51
|
De B, Nag G. Metabolic diversity in the grains of Indian varieties of rice. C R Biol 2014; 337:283-93. [PMID: 24702898 DOI: 10.1016/j.crvi.2014.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
The aim of the present work was to analyze metabolic diversity in 26 different indica varieties of rice grains. Seventy-six metabolites could be identified in the methanol extracts of each of the rice varieties analyzed by gas chromatography-mass spectrometry. These metabolites included 9 sugars/sugar alcohols, 17 amino acids/derivatives, 18 fatty acids, 5 free phenolic acids and 19 other organic acids, 3 phytosterols, 5 other constituents. Cluster analyses to extract information for similarity and differences in metabolites unveiled diversity in metabolite profile. Two hierarchical clusters were generated based on the metabolite contents of the rice varieties. The first cluster (cluster I) consisted of one variety only. The second cluster again segregated into four clusters (clusters II, III, IV and V). Very distinct differences were visible amongst the clusters with respect to their sugars/sugar alcohols, organic acid, amino acid and fatty acid, phenol, and sterol profiles. Metabolites determine nutritional quality, taste, aroma. This and future efforts on the metabolomic information would help biochemists and nutritionists to better understand the nutritional quality of such grains at varietal level and correlating metabolites and long term human health related issues.
Collapse
Affiliation(s)
- Bratati De
- Phytochemistry and Pharmacognosy research Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Gargi Nag
- Phytochemistry and Pharmacognosy research Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
52
|
Perez-Fons L, Wells T, Corol DI, Ward JL, Gerrish C, Beale MH, Seymour GB, Bramley PM, Fraser PD. A genome-wide metabolomic resource for tomato fruit from Solanum pennellii. Sci Rep 2014; 4:3859. [PMID: 24457419 PMCID: PMC3900926 DOI: 10.1038/srep03859] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 01/02/2014] [Indexed: 12/25/2022] Open
Abstract
Tomato and its processed products are one of the most widely consumed fruits. Its domestication, however, has resulted in the loss of some 95% of the genetic and chemical diversity of wild relatives. In order to elucidate this diversity, exploit its potential for plant breeding, as well as understand its biological significance, analytical approaches have been developed, alongside the production of genetic crosses of wild relatives with commercial varieties. In this article, we describe a multi-platform metabolomic analysis, using NMR, mass spectrometry and HPLC, of introgression lines of Solanum pennellii with a domesticated line in order to analyse and quantify alleles (QTL) responsible for metabolic traits. We have identified QTL for health-related antioxidant carotenoids and tocopherols, as well as molecular signatures for some 2000 compounds. Correlation analyses have revealed intricate interactions in isoprenoid formation in the plastid that can be extrapolated to other crop plants.
Collapse
Affiliation(s)
- Laura Perez-Fons
- Centre for Systems and Synthetic Biology, School Biological Sciences, Royal Holloway, University London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Tom Wells
- Centre for Systems and Synthetic Biology, School Biological Sciences, Royal Holloway, University London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Delia I Corol
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Jane L Ward
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Christopher Gerrish
- Centre for Systems and Synthetic Biology, School Biological Sciences, Royal Holloway, University London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Michael H Beale
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Graham B Seymour
- Plant and Crop Science Division, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Peter M Bramley
- Centre for Systems and Synthetic Biology, School Biological Sciences, Royal Holloway, University London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Paul D Fraser
- Centre for Systems and Synthetic Biology, School Biological Sciences, Royal Holloway, University London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| |
Collapse
|
53
|
Corrado G, Piffanelli P, Caramante M, Coppola M, Rao R. SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics 2013; 14:835. [PMID: 24279304 PMCID: PMC4046682 DOI: 10.1186/1471-2164-14-835] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background The tomato (Solanum lycopersium L.) is the most widely grown vegetable in the world. It was domesticated in Latin America and Italy and Spain are considered secondary centers of diversification. This food crop has experienced severe genetic bottlenecks and modern breeding activities have been characterized by trait introgression from wild species and divergence in different market classes. Results With the aim to examine patterns of polymorphism, characterize population structure and identify putative loci under positive selection, we genotyped 214 tomato accessions (which include cultivated landraces, commercial varieties and wild relatives) using a custom-made Illumina SNP-panel. Most of the 175 successfully scored SNP loci were found to be polymorphic. Population structure analysis and estimates of genetic differentiation indicated that landraces constitute distinct sub-populations. Furthermore, contemporary varieties could be separated in groups (processing, fresh and cherry) that are consistent with the recent breeding aimed at market-class specialization. In addition, at the 95% confidence level, we identified 30, 34 and 37 loci under positive selection between landraces and each of the groups of commercial variety (cherry, processing and fresh market, respectively). Their number and genomic locations imply the presence of some extended regions with high genetic variation between landraces and contemporary varieties. Conclusions Our work provides knowledge concerning the level and distribution of genetic variation within cultivated tomato landraces and increases our understanding of the genetic subdivision of contemporary varieties. The data indicate that adaptation and selection have led to a genomic signature in cultivated landraces and that the subpopulation structure of contemporary varieties is shaped by directed breeding and largely of recent origin. The genomic characterization presented here is an essential step towards a future exploitation of the available tomato genetic resources in research and breeding programs. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-835) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università 100, 80055 Portici, NA, Italy.
