51
|
Barker JM, Taylor JR. Habitual alcohol seeking: modeling the transition from casual drinking to addiction. Neurosci Biobehav Rev 2014; 47:281-94. [PMID: 25193245 PMCID: PMC4258136 DOI: 10.1016/j.neubiorev.2014.08.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/17/2014] [Accepted: 08/25/2014] [Indexed: 12/29/2022]
Abstract
The transition from goal-directed actions to habitual ethanol seeking models the development of addictive behavior that characterizes alcohol use disorders. The progression to habitual ethanol-seeking behavior occurs more rapidly than for natural rewards, suggesting that ethanol may act on habit circuit to drive the loss of behavioral flexibility. This review will highlight recent research that has focused on the formation and expression of habitual ethanol seeking, and the commonalities and distinctions between ethanol and natural reward-seeking habits, with the goal of highlighting important, understudied research areas that we believe will lead toward the development of novel treatment and prevention strategies for uncontrolled drinking.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Psychiatry, Yale University School of Medicine, Ribicoff Labs, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Jane R Taylor
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
52
|
Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014; 171:4636-72. [PMID: 24749941 PMCID: PMC4209936 DOI: 10.1111/bph.12735] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Environmental stimuli are powerful mediators of craving and relapse in substance-abuse disorders. This review examined how animal models have been used to investigate the cognitive mechanisms through which cues are able to affect drug-seeking behaviour. We address how animal models can describe the way drug-associated cues come to facilitate the development and persistence of drug taking, as well as how these cues are critical to the tendency to relapse that characterizes substance-abuse disorders. Drug-associated cues acquire properties of conditioned reinforcement, incentive motivation and discriminative control, which allow them to influence drug-seeking behaviour. Using these models, researchers have been able to investigate the pharmacology subserving the behavioural impact of environmental stimuli, some of which we highlight. Subsequently, we examine whether the impact of drug-associated stimuli can be attenuated via a process of extinction, and how this question is addressed in the laboratory. We discuss how preclinical research has been translated into behavioural therapies targeting substance abuse, as well as highlight potential developments to therapies that might produce more enduring changes in behaviour.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Isabel Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| |
Collapse
|
53
|
Bates BS, Rodriguez AL, Felts AS, Morrison RD, Venable DF, Blobaum AL, Byers FW, Lawson KP, Daniels JS, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of VU0431316: a negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 2014; 24:3307-14. [PMID: 24969015 DOI: 10.1016/j.bmcl.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of pyrazine analog VU0431316 is described in this Letter. VU0431316 is a potent and selective non-competitive antagonist of mGlu5 that binds at a known allosteric binding site. VU0431316 demonstrates an attractive DMPK profile, including moderate clearance and good bioavailability in rats. Intraperitoneal (IP) dosing of VU0431316 in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists and other anxiolytics, produced dose proportional effects.
Collapse
Affiliation(s)
- Brittney S Bates
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kera P Lawson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
54
|
Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci 2014; 34:5649-57. [PMID: 24741055 DOI: 10.1523/jneurosci.4564-13.2014] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration.
Collapse
|
55
|
Zamora-Martinez ER, Edwards S. Neuronal extracellular signal-regulated kinase (ERK) activity as marker and mediator of alcohol and opioid dependence. Front Integr Neurosci 2014; 8:24. [PMID: 24653683 PMCID: PMC3949304 DOI: 10.3389/fnint.2014.00024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK) to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence) is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.
Collapse
Affiliation(s)
- Eva R Zamora-Martinez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute La Jolla, CA, USA
| | - Scott Edwards
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
56
|
Anton RF, Schacht JP, Book SW. Pharmacologic treatment of alcoholism. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:527-42. [PMID: 25307594 DOI: 10.1016/b978-0-444-62619-6.00030-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Progress in understanding the neuroscience of addiction has significantly advanced the development of more efficacious medications for the treatment of alcohol use disorders (AUD). While several medications have been approved by regulatory bodies around the world for the treatment of AUD, they are not universally efficacious. Recent research has yielded improved understanding of the genetics and brain circuits that underlie alcohol reward and its habitual use. This research has contributed to pharmacogenetic studies of medication response, and will ultimately lead to a more "personalized medicine" approach to AUD pharmacotherapy. This chapter summarizes work on clinically available medications (both approved by regulatory bodies and investigational) for the treatment of alcohol dependence, as well as the psychiatric disorders that are commonly comorbid with AUD. Studies that have evaluated genetic influences on medication response and those that have employed neuroimaging to probe mechanisms of medication action or response are highlighted. Finally, new targets discovered in animal models for possible pharmacologic intervention in humans are overviewed and future directions in medications development provided.
Collapse
Affiliation(s)
- Raymond F Anton
- Center for Drug and Alcohol Programs, Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Joseph P Schacht
- Center for Drug and Alcohol Programs, Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sarah W Book
- Center for Drug and Alcohol Programs, Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
57
|
Cozzoli DK, Courson J, Wroten MG, Greentree DI, Lum EN, Campbell RR, Thompson AB, Maliniak D, Worley PF, Jonquieres G, Klugmann M, Finn DA, Szumlinski KK. Binge alcohol drinking by mice requires intact group 1 metabotropic glutamate receptor signaling within the central nucleus of the amygdala. Neuropsychopharmacology 2014; 39:435-44. [PMID: 23966068 PMCID: PMC3870786 DOI: 10.1038/npp.2013.214] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023]
Abstract
Despite the fact that binge alcohol drinking (intake resulting in blood alcohol concentrations (BACs) 80 mg% within a 2-h period) is the most prevalent form of alcohol-use disorders (AUD), a large knowledge gap exists regarding how this form of AUD influences neural circuits mediating alcohol reinforcement. The present study employed integrative approaches to examine the functional relevance of binge drinking-induced changes in glutamate receptors, their associated scaffolding proteins and certain signaling molecules within the central nucleus of the amygdala (CeA). A 30-day history of binge alcohol drinking (for example, 4-5 g kg(-1) per 2 h(-1)) elevated CeA levels of mGluR1, GluN2B, Homer2a/b and phospholipase C (PLC) β3, without significantly altering protein expression within the adjacent basolateral amygdala. An intra-CeA infusion of mGluR1, mGluR5 and PLC inhibitors all dose-dependently reduced binge intake, without influencing sucrose drinking. The effects of co-infusing mGluR1 and PLC inhibitors were additive, whereas those of coinhibiting mGluR5 and PLC were not, indicating that the efficacy of mGluR1 blockade to lower binge intake involves a pathway independent of PLC activation. The efficacy of mGluR1, mGluR5 and PLC inhibitors to reduce binge intake depended upon intact Homer2 expression as revealed through neuropharmacological studies of Homer2 null mutant mice. Collectively, these data indicate binge alcohol-induced increases in Group1 mGluR signaling within the CeA as a neuroadaptation maintaining excessive alcohol intake, which may contribute to the propensity to binge drink.
Collapse
Affiliation(s)
- Debra K Cozzoli
- Department of Behavioral Neuroscience, VA Medical Research, Oregon Health & Science University, Portland, OR, USA
| | - Justin Courson
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Melissa G Wroten
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Daniel I Greentree
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Emily N Lum
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Rianne R Campbell
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Andrew B Thompson
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Dan Maliniak
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georg Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah A Finn
- Department of Behavioral Neuroscience, VA Medical Research, Oregon Health & Science University, Portland, OR, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
58
|
Han WY, Du P, Fu SY, Wang F, Song M, Wu CF, Yang JY. Oxytocin via its receptor affects restraint stress-induced methamphetamine CPP reinstatement in mice: Involvement of the medial prefrontal cortex and dorsal hippocampus glutamatergic system. Pharmacol Biochem Behav 2013; 119:80-7. [PMID: 24269543 DOI: 10.1016/j.pbb.2013.11.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/27/2022]
Abstract
Our previous study revealed that intracerebroventricular oxytocin (OT) markedly inhibited the restraint stress-priming conditioned place preference (CPP) reinstatement induced by methamphetamine (MAP) via the glutamatergic system. In this study, the effect of microinjection with OT into mesocorticolimbic regions, the medial prefrontal cortex (mPFC) and the dorsal hippocampus (DHC), on the restraint stress-priming CPP reinstatement were further studied. The results showed that a 15-min restraint stress significantly reinstated MAP-induced CPP, which was inhibited by the microinjection of OT (0.5 and 2.5μg/μl/mouse) into the mPFC. Atosiban (Ato), a selective inhibitor of OT receptor, could absolutely block the effect of OT (2.5μg/μl/mouse). The reinstatement was inhibited by microinjecting with OT (2.5 but not 0.5μg/μl/mouse) into the DHC, which could not be reversed by Ato. Western blotting results showed that the levels of GLT1, VGLUT2, NR2B, p-ERK1/2 and p-CREB expressions in the mPFC were increased and CaMKII was decreased markedly after the stress-priming MAP-induced CPP reinstatement test. OT blocked the changing levels of GLT1, VGLUT2, NR2B, p-CREB and CaMK II, which were reversed by Ato, but failed to affect the elevated expression of p-ERK1/2. In DHC, the levels of VGLUT2, p-ERK1/2 and CREB expressions were reduced during the stress-induced reinstatement, which could be reversed by OT and further abolished by Ato. The present results suggest that mPFC and DHC play differential roles in restraint stress-priming CPP reinstatement induced by MAP and OT via OT receptor affects the reinstatement in which the glutamatergic system is involved.
