory cortical neurons are entrained to both spontaneous and peripherally evoked spindle oscillations. J Neurophysiol 2019; 123:300-307. [PMID: 31800329 DOI: 10.1152/jn.00471.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrent thalamocortical circuits produce a number of rhythms critical to brain function. In slow-wave sleep, spindles (7-16 Hz) are a prominent spontaneous oscillation generated by thalamic circuits and triggered by cortical slow waves. In wakefulness and under anesthesia, brief peripheral sensory stimuli can evoke 10-Hz reverberations due potentially to similar thalamic mechanisms. Functionally, sleep spindles and peripherally evoked spindles may play a role in memory consolidation and perception, respectively. Yet, rarely have the circuits involved in these two rhythms been compared in the same animals and never in primates. Here, we investigated the entrainment of primary somatosensory cortex (S1) neurons to both rhythms in ketamine-sedated macaques. First, we compared spontaneous spindles in sedation and natural sleep to validate the model. Then, we quantified entrainment with spike-field coherence and phase-locking statistics. We found that S1 neurons entrained to spontaneous sleep spindles were also entrained to the evoked spindles, although entrainment strength and phase systematically differed. Our results indicate that the spindle oscillations triggered by top-down spontaneous cortical activity and bottom-up peripheral input share a common cortical substrate.NEW & NOTEWORTHY Brief sensory stimuli evoke 10-Hz oscillations in thalamocortical neuronal activity and in perceptual thresholds. The mechanisms underlying this evoked rhythm are not well understood but are thought to be similar to those generating sleep spindles. We directly compared the entrainment of cortical neurons to both spontaneous spindles and peripherally evoked oscillations in sedated monkeys. We found that the entrainment strengths to each rhythm were positively correlated, although with differing entrainment phases, implying involvement of similar networks.
Collapse
Affiliation(s)
- Srihari Y Sritharan
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enrique Contreras-Hernández
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew G Richardson
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy H Lucas
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
63
|
Lee J, Chang SY. Altered Primary Motor Cortex Neuronal Activity in a Rat Model of Harmaline-Induced Tremor During Thalamic Deep Brain Stimulation. Front Cell Neurosci 2019; 13:448. [PMID: 31680866 PMCID: PMC6803555 DOI: 10.3389/fncel.2019.00448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/19/2019] [Indexed: 01/30/2023] Open
Abstract
Although deep brain stimulation (DBS) is a clinically effective surgical treatment for essential tremor (ET), and its neurophysiological mechanisms are not fully understood. As the motor thalamus is the most popular DBS target for ET, and it is known that the thalamic nucleus plays a key role in relaying information about the external environment to the cerebral cortex, it is important to investigate mechanisms of thalamic DBS in the context of the cerebello-thalamo-cortical neuronal network. To examine this, we measured single-unit neuronal activities in the resting state in M1 during VL thalamic DBS in harmaline-induced tremor rats and analyzed neuronal activity patterns in the thalamo-cortical circuit. Four activity patterns - including oscillatory burst, oscillatory non-burst, irregular burst, and irregular non-burst - were identified by harmaline administration; and those firing patterns were differentially affected by VL thalamic DBS, which seems to drive pathologic cortical signals to signals in normal status. As specific neuronal firing patterns like oscillation or burst are considered important for information processing, our results suggest that VL thalamic DBS may modify pathophysiologic relay information rather than simply inhibit the information transmission.
Collapse
Affiliation(s)
- Jihyun Lee
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, College of Medicine, Hallym University, Anyang, South Korea
| | - Su-Youne Chang
- Department of Neurologic Surgery, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
64
|
A repeated molecular architecture across thalamic pathways. Nat Neurosci 2019; 22:1925-1935. [PMID: 31527803 PMCID: PMC6819258 DOI: 10.1038/s41593-019-0483-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
The thalamus is the central communication hub of the forebrain and provides the cerebral cortex with inputs from sensory organs, subcortical systems and the cortex itself. Multiple thalamic regions send convergent information to each cortical region, but the organizational logic of thalamic projections has remained elusive. Through comprehensive transcriptional analyses of retrogradely labeled thalamic neurons in adult mice, we identify three major profiles of thalamic pathways. These profiles exist along a continuum that is repeated across all major projection systems, such as those for vision, motor control and cognition. The largest component of gene expression variation in the mouse thalamus is topographically organized, with features conserved in humans. Transcriptional differences between these thalamic neuronal identities are tied to cellular features that are critical for function, such as axonal morphology and membrane properties. Molecular profiling therefore reveals covariation in the properties of thalamic pathways serving all major input modalities and output targets, thus establishing a molecular framework for understanding the thalamus.