| | | | | | | | | |
Collapse
|
54
|
Bohra A. Emerging paradigms in genomics-based crop improvement. ScientificWorldJournal 2013; 2013:585467. [PMID: 24348171 PMCID: PMC3855978 DOI: 10.1155/2013/585467] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 09/16/2013] [Indexed: 01/23/2023] Open
Abstract
Next generation sequencing platforms and high-throughput genotyping assays have remarkably expedited the pace of development of genomic tools and resources for several crops. Complementing the technological developments, conceptual shifts have also been witnessed in designing experimental populations. Availability of second generation mapping populations encompassing multiple alleles, multiple traits, and extensive recombination events is radically changing the phenomenon of classical QTL mapping. Additionally, the rising molecular breeding approaches like marker assisted recurrent selection (MARS) that are able to harness several QTLs are of particular importance in obtaining a "designed" genotype carrying the most desirable combinations of favourable alleles. Furthermore, rapid generation of genome-wide marker data coupled with easy access to precise and accurate phenotypic screens enable large-scale exploitation of LD not only to discover novel QTLs via whole genome association scans but also to practise genomic estimated breeding value (GEBV)-based selection of genotypes. Given refinements being experienced in analytical methods and software tools, the multiparent populations will be the resource of choice to undertake genome wide association studies (GWAS), multiparent MARS, and genomic selection (GS). With this, it is envisioned that these high-throughput and high-power molecular breeding methods would greatly assist in exploiting the enormous potential underlying breeding by design approach to facilitate accelerated crop improvement.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| |
Collapse
|
55
|
Nasri S, Abdollahi Mandoulakani B, Darvishzadeh R, Bernousi I. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochem Genet 2013; 51:927-43. [PMID: 23839088 DOI: 10.1007/s10528-013-9618-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 04/06/2013] [Indexed: 12/23/2022]
Abstract
Inter-retrotransposon amplified polymorphisms (IRAPs) and retrotransposon-microsatellite amplified polymorphisms (REMAPs) were used to detect retrotransposon integration events and genetic diversity in 101 Iranian bread wheat (Triticum aestivum L.) cultivars and breeding lines. The 9 IRAP primers amplified 128 loci, and 20 REMAP primers amplified 263 loci. Percentage of polymorphic loci, average expected heterozygosity, number of effective alleles, and Shannon's information index for the REMAP markers were slightly higher than those for the IRAP markers. The same estimated parameters calculated for native and nonnative retrotransposons were not considerably different. A Mantel test between IRAP and REMAP cophenetic matrices evidenced no significant correlation. Cluster analysis based on the Dice similarity coefficient and complete linkage algorithm using IRAP+REMAP loci identified five groups among the genotypes studied that could be applied as crossing parents in T. aestivum breeding programs.