Collapse
Affiliation(s)
- Wen-Yan Han
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China.
| | - Ping Du
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Shi-Yuan Fu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Fang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Ming Song
- Liaoning Institute of Crime Detectives, 110032 Shenyang, PR China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China.
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China.
| |
Collapse
|
59
|
Abstract
RATIONALE An increasingly compelling literature points to a major role for the glutamate system in mediating the effects of alcohol on behavior and the pathophysiology of alcoholism. Preclinical studies indicate that glutamate signaling mediates certain aspects of ethanol's intoxicating and rewarding effects, and undergoes adaptations following chronic alcohol exposure that may contribute to the withdrawal, craving and compulsive drug-seeking that drive alcohol abuse and alcoholism. OBJECTIVES We discuss the potential for targeting the glutamate system as a novel pharmacotherapeutic approach to treating alcohol use disorders, focusing on five major components of the glutamate system: the N-methyl-D-aspartate (NMDA) receptor and specific NMDA subunits, the glycineB site on the NMDA receptors (NMDAR), L-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid ionotropic (AMPA) and kainate (KAR) receptors, metabotropic receptors (mGluR), and glutamate transporters. RESULTS Chronic alcohol abuse produces a hyperglutamatergic state, characterized by elevated extracellular glutamate and altered glutamate receptors and transporters. Pharmacologically manipulating glutamatergic neurotransmission alters alcohol-related behaviors including intoxication, withdrawal, and alcohol-seeking, in rodents and human subjects. Blocking NMDA and AMPA receptors reduces alcohol consumption in rodents, but side-effects may limit this as a therapeutic approach. Selectively targeting NMDA and AMPA receptor subunits (e.g., GluN2B, GluA3), or the NMDAR glycineB site offers an alternative approach. Blocking mGluR5 potently affects various alcohol-related behaviors in rodents, and mGluR2/3 agonism also suppresses alcohol consumption. Finally, glutamate transporter upregulation may mitigate behavioral and neurotoxic sequelae of excess glutamate caused by alcohol. CONCLUSIONS Despite the many challenges that remain, targeting the glutamate system offers genuine promise for developing new treatments for alcoholism.
Collapse
|
60
|
Janak PH, Chaudhri N. The Potent Effect of Environmental Context on Relapse to Alcohol-Seeking After Extinction. ACTA ACUST UNITED AC 2013; 3:76-87. [PMID: 21132088 DOI: 10.2174/1874941001003010076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Environments in which the pharmacological effects of alcohol have been experienced become potent triggers for relapse in abstinent humans. Animal models developed to study the effect of environmental contexts on relapse to alcohol-seeking behavior demonstrate that alcohol-seeking is renewed by exposure to an alcohol-associated context, following the extinction of alcohol-seeking in a different context. Hence, contexts in which alcohol conditioning and extinction learning occur can be critical determinants for whether or not alcohol-seeking behavior is observed. This review summarizes preclinical research to date examining the role of alcohol contexts on the reinstatement of extinguished responding for alcohol. Behavioral studies have elucidated factors that are important for eliciting context-dependent relapse, and have uncovered novel interactions between alcohol-seeking driven by discrete alcohol cues in different contexts. Neuropharmacological studies provide substantial evidence for a role of dopaminergic systems in context-dependent reinstatement, and growing support for opioidergic mechanisms as well. Several key limbic brain regions have been identified in the modulation of alcohol-seeking by context, supporting a proposed neural circuit that includes the hippocampus, nucleus accumbens, basolateral amygdala, lateral hypothalamus, and the paraventricular thalamus.
Collapse
Affiliation(s)
- Patricia H Janak
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|
61
|
Discovery of VU0409106: A negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 2013; 23:5779-85. [PMID: 24074843 DOI: 10.1016/j.bmcl.2013.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of tool compound VU0409106 is described in this Letter. VU0409106 is a potent and selective negative allosteric modulator of mGlu5 that binds at the known allosteric binding site and demonstrates good CNS exposure following intraperitoneal dosing in mice. VU0409106 also proved efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists as well as clinically efficacious anxiolytics.
Collapse
|
62
|
Miki T, Kusaka T, Yokoyama T, Ohta KI, Suzuki S, Warita K, Jamal M, Wang ZY, Ueki M, Liu JQ, Yakura T, Tamai M, Sumitani K, Hosomi N, Takeuchi Y. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction. J Neural Transm (Vienna) 2013; 121:201-10. [PMID: 24061482 DOI: 10.1007/s00702-013-1085-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.
Collapse
Affiliation(s)
- Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Peana AT, Acquas E. Behavioral and biochemical evidence of the role of acetaldehyde in the motivational effects of ethanol. Front Behav Neurosci 2013; 7:86. [PMID: 23874276 PMCID: PMC3710953 DOI: 10.3389/fnbeh.2013.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/27/2013] [Indexed: 11/13/2022] Open
Abstract
Since Chevens' report, in the early 50's that his patients under treatment with the aldehyde dehydrogenase inhibitor, antabuse, could experience beneficial effects when drinking small volumes of alcoholic beverages, the role of acetaldehyde (ACD) in the effects of ethanol has been thoroughly investigated on pre-clinical grounds. Thus, after more than 25 years of intense research, a large number of studies have been published on the motivational properties of ACD itself as well as on the role that ethanol-derived ACD plays in the effects of ethanol. Accordingly, in particular with respect to the motivational properties of ethanol, these studies were developed following two main strategies: on one hand, were aimed to challenge the suggestion that also ACD may exert motivational properties on its own, while, on the other, with the aid of enzymatic manipulations or ACD inactivation, were aimed to test the hypothesis that ethanol-derived ACD might have a role in ethanol motivational effects. Furthermore, recent evidence significantly contributed to highlight, as possible mechanisms of action of ACD, its ability to commit either dopaminergic and opioidergic transmission as well as to activate the Extracellular signal Regulated Kinase cascade transduction pathway in reward-related brain structures. In conclusion, and despite the observation that ACD seems also to have inherited the elusive nature of its parent compound, the behavioral and biochemical evidence reviewed points to ACD as a neuroactive molecule able, on its own and as ethanol metabolite, to exert motivational effects.
Collapse
Affiliation(s)
- Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari Sassari, Italy
| | | |
Collapse
|
64
|
mGluR1/5 receptor densities in the brains of alcoholic subjects: a whole-hemisphere autoradiography study. Psychiatry Res 2013; 212:245-50. [PMID: 23149043 DOI: 10.1016/j.pscychresns.2012.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/24/2012] [Accepted: 04/08/2012] [Indexed: 12/17/2022]
Abstract
Increased glutamatergic neurotransmission and hyper-excitability during alcoholic withdrawal and abstinence are associated with increased risk for relapse, in addition to compensatory changes in the glutamatergic system during chronic alcohol intake. Type 5 metabotropic glutamate receptor (mGlur5) is abundant in brain regions known to be involved in drug reinforcement, yet very little has been published on mGluR1/5 expression in alcoholics. We evaluated the densities of mGluR1/5 binding in the hippocampus and striatum of post-mortem human brains by using [(3)H]Quisqualic acid as a radioligand in whole hemispheric autoradiography of Cloninger type 1 (n=9) and 2 (n=8) alcoholics and healthy controls (n=10). We observed a 30-40% higher mGluR1/5 binding density in the CA2 area of hippocampus in type 1 alcoholics when compared with either type 2 alcoholics or healthy subjects. Although preliminary, and from a relatively small number of subjects from these diagnostic groups, these results suggest that the mGluR1/5 receptors may be increased in type 1 alcoholics in certain brain areas.
Collapse
|
65
|
Abstract
INTRODUCTION The design and development of small molecule negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu5) has been an area of intense interest for over a decade. Potential roles have been established for mGlu5 NAMs in the treatment of diseases such as pain, anxiety, gastroesophageal reflux disease (GERD), Parkinson's disease levodopa-induced dyskinesia (PD-LID), fragile X syndrome (FXS), autism, addiction, and depression. AREAS COVERED This review begins with an update of the clinical trial efforts with mGlu5 NAMs. Following that update, the review summarizes small molecule mGlu5 NAM patent applications published between 2010 and 2012. These summaries are subdivided into three separate groups: inventions related to improvements in drug properties and/or developability, new chemical entities that contain a disubstituted alkyne, and new chemical entities that do not contain a disubstituted alkyne. EXPERT OPINION Given the abundant promise found within the mGlu5 NAM field, optimism remains that a drug will emerge from this therapeutic class. Still, the launch of a new drug is far from a certainty. It is encouraging to observe the ever-increasing chemical diversity among mGlu5 NAMs. Finally, in spite of the mature nature of this field, room remains for new advancements.