Collapse
|
65
|
Marchionni I, Oberoi M, Soltesz I, Alexander A. Ripple-related firing of identified deep CA1 pyramidal cells in chronic temporal lobe epilepsy in mice. Epilepsia Open 2019; 4:254-263. [PMID: 31168492 PMCID: PMC6546014 DOI: 10.1002/epi4.12310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/02/2019] [Accepted: 01/19/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is often associated with memory deficits. Reactivation of memory traces in the hippocampus occurs during sharp-wave ripples (SWRs; 140-250 Hz). To better understand the mechanisms underlying high-frequency oscillations and cognitive comorbidities in epilepsy, we evaluated how rigorously identified deep CA1 pyramidal cells (dPCs) discharge during SWRs in control and TLE mice. METHODS We used the unilateral intraamygdala kainate model of TLE in video-electroencephalography (EEG) verified chronically epileptic adult mice. Local field potential and single-cell recordings were performed using juxtacellular recordings from awake control and TLE mice resting on a spherical treadmill, followed by post hoc identification of the recorded cells. RESULTS Hippocampal SWRs in TLE mice occurred with increased intraripple frequency compared to control mice. The frequency of SWR events was decreased, whereas the overall frequency of SWRs, interictal epileptiform discharges, and high-frequency ripples (250-500 Hz) together was not altered. CA1 dPCs in TLE mice showed significantly increased firing during ripples as well as between the ripple events. The strength of ripple modulation of dPC discharges increased in TLE without alteration of the preferred phase of firing during the ripple waves. SIGNIFICANCE These juxtacellular electrophysiology data obtained from identified CA1 dPCs from chronically epileptic mice are in general agreement with recent findings indicating distortion of normal firing patterns during offline SWRs as a mechanism underlying deficits in memory consolidation in epilepsy. Because the primary seizure focus in our experiments was in the amygdala and we recorded from the CA1 region, these results are also in agreement with the presence of altered high-frequency oscillations in areas of secondary seizure spread.
Collapse
Affiliation(s)
- Ivan Marchionni
- Department of Anatomy & NeurobiologyUniversity of CaliforniaIrvineCalifornia
- Department of Biomedical Sciences and Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| | - Michelle Oberoi
- Department of Anatomy & NeurobiologyUniversity of CaliforniaIrvineCalifornia
- University of CaliforniaRiverside School of MedicineRiversideCalifornia
| | - Ivan Soltesz
- Department of Anatomy & NeurobiologyUniversity of CaliforniaIrvineCalifornia
- Department of NeurosurgeryStanford UniversityStanfordCalifornia
| | - Allyson Alexander
- Department of NeurosurgeryAnschutz School of MedicineUniversity of Colorado DenverAuroraColorado
- Department of NeurosurgeryChildren's Hospital ColoradoAuroraColorado
| |
Collapse
|
66
|
Huguenard J. Current Controversy: Spikes, Bursts, and Synchrony in Generalized Absence Epilepsy: Unresolved Questions Regarding Thalamocortical Synchrony in Absence Epilepsy. Epilepsy Curr 2019; 19:105-111. [PMID: 30955423 PMCID: PMC6610415 DOI: 10.1177/1535759719835355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Absence epilepsy is a disorder of thalamocortical networks. Animal models have provided detailed information regarding the core cellular, synaptic, and network features that contribute to the electroencephalogram spike and wave discharge characteristic of typical absence epilepsy. Understanding of seizure networks and dynamics is a critical step toward improving treatments, yet competing conceptual models have evolved to explain seizure initiation and propagation. Recent studies have questioned 2 key model concepts: (1) T-type Ca2+ channel-dependent burst firing in thalamic relay neurons may not be essential for seizure generation, bringing into question the proposed mechanism for the antiepileptic drug ethosuximide in reducing thalamic bursting and (2) widespread synchronized neural activity may not be a core feature of the seizures, indicating that reductions in synchrony would not be a productive therapeutic goal. In this review, I will discuss these current findings, highlight the innovative approaches that have enabled these insights, and provide a unified framework that incorporates these sometimes-conflicting ideas. Finally, I lay out future work that will be necessary to finally resolve the remaining issues.
Collapse
Affiliation(s)
- John Huguenard
- 1 Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
67
|
Zobeiri M, van Luijtelaar G, Budde T, Sysoev IV. The Brain Network in a Model of Thalamocortical Dysrhythmia. Brain Connect 2019; 9:273-284. [PMID: 30520661 PMCID: PMC6479257 DOI: 10.1089/brain.2018.0621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensory information processing and higher cognitive functions rely on the interactions between thalamus and cortex. Many types of neurological and psychiatric disorders are accompanied or driven by alterations in the brain connectivity. In this study, putative changes in functional and effective corticocortical (CC), thalamocortical (TC), and corticothalamic (CT) connectivity during wakefulness and slow-wave sleep (SWS) in a model of thalamocortical dysrhythmia, TRIP8b-/- mice, and in control (wild-type or WT) mice are described. Coherence and nonlinear Granger causality (GC) were calculated for twenty 10 s length epochs of SWS and active wakefulness (AW) of each animal. Coherence was reduced between 4 and ca 20 Hz in the cortex and between cortex and thalamus during SWS compared with AW in WT but not in TRIP8b-/- mice. Moreover, TRIP8b-/- mice showed lower CT coherence during AW compared with WT mice; these differences were no longer present during SWS. Unconditional GC analysis also showed sleep-related reductions in TC and CT couplings in WT mice, while TRIP8b-/- mice showed diminished wake and enhanced sleep CC coupling and rather strong CT-directed coupling during wake and sleep, although smaller during sleep. Conditional GC coupling analysis confirmed the diminished CC and enhanced CT coupling in TRIP8b-/- mice. Our findings indicate that altered properties of hyperpolarization-activated cyclic nucleotide-gated cation channels, characterizing TRIP8b-/- mice, have clear effects on CC, TC, and CT networks. A more complete understanding of the function of the altered communication within these networks awaits detailed phenotyping of TRIP8b-/- mice aimed at specifics of sensory and attentional processes.