Collapse
Affiliation(s)
- Shilan Nasri
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | | | | |
Collapse
|
56
|
Scientific Opinion on an application from Pioneer Hi‐Bred International and Dow AgroSciences LLC (EFSA‐GMO‐NL‐2005‐23) for placing on the market of genetically modified maize 59122 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
57
|
Paterson A, Kassim A, McCallum S, Woodhead M, Smith K, Zait D, Graham J. Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:33-48. [PMID: 22890807 DOI: 10.1007/s00122-012-1957-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 05/23/2023]
Abstract
Raspberry volatiles are important for perceptions of sensory quality, mould resistance and some have nutraceutical activities. Twelve raspberry character volatiles were quantified, 11 of them in fruit from two seasons, from plants from the Glen Moy × Latham mapping population growing in both open field and under cover (polytunnels). Effects of season and environment were examined for their impact on the content of α-ionone, α-ionol, β-ionone, β-damascenone, linalool, geraniol, benzyl alcohol, (Z)-3-hexenol, acetoin, acetic and hexanoic acids, whilst raspberry ketone was measured in one season. A significant variation was observed in fruit volatiles in all progeny between seasons and method of cultivation. Quantitative trait loci were determined and mapped to six of the seven linkage groups, as were candidate genes in the volatiles pathways.
Collapse
Affiliation(s)
- Alistair Paterson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
58
|
Aerts R, Berecha G, Gijbels P, Hundera K, Glabeke S, Vandepitte K, Muys B, Roldán-Ruiz I, Honnay O. Genetic variation and risks of introgression in the wild Coffea arabica gene pool in south-western Ethiopian montane rainforests. Evol Appl 2012; 6:243-52. [PMID: 23798974 PMCID: PMC3689350 DOI: 10.1111/j.1752-4571.2012.00285.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/19/2012] [Indexed: 12/05/2022] Open
Abstract
The montane rainforests of SW Ethiopia are the primary centre of diversity of Coffea arabica and the origin of all Arabica coffee cultivated worldwide. This wild gene pool is potentially threatened by forest fragmentation and degradation, and by introgressive hybridization with locally improved coffee varieties. We genotyped 703 coffee shrubs from unmanaged and managed coffee populations, using 24 microsatellite loci. Additionally, we genotyped 90 individuals representing 23 Ethiopian cultivars resistant to coffee berry disease (CBD). We determined population genetic diversity, genetic structure, and admixture of cultivar alleles in the in situ gene pool. We found strong genetic differentiation between managed and unmanaged coffee populations, but without significant differences in within-population genetic diversity. The widespread planting of coffee seedlings including CBD-resistant cultivars most likely offsets losses of genetic variation attributable to genetic drift and inbreeding. Mixing cultivars with original coffee genotypes, however, leaves ample opportunity for hybridization and replacement of the original coffee gene pool, which already shows signs of admixture. In situ conservation of the wild gene pool of C. arabica must therefore focus on limiting coffee production in the remaining wild populations, as intensification threatens the genetic integrity of the gene pool by exposing wild genotypes to cultivars.
Collapse
Affiliation(s)
- Raf Aerts
- Division Forest, Nature and Landscape, University of Leuven Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:191-204. [PMID: 22111515 DOI: 10.1111/j.1365-313x.2011.04863.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Solanum lycopersicum (tomato) and its wild relatives harbor genetic diversity that yields heritable variation in fruit chemistry that could be exploited to identify genes regulating their synthesis and accumulation. Carotenoids, for example, are essential in plant and animal nutrition, and are the visual indicators of ripening for many fruits, including tomato. Whereas carotenoid synthesis is well characterized, factors regulating flux through the pathway are poorly understood at the molecular level. To exploit the impact of tomato genetic diversity on carotenoids, Solanum pennellii introgression lines were used as a source of defined natural variation and as a resource for the identification of candidate regulatory genes. Ripe fruits were analyzed for numerous fruit metabolites and transcriptome profiles generated using a 12,000 unigene oligoarray. Correlation analysis between carotenoid content and gene expression profiles revealed 953 carotenoid-correlated genes. To narrow the pool, subnetwork analysis of carotenoid-correlated transcription revealed 38 candidates. One candidate for impact on trans-lycopene and β-carotene accumulation was functionally charaterized, SlERF6, revealing that it indeed influences carotenoid biosynthesis and additional ripening phenotypes. Reduced expression of SlERF6 by RNAi enhanced both carotenoid and ethylene levels during fruit ripening, demonstrating an important role for SlERF6 in ripening, integrating the ethylene and carotenoid synthesis pathways.