Collapse
Affiliation(s)
- Kyle A Emmitte
- Vanderbilt University Medical Center, Vanderbilt Center for Neuroscience Drug Discovery, Department of Chemistry, Nashville, TN 37232, USA.
| |
Collapse
|
66
|
Cannady R, Fisher KR, Durant B, Besheer J, Hodge CW. Enhanced AMPA receptor activity increases operant alcohol self-administration and cue-induced reinstatement. Addict Biol 2013; 18:54-65. [PMID: 23126443 DOI: 10.1111/adb.12000] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long-term alcohol exposure produces neuroadaptations that contribute to the progression of alcohol abuse disorders. Chronic alcohol consumption results in strengthened excitatory neurotransmission and increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPA) receptor signaling in animal models. However, the mechanistic role of enhanced AMPA receptor activity in alcohol-reinforcement and alcohol-seeking behavior remains unclear. This study examined the role of enhanced AMPA receptor function using the selective positive allosteric modulator, aniracetam, in modulating operant alcohol self-administration and cue-induced reinstatement. Male alcohol-preferring (P-) rats, trained to self-administer alcohol (15%, v/v) versus water were pre-treated with aniracetam to assess effects on maintenance of alcohol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (0.8%, w/v) versus water, and effects of aniracetam were tested. The role of aniracetam in modulating relapse of alcohol-seeking was assessed using a response contingent cue-induced reinstatement procedure in P-rats trained to self-administer 15% alcohol. Aniracetam pre-treatment significantly increased alcohol-reinforced responses relative to vehicle treatment. This increase was not attributed to aniracetam-induced hyperactivity as aniracetam pre-treatment did not alter locomotor activity. AMPA receptor involvement was confirmed because 6,7-dinitroquinoxaline-2,3-dione (AMPA receptor antagonist) blocked the aniracetam-induced increase in alcohol self-administration. Aniracetam did not alter sucrose-reinforced responses in sucrose-trained P-rats, suggesting that enhanced AMPA receptor activity is selective in modulating the reinforcing function of alcohol. Finally, aniracetam pre-treatment potentiated cue-induced reinstatement of alcohol-seeking behavior versus vehicle-treated P-rats. These data suggest that enhanced glutamate activity at AMPA receptors may be key in facilitating alcohol consumption and seeking behavior, which could ultimately contribute to the development of alcohol abuse disorders.
Collapse
Affiliation(s)
| | - Kristen R. Fisher
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill; NC; USA
| | - Brandon Durant
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill; NC; USA
| | | | | |
Collapse
|
67
|
Alterations in ethanol seeking and self-administration following yohimbine in selectively bred alcohol-preferring (P) and high alcohol drinking (HAD-2) rats. Behav Brain Res 2012; 238:252-8. [PMID: 23103404 DOI: 10.1016/j.bbr.2012.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/26/2022]
Abstract
Evidence suggests that stress increases alcohol drinking and promotes relapse in humans. Animal models that assess related behaviors include the sipper tube ethanol self-administration and the stress-induced reinstatement paradigms. While selectively bred for the same high-ethanol-drinking behavior, alcohol-preferring P rats appear to show greater sensitivity to ethanol reinforcement than high-alcohol-drinking HAD rats. The present experiment tested the effects of the pharmacological stressor, yohimbine, on the motivation to seek and consume ethanol implementing a combined sipper tube/reinstatement model using male P and HAD-2 rats. Following training to self-administer ethanol using the sipper tube procedure, rats were tested for the effects of yohimbine (0.625-2.5 mg/kg) on ethanol drinking. Subsequently, rats were tested for the effects of 1.25 mg/kg yohimbine on reinstatement of ethanol seeking. Yohimbine (0.625 and 1.25 mg/kg) increased ethanol self-administration, and the latter dose also decreased latency to complete the response requirement. Yohimbine elicited reinstatement of ethanol seeking in both lines. HAD-2 rats drank more ethanol, but showed similar responding on the ethanol-associated lever compared to P rats. These findings extend both the reinstatement and sipper tube models and justify further exploration of this unique combined paradigm. Despite prior evidence suggesting that P rats are more motivated to seek and consume ethanol, differences in these behaviors between P and HAD-2 rats were not systematic in the present experiment. Further investigation may elucidate whether either selected line may be more sensitive than other selectively bred or outbred rats to stress-related changes in ethanol's reinforcing effects.
Collapse
|
68
|
Li S, Li Z, Pei L, Le AD, Liu F. The α7nACh-NMDA receptor complex is involved in cue-induced reinstatement of nicotine seeking. ACTA ACUST UNITED AC 2012; 209:2141-7. [PMID: 23091164 PMCID: PMC3501362 DOI: 10.1084/jem.20121270] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Smoking is the leading preventable cause of disease, disability, and premature death. Nicotine, the main psychoactive drug in tobacco, is one of the most heavily used addictive substances, and its continued use is driven through activation of nicotinic acetylcholine receptors (nAChRs). Despite harmful consequences, it is difficult to quit smoking because of its positive effects on mood and cognition that are strong reinforcers contributing to addiction. Furthermore, a formidable challenge for the treatment of nicotine addiction is the high vulnerability to relapse after abstinence. There is no currently available smoking cessation product able to achieve a >20% smoking cessation rate after 52 wk, and there are no medications that directly target the relapse process. We report here that the α7nAChR forms a protein complex with the NMDA glutamate receptor (NMDAR) through a direct protein-protein interaction. Chronic nicotine exposure promotes α7nAChR-NMDAR complex formation. Interestingly, administration of an interfering peptide that disrupts the α7nAChR-NMDAR complex decreased extracellular signal-regulated kinase (ERK) activity and blocked cue-induced reinstatement of nicotine seeking in rat models of relapse, without affecting nicotine self-administration or locomotor activity. Our results may provide a novel therapeutic target for the development of medications for preventing nicotine relapse.
Collapse
Affiliation(s)
- Shupeng Li
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | | | | | | | | |
Collapse
|
69
|
Hovelsø N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mørk A. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012; 10:12-48. [PMID: 22942876 PMCID: PMC3286844 DOI: 10.2174/157015912799362805] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/10/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain.
Collapse
Affiliation(s)
- N Hovelsø
- Department of Neurophysiology, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark
| | | | | | | | | | | |
Collapse
|
70
|
Electroacupuncture reverses ethanol-induced locomotor sensitization and subsequent pERK expression in mice. Int J Neuropsychopharmacol 2012; 15:1121-33. [PMID: 21859515 DOI: 10.1017/s1461145711001325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK) plays a role in neuronal changes induced by repeated drug exposure. Given that electroacupuncture reverses locomotor sensitization induced by ethanol, we investigated whether this effect is parallel to ERK signalling. Mice received daily ethanol (2 g/kg i.p), for 21 d. Electroacupuncture was performed daily, during four (subsequent) days of ethanol withdrawal. The stimulus of 2 Hz or 100 Hz was provided in combinations of two acupoints: Ea1 (ST-36/Zusanli and PC-6/Neiguan) or Ea2 (Du-14/Dazhui and Du-20/Baihui). The specificity of acupoint effects were assessed by the inclusion of additional groups: Ea3 (ST-25/Tianshu--acupoint used for other non-related disorders), Sham1 or Sham2 (transdermic stimulation near the respective acupoints). The control group was only handled during withdrawal and the saline group was chronically treated with saline and handled similarly to controls. At day 5 of withdrawal, each group was divided in two subgroups, according to the presence or absence of ethanol challenge. The animals were perfused and their brains processed for pERK immunohistochemistry. Only Ea1 at 100 Hz (Ea1_100) and Ea2 at 2 Hz (Ea2_2) reversed locomotor sensitization induced by ethanol. Ethanol withdrawal decreases pERK in the dorsomedial striatum. This decrease is not abolished by electroacupuncture. Conversely, ethanol challenge increases pERK in the dorsomedial striatum, infralimbic cortex and central nucleus of amygdala. The specificity of acupoint stimulation to reverse these increases was seen only for Ea2_2, in the infralimbic cortex and dorsomedial striatum. Therefore, behavioural effects of Ea2_2 (but not Ea1_100) depend, at least in part, on ERK signalling.
Collapse
|
71
|
Peana AT, Giugliano V, Rosas M, Sabariego M, Acquas E. Effects of L-cysteine on reinstatement of ethanol-seeking behavior and on reinstatement-elicited extracellular signal-regulated kinase phosphorylation in the rat nucleus accumbens shell. Alcohol Clin Exp Res 2012; 37 Suppl 1:E329-37. [PMID: 22823513 DOI: 10.1111/j.1530-0277.2012.01877.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 05/03/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alcoholism is a neuroadaptive disorder, and the understanding of the mechanisms of the high rates of relapse, which characterize it, represents one of the most demanding challenges in alcoholism and addiction research. The extracellular signal-regulated kinase (ERK) is an intracellular kinase, critical for neuroplasticity in the adult brain that is suggested to play a fundamental role in the molecular mechanisms underlying drug addiction and relapse. We previously observed that a nonessential amino acid, L-cysteine, significantly decreases oral ethanol (EtOH) self-administration, reinstatement of EtOH-drinking behavior, and EtOH self-administration break point. METHODS Here, we tested whether L-cysteine can affect the ability of EtOH priming to induce reinstatement of EtOH-seeking behavior. In addition, we determined the ability of EtOH priming to induce ERK phosphorylation as well as the ability of L-cysteine to affect reinstatement-elicited ERK activation. To these purposes, Wistar rats were trained to nose-poke for a 10% v/v EtOH solution. After stable drug-taking behavior was obtained, nose-poking for EtOH was extinguished, and reinstatement of drug seeking, as well as reinstatement-elicited pERK, was determined after an oral, noncontingent, priming of EtOH (0.08 g/kg). Rats were pretreated with either saline or L-cysteine (80 to 120 mg/kg) 30 minutes before testing for reinstatement. RESULTS The findings of this study confirm that the noncontingent delivery of a nonpharmacologically active dose of EtOH to rats, whose previous self-administration behavior had been extinguished, results in significant reinstatement into EtOH-seeking behavior. In addition, the results indicate that reinstatement selectively activates ERK phosphorylation in the shell of the nucleus accumbens (Acb) and that pretreatment with L-cysteine reduces either reinstatement of EtOH seeking and reinstatement-elicited pERK in the AcbSh. CONCLUSIONS Altogether, these results indicate that L-cysteine could be an effective pharmacological agent for the prevention of behavioral and molecular correlates of EtOH-primed reinstatement of EtOH seeking and that the shell of the Acb represents a critical neural substrate for priming-elicited reinstatement mechanisms involving ERK phosphorylation.