Collapse
Affiliation(s)
- Mehrnoush Zobeiri
- 1 Institute of Physiology I (Neurophysiology), Wesfälische Wilhelms University, Münster, Germany
| | | | - Thomas Budde
- 1 Institute of Physiology I (Neurophysiology), Wesfälische Wilhelms University, Münster, Germany
| | - Ilya V Sysoev
- 3 Saratov State University, Saratov, Russia.,4 Saratov Branch of Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| |
Collapse
|
68
|
Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C, Deisseroth K, Uygun DS, Strecker RE, Brown RE, McNally JM, Basheer R. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 2019; 9:3607. [PMID: 30837664 PMCID: PMC6401113 DOI: 10.1038/s41598-019-40398-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
The thalamic reticular nucleus (TRN) is implicated in schizophrenia pathology. However, it remains unclear whether alterations of TRN activity can account for abnormal electroencephalographic activity observed in patients, namely reduced spindles (10-15 Hz) during sleep and increased delta (0.5-4 Hz) and gamma-band activity (30-80 Hz) during wakefulness. Here, we utilized optogenetic and reverse-microdialysis approaches to modulate activity of the major subpopulation of TRN GABAergic neurons, which express the calcium-binding protein parvalbumin (PV), and are implicated in schizophrenia dysfunction. An automated algorithm with enhanced efficiency and reproducibility compared to manual detection was used for sleep spindle assessment. A novel, low power, waxing-and-waning optogenetic stimulation paradigm preferentially induced spindles that were indistinguishable from spontaneously occurring sleep spindles without altering the behavioral state, when compared to a single pulse laser stimulation used by us and others. Direct optogenetic inhibition of TRN-PV neurons was ineffective in blocking spindles but increased both wakefulness and cortical delta/gamma activity, as well as impaired the 40 Hz auditory steady-state response. For the first time we demonstrate that spindle density is markedly reduced by (i) optogenetic stimulation of a major GABA/PV inhibitory input to TRN arising from basal forebrain parvalbumin neurons (BF-PV) and; (ii) localized pharmacological inhibition of low-threshold calcium channels, implicated as a genetic risk factor for schizophrenia. Together with clinical findings, our results support impaired TRN-PV neuron activity as a potential cause of schizophrenia-linked abnormalities in cortical delta, gamma, and spindle activity. Modulation of the BF-PV input to TRN may improve these neural abnormalities.
Collapse
Affiliation(s)
- Stephen Thankachan
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - James T McKenna
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Chun Yang
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Charu Shukla
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Karl Deisseroth
- Stanford University, Psychiatry and Behavioral Sciences/Bioengineering, Stanford, CA, USA
| | - David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Robert E Strecker
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - James M McNally
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA.
| |
Collapse
|
69
|
Murata Y, Colonnese MT. Thalamic inhibitory circuits and network activity development. Brain Res 2019; 1706:13-23. [PMID: 30366019 PMCID: PMC6363901 DOI: 10.1016/j.brainres.2018.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Inhibitory circuits in thalamus and cortex shape the major activity patterns observed by electroencephalogram (EEG) in the adult brain. Their delayed maturation and circuit integration, relative to excitatory neurons, suggest inhibitory neuronal development could be responsible for the onset of mature thalamocortical activity. Indeed, the immature brain lacks many inhibition-dependent activity patterns, such as slow-waves, delta oscillations and sleep-spindles, and instead expresses other unique oscillatory activities in multiple species including humans. Thalamus contributes significantly to the generation of these early oscillations. Compared to the abundance of studies on the development of inhibition in cortex, however, the maturation of thalamic inhibition is poorly understood. Here we review developmental changes in the neuronal and circuit properties of the thalamic relay and its interconnected inhibitory thalamic reticular nucleus (TRN) both in vitro and in vivo, and discuss their potential contribution to early network activity and its maturation. While much is unknown, we argue that weak inhibitory function in the developing thalamus allows for amplification of thalamocortical activity that supports the generation of early oscillations. The available evidence suggests that the developmental acquisition of critical thalamic oscillations such as slow-waves and sleep-spindles is driven by maturation of the TRN. Further studies to elucidate thalamic GABAergic circuit formation in relation to thalamocortical network function would help us better understand normal as well as pathological brain development.