Collapse
Affiliation(s)
- Je Min Lee
- Boyce Thompson Institute for Plant Research, Tower Rd., Cornell University campus, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Toubiana D, Semel Y, Tohge T, Beleggia R, Cattivelli L, Rosental L, Nikoloski Z, Zamir D, Fernie AR, Fait A. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genet 2012; 8:e1002612. [PMID: 22479206 PMCID: PMC3315483 DOI: 10.1371/journal.pgen.1002612] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 02/07/2012] [Indexed: 01/20/2023] Open
Abstract
To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping. Seeds represent 70% of the food source for man and livestock. However, as a result of millennia of domestication, crop plants have undergone major genetic deterioration, leading to a loss of important quality traits. Thus, the reintroduction of these quality traits is the key to the improvement of crops in modern agriculture. Seed quality traits include nutritional components, such as proteins and amino acids, and seed germination and storability, which are, in turn, inherently related to metabolism. To understand the genetic basis of seed metabolism—a strategic need in the improvement of seed crops—we studied a collection of offspring plants stemming from the cross between a domesticated tomato cultivar Solanum lycopersicum cv M82 and its distant wild relative S. pennellii. We monitored the changes in metabolism and studied the mode of regulation of the concentration of metabolites in the seeds as a result of genetic introgression, by taking advantage of state-of-the-art technologies and methods of data elaboration such as network-based analysis. We identified a number of candidate genes that may be useful in manipulations to enhance nutritional values in seeds. Finally, in an effort to study the relation among the seed, the fruit, and the mother plant, we determined potential yield-associated metabolic markers.
Collapse
Affiliation(s)
- David Toubiana
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Yaniv Semel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | - Leah Rosental
- French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Dani Zamir
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail: (AF); (ARF)
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
- * E-mail: (AF); (ARF)
| |
Collapse
|
61
|
Nadella KD, Marla SS, Kumar PA. Metabolomics in agriculture. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:149-59. [PMID: 22433073 DOI: 10.1089/omi.2011.0067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolome refers to the complete set of metabolites synthesized through a series of multiple enzymatic steps from various biochemical pathways processing the information encrypted in the plant genome. Knowledge about synthesis and regulation of various plant metabolic substances has improved substantially with availability of Omics data originating from sequencing of plant genomes. Metabolic profiling of crops is increasingly becoming popular in assessing plant phenotypes and genetic diversity. Metabolic compositional changes vividly reflect the changes occurring during plant growth, development, and in response to stress. Hence, study of plant metabolic pathways, the interconnections between them in context of systems biology is increasingly becoming popular in identification of candidate genes. The present article reviews recent developments in analysis of plant metabolomics, available bioinformatics techniques and databases employed for comparative pathway analysis, metabolic QTLs, and their application in plants.
Collapse
Affiliation(s)
- K D Nadella
- National Bureau of Plant Genetic Resources, ICAR, New Delhi, India
| | | | | |
Collapse
|
62
|
Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. MOLECULAR PLANT 2012; 5:401-17. [PMID: 22180467 DOI: 10.1093/mp/ssr102] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize. Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very dominant stress factor therefore plays an essential role in plant breeding. Previous studies demonstrated that corn yield potential and enhanced stress tolerance are associated traits. In this study, we analyzed six different maize hybrids for their ability to deal with drought stress in a greenhouse experiment. We were able to combine data from morphophysiological parameters measured under well-watered conditions and under water restriction with metabolic data from different organs. These different organs possessed distinct metabolite compositions, with the leaf blade displaying the most considerable metabolome changes following water deficiency. Whilst we could show a general increase in metabolite levels under drought stress, including changes in amino acids, sugars, sugar alcohols, and intermediates of the TCA cycle, these changes were not differential between maize hybrids that had previously been designated based on field trial data as either drought-tolerant or susceptible. The fact that data described here resulted from a greenhouse experiment with rather different growth conditions compared to natural ones in the field may explain why tolerance groups could not be confirmed in this study. We were, however, able to highlight several metabolites that displayed conserved responses to drought as well as metabolites whose levels correlated well with certain physiological traits.