Collapse
Affiliation(s)
- Alessandra T Peana
- Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | | | | | | | | |
Collapse
|
72
|
Spanos M, Besheer J, Hodge CW. Increased sensitivity to alcohol induced changes in ERK Map kinase phosphorylation and memory disruption in adolescent as compared to adult C57BL/6J mice. Behav Brain Res 2012; 230:158-66. [PMID: 22348893 DOI: 10.1016/j.bbr.2012.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/18/2022]
Abstract
Adolescence is a critical period of brain development that is accompanied by increased probability of risky behavior, such as alcohol use. Emerging research indicates that adolescents are differentially sensitive to the behavioral effects of acute ethanol as compared to adults but the neurobiological mechanisms of this effect remain to be fully elucidated. This study was designed to evaluate effects of acute ethanol on extracellular signal-regulated kinase phosphorylation (p-ERK1/2) in mesocorticolimbic brain regions. We also sought to determine if age-specific effects of ethanol on p-ERK1/2 are associated with ethanol-induced behavioral deficits on acquisition of the hippocampal-dependent novel object recognition (NOR) test. Adolescent and adult C57BL/6J mice were administered acute ethanol (0 0.5, 1, or 3g/kg, i.p.). Brains were removed 30-min post injection and processed for analysis of p-ERK1/2 immunoreactivity (IR). Additional groups of mice were administered ethanol (0 or 1g/kg) prior to the NOR test. Analysis of p-ERK1/2 IR showed that untreated adolescent mice had significantly higher levels of p-ERK1/2 IR in the nucleus accumbens shell, basolateral amygdala (BLA), central amygdala (CeA), and medial prefrontal cortex (mPFC) as compared to adults. Ethanol (1g/kg) selectively reduced p-ERK1/2 IR in the dentate gyrus and increased p-ERK1/2 IR in the BLA only in adolescent mice. Ethanol (3g/kg) produced the same effects on p-ERK1/2 IR in both age groups with increases in CeA and mPFC, but a decrease in the dentate gyrus, as compared to age-matched saline controls. Pretreatment with ethanol (1g/kg) disrupted performance on the NOR test specifically in adolescents, which corresponds with the ethanol-induced inhibition of p-ERK1/2 IR in the hippocampus. These data show that adolescent mice have differential expression of basal p-ERK1/2 IR in mesocorticolimbic brain regions. Acute ethanol produces a unique set of changes in ERK1/2 phosphorylation in the adolescent brain that are associated with disruption of hippocampal-dependent memory acquisition.
Collapse
Affiliation(s)
- Marina Spanos
- Neurobiology Curriculum, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599, United States
| | | | | |
Collapse
|
73
|
mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacol Biochem Behav 2012; 101:329-35. [PMID: 22296815 DOI: 10.1016/j.pbb.2012.01.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/25/2023]
Abstract
Pharmacological blockade of the type 5 metabotropic glutamate receptor (mGluR5) attenuates cue-induced reinstatement of ethanol-seeking behavior, yet the brain regions involved in these effects are not yet known. The purpose of the present study was to determine if local blockade of mGluR5 receptors in the basolateral amygdala (BLA) and/or the nucleus accumbens (NAc), two brain regions known to be involved in stimulus-reward associations, attenuate the reinstatement of ethanol-seeking behavior induced by ethanol-paired cues. As a control for possible non-specific effects, the effects of mGluR5 blockade in these regions on cue-induced reinstatement of sucrose-seeking were also assessed. Male Wistar rats were implanted with bilateral microinjection cannulae aimed at the BLA or NAc. Following recovery, animals were trained to self-administer ethanol (10% w/v) or 45 mg sucrose pellets on an FR1 schedule of reinforcement in 30 min daily sessions using a sucrose fading procedure. Following stabilization of responding, animals underwent extinction training. Next, animals received infusions of vehicle or the selective mGluR5 antagonist MTEP (3 μg/μl) into the BLA or NAc prior to cue-induced reinstatement testing sessions. mGluR5 blockade eliminated cue-induced reinstatement of alcohol - but not sucrose-seeking behavior. Results from this study indicate that mGluR5 receptors in the BLA and NAc mediate cue-induced reinstatement of ethanol-seeking behavior, and provide two potential neuroanatomical sites of action where systemically administered mGluR5 antagonists attenuate cue-induced reinstatement. These data are consistent with previous findings that cue-induced reinstatement of ethanol-seeking increases neuronal activity and glutamatergic transmission in these two regions.
Collapse
|
74
|
Cleva RM, Olive MF. Metabotropic glutamate receptors and drug addiction. ACTA ACUST UNITED AC 2012; 1:281-295. [DOI: 10.1002/wmts.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
75
|
The selective metabotropic glutamate receptor 7 allosteric agonist AMN082 prevents reinstatement of extinguished ethanol-induced conditioned place preference in mice. Pharmacol Biochem Behav 2012; 101:193-200. [PMID: 22269296 DOI: 10.1016/j.pbb.2012.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 11/20/2022]
Abstract
Alcohol dependence is considered a major public health problem in modern societies. The role for glutamatergic neurotransmission in the reinforcing effects of ethanol is becoming increasingly evident. Our previous findings have shown that in rats, the mGluR7 positive allosteric agonist AMN082, but not its allosteric antagonist MMPIP, prevented ethanol consumption and preference in the two-bottle choice paradigm. This study was conducted to determine the effects of AMN082 and MMPIP on the extinction and reinstatement of ethanol-elicited place preference (CPP) in C57BL/6 mice. AMN082 and MMPIP were administered during extinction of ethanol CPP to determine whether mGluR7 signaling is required. Furthermore, the effects of AMN082 and MMPIP on reinstatement of CPP were also evaluated. Finally, spontaneous locomotor activity and ethanol pharmacokinetics were assessed following systemic administration of AMN082 and MMPIP. Our results indicate that mGluR7 pharmacological modulation had no effect on ethanol-elicited CPP extinction. In contrast, mGluR7 activation using AMN082 reduced ethanol-induced CPP reinstatement, an effect reversed by co-administration of MMPIP. Collectively, these results indicate, for the first time, that activation of the mGluR7 receptor is effective in reducing the reinstatement of conditioned rewarding effects of ethanol. Taken together, the efficacy of AMN082 on the various phases of alcohol-CPP could represent an interesting pharmacological approach and could open a new line of research for the development of therapies to reduce ethanol intake in patients.
Collapse
|
76
|
Smith MA, Lynch WJ. Exercise as a potential treatment for drug abuse: evidence from preclinical studies. Front Psychiatry 2012; 2:82. [PMID: 22347866 PMCID: PMC3276339 DOI: 10.3389/fpsyt.2011.00082] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/28/2011] [Indexed: 01/02/2023] Open
Abstract
Epidemiological studies reveal that individuals who engage in regular aerobic exercise are less likely to use and abuse illicit drugs. Until recently, very few studies had examined the causal influences that mediate this relationship, and it was not clear whether exercise was effective at reducing substance use and abuse. In the past few years, several preclinical studies have revealed that exercise reduces drug self-administration in laboratory animals. These studies have revealed that exercise produces protective effects in procedures designed to model different transitional phases that occur during the development of, and recover from, a substance use disorder (e.g., acquisition, maintenance, escalation, and relapse/reinstatement of drug use). Moreover, recent studies have revealed several behavioral and neurobiological consequences of exercise that may be responsible for its protective effects in these assays. Collectively, these studies have provided convincing evidence to support the development of exercise-based interventions to reduce compulsive patterns of drug intake in clinical and at-risk populations.