Collapse
Affiliation(s)
- Yasunobu Murata
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| |
Collapse
|
70
|
Lüttjohann A, Pape HC. Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges. Sci Rep 2019; 9:2100. [PMID: 30765744 PMCID: PMC6375974 DOI: 10.1038/s41598-018-37985-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022] Open
Abstract
Spike-wave discharges (SWDs) on the EEG during absence epilepsy are waxing and waning stages of corticothalamic hypersynchrony. While the somatosensory cortex contains an epileptic focus, the role of thalamic nuclei in SWD generation is debated. Here we assess the contribution of distinct thalamic nuclei through multiple-site unit recordings in a genetic rat model of absence epilepsy and cross-correlation analysis, revealing coupling strength and directionality of neuronal activity at high temporal resolution. Corticothalamic coupling increased and decreased during waxing and waning of SWD, respectively. A cortical drive on either sensory or higher order thalamic nuclei distinguished between onset and offset of SWD, respectively. Intrathalamic coupling steadily increased during maintained SWD activity, peaked at SWD offset, and subsequently displayed a sharp decline to baseline. The peak in intrathalamic coupling coincided with a sharp increase in coupling strength between reticular thalamic nucleus and somatosensory cortex. This increased influence of the inhibitory reticular thalamic nucleus is suggested to serve as a break for SWD activity. Overall, the data extend the cortical focus theory of absence epilepsy by identifying a regionally specific cortical lead over distinct thalamic nuclei, particularly also during waning of generalized epileptic discharges, thereby revealing a potential window and location for intervention.
Collapse
Affiliation(s)
- Annika Lüttjohann
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
71
|
Salvati KA, Beenhakker MP. Out of thin air: Hyperventilation-triggered seizures. Brain Res 2019; 1703:41-52. [PMID: 29288644 PMCID: PMC6546426 DOI: 10.1016/j.brainres.2017.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Voluntary hyperventilation triggers seizures in the vast majority of people with absence epilepsy. The mechanisms that underlie this phenomenon remain unknown. Herein, we review observations - many made long ago - that provide insight into the relationship between breathing and absence seizures.
Collapse
Affiliation(s)
- Kathryn A Salvati
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, United States
| | - Mark P Beenhakker
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, United States.
| |
Collapse
|
72
|
Fernandez LM, Vantomme G, Osorio-Forero A, Cardis R, Béard E, Lüthi A. Thalamic reticular control of local sleep in mouse sensory cortex. eLife 2018; 7:39111. [PMID: 30583750 PMCID: PMC6342525 DOI: 10.7554/elife.39111] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Sleep affects brain activity globally, but many cortical sleep waves are spatially confined. Local rhythms serve cortical area-specific sleep needs and functions; however, mechanisms controlling locality are unclear. We identify the thalamic reticular nucleus (TRN) as a source for local, sensory-cortex-specific non-rapid-eye-movement sleep (NREMS) in mouse. Neurons in optogenetically identified sensory TRN sectors showed stronger repetitive burst discharge compared to non-sensory TRN cells due to higher activity of the low-threshold Ca2+ channel CaV3.3. Major NREMS rhythms in sensory but not non-sensory cortical areas were regulated in a CaV3.3-dependent manner. In particular, NREMS in somatosensory cortex was enriched in fast spindles, but switched to delta wave-dominated sleep when CaV3.3 channels were genetically eliminated or somatosensory TRN cells chemogenetically hyperpolarized. Our data indicate a previously unrecognized heterogeneity in a powerful forebrain oscillator that contributes to sensory-cortex-specific and dually regulated NREMS, enabling local sleep regulation according to use- and experience-dependence. Falling asleep affects our behavior immediately and profoundly. During sleep, large electrical waves appear across the brain in areas responsible for consciousness, sensation and movement. In the cortex – the outer layer of the brain – sleep waves arise from networks that connect to the thalamus, a deeper structure within the brain. However, not all areas of the brain sleep equally. We know this intuitively because sensory stimuli, such as an alarm clock or a baby’s cry, can still wake us up. By contrast, we typically do not move much or take major decisions while we sleep. Therefore, the brain areas involved in sensation should not be expected to sleep in the same way as areas involved in movement or reasoning. Neighboring brain areas generally show very different sleep waves. The brain regions that we use during the day can also affect how sleep varies from one area to the next. It is not well understood what determines these ‘local’ sleep properties. By studying the brains of mice, Fernandez et al. now show that the networks between the cortex and thalamus are much more varied than previously thought, in particular regarding a thalamic nucleus that is relevant for sleep wave generation. These previously unrecognized differences deep within the brain are part of the origin of local sleep in the outer layer of the brain. Sleep wave activity differed depending on whether the networks were involved in sensory or non-sensory roles. The networks allow sensory areas to switch efficiently between different forms of local sleep. This might underlie how the brain’s sensory activity during the day can influence local sleep at night. There is growing evidence that major sleep disorders are due to disturbances to local sleep. Techniques to modify or restore specific sleep waves locally in the brain could help to develop new sleep therapies. For example, having a detailed map of electrical waves within the sleep-disordered brain could help researchers to apply transcranial stimulation techniques in ways that might help to treat these debilitating disorders.