Collapse
Affiliation(s)
- Sandra Witt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
More than 70 years after the first ex situ genebanks have been established, major efforts in this field are still concerned with issues related to further completion of individual collections and securing of their storage. Attempts regarding valorization of ex situ collections for plant breeders have been hampered by the limited availability of phenotypic and genotypic information. With the advent of molecular marker technologies first efforts were made to fingerprint genebank accessions, albeit on a very small scale and mostly based on inadequate DNA marker systems. Advances in DNA sequencing technology and the development of high-throughput systems for multiparallel interrogation of thousands of single nucleotide polymorphisms (SNPs) now provide a suite of technological platforms facilitating the analysis of several hundred of Gigabases per day using state-of-the-art sequencing technology or, at the same time, of thousands of SNPs. The present review summarizes recent developments regarding the deployment of these technologies for the analysis of plant genetic resources, in order to identify patterns of genetic diversity, map quantitative traits and mine novel alleles from the vast amount of genetic resources maintained in genebanks around the world. It also refers to the various shortcomings and bottlenecks that need to be overcome to leverage the full potential of high-throughput DNA analysis for the targeted utilization of plant genetic resources.
Collapse
Affiliation(s)
- Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank/Genome Diversity, Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
64
|
Scientific Opinion on application (EFSA-GMO-UK-2008-60) for placing on the market of genetically modified herbicide tolerant maize GA21 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003 from Syngenta Seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
65
|
Scientific Opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
66
|
Almeida J, Quadrana L, Asís R, Setta N, de Godoy F, Bermúdez L, Otaiza SN, Corrêa da Silva JV, Fernie AR, Carrari F, Rossi M. Genetic dissection of vitamin E biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3781-98. [PMID: 21527625 PMCID: PMC3134339 DOI: 10.1093/jxb/err055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 05/20/2023]
Abstract
Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for α-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (α, β, γ, and δ) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.
Collapse
Affiliation(s)
- Juliana Almeida
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Leandro Quadrana
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
| | - Ramón Asís
- CIBICI, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, CC 5000, Córdoba, Argentina
| | - Nathalia Setta
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Fabiana de Godoy
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Luisa Bermúdez
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Santiago N. Otaiza
- CIBICI, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, CC 5000, Córdoba, Argentina
| | | | - Alisdair R. Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
| | - Magdalena Rossi
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
- To whom correspondence should be addressed. E-mail: ; E-mail:
| |
Collapse
|
67
|
Fernie AR, Klee HJ. The use of natural genetic diversity in the understanding of metabolic organization and regulation. FRONTIERS IN PLANT SCIENCE 2011; 2:59. [PMID: 22645543 PMCID: PMC3355787 DOI: 10.3389/fpls.2011.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/12/2011] [Indexed: 05/02/2023]
Abstract
The study of metabolic regulation has traditionally focused on analysis of specific enzymes, emphasizing kinetic properties, and the influence of protein interactions and post-translational modifications. More recently, reverse genetic approaches permit researchers to directly determine the effects of a deficiency or a surplus of a given enzyme on the biochemistry and physiology of a plant. Furthermore, in many model species, gene expression atlases that give important spatial information concerning the quantitative expression level of metabolism-associated genes are being produced. In parallel, "top-down" approaches to understand metabolic regulation have recently been instigated whereby broad genetic diversity is screened for metabolic traits and the genetic basis of this diversity is defined thereafter. In this article we will review recent examples of this latter approach both in the model species Arabidopsis thaliana and the crop species tomato (Solanum lycopersicum). In addition to highlighting examples in which this genetic diversity approach has proven promising, we will discuss the challenges associated with this approach and provide a perspective for its future utility.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
- *Correspondence: Alisdair R. Fernie, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany. e-mail:
| | - Harry J. Klee
- Horticultural Sciences Department and the Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| |
Collapse
|
68
|
Pilacinski W, Crawford A, Downey R, Harvey B, Huber S, Hunst P, Lahman L, MacIntosh S, Pohl M, Rickard C, Tagliani L, Weber N. Plants with genetically modified events combined by conventional breeding: An assessment of the need for additional regulatory data. Food Chem Toxicol 2011; 49:1-7. [DOI: 10.1016/j.fct.2010.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 10/29/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
|
69
|
|
70
|
Ruan CJ, Teixeira da Silva JA. Metabolomics: creating new potentials for unraveling the mechanisms in response to salt and drought stress and for the biotechnological improvement of xero-halophytes. Crit Rev Biotechnol 2010; 31:153-69. [PMID: 21058928 DOI: 10.3109/07388551.2010.505908] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Breeders have long been interested in understanding the biological function and mechanism of xero-halophytes and their ability for growth in drought-stricken and salinized environments. However, the mechanisms in response to stress have been difficult to unravel because their defenses require regulatory changes to the activation of multiple genes and pathways. Metabolomics is becoming a key tool in comprehensively understanding the cellular response to abiotic stress and represents an important addition to the tools currently employed in genomics-assisted selection for plant improvement. In this review, we highlight the applications of plant metabolomics in characterizing metabolic responses to salt and drought stress, and identifying metabolic quantitative trait loci (QTLs). We also discuss the potential of metabolomics as a tool to unravel stress response mechanisms, and as a viable option for the biotechnological improvement of xero-halophytes when no other genetic information such as linkage maps and QTLs are available, by combining with germplasm-regression-combined marker-trait association identification.