Collapse
Affiliation(s)
- Mark A. Smith
- Department of Psychology and Program in Neuroscience, Davidson CollegeDavidson, NC, USA
| | - Wendy J. Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
77
|
Besheer J, Fisher KR, Cannady R, Grondin JJM, Hodge CW. Intra-amygdala inhibition of ERK(1/2) potentiates the discriminative stimulus effects of alcohol. Behav Brain Res 2011; 228:398-405. [PMID: 22209853 DOI: 10.1016/j.bbr.2011.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 01/11/2023]
Abstract
Extracellular signal-regulated kinase (ERK(1/2)) has been implicated in modulating drug seeking behavior and is a target of alcohol and other drugs of abuse. Given that the discriminative stimulus (subjective/interoceptive) effects of drugs are determinants of abuse liability and can influence drug seeking behavior, we examined the role of ERK(1/2) in modulating the discriminative stimulus effects of alcohol. Using drug discrimination procedures, rats were trained to discriminate a moderate intragastric (IG) alcohol dose (1g/kg) versus water (IG). Following an alcohol (1g/kg) discrimination session phosphorylated ERK(1/2) (pERK(1/2)) immunoreactivity (IR) was significantly elevated in the amygdala, but not the nucleus accumbens. Therefore, we hypothesized that intra-amygdala inhibition of ERK(1/2) would disrupt expression of the discriminative stimulus effects of alcohol. However, intra-amygdala or accumbens administration of the MEK/ERK(1/2) inhibitor U0126 (1 and 3μg) had no effect on the discriminative stimulus effects of the training dose of alcohol (1g/kg). Contrary to our hypothesis, intra-amygdala infusion of U0126 (3μg) potentiated the discriminative stimulus effects of a low alcohol dose (0.5g/kg) and had no effect following nucleus accumbens infusion. Importantly, site-specific inhibition of pERK(1/2) in each brain region was confirmed. Therefore, the increase in pERK(1/2) IR in the amygdala following systemic alcohol administration may be reflective of the widespread effects of alcohol on the brain (activation/inhibition of brain circuits), whereas the site specific microinjection studies confirmed functional involvement of intra-amygdala ERK(1/2). These findings show that activity of the ERK signaling pathway in the amygdala can influence the discriminative stimulus effects of alcohol.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
78
|
Enhanced sensitivity to attenuation of conditioned reinstatement by the mGluR 2/3 agonist LY379268 and increased functional activity of mGluR 2/3 in rats with a history of ethanol dependence. Neuropsychopharmacology 2011; 36:2762-73. [PMID: 21881571 PMCID: PMC3230501 DOI: 10.1038/npp.2011.174] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent findings implicate group II metabotropic glutamate receptors (mGluR(2/3)) in the reinforcing and dependence-inducing actions of ethanol and identify these receptors as treatment targets for alcoholism. Here, we investigated the effects of mGLuR(2/3) activation on conditioned reinstatement in rats with different ethanol-dependence histories and examined dependence-associated changes in the functional activity of mGluR(2/3). Following ethanol self-administration training and conditioning procedures, rats were made ethanol dependent, using ethanol vapor inhalation, under three conditions: a single intoxication and withdrawal episode (SW), repeated cycles of intoxication and withdrawal (RW), or no intoxication (CTRL). At 1 week after removal from ethanol vapor, self-administration resumed until stable baseline performance was reached, followed by extinction of operant responding and reinstatement tests. Post-withdrawal self-administration was increased in the RW group, but all groups showed conditioned reinstatement. The mGluR(2/3) agonist LY379268 dose -dependently reduced reinstatement in all groups, but was more effective at low doses in the SW and RW groups. The highest dose of LY379268 tested reduced spontaneous locomotor activity and operant responding maintained by a non-drug reinforcer, without differences among groups. The heightened sensitivity to the effects of LY379268 in rats with an ethanol-dependence history was therefore specific to behavior motivated by ethanol-related stimuli. Both the SW and RW groups showed elevated [(35)S]GTPγS binding in the central nucleus of the amygdala (CeA) and bed nucleus of stria terminalis (BNST), relative to the CTRL group. The findings implicate changes in mGluR(2/3) functional activity as a factor in ethanol dependence and support treatment target potential of mGlu(2/3) receptors for craving and relapse prevention.
Collapse
|
79
|
Cannady R, Grondin JJM, Fisher KR, Hodge CW, Besheer J. Activation of group II metabotropic glutamate receptors inhibits the discriminative stimulus effects of alcohol via selective activity within the amygdala. Neuropsychopharmacology 2011; 36:2328-38. [PMID: 21734651 PMCID: PMC3176569 DOI: 10.1038/npp.2011.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate receptor subtypes (mGlu2/3) regulate a variety of alcohol-associated behaviors, including alcohol reinforcement, and relapse-like behavior. To date, the role of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol has not been examined. Given that the discriminative stimulus effects of drugs are determinants of abuse liability and can influence drug seeking, we examined the contributions of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol. In male Long-Evans rats trained to discriminate between alcohol (1 g/kg, IG) and water, the mGlu2/3 agonist LY379268 (0.3-10 mg/kg) did not produce alcohol-like stimulus effects. However, pretreatment with LY379268 (1 and 3 mg/kg; in combination with alcohol) inhibited the stimulus effects of alcohol (1 g/kg). Systemic LY379268 (3 mg/kg, i.p.) was associated with increases in neuronal activity within the amygdala, but not the nucleus accumbens, as assessed by c-Fos immunoreactivity. Intra-amygdala activation of mGlu2/3 receptors by LY379268 (6 μg) inhibited the discriminative stimulus effects of alcohol, without altering response rate. In contrast, intra-accumbens LY379268 (3 μg) profoundly reduced response rate; however, at lower LY379268 doses (0.3, 1 μg), the discriminative stimulus effects of alcohol and response rate were not altered. These data suggest that amygdala mGlu2/3 receptors have a functional role in modulating the discriminative stimulus properties of alcohol and demonstrate differential motor sensitivity to activation of mGlu2/3 receptors in the amygdala and the accumbens. Understanding the neuronal mechanisms that underlie the discriminative stimulus effects of alcohol may prove to be important for future development of pharmacotherapies for treating alcoholism.
Collapse
Affiliation(s)
- Reginald Cannady
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie JM Grondin
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen R Fisher
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston-Bowles Building; CB #7178, Chapel Hill, NC 27599, USA. Tel: +1 919 843 4389; Fax: +1 919 966 5679; E-mail:
| |
Collapse
|
80
|
Emmitte KA. Recent advances in the design and development of novel negative allosteric modulators of mGlu(5). ACS Chem Neurosci 2011; 2:411-432. [PMID: 21927649 DOI: 10.1021/cn2000266] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have remained attractive to researchers as potential therapies for a number of central nervous system related diseases, including anxiety, pain, gastroesophageal reflux disease (GERD), addiction, Parkinson's disease (PD), and fragile X syndrome (FXS). In addition to the many publications with supportive preclinical data with key tool molecules, recent positive reports from the clinic have bolstered the confidence in this approach. During the two year time span from 2009 through 2010, a number of new mGlu(5) NAM chemotypes have been disclosed and discussed in the primary and patent literature. A summary of several efforts representing many diverse chemotypes are presented here, along with a discussion of representative structure activity relationships (SAR) and synthetic approaches to the templates where possible.
Collapse
Affiliation(s)
- Kyle A. Emmitte
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, and Department of Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
81
|
Gass JT, Sinclair CM, Cleva RM, Widholm JJ, Olive MF. Alcohol-seeking behavior is associated with increased glutamate transmission in basolateral amygdala and nucleus accumbens as measured by glutamate-oxidase-coated biosensors. Addict Biol 2011; 16:215-28. [PMID: 21054692 DOI: 10.1111/j.1369-1600.2010.00262.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Relapse is one of the most problematic aspects in the treatment of alcoholism and is often triggered by alcohol-associated environmental cues. Evidence indicates that glutamate neurotransmission plays a critical role in cue-induced relapse-like behavior, as inhibition of glutamate neurotransmission can prevent reinstatement of alcohol-seeking behavior. However, few studies have examined specific changes in extracellular glutamate levels in discrete brain regions produced by exposure to alcohol-associated cues. The purpose of this study was to use glutamate oxidase (GluOx)-coated biosensors to monitor changes in extracellular glutamate in specific brain regions during cue-induced reinstatement of alcohol-seeking behavior. Male Wistar rats were implanted with indwelling jugular vein catheters and intracerebral guide cannula aimed at the basolateral amygdala (BLA) or nucleus accumbens (NAc) core, and then trained to self-administer alcohol intravenously. A separate group of animals were trained to self-administer food pellets. Each reinforcer was accompanied by the presentation of a light/tone stimulus. Following stabilization of responding for alcohol or food reinforcement, and subsequent extinction training, animals were implanted with pre-calibrated biosensors and then underwent a 1-hour cue-induced reinstatement testing period. As determined by GluOx-coated biosensors, extracellular levels of glutamate were increased in the BLA and NAc core during cue-induced reinstatement of alcohol-seeking behavior. The cumulative change in extracellular glutamate in both regions was significantly greater for cue-induced reinstatement of alcohol-seeking behavior versus that of food-seeking behavior. These results indicate that increases in glutamate transmission in the BLA and NAc core may be a neurochemical substrate of cue-evoked alcohol-seeking behavior.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
82
|
Tanchuck MA, Yoneyama N, Ford MM, Fretwell AM, Finn DA. Assessment of GABA-B, metabotropic glutamate, and opioid receptor involvement in an animal model of binge drinking. Alcohol 2011; 45:33-44. [PMID: 20843635 DOI: 10.1016/j.alcohol.2010.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 01/29/2023]
Abstract
Drinking to intoxication or binge drinking is a hallmark characteristic of alcohol abuse. Although hard to model in rodents, the scheduled high alcohol consumption (SHAC) procedure generates high, stable ethanol intake and blood ethanol concentrations in mice to levels consistent with definitions of binge drinking. The purpose of the present studies was to determine the effects of pharmacological manipulation of the opioidergic, glutamatergic, and γ-aminobutyric acid (GABA)ergic systems on binge drinking with the SHAC procedure. Parallel manipulations were conducted in mice trained in operant self-administration of either sucrose or ethanol. For the SHAC procedure, genetically heterogeneous Withdrawal Seizure Control mice were given varying periods of fluid access, with a 30-min ethanol session every third day (total of seven). Mice were pretreated intraperitoneally with naltrexone (0, 0.6, or 1.25 mg/kg), baclofen (0, 2.5, or 5.0 mg/kg), or 2-methyl-6-(phenylethynyl)-pyridine (MPEP; 0, 3.0, or 10.0 mg/kg) before each ethanol session. For the operant self-administration procedure, separate groups of C57BL/6 mice were trained to complete a single response requirement (16 presses on the active lever) to gain 30 min of access to an ethanol or a sucrose solution. Mice received pretreatments of the same doses of naltrexone, MPEP, or baclofen before the self-administration sessions, with saline injections on intervening days. Naltrexone produced a dose-dependent decrease in binge drinking, and the highest dose also significantly decreased operant self-administration of ethanol and sucrose. Both doses of baclofen significantly decreased binge alcohol consumption, but the higher dose also tended to decrease water intake. The highest dose of baclofen also significantly decreased operant self-administration of sucrose. MPEP (10 mg/kg) significantly decreased binge alcohol consumption and sucrose self-administration. These results indicate that manipulation of the opioidergic, glutamatergic, and GABAergic systems significantly decreased binge drinking.