Collapse
Affiliation(s)
- Laura Mj Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Elidie Béard
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
73
|
Gonzalez CE, Mak-McCully RA, Rosen BQ, Cash SS, Chauvel PY, Bastuji H, Rey M, Halgren E. Theta Bursts Precede, and Spindles Follow, Cortical and Thalamic Downstates in Human NREM Sleep. J Neurosci 2018; 38:9989-10001. [PMID: 30242045 PMCID: PMC6234298 DOI: 10.1523/jneurosci.0476-18.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/03/2023] Open
Abstract
Since their discovery, slow oscillations have been observed to group spindles during non-REM sleep. Previous studies assert that the slow-oscillation downstate (DS) is preceded by slow spindles (10-12 Hz) and followed by fast spindles (12-16 Hz). Here, using both direct transcortical recordings in patients with intractable epilepsy (n = 10, 8 female), as well as scalp EEG recordings from a healthy cohort (n = 3, 1 female), we find in multiple cortical areas that both slow and fast spindles follow the DS. Although discrete oscillations do precede DSs, they are theta bursts (TBs) centered at 5-8 Hz. TBs were more pronounced for DSs in NREM stage 2 (N2) sleep compared with N3. TB with similar properties occur in the thalamus, but unlike spindles they have no clear temporal relationship with cortical TB. These differences in corticothalamic dynamics, as well as differences between spindles and theta in coupling high-frequency content, are consistent with NREM theta having separate generative mechanisms from spindles. The final inhibitory cycle of the TB coincides with the DS peak, suggesting that in N2, TB may help trigger the DS. Since the transition to N1 is marked by the appearance of theta, and the transition to N2 by the appearance of DS and thus spindles, a role of TB in triggering DS could help explain the sequence of electrophysiological events characterizing sleep. Finally, the coordinated appearance of spindles and DSs are implicated in memory consolidation processes, and the current findings redefine their temporal coupling with theta during NREM sleep.SIGNIFICANCE STATEMENT Sleep is characterized by large slow waves which modulate brain activity. Prominent among these are downstates (DSs), periods of a few tenths of a second when most cells stop firing, and spindles, oscillations at ∼12 times a second lasting for ∼a second. In this study, we provide the first detailed description of another kind of sleep wave: theta bursts (TBs), a brief oscillation at ∼six cycles per second. We show, recording during natural sleep directly from the human cortex and thalamus, as well as on the scalp, that TBs precede, and spindles follow DSs. TBs may help trigger DSs in some circumstances, and could organize cortical and thalamic activity so that memories can be consolidated during sleep.
Collapse
Affiliation(s)
- Christopher E Gonzalez
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093,
| | | | - Burke Q Rosen
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02114
| | | | - Hélène Bastuji
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, Université Claude Bernard, Lyon, Bron, France, and
| | - Marc Rey
- Aix-Marseille Université, Marseille 13385, France
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, San Diego, California 92093
| |
Collapse
|
74
|
Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D, Xia J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, Hu Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 2018; 362:429-434. [PMID: 30361367 DOI: 10.1126/science.aat2512] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical observations indicate that the paramedian region of the thalamus is a critical node for controlling wakefulness. However, the specific nucleus and neural circuitry for this function remain unknown. Using in vivo fiber photometry or multichannel electrophysiological recordings in mice, we found that glutamatergic neurons of the paraventricular thalamus (PVT) exhibited high activities during wakefulness. Suppression of PVT neuronal activity caused a reduction in wakefulness, whereas activation of PVT neurons induced a transition from sleep to wakefulness and an acceleration of emergence from general anesthesia. Moreover, our findings indicate that the PVT–nucleus accumbens projections and hypocretin neurons in the lateral hypothalamus to PVT glutamatergic neurons’ projections are the effector pathways for wakefulness control. These results demonstrate that the PVT is a key wakefulness-controlling nucleus in the thalamus.
Collapse
Affiliation(s)
- Shuancheng Ren
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Faguo Yue
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaofang Cheng
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Ruozhi Dang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Qicheng Qiao
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xueqi Sun
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xin Li
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Qian Jiang
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jiwei Yao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Han Qin
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Guanzhong Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Dong Gao
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jianxia Xia
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Jun Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Junan Yan
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Yanjiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangdong Tang
- Sleep Medicine Center, Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing 400038, China.
| | - Chao He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China.
| | - Zhian Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
75
|
Crabtree JW. Functional Diversity of Thalamic Reticular Subnetworks. Front Syst Neurosci 2018; 12:41. [PMID: 30405364 PMCID: PMC6200870 DOI: 10.3389/fnsys.2018.00041] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
The activity of the GABAergic neurons of the thalamic reticular nucleus (TRN) has long been known to play important roles in modulating the flow of information through the thalamus and in generating changes in thalamic activity during transitions from wakefulness to sleep. Recently, technological advances have considerably expanded our understanding of the functional organization of TRN. These have identified an impressive array of functionally distinct subnetworks in TRN that participate in sensory, motor, and/or cognitive processes through their different functional connections with thalamic projection neurons. Accordingly, "first order" projection neurons receive "driver" inputs from subcortical sources and are usually connected to a densely distributed TRN subnetwork composed of multiple elongated neural clusters that are topographically organized and incorporate spatially corresponding electrically connected neurons-first order projection neurons are also connected to TRN subnetworks exhibiting different state-dependent activity profiles. "Higher order" projection neurons receive driver inputs from cortical layer 5 and are mainly connected to a densely distributed TRN subnetwork composed of multiple broad neural clusters that are non-topographically organized and incorporate spatially corresponding electrically connected neurons. And projection neurons receiving "driver-like" inputs from the superior colliculus or basal ganglia are connected to TRN subnetworks composed of either elongated or broad neural clusters. Furthermore, TRN subnetworks that mediate interactions among neurons within groups of thalamic nuclei are connected to all three types of thalamic projection neurons. In addition, several TRN subnetworks mediate various bottom-up, top-down, and internuclear attentional processes: some bottom-up and top-down attentional mechanisms are specifically related to first order projection neurons whereas internuclear attentional mechanisms engage all three types of projection neurons. The TRN subnetworks formed by elongated and broad neural clusters may act as templates to guide the operations of the TRN subnetworks related to attentional processes. In this review article, the evidence revealing the functional TRN subnetworks will be evaluated and will be discussed in relation to the functions of the various sensory and motor thalamic nuclei with which these subnetworks are connected.