Collapse
Affiliation(s)
- Cheng-Jiang Ruan
- Key Laboratory of Biotechnology & Bio-Resources Utilization, Dalian Nationalities University, Dalian City, Liaoning, China.
| | | |
Collapse
|
71
|
Do PT, Prudent M, Sulpice R, Causse M, Fernie AR. The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population. PLANT PHYSIOLOGY 2010; 154:1128-42. [PMID: 20841452 PMCID: PMC2971594 DOI: 10.1104/pp.110.163030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/13/2010] [Indexed: 05/19/2023]
Abstract
It has been recently demonstrated, utilizing interspecific introgression lines of tomato, generated from the cross between Solanum lycopersicum and the wild species Solanum pennellii, that the efficiency of photosynthate partitioning exerts a considerable influence on the metabolic composition of tomato fruit pericarp. In order to further evaluate the influence of source-sink interaction, metabolite composition was determined by gas chromatography-mass spectrometry in a different population. For this purpose, we used 23 introgression lines resulting from an interspecific cross between S. lycopersicum and the wild species Solanum chmielewskii under high (unpruned trusses) and low (trusses pruned to one fruit) fruit load conditions. Following this strategy, we were able to contrast the metabolite composition of fruits from plants cultivated at both fruit loads as well as to compare the network behavior of primary metabolism in the introgression line population. The study revealed that while a greater number of metabolic quantitative trait loci were observed under high fruit load (240) than under low fruit load (128) cultivations, the levels of metabolites were more highly correlated under low fruit load cultivation. Finally, an analysis of genotype × fruit load interactions indicated a greater influence of development and cultivation than genotype on fruit composition. Comparison with previously documented transcript profiles from a subset of these lines revealed that changes in metabolite levels did not correlate with changes in the levels of genes associated with their metabolism. These findings are discussed in the context of our current understanding of the genetic and environmental influence on metabolic source-sink interactions in tomato, with particular emphasis given to fruit amino acid content.