Collapse
|
83
|
Furay AR, Neumaier JF, Mullenix AT, Kaiyala KK, Sandygren NK, Hoplight BJ. Overexpression of 5-HT(1B) mRNA in nucleus accumbens shell projection neurons differentially affects microarchitecture of initiation and maintenance of ethanol consumption. Alcohol 2011; 45:19-32. [PMID: 20843634 DOI: 10.1016/j.alcohol.2010.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 11/15/2022]
Abstract
Serotonin 1B (5-HT(1B)) heteroreceptors on nucleus accumbens shell (NAcSh) projection neurons have been shown to enhance the voluntary consumption of alcohol by rats, presumably by modulating the activity of the mesolimbic reward pathway. The present study examined whether increasing 5-HT(1B) receptors expressed on NAcSh projection neurons by means of virus-mediated gene transfer enhances ethanol consumption during the initiation or maintenance phase of drinking and alters the temporal pattern of drinking behavior. Animals received stereotaxic injections of viral vectors expressing either 5-HT(1B) receptor and green fluorescent protein (GFP) or GFP alone. Home cages equipped with a three-bottle (water and 6 and 12% ethanol) lickometer system recorded animals' drinking behaviors continuously, capturing either initiation or maintenance of drinking behavior patterns. Overexpression of 5-HT(1B) receptors during initiation increased consumption of 12% ethanol during both forced-access and free-choice consumption. There was a shift in drinking pattern for 6% ethanol with an increase in number of drinking bouts per day, although the total number of drinking bouts for 12% ethanol was not different. Finally, increased 5-HT(1B) expression induced more bouts with very high-frequency licking from the ethanol bottle sippers. During the maintenance phase of drinking, there were no differences between groups in total volume of ethanol consumed; however, there was a shift toward drinking bouts of longer duration, especially for 12% ethanol. This suggests that during maintenance drinking, increased 5-HT(1B) receptors facilitate longer drinking bouts of more modest volumes. Taken together, these results indicate that 5-HT(1B) receptors expressed on NAcSh projection neurons facilitate ethanol drinking, with different effects during initiation and maintenance of ethanol-drinking behavior.
Collapse
Affiliation(s)
- Amy R Furay
- Department of Psychiatry, University of Washington, Harborview Medical Center, Seattle, WA 98104, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Rutten K, Van Der Kam EL, De Vry J, Bruckmann W, Tzschentke TM. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates conditioned place preference induced by various addictive and non-addictive drugs in rats. Addict Biol 2011; 16:108-15. [PMID: 20579001 DOI: 10.1111/j.1369-1600.2010.00235.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have recently reported that the metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates acquisition of conditioned place preference (CPP) induced by heroin and ketamine. The present study investigated to what extent this effect of MPEP can be generalized to other classes of drugs, such as the stimulants nicotine and cocaine, and to drugs that produce CPP in the rat despite a lack of abuse potential in humans, such as buspirone and clonidine. Adult male Sprague Dawley rats were subjected to a standard unbiased CPP protocol (six conditioning sessions lasting 20 minutes for nicotine and 40 minutes for the other compounds). Rats were conditioned with either nicotine (0.05-0.2 mg/kg, subcutaneously), cocaine [1-10 mg/kg, intraperitoneally (i.p.)], buspirone (0.3-3 mg/kg, i.p.) or clonidine (0.2-0.6 mg/kg, i.p.) in combination with MPEP (0 or 10 mg/kg, i.p.). For nicotine and cocaine, the minimal effective dose to induce CPP was lowered by pre-treatment with MPEP. While buspirone and clonidine did not induce CPP when given alone (i.e. combined with MPEP vehicle), both compounds induced CPP after pre-treatment with MPEP. It is concluded that MPEP consistently potentiates acquisition of drug-induced reward, independent of the mechanism of action of the co-administered drug. We suggest that the proposed anti-abuse effect of MPEP may be due to a substitution-like effect.
Collapse
Affiliation(s)
- Kris Rutten
- Department of Pharmacology, Aachen, Germany.
| | | | | | | | | |
Collapse
|
85
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Goulding SP, Obara I, Lominac KD, Gould AT, Miller BW, Klugmann M, Szumlinski KK. Accumbens Homer2-mediated signaling: a factor contributing to mouse strain differences in alcohol drinking? GENES BRAIN AND BEHAVIOR 2010; 10:111-26. [PMID: 20807241 DOI: 10.1111/j.1601-183x.2010.00647.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alcohol-induced increases in nucleus accumbens glutamate actively regulate alcohol consumption, and the alcohol responsiveness of corticoaccumbens glutamate systems relates to genetic variance in alcohol reward. Here, we extend earlier data for inbred mouse strain differences in accumbens glutamate by examining for differences in basal and alcohol-induced changes in the striatal expression of glutamate-related signaling molecules between inbred C57BL/6J and DBA2/J mice. Repeated alcohol treatment (8 × 2 g/kg) increased the expression of Group1 metabotropic glutamate receptors, the NR2a/b subunits of the N-methyl-D-aspartate receptor, Homer2a/b, as well as the activated forms of protein kinase C (PKC) epsilon and phosphoinositol-3-kinase within ventral, but not dorsal, striatum. Regardless of prior alcohol experience, C57BL/6J mice exhibited higher accumbens levels of mGluR1/5, Homer2a/b, NR2a and activated kinases vs. DBA2/J mice, whereas an alcohol-induced rise in dorsal striatum mGluR1/5 expression was observed only in C57BL/6J mice. We next employed virus-mediated gene transfer approaches to ascertain the functional relevance of the observed strain difference in accumbens Homer2 expression for B6/D2 differences in alcohol-induced glutamate sensitization, as well as alcohol preference/intake. Manipulating nucleus accumbens shell Homer2b expression actively regulated these measures in C57BL/6J mice, whereas DBA2/J mice were relatively insensitive to the neurochemical and behavioral effects of virus-mediated changes in Homer2 expression. These data support the over-arching hypothesis that augmented accumbens Homer2-mediated glutamate signaling may be an endophenotype related to genetic variance in alcohol consumption. If relevant to humans, such data pose polymorphisms affecting glutamate receptor/Homer2 signaling in the etiology of alcoholism.
Collapse
Affiliation(s)
- S P Goulding
- Department of Psychology and Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Incentive learning underlying cocaine-seeking requires mGluR5 receptors located on dopamine D1 receptor-expressing neurons. J Neurosci 2010; 30:11973-82. [PMID: 20826661 DOI: 10.1523/jneurosci.2550-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the psychobiological basis of relapse remains a challenge in developing therapies for drug addiction. Relapse in cocaine addiction often occurs following exposure to environmental stimuli previously associated with drug taking. The metabotropic glutamate receptor, mGluR5, is potentially important in this respect; it plays a central role in several forms of striatal synaptic plasticity proposed to underpin associative learning and memory processes that enable drug-paired stimuli to acquire incentive motivational properties and trigger relapse. Using cell type-specific RNA interference, we have generated a novel mouse line with a selective knock-down of mGluR5 in dopamine D1 receptor-expressing neurons. Although mutant mice self-administer cocaine, we show that reinstatement of cocaine-seeking induced by a cocaine-paired stimulus is impaired. By examining different aspects of associative learning in the mutant mice, we identify deficits in specific incentive learning processes that enable a reward-paired stimulus to directly reinforce behavior and to become attractive, thus eliciting approach toward it. Our findings show that glutamate signaling through mGluR5 located on dopamine D1 receptor-expressing neurons is necessary for incentive learning processes that contribute to cue-induced reinstatement of cocaine-seeking and which may underpin relapse in drug addiction.
Collapse
|
88
|
The mGluR5 antagonist MTEP dissociates the acquisition of predictive and incentive motivational properties of reward-paired stimuli in mice. Neuropsychopharmacology 2010; 35:1807-17. [PMID: 20375996 PMCID: PMC3055484 DOI: 10.1038/npp.2010.48] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An environmental stimulus paired with reward (a conditioned stimulus; CS) can acquire predictive properties that signal reward availability and may also acquire incentive motivational properties that enable the CS to influence appetitive behaviors. The neural mechanisms involved in the acquisition and expression of these CS properties are not fully understood. The metabotropic glutamate receptor, mGluR5, contributes to synaptic plasticity underlying learning and memory processes. We examined the role of mGluR5 in the acquisition and expression of learning that enables a CS to predict reward (goal-tracking) and acquire incentive properties (conditioned reinforcement). Mice were injected with vehicle or the mGluR5 antagonist, MTEP (3 or 10 mg/kg), before each Pavlovian conditioning session in which a stimulus (CS+) was paired with food delivery. Subsequently, in the absence of the primary food reward, we determined whether the CS+ could reinforce a novel instrumental response (conditioned reinforcement) and direct behavior toward the place of reward delivery (goal-tracking). MTEP did not affect performance during the conditioning phase, or the ability of the CS+ to elicit a goal-tracking response. In contrast, 10 mg/kg MTEP given before each conditioning session prevented the subsequent expression of conditioned reinforcement. This dose of MTEP did not affect conditioned reinforcement when administered before the test, in mice that had received vehicle before conditioning sessions. Thus, mGluR5 has a critical role in the acquisition of incentive properties by a CS, but is not required for the expression of incentive learning, or for the CS to acquire predictive properties that signal reward availability.