Collapse
Affiliation(s)
- John W Crabtree
- School of Physiology, Pharmacology, and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
76
|
Amadeo A, Coatti A, Aracri P, Ascagni M, Iannantuoni D, Modena D, Carraresi L, Brusco S, Meneghini S, Arcangeli A, Pasini ME, Becchetti A. Postnatal Changes in K +/Cl - Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy. Neuroscience 2018; 386:91-107. [PMID: 29949744 DOI: 10.1016/j.neuroscience.2018.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
The Na+/K+/Cl- cotransporter-1 (NKCC1) and the K+/Cl- cotransporter-2 (KCC2) set the transmembrane Cl- gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters' expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits.
Collapse
Affiliation(s)
- Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Aurora Coatti
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Miriam Ascagni
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Davide Iannantuoni
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Debora Modena
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Laura Carraresi
- Dival Toscana Srl, Via Madonna del Piano, 6 - 50019 Sesto Fiorentino, Firenze, Italy.
| | - Simone Brusco
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Firenze, Italy.
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| |
Collapse
|
77
|
Sokhadze G, Campbell PW, Guido W. Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse. Eur J Neurosci 2018; 49:978-989. [PMID: 29761601 DOI: 10.1111/ejn.13942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 01/10/2023]
Abstract
The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep-wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin-2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral-to-dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3-4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long-lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Peter W Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
78
|
Guido W. Development, form, and function of the mouse visual thalamus. J Neurophysiol 2018; 120:211-225. [PMID: 29641300 PMCID: PMC6093956 DOI: 10.1152/jn.00651.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the exclusive relay of retinal information en route to the visual cortex. Although much of our understanding about dLGN comes from studies done in higher mammals, such as the cat and primate, the mouse as a model organism has moved to the forefront as a tractable experimental platform to examine cell type-specific relations. This review highlights our current knowledge about the development, structure, and function of the mouse dLGN.
Collapse
Affiliation(s)
- William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
79
|
Gupta DS, Teixeira S. The Time-Budget Perspective of the Role of Time Dimension in Modular Network Dynamics during Functions of the Brain. Primates 2018. [DOI: 10.5772/intechopen.70588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
80
|
Pham T, Haas JS. Electrical synapses between inhibitory neurons shape the responses of principal neurons to transient inputs in the thalamus: a modeling study. Sci Rep 2018; 8:7763. [PMID: 29773817 PMCID: PMC5958104 DOI: 10.1038/s41598-018-25956-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/02/2018] [Indexed: 11/09/2022] Open
Abstract
As multimodal sensory information proceeds to the cortex, it is intercepted and processed by the nuclei of the thalamus. The main source of inhibition within thalamus is the reticular nucleus (TRN), which collects signals both from thalamocortical relay neurons and from thalamocortical feedback. Within the reticular nucleus, neurons are densely interconnected by connexin36-based gap junctions, known as electrical synapses. Electrical synapses have been shown to coordinate neuronal rhythms, including thalamocortical spindle rhythms, but their role in shaping or modulating transient activity is less understood. We constructed a four-cell model of thalamic relay and TRN neurons, and used it to investigate the impact of electrical synapses on closely timed inputs delivered to thalamic relay cells. We show that the electrical synapses of the TRN assist cortical discrimination of these inputs through effects of truncation, delay or inhibition of thalamic spike trains. We expect that these are principles whereby electrical synapses play similar roles in regulating the processing of transient activity in excitatory neurons across the brain.
Collapse
Affiliation(s)
- Tuan Pham
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
81
|
|
82
|
Brennan KC, Pietrobon D. A Systems Neuroscience Approach to Migraine. Neuron 2018; 97:1004-1021. [PMID: 29518355 PMCID: PMC6402597 DOI: 10.1016/j.neuron.2018.01.029] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Migraine is an extremely common but poorly understood nervous system disorder. We conceptualize migraine as a disorder of sensory network gain and plasticity, and we propose that this framing makes it amenable to the tools of current systems neuroscience.
Collapse
Affiliation(s)
- K C Brennan
- Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
83
|
Bús B, Antal K, Emri Z. Intrathalamic connections shape spindle activity - a modelling study. ACTA BIOLOGICA HUNGARICA 2018; 69:16-28. [PMID: 29575912 DOI: 10.1556/018.68.2018.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spindle oscillations are generated predominantly during sleep state II, through cyclical interactions between thalamocortical and reticular neurons. Inhibition from reticular cells is critical for this activity; it enables burst firing by the de-inactivation of T-type Ca2+ channels. While the effect of different channelopathies on spindling is extensively investigated, our knowledge about the role of intrathalamic connections is limited. Therefore, we explored how the connection pattern and the density of reticular inhibitory synapses affect spindle activity in a thalamic network model. With more intrareticular connections, synchronous firing of reticular cells, and intraspindle burst frequency decreased, spindles lengthened. In models with strong intrareticular inhibition spindle activity was impaired, and a sustained 6-8 Hz oscillation was generated instead. The strength of reticular innervation onto thalamocortical cells played a key role in the generation of oscillations; it determined the amount of thalamocortical cell bursts, and consequently spindle length. Focal inputs supported bursts but affected only a few cells thus barely reinforced network activity, while diffuse contacts aided bursts only when a sufficient number of reticular cells fired synchronously. According to our study, alterations in the connection pattern influence thalamic activities and may contribute to pathological conditions, or alternatively, they serve as a compensatory mechanism.
