51
|
Watanabe J, Matsumoto M, Kageyama H, Murai N, Sasaki S, Hirako S, Wada N, Arata S, Shioda S. Ghrelin suppresses proliferation of fetal neural progenitor cells, and induces their differentiation into neurons. Peptides 2015; 69:40-6. [PMID: 25828736 DOI: 10.1016/j.peptides.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/19/2015] [Indexed: 01/02/2023]
Abstract
Although considerable progress has been made in understanding how the temporal and regional control of neural progenitor cells (NPCs) dictates their fate, their key regulators during neural development are still unknown. Ghrelin, which is isolated from porcine stomach extract, is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The widespread expression of ghrelin and GHS-R in the central nervous system during development suggests that ghrelin may be involved in developmental neural growth. However, its role in regulating fetal NPCs is still unclear. In this study, we investigated the effects of ghrelin on primary cultured NPCs derived from fetal mouse telencephalon. The expressions of both ghrelin and its receptor were observed in NPCs using RT-PCR, immunoblotting and immunocytostaining. Interestingly, the exposure of fetal NPCs to ghrelin at concentrations of 10(-7) and 10(-9)M suppressed their proliferation, and caused them to differentiate into neurons and to extend neurites. These results strongly suggest that ghrelin plays an autocrine modulatory role in fetal neural development.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Minako Matsumoto
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Haruaki Kageyama
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Faculty of Health Care, Kiryu University, Midori City, Gunma 379-2392, Japan
| | - Norimitsu Murai
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shun Sasaki
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoshi Hirako
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
52
|
Schrödl F, Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, Bruckner D, Motloch K, Holub B, Kofler B, Reitsamer HA. Distribution of galanin receptors in the human eye. Exp Eye Res 2015; 138:42-51. [PMID: 26122049 DOI: 10.1016/j.exer.2015.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
The neuropeptide galanin (GAL) is widely distributed within intrinsic and extrinsic sources supplying the eye. It is involved in regulation of the vascular tone, thus important for ocular homeostasis. Since the presence/distribution of its receptors is unknown, we here screen for the presence of the various GAL receptors in the human eye. Meeting the Helsinki-Declaration, human eyes (n = 6; 45-83 years of age, of both sex, post mortem time 10-19 h) were obtained from the cornea bank and prepared for immunohistochemistry against GAL receptors 1-3 (GALR1-GALR3). Over-expressing cell assays served as positive controls and confocal laser-scanning microscopy was used for documentation. Cell assays reliably detected immunoreactivity for GALR1-3 and cross-reactions between antibodies used were not observed. In the cornea, GALR1-3 were detected in basal layers of the epithelium, stroma, endothelium, as well as in adjacent conjunctiva. In the iris, GALR1-3 were detected in iris sphincter and dilator, while iris vessels displayed immunoreactivity for GALR1 and GALR3. In the ciliary body, GALR1 was exclusively found in the non-pigmented epithelium while GALR3 was detected in the ciliary muscle and vessels. In the retina, GALR1 was present in fibers of the IPL, OPL, NFL, many cells of the INL and few cells of the ONL. GALR2 and GALR3 were present in few neurons of the INL, while GALR2 was also found surrounding retinal vessels. RPE displayed weak immunoreactivity for GALR2 but intense immunoreactivity for GALR3. In the choroid, GALR1-3 were detectable in intrinsic choroidal neurons and nerve fibers of the choroidal stroma, and all three receptors were detected surrounding choroidal blood vessels, while the choriocapillaris was immunoreactive for GALR3 only. This is the first report of the various GALRs in the human eye. While the presence of GALRs in cornea and conjunctiva might be relevant for wound healing or inflammatory processes, the detection in iris vessels (GALR1, 2) and choroidal vessels (GALR1-3) highlights the role of GAL in vessel dynamics. Presence of GALR1 in ciliary body epithelium and GALR3 in ciliary vessels indicates involvement in aqueous humor production, whereas retinal GALR distribution might contribute to signal transduction.