Collapse
|
89
|
3-Cyano-5-fluoro-N-arylbenzamides as negative allosteric modulators of mGlu(5): Identification of easily prepared tool compounds with CNS exposure in rats. Bioorg Med Chem Lett 2010; 20:4390-4. [PMID: 20598884 DOI: 10.1016/j.bmcl.2010.06.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 11/21/2022]
Abstract
Development of SAR in a 3-cyano-5-fluoro-N-arylbenzamide series of non-competitive antagonists of mGlu(5) using a functional cell-based assay is described in this Letter. Further characterization of selected potent compounds in in vitro assays designed to measure their metabolic stability and protein binding is also presented. Subsequent evaluation of two new compounds in pharmacokinetic studies using intraperitoneal dosing in rats demonstrated good exposure in both plasma and brain samples.
Collapse
|
90
|
Besheer J, Grondin JJ, Cannady R, Sharko AC, Faccidomo S, Hodge CW. Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake. Biol Psychiatry 2010; 67:812-22. [PMID: 19897175 PMCID: PMC2854174 DOI: 10.1016/j.biopsych.2009.09.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/04/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Systemic modulation of Group I and II metabotropic glutamate receptors (mGluRs) regulate ethanol self-administration in a variety of animal models. Although these receptors are expressed in reward-related brain regions, the anatomical specificity of their functional involvement in ethanol self-administration remains to be characterized. This study sought to evaluate the functional role of Group I (mGluR5) and Group II (mGluR2/3) in mesocorticolimbic brain regions in ethanol self-administration. METHODS Alcohol-preferring (P) rats, a genetic model of high alcohol drinking, were trained to self-administer ethanol (15% v/v) versus water in operant conditioning chambers. Effects of brain site-specific infusion of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the mGluR2/3 agonist were then assessed on the maintenance of self-administration. RESULTS Microinjection of the mGluR5 antagonist MPEP in the nucleus accumbens reduced ethanol self-administration at a dose that did not alter locomotor activity. By contrast, infusion of the mGluR2/3 agonist LY379268 in the nucleus accumbens reduced self-administration and produced nonspecific reductions in locomotor activity. The mGluR5 involvement showed anatomical specificity as evidenced by lack of effect of MPEP infusion in the dorsomedial caudate or medial prefrontal cortex on ethanol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (.4% w/v) versus water, and effects of intra-accumbens MPEP were tested. The MPEP did not alter sucrose self-administration or motor behavior. CONCLUSIONS These results suggest that mGluR5 activity specifically in the nucleus accumbens is required for the maintenance of ethanol self-administration in individuals with genetic risk for high alcohol consumption.
Collapse
|
91
|
Sidhpura N, Weiss F, Martin-Fardon R. Effects of the mGlu2/3 agonist LY379268 and the mGlu5 antagonist MTEP on ethanol seeking and reinforcement are differentially altered in rats with a history of ethanol dependence. Biol Psychiatry 2010; 67:804-11. [PMID: 20189165 PMCID: PMC2854322 DOI: 10.1016/j.biopsych.2010.01.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Growing evidence supports a role of metabotropic glutamate receptors (mGluRs) in ethanol reinforcement, ethanol seeking, and ethanol withdrawal. To extend the understanding of the role of mGluRs in the addiction-relevant effects of ethanol as well as of the treatment target potential of these receptors for alcohol abuse, the effects of a selective mGlu2/3 agonist (LY379268) and a selective mGlu5 antagonist (MTEP) were tested on two processes central to alcohol addiction: ethanol reinforcement and stress-induced reinstatement of ethanol seeking in rats with a history of ethanol dependence. METHODS Following operant ethanol self-administration training, male Wistar rats were made dependent by intragastric ethanol intubations. Ethanol dependence was confirmed by the presence of somatic withdrawal signs. Following 2 weeks of withdrawal, stable ethanol self-administration was reestablished, and the effects of LY379268 (0-3 mg/kg subcutaneous) and MTEP (0-3 mg/kg, intraperitoneal) on ethanol self-administration were determined in both nondependent and postdependent rats. A second set of rats underwent extinction training and then was tested for the effects of LY379268 or MTEP on reinstatement of ethanol seeking induced by footshock stress. RESULTS LY379268 and MTEP dose-dependently reduced both ethanol self-administration and reinstatement of ethanol seeking induced by footshock stress. Additionally, LY379268 was more effective than MTEP in inhibiting both behaviors in postdependent than in nondependent animals. CONCLUSIONS These findings suggest that neuroadaptation associated with chronic ethanol exposure or withdrawal alters the sensitivity of mGlu2/3 receptors, with implications for the understanding of the neural basis of alcohol dependence and the treatment target potential of these receptors.
Collapse
Affiliation(s)
- Nimish Sidhpura
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
92
|
Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639:47-58. [PMID: 20371237 DOI: 10.1016/j.ejphar.2010.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5) receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu(5) receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu(5) receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu(5) receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|
93
|
Koob GF. Focus on: Neuroscience and treatment: the potential of neuroscience to inform treatment. ALCOHOL RESEARCH & HEALTH : THE JOURNAL OF THE NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM 2010; 33:144-51. [PMID: 23579944 PMCID: PMC3887491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the 40 years since the founding of the National Institute on Alcohol Abuse and Alcoholism (NIAAA), researchers have gained a better understanding of the brain circuits and brain chemical (i.e., neurotransmitter) systems involved in the development and maintenance of alcoholism and other drug dependence. This understanding has led to the identification of numerous potential targets for pharmacotherapy of addiction. For example, insight into the roles of signaling molecules called endogenous opioids and the neurotransmitter glutamate were fundamental for developing two medications--naltrexone and acamprosate--now used in the treatment of alcoholism. However, the processes of dependence development (e.g., reinforcement, sensitization, and withdrawal) are highly complex and involve a plethora of contributing influences, which also may differ from patient to patient. Therefore, existing pharmacotherapies still are effective only for some but not all alcoholic patients. Accordingly, researchers are continuing to explore the processes involved in addiction development to identify new targets for treatment and develop new medications that can address different aspects of the dependence syndrome, thereby increasing the likelihood of successful treatment. NIAAA continues to play a pivotal role in funding and conducting this research in order to provide effective treatment options to millions of alcohol-dependent patients.