Collapse
Affiliation(s)
- Bálint Bús
- Department of Zoology, Eszterházy Károly University, Leányka u. 6, H-3300 Eger, Hungary
| | - Károly Antal
- Department of Zoology, Eszterházy Károly University, Leányka u. 6, H-3300 Eger, Hungary
| | - Zsuzsa Emri
- Department of Zoology, Eszterházy Károly University, Leányka u. 6, H-3300 Eger, Hungary
| |
Collapse
|
84
|
Interaction between hippocampal-prefrontal plasticity and thalamic-prefrontal activity. Sci Rep 2018; 8:1382. [PMID: 29358657 PMCID: PMC5778003 DOI: 10.1038/s41598-018-19540-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 11/08/2022] Open
Abstract
The prefrontal cortex integrates a variety of cognition-related inputs, either unidirectional, e.g., from the hippocampal formation, or bidirectional, e.g., with the limbic thalamus. While the former is usually implicated in synaptic plasticity, the latter is better known for regulating ongoing activity. Interactions between these processes via prefrontal neurons are possibly important for linking mnemonic and executive functions. Our work further elucidates such dynamics using in vivo electrophysiology in rats. First, we report that electrical pulses into CA1/subiculum trigger late-onset (>400 ms) firing responses in the medial prefrontal cortex, which are increased after induction of long-term potentiation. Then, we show these responses to be attenuated by optogenetic control of the paraventricular/mediodorsal thalamic area. This suggests that recruitment and plasticity of the hippocampal-prefrontal pathway is partially related to the thalamic-prefrontal loop. When dysfunctional, this interaction may contribute to cognitive deficits, psychotic symptoms, and seizure generalization, which should motivate future studies combining behavioural paradigms and long-range circuit assessment.
Collapse
|
85
|
Müller F, Lenz C, Dolder P, Lang U, Schmidt A, Liechti M, Borgwardt S. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr Scand 2017; 136:648-657. [PMID: 28940312 PMCID: PMC5698745 DOI: 10.1111/acps.12818] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. METHOD 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. RESULTS LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. CONCLUSION Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT2A -receptor in altered states of consciousness.
Collapse
Affiliation(s)
- F. Müller
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - C. Lenz
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - P. Dolder
- Division of Clinical Pharmacology and ToxicologyDepartment of Biomedicine and Department of Clinical ResearchUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - U. Lang
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - A. Schmidt
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - M. Liechti
- Division of Clinical Pharmacology and ToxicologyDepartment of Biomedicine and Department of Clinical ResearchUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - S. Borgwardt
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| |
Collapse
|
86
|
Li G, Henriquez CS, Fröhlich F. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation. PLoS Comput Biol 2017; 13:e1005797. [PMID: 29073146 PMCID: PMC5675460 DOI: 10.1371/journal.pcbi.1005797] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/07/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022] Open
Abstract
The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh) and norepinephrine (NE) and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations) that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed. Computational modeling has served as an important tool to understand the cellular and circuit mechanisms of thalamocortical oscillations. However, most of the existing thalamic models focus on only one particular oscillatory pattern such as alpha or spindle oscillations. Thus, it remains unclear whether the same thalamic circuitry on its own could generate all major oscillatory patterns and if so what mechanisms underlie the transition among these distinct states. Here we present a unified model of the thalamus that is capable of independently generating multiple distinct oscillations corresponding to different physiological conditions. We then mapped out the different thalamic oscillations by varying the ACh/NE modulatory level and input level systematically. Our simulation results offer a mechanistic understanding of thalamic oscillations and support the long standing notion of a thalamic “pacemaker”. It also suggests that pathological oscillations associated with neurological and psychiatric disorders may stem from malfunction of the thalamic circuitry.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Craig S. Henriquez
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
87
|
Corticothalamic network dysfunction and Alzheimer's disease. Brain Res 2017; 1702:38-45. [PMID: 28919464 DOI: 10.1016/j.brainres.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that is characterized by progressive cognitive decline and a prominent loss of hippocampal-dependent memory. Therefore, much focus has been placed on understanding the function and dysfunction of the hippocampus in AD. However, AD is also accompanied by a number of other debilitating cognitive and behavioral alterations including deficits in attention, cognitive processing, and sleep maintenance. The underlying mechanisms that give rise to impairments in such diverse behavioral domains are unknown, and identifying them would shed insight into the multifactorial nature of AD as well as reveal potential new therapeutic targets to improve overall function in AD. We present here several lines of evidence that suggest that dysregulation of the corticothalamic network may be a common denominator that contributes to the diverse cognitive and behavioral alterations in AD. First, we will review the mechanisms by which this network regulates processes that include attention, cognitive processing, learning and memory, and sleep maintenance. Then we will review how these behavioral and cognitive domains are altered in AD. We will also discuss how dysregulation of tightly regulated activity in the corticothalamic network can give rise to non-convulsive seizures and other forms of epileptiform activity that have also been documented in both AD patients and transgenic mouse models of AD. In summary, the corticothalamic network has the potential to be a master regulator of diverse cognitive and behavioral domains that are affected in AD.