Collapse
|
72
|
Moyle LC, Muir CD. Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato. Evol Appl 2010; 3:409-21. [PMID: 25567935 PMCID: PMC3352507 DOI: 10.1111/j.1752-4571.2010.00143.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 02/05/2023] Open
Abstract
Although traditionally separated by different aims and methodologies, research on agricultural and evolutionary problems shares a common goal of understanding the mechanisms underlying functionally important traits. As such, research in both fields offers potential complementary and reciprocal insights. Here, we discuss adaptive stress responses (specifically to water stress) as an example of potentially fruitful research reciprocity, where agricultural research has clearly produced advances that could benefit evolutionary studies, while evolutionary studies offer approaches and insights underexplored in crop studies. We focus on research on Solanum species that include the domesticated tomato and its wild relatives. Integrated approaches to understanding ecological adaptation are particularly attractive in tomato and its wild relatives: many presumptively adaptive phenotypic differences characterize wild species, and the physiological and mechanistic basis of many relevant traits and environmental responses has already been examined in the context of cultivated tomato and some wild species. We highlight four specific instances where these reciprocal insights can be combined to better address questions that are fundamental both to agriculture and evolution.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
73
|
Metabolome variability in crop plant species--when, where, how much and so what? Regul Toxicol Pharmacol 2010; 58:S54-61. [PMID: 20627114 DOI: 10.1016/j.yrtph.2010.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 01/01/2023]
Abstract
"Omics" technologies provide coverage of gene, protein and metabolite analysis that is unsurpassed compared with traditional targeted approaches. There are a growing number of examples indicating that profiling approaches can be used to expose significant sources of variation in the composition of crop and model plants caused by genetic background, breeding method, growing environment (site, season), genotype × environment interactions and crop cultural practices to name but a few. Whilst breeders have long been aware of such variation from tried and tested targeted analytical approaches, the broad-scale, so called "unbiased" analysis of the metabolome now possible, offers a major upside to our understanding of the true extent of variation in a plethora of metabolites relevant to human and animal health and nutrition. Metabolomics is helping to provide targets for plant breeding by linking gene expression, and allelic variation to variation in metabolite complement (functional genomics), and is also being deployed to better assess the potential impacts of climate change and reduced input agricultural systems on crop composition. This review will provide examples of the factors driving variation in the metabolomes of crop species.
Collapse
|
74
|
Belokurova VB. Methods of biotechnology in system of efforts aimed at plant biodiversity preservation (Review). CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710030096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
75
|
Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc 2010; 5:1210-27. [DOI: 10.1038/nprot.2010.82] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
76
|
Saha S, Hedau NK, Mahajan V, Singh G, Gupta HS, Gahalain A. Textural, nutritional and functional attributes in tomato genotypes for breeding better quality varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:239-244. [PMID: 20355037 DOI: 10.1002/jsfa.3802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Screening of natural biodiversity for their better quality attributes is of prime importance for quality breeding programmes. A set of 53 tomato genotypes was measured for their textural [skin firmness, pericarp thickness, total soluble solids (TSS)], nutritional [phosphorus (P), potassium (K), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and titrable acidity (TA)] and functional (beta-carotene, lycopene and ascorbic acid) quality attributes. RESULT Three sets of data (textural, nutritional and functional attributes) were obtained and analysed for their mutual relationships. Wide variations were observed in most of the measurements, e.g. skin firmness (coefficient of variability (CV) 269-612 g), pericarp thickness (CV 1.4-4.9 mm), potassium (CV 229-371 mg 100 g(-1)), iron (CV 611-1772 mg 100 g(-1)), ascorbic acid (CV 12-86 mg 100 g(-1)), suggesting that there are considerable levels of genetic diversity. Significant correlations (P < 0.05, 0.01) were also detected among different attributes of tomato genotypes, such as phosphorus and zinc with a correlation coefficient of 0.74, ascorbic acid and copper of 0.57, pericarp thickness and lycopene of - 0.52. However, there were no correlations between textural and nutritional attributes. Five factors were computed by principal component analysis that explained 66% of the variation in the attributes, among which all micronutrients other than iron, TSS, firmness and beta-carotene were most important. Functional attributes except beta-carotene played a less important role in explaining total variation. CONCLUSION This knowledge could aid in the efficient conservation of important parts of the agricultural biodiversity of India. These results are also potentially useful for tomato breeders working on the development of new varieties.
Collapse
Affiliation(s)
- Supradip Saha
- Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India.
| | | | | | | | | | | |
Collapse
|
77
|
Jia F, Gampala SS, Mittal A, Luo Q, Rock CD. Cre-lox univector acceptor vectors for functional screening in protoplasts: analysis of Arabidopsis donor cDNAs encoding ABSCISIC ACID INSENSITIVE1-like protein phosphatases. PLANT MOLECULAR BIOLOGY 2009; 70:693-708. [PMID: 19499346 PMCID: PMC2755202 DOI: 10.1007/s11103-009-9502-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 05/15/2009] [Indexed: 05/27/2023]
Abstract
The 14,200 available full length Arabidopsis thaliana cDNAs in the universal plasmid system (UPS) donor vector pUNI51 should be applied broadly and efficiently to leverage a "functional map-space" of homologous plant genes. We have engineered Cre-lox UPS host acceptor vectors (pCR701- 705) with N-terminal epitope tags in frame with the loxH site and downstream from the maize Ubiquitin promoter for use in transient protoplast expression assays and particle bombardment transformation of monocots. As an example of the utility of these vectors, we recombined them with several Arabidopsis cDNAs encoding Ser/Thr protein phosphatase type 2C (PP2Cs) known from genetic studies or predicted by hierarchical clustering meta-analysis to be involved in ABA and stress responses. Our functional results in Zea mays mesophyll protoplasts on ABA-inducible expression effects on the Late Embryogenesis Abundant promoter ProEm:GUS reporter were consistent with predictions and resulted in identification of novel activities of some PP2Cs. Deployment of these vectors can facilitate functional genomics and proteomics and identification of novel gene activities.