Collapse
|
94
|
Obara I, Bell RL, Goulding SP, Reyes CM, Larson LA, Ary AW, Truitt WA, Szumlinski KK. Differential effects of chronic ethanol consumption and withdrawal on homer/glutamate receptor expression in subregions of the accumbens and amygdala of P rats. Alcohol Clin Exp Res 2009; 33:1924-34. [PMID: 19673743 DOI: 10.1111/j.1530-0277.2009.01030.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Homer proteins are constituents of scaffolding complexes that regulate the trafficking and function of central Group1 metabotropic glutamate receptors (mGluRs) and N-methyl-d-aspartate (NMDA) receptors. Research supports the involvement of these proteins in ethanol-induced neuroplasticity in mouse. In this study, we examined the effects of short versus long-term withdrawal from chronic ethanol consumption on Homer and glutamate receptor protein expression within striatal and amygdala subregions of selectively bred, alcohol-preferring P rats. METHODS For 6 months, male P rats had concurrent access to 15% and 30% ethanol solutions under intermittent (IA: 4 d/wk) or continuous (CA: 7 d/wk) access conditions in their home cage. Rats were killed 24 hours (short withdrawal: SW) or 4 weeks (long withdrawal: LW) after termination of ethanol access, subregions of interest were micropunched and tissue processed for detection of Group1 mGluRs, NR2 subunits of the NMDA receptor and Homer protein expression. RESULTS Within the nucleus accumbens (NAC), limited changes in NR2a and NR2b expression were detected in the shell (NACsh), whereas substantial changes were observed for Homer2a/b, mGluRs as well as NR2a and NR2b subunits in the core (NACc). Within the amygdala, no changes were detected in the basolateral subregion, whereas substantial changes, many paralleling those observed in the NACc, were detected in the central nucleus (CeA) subregion. In addition, most of the changes observed in the CeA, but not NACc, were present in both SW and LW rats. CONCLUSIONS Overall, these subregion specific, ethanol-induced increases in mGluR/Homer2/NR2 expression within the NAC and amygdala suggest changes in glutamatergic plasticity had taken place. This may be a result of learning and subsequent memory formation of ethanol's rewarding effects in these brain structures, which may, in part, mediate the chronic relapsing nature of alcohol abuse.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Psychology, University of California, Santa Barbara, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Besheer J, Grondin JJM, Salling MC, Spanos M, Stevenson RA, Hodge CW. Interoceptive effects of alcohol require mGlu5 receptor activity in the nucleus accumbens. J Neurosci 2009; 29:9582-91. [PMID: 19641121 PMCID: PMC2845172 DOI: 10.1523/jneurosci.2366-09.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/17/2009] [Accepted: 06/17/2009] [Indexed: 11/21/2022] Open
Abstract
The interoceptive effects of alcohol are major determinants of addiction liability. Metabotropic glutamate (mGlu) receptors are widely expressed in striatal circuits known to modulate drug-seeking. Given that the interoceptive effects of drugs can be important determinants of abuse liability, we hypothesized that striatal mGlu receptors modulate the interoceptive effects of alcohol. Using drug discrimination learning, rats were trained to discriminate alcohol (1 g/kg, i.g.) versus water. We found that systemic antagonism of metabotropic glutamate subtype 5 (mGlu5) receptors [10 mg/kg 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3 mg/kg 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine], but not mGlu1 receptors ([0.3-3 mg/kg JNJ16259685) (3,4-dihydro-2H-pyrano[2,3]beta-quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone)], inhibited the discriminative stimulus effects of alcohol. Furthermore, mGlu5 receptor antagonism (10 mg/kg MPEP) significantly inhibited neuronal activity in the nucleus accumbens core as levels of the transcription factor c-Fos were significantly reduced. Accordingly, targeted inhibition of mGlu5 receptors (20 microg of MPEP) in the nucleus accumbens core blunted the discriminative stimulus effects of alcohol (1 g/kg). Anatomical specificity was confirmed by the lack of effect of inhibition of mGlu5 receptors (10-30 microg of MPEP) in the dorsomedial caudate-putamen and the similar cytological expression patterns and relative density of mGlu5 receptors between the brain regions. Functional involvement of intra-accumbens mGlu5 receptors was confirmed as activation of mGlu5 receptors [10 microg of (RS)-2-amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt] enhanced the discriminative stimulus effects of a low alcohol dose (0.5 g/kg), and mGlu5 receptor inhibition (20 microg of MPEP) prevented the agonist-induced enhancement. These results show that mGlu5 receptor activity in the nucleus accumbens is required for the expression of the interoceptive effects of alcohol.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signaling in behavioral sensitivity to ethanol. J Neurosci 2009; 29:8408-18. [PMID: 19571131 DOI: 10.1523/jneurosci.0714-09.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ethanol, a widely abused substance, elicits evolutionarily conserved behavioral responses in a concentration-dependent manner in vivo. The molecular mechanisms underlying such behavioral sensitivity to ethanol are poorly understood. While locomotor-based behavioral genetic screening is successful in identifying genes in invertebrate models, such complex behavior-based screening has proven difficult for recovering genes in vertebrates. Here we report a novel and tractable ethanol response in zebrafish. Using this ethanol-modulated camouflage response as a screening assay, we have identified a zebrafish mutant named fantasma (fan), which displays reduced behavioral sensitivity to ethanol. Positional cloning reveals that fan encodes type 5 adenylyl cyclase (AC5). fan/ac5 is required to maintain the phosphorylation of extracellular signal-regulated kinase (ERK) in the forebrain structures, including the telencephalon and hypothalamus. Partial inhibition of phosphorylation of ERK in wild-type zebrafish mimics the reduction in sensitivity to stimulatory effects of ethanol observed in the fan mutant, whereas, strikingly, strong inhibition of phosphorylation of ERK renders a stimulatory dose of ethanol sedating. Since previous studies in Drosophila and mice show a role of cAMP signaling in suppressing behavioral sensitivity to ethanol, our findings reveal a novel, isoform-specific role of AC signaling in promoting ethanol sensitivity, and suggest that the phosphorylation level of the downstream effector ERK is a critical "gatekeeper" of behavioral sensitivity to ethanol.
Collapse
|
97
|
Koob GF, Kenneth Lloyd G, Mason BJ. Development of pharmacotherapies for drug addiction: a Rosetta stone approach. Nat Rev Drug Discov 2009; 8:500-15. [PMID: 19483710 DOI: 10.1038/nrd2828] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current pharmacotherapies for addiction represent opportunities for facilitating treatment and are forming a foundation for evaluating new medications. Furthermore, validated animal models of addiction and a surge in understanding of neurocircuitry and neuropharmacological mechanisms involved in the development and maintenance of addiction - such as the neuroadaptive changes that account for the transition to dependence and the vulnerability to relapse - have provided numerous potential therapeutic targets. Here, we emphasize a 'Rosetta Stone approach', whereby existing pharmacotherapies for addiction are used to validate and improve animal and human laboratory models to identify viable new treatment candidates. This approach will promote translational research and provide a heuristic framework for developing efficient and effective pharmacotherapies for addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400 La Jolla, California 92037, USA.
| | | | | |
Collapse
|
98
|
Faccidomo S, Besheer J, Stanford PC, Hodge CW. Increased operant responding for ethanol in male C57BL/6J mice: specific regulation by the ERK1/2, but not JNK, MAP kinase pathway. Psychopharmacology (Berl) 2009; 204:135-47. [PMID: 19125235 PMCID: PMC2845162 DOI: 10.1007/s00213-008-1444-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/16/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE Extracellular signal-regulated protein kinase (ERK(1/2)) is a member of the mitogen-activated protein kinase (MAPK) signaling pathway and a key molecular target for ethanol (EtOH) and other drugs of abuse. OBJECTIVE The aim of the study was to assess the role of two MAPK pathways, ERK(1/2) and c-Jun N-terminal kinase (JNK), on the modulation of EtOH and sucrose self-administration. MATERIALS AND METHODS C57BL/6J mice were trained to lever press on a fixed-ratio 4 schedule with 9% EtOH/2% sucrose, or 2% sucrose, as the reinforcer. In experiments 1 and 2, mice were injected with the MEK(1/2) inhibitor SL 327 (0-100 mg/kg) and the JNK inhibitor AS 6012452 (0-56 mg/kg) prior to self-administration. In experiment 3, SL 327 (0-100 mg/kg) was administered prior to performance on a progressive ratio (PR) schedule of EtOH reinforcement. In experiment 4, SL 327 and AS 601245 were injected 2 h before a locomotor test. RESULTS SL 327 (30 mg/kg) significantly increased EtOH self-administration without affecting locomotion. Higher doses of SL 327 and AS 601245 reduced EtOH-reinforced responding and locomotor activity. Reductions of both ligands on sucrose self-administration were due to decreases in motor activity. SL 327 pretreatment had no effect on PR responding. CONCLUSIONS ERK(1/2) activity is more directly involved in modulating the reinforcing properties of EtOH than JNK activity due to its selective potentiation of EtOH-reinforced responding. The specificity of this effect to EtOH self-administration, rather than sucrose self-administration, suggests that the mechanism by which ERK(1/2) increases EtOH-reinforced responding does not generalize to all reinforcing solutions and is not due to increased motivation to consume EtOH.
Collapse
Affiliation(s)
- Sara Faccidomo
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
99
|
Hamlin AS, Clemens KJ, Choi EA, McNally GP. Paraventricular thalamus mediates context-induced reinstatement (renewal) of extinguished reward seeking. Eur J Neurosci 2009; 29:802-12. [PMID: 19200064 DOI: 10.1111/j.1460-9568.2009.06623.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paraventricular thalamus (PvTh) is uniquely placed to contribute to reinstatement of drug and reward seeking. It projects extensively to regions implicated in reinstatement including accumbens shell (AcbSh), prefrontal cortex (PFC) and basolateral amygdala (BLA), and receives afferents from other regions important for reinstatement such as lateral hypothalamus. We used complementary neuroanatomical and functional approaches to study the role of PvTh in context-induced reinstatement (renewal) of extinguished reward-seeking. Rats were trained to respond for a reward in context A, extinguished in context B and tested in context A or B. We applied the neuronal tracer cholera toxin B subunit (CTb) to AcbSh and examined retrograde-labelled neurons, c-Fos immunoreactivity (IR) and dual c-Fos/CTb labelled neurons in PvTh and other AcbSh afferents. In PvTh there was c-Fos IR in CTb-positive neurons associated with renewal showing activation of a PvTh-AcbSh pathway during renewal. In PFC there was little c-Fos IR in CTb-positive or negative neurons associated with renewal. In BLA, two distinct patterns of activation and retrograde labelling were observed. In rostral BLA there was significant c-Fos IR in CTb-negative neurons associated with renewal. In caudal BLA there was significant c-Fos IR in CTb-positive neurons associated with being tested in either the extinction (ABB) or training (ABA) context. We then studied the functional role of PvTh in renewal. Excitotoxic lesions of PvTh prevented renewal. These lesions had no effect on the acquisition of reward seeking. These results show that PvTh mediates context-induced reinstatement and that this renewal is associated with recruitment of a PvTh-AcbSh pathway.
Collapse
Affiliation(s)
- Adam S Hamlin
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
100
|
Glutamate and reinstatement. Curr Opin Pharmacol 2009; 9:59-64. [PMID: 19157986 DOI: 10.1016/j.coph.2008.12.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/22/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
The importance of glutamate in the reinstatement of cocaine-seeking behavior has been established. New molecular and neurochemical adaptations in the glutamatergic system which drive cocaine relapse have been identified, such as the ability of CB1 receptor stimulation to reduce basal glutamate levels and the involvement of the GluR1 receptor subunit in reinstatement. Furthermore, it is apparent that similar glutamatergic neuroadaptations arise after self-administration of cocaine, heroin, nicotine, and alcohol. For example, reinstatement to cocaine, nicotine, and alcohol can be prevented both by the stimulation of group II mGluR receptors and by the blockade of group I mGluR receptors. The similarities in the neurochemistry behind relapse to these varied drug classes indicate that drugs that target the glutamate system could be effective at treating relapse to multiple types of drugs.
Collapse
|