Collapse
|
88
|
Fattorini G, Ciriachi C, Conti F. Few, Activity-Dependent, and Ubiquitous VGLUT1/VGAT Terminals in Rat and Mouse Brain. Front Cell Neurosci 2017; 11:229. [PMID: 28848395 PMCID: PMC5550726 DOI: 10.3389/fncel.2017.00229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
In the neocortex of adult rats VGLUT1 and VGAT co-localize in axon terminals which form both symmetric and asymmetric synapses. They are expressed in the same synaptic vesicles which participate in the exo-endocytotic cycle. Virtually nothing, however, is known on whether VGLUT1/VGAT co-localization occurs in other brain regions. We therefore mapped the distribution of terminals co-expressing VGLUT1/VGAT in the striatum, hippocampus, thalamus, and cerebellar and cerebral cortices of rats and mice. Confocal microscopy analysis revealed that, in both rat and mouse brain, VGLUT1/VGAT+ terminals were present in all brain regions studied, and that their percentage was low and comparable in both species. These results provide the first demonstration that co-expression of VGLUT1 and VGAT is a widespread phenomenon. Since VGLUT1/VGAT+ axon terminals are regulated in an activity-dependent manner and co-release glutamate and GABA, we hypothesize that, though not numerous, they can contribute to regulating excitation/inhibition balance in physiological conditions, thereby playing a role in several neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy.,Center for Neurobiology of Aging, Istituto Nazionale di Riposo e Cura per Anziani - Istituto di Ricovero e Cura a Carattere ScientificoAncona, Italy
| | - Chiara Ciriachi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle MarcheAncona, Italy.,Center for Neurobiology of Aging, Istituto Nazionale di Riposo e Cura per Anziani - Istituto di Ricovero e Cura a Carattere ScientificoAncona, Italy.,Fondazione di Medicina Molecolare, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
89
|
Chiosa V, Groppa SA, Ciolac D, Koirala N, Mişina L, Winter Y, Moldovanu M, Muthuraman M, Groppa S. Breakdown of Thalamo-Cortical Connectivity Precedes Spike Generation in Focal Epilepsies. Brain Connect 2017; 7:309-320. [DOI: 10.1089/brain.2017.0487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vitalie Chiosa
- Department of Neurology, Neuroimaging and Neurostimulation, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Neurology and Neurosurgery, National Center of Epileptology, Institute of Emergency Medicine, Chisinau, Moldova
- Laboratory of Neurobiology and Medical Genetics, State University of Medicine and Pharmacy “Nicolae Testemiţanu,” Chisinau, Moldova
| | - Stanislav A. Groppa
- Department of Neurology and Neurosurgery, National Center of Epileptology, Institute of Emergency Medicine, Chisinau, Moldova
- Laboratory of Neurobiology and Medical Genetics, State University of Medicine and Pharmacy “Nicolae Testemiţanu,” Chisinau, Moldova
| | - Dumitru Ciolac
- Department of Neurology, Neuroimaging and Neurostimulation, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Neurology and Neurosurgery, National Center of Epileptology, Institute of Emergency Medicine, Chisinau, Moldova
- Laboratory of Neurobiology and Medical Genetics, State University of Medicine and Pharmacy “Nicolae Testemiţanu,” Chisinau, Moldova
| | - Nabin Koirala
- Department of Neurology, Neuroimaging and Neurostimulation, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Liudmila Mişina
- Department of Neurology and Neurosurgery, National Center of Epileptology, Institute of Emergency Medicine, Chisinau, Moldova
- Laboratory of Neurobiology and Medical Genetics, State University of Medicine and Pharmacy “Nicolae Testemiţanu,” Chisinau, Moldova
| | - Yaroslav Winter
- Department of Neurology, Neuroimaging and Neurostimulation, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Muthuraman Muthuraman
- Department of Neurology, Neuroimaging and Neurostimulation, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Neuroimaging and Neurostimulation, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
90
|
Zucca S, D'Urso G, Pasquale V, Vecchia D, Pica G, Bovetti S, Moretti C, Varani S, Molano-Mazón M, Chiappalone M, Panzeri S, Fellin T. An inhibitory gate for state transition in cortex. eLife 2017; 6. [PMID: 28509666 PMCID: PMC5444901 DOI: 10.7554/elife.26177] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023] Open
Abstract
Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI:http://dx.doi.org/10.7554/eLife.26177.001
Collapse
Affiliation(s)
- Stefano Zucca
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Giulia D'Urso
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Valentina Pasquale
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Giuseppe Pica
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Stefano Varani
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Manuel Molano-Mazón
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Michela Chiappalone
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Panzeri
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| |
Collapse
|