Collapse
Affiliation(s)
- Falk Schrödl
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; Department of Anatomy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Alexandra Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Clemens Strohmaier
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Barbara Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Christian Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Daniela Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Karolina Motloch
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Barbara Holub
- Laura-Bassi Centre of Expertise, THERAPEP, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Barbara Kofler
- Laura-Bassi Centre of Expertise, THERAPEP, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Herbert A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| |
Collapse
|
53
|
Macedo IC, Rozisky JR, Oliveira C, Oliveira CM, Laste G, Nonose Y, Santos VS, Marques PR, Ribeiro MFM, Caumo W, Torres ILS. Chronic stress associated with hypercaloric diet changes the hippocampal BDNF levels in male Wistar rats. Neuropeptides 2015; 51:75-81. [PMID: 25963531 DOI: 10.1016/j.npep.2015.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 01/24/2023]
Abstract
Chronic stress, whether associated with obesity or not, leads to different neuroendocrine and psychological changes. Obesity or being overweight has become one of the most serious worldwide public health problems. Additionally, it is related to a substantial increase in daily energy intake, which results in substituting nutritionally adequate meals for snacks. This metabolic disorder can lead to morbidity, mortality, and reduced quality of life. On the other hand, brain-derived neurotrophic factor (BDNF) is widely expressed in all brain regions, particularly in the hypothalamus, where it has important effects on neuroprotection, synaptic plasticity, mammalian food intake-behavior, and energy metabolism. BDNF is involved in many activities modulated by the hypothalamic-pituitary-adrenal (HPA) axis. Therefore, this study aims to evaluate the effect of obesity associated with chronic stress on the BDNF central levels of rats. Obesity was controlled by analyzing the animals' caloric intake and changes in body weight. As a stress parameter, we analyzed the relative adrenal gland weight. We found that exposure to chronic restraint stress during 12 weeks increases the adrenal gland weight, decreases the BDNF levels in the hippocampus and is associated with a decrease in the calorie and sucrose intake, characterizing anhedonia. These effects can be related stress, a phenomenon that induces depression-like behavior. On the other hand, the rats that received the hypercaloric diet had an increase in calorie intake and became obese, which was associated with a decrease in hypothalamus BDNF levels.
Collapse
Affiliation(s)
- I C Macedo
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Graduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - J R Rozisky
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Medical Sciences - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - C Oliveira
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Medical Sciences - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - C M Oliveira
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Medical Sciences - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - G Laste
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Medical Sciences - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Y Nonose
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - V S Santos
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - P R Marques
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Medical Sciences - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - M F M Ribeiro
- Graduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Neuro-Humoral Interaction Laboratory, Department of Physiology - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - W Caumo
- Graduate Program in Medical Sciences - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - I L S Torres
- Pain Pharmacology and Neuromodulation Laboratory: Animal Models, Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Graduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS 90050-170, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Medical Sciences - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
54
|
Geloso MC, Corvino V, Di Maria V, Marchese E, Michetti F. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front Cell Neurosci 2015; 9:85. [PMID: 25852477 PMCID: PMC4360818 DOI: 10.3389/fncel.2015.00085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are emerging as key regulators of stem cell niche activities in health and disease, both inside and outside the central nervous system (CNS). Among them, neuropeptide Y (NPY), one of the most abundant neuropeptides both in the nervous system and in non-neural districts, has become the focus of much attention for its involvement in a wide range of physiological and pathological conditions, including the modulation of different stem cell activities. In particular, a pro-neurogenic role of NPY has been evidenced in the neurogenic niche, where a direct effect on neural progenitors has been demonstrated, while different cellular types, including astrocytes, microglia and endothelial cells, also appear to be responsive to the peptide. The marked modulation of the NPY system during several pathological conditions that affect neurogenesis, including stress, seizures and neurodegeneration, further highlights the relevance of this peptide in the regulation of adult neurogenesis. In view of the considerable interest in understanding the mechanisms controlling neural cell fate, this review aims to summarize and discuss current data on NPY signaling in the different cellular components of the neurogenic niche in order to elucidate the complexity of the mechanisms underlying the modulatory properties of this peptide.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
55
|
Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 2015; 40:520-43. [PMID: 24762203 PMCID: PMC4265206 DOI: 10.1111/nan.12150] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
Hippocampal sclerosis (HS) is a common pathology encountered in mesial temporal lobe epilepsy (MTLE) as well as other epilepsy syndromes and in both surgical and post-mortem practice. The 2013 International League Against Epilepsy (ILAE) classification segregates HS into typical (type 1) and atypical (type 2 and 3) groups, based on the histological patterns of subfield neuronal loss and gliosis. In addition, granule cell reorganization and alterations of interneuronal populations, neuropeptide fibre networks and mossy fibre sprouting are distinctive features of HS associated with epilepsies; they can be useful diagnostic aids to discriminate from other causes of HS, as well as highlighting potential mechanisms of hippocampal epileptogenesis. The cause of HS remains elusive and may be multifactorial; the contribution of febrile seizures, genetic susceptibility, inflammatory and neurodevelopmental factors are discussed. Post-mortem based research in HS, as an addition to studies on surgical samples, has the added advantage of enabling the study of the wider network changes associated with HS, the long-term effects of epilepsy on the pathology and associated comorbidities. It is likely that HS is heterogeneous in aspects of its cause, epileptogenetic mechanisms, network alterations and response to medical and surgical treatments. Future neuropathological studies will contribute to better recognition and understanding of these clinical and patho-aetiological subtypes of HS.
Collapse
Affiliation(s)
- Maria Thom
- Departments of Neuropathology and Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| |
Collapse
|
56
|
Megahed T, Hattiangady B, Shuai B, Shetty AK. Parvalbumin and neuropeptide Y expressing hippocampal GABA-ergic inhibitory interneuron numbers decline in a model of Gulf War illness. Front Cell Neurosci 2015; 8:447. [PMID: 25620912 PMCID: PMC4288040 DOI: 10.3389/fncel.2014.00447] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/12/2014] [Indexed: 01/30/2023] Open
Abstract
Cognitive dysfunction is amongst the most conspicuous symptoms in Gulf War illness (GWI). Combined exposure to the nerve gas antidote pyridostigmine bromide (PB), pesticides and stress during the Persian Gulf War-1 (PGW-1) are presumed to be among the major causes of GWI. Indeed, our recent studies in rat models have shown that exposure to GWI-related (GWIR) chemicals and mild stress for 4 weeks engenders cognitive impairments accompanied with several detrimental changes in the hippocampus. In this study, we tested whether reduced numbers of hippocampal gamma-amino butyric acid (GABA)-ergic interneurons are among the pathological changes induced by GWIR-chemicals and stress. Animals were exposed to low doses of GWIR-chemicals and mild stress for 4 weeks. Three months after this exposure, subpopulations of GABA-ergic interneurons expressing the calcium binding protein parvalbumin (PV), the neuropeptide Y (NPY) and somatostatin (SS) in the hippocampus were stereologically quantified. Animals exposed to GWIR-chemicals and stress for 4 weeks displayed reduced numbers of PV-expressing GABA-ergic interneurons in the dentate gyrus and NPY-expressing interneurons in the CA1 and CA3 subfields. However, no changes in SS+ interneuron population were observed in the hippocampus. Furthermore, GABA-ergic interneuron deficiency in these animals was associated with greatly diminished hippocampus neurogenesis. Because PV+ and NPY+ interneurons play roles in maintaining normal cognitive function and neurogenesis, and controlling the activity of excitatory neurons in the hippocampus, reduced numbers of these interneurons may be one of the major causes of cognitive dysfunction and reduced neurogenesis observed in GWI. Hence, strategies that improve inhibitory neurotransmission in the hippocampus may prove beneficial for reversing cognitive dysfunction in GWI.
Collapse
Affiliation(s)
- Tarick Megahed
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System Temple, TX, USA ; Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Temple, TX, USA
| | - Bharathi Hattiangady
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System Temple, TX, USA ; Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Temple, TX, USA ; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine College Station, TX, USA
| | - Bing Shuai
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System Temple, TX, USA ; Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Temple, TX, USA ; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine College Station, TX, USA
| | - Ashok K Shetty
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System Temple, TX, USA ; Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Temple, TX, USA ; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine College Station, TX, USA
| |
Collapse
|
57
|
Bakos J, Lestanova Z, Strbak V, Havranek T, Bacova Z. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat. Neuropeptides 2014; 48:281-6. [PMID: 25047873 DOI: 10.1016/j.npep.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females.
Collapse
Affiliation(s)
- Jan Bakos
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Medical Faculty, Comenius University, Bratislava, Slovakia.
| | - Zuzana Lestanova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Strbak
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Normal and Pathological Physiology, Medical Faculty, Slovak Medical University, Bratislava, Slovakia
| | - Tomas Havranek
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Normal and Pathological Physiology, Medical Faculty, Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|