Collapse
Affiliation(s)
- Fan Jia
- Department of Biological Sciences, Texas Tech University. Lubbock TX, U. S. A. 79409-3131
| | | | - Amandeep Mittal
- Department of Biological Sciences, Texas Tech University. Lubbock TX, U. S. A. 79409-3131
| | - Qingjun Luo
- Department of Biological Sciences, Texas Tech University. Lubbock TX, U. S. A. 79409-3131
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University. Lubbock TX, U. S. A. 79409-3131
| |
Collapse
|
78
|
A Multiparent Advanced Generation Inter-Cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000551. [PMID: 19593375 PMCID: PMC2700969 DOI: 10.1371/journal.pgen.1000551] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/08/2009] [Indexed: 12/29/2022] Open
Abstract
Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore alternative resources for the genetic dissection of complex traits continue to be sought. Here we describe one such alternative, the Multiparent Advanced Generation Inter-Cross (MAGIC). This approach is expected to improve the precision with which QTL can be mapped, improving the outlook for QTL cloning. Here, we present the first panel of MAGIC lines developed: a set of 527 recombinant inbred lines (RILs) descended from a heterogeneous stock of 19 intermated accessions of the plant Arabidopsis thaliana. These lines and the 19 founders were genotyped with 1,260 single nucleotide polymorphisms and phenotyped for development-related traits. Analytical methods were developed to fine-map quantitative trait loci (QTL) in the MAGIC lines by reconstructing the genome of each line as a mosaic of the founders. We show by simulation that QTL explaining 10% of the phenotypic variance will be detected in most situations with an average mapping error of about 300 kb, and that if the number of lines were doubled the mapping error would be under 200 kb. We also show how the power to detect a QTL and the mapping accuracy vary, depending on QTL location. We demonstrate the utility of this new mapping population by mapping several known QTL with high precision and by finding novel QTL for germination data and bolting time. Our results provide strong support for similar ongoing efforts to produce MAGIC lines in other organisms. Most traits of economic and evolutionary interest vary quantitatively and have multiple genes affecting their expression. Dissecting the genetic basis of such traits is crucial for the improvement of crops and management of diseases. Here, we develop a new resource to identify genes underlying such quantitative traits in Arabidopsis thaliana, a genetic model organism in plants. We show that using a large population of inbred lines derived from intercrossing 19 parents, we can localize the genes underlying quantitative traits better than with existing methods. Using these lines, we were able to replicate the identification of previously known genes that affect developmental traits in A. thaliana and identify some new ones. This paper also presents all the necessary biological and computational material necessary for the scientific community to use these lines in their own research. Our results suggest that the use of lines derived from a multiparent advanced generation inter-cross (MAGIC lines) should be very useful in other organisms.
Collapse
|
79
|
Saha S, Singh G, Mahajan V, Gupta HS. Variability of nutritional and cooking quality in bean (Phaseolus vulgaris L) as a function of genotype. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2009; 64:174-180. [PMID: 19462242 DOI: 10.1007/s11130-009-0121-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
Screening of natural biodiversity for the better quality traits are of prime importance for quality breeding programs. The objective of this investigation was to select candidate accession of bean having high concentrations of protein as well as macro and micro minerals with good cooking quality for use as parents in breeding programme for these compounds. Thirty-five accessions of bean (Phaseolus vulgaris L) were field grown and their seeds were analyzed for their cooking quality and nutritional composition. Wide variations were observed in most of the measurements e.g. protein (18.7-26.2%), iron (79.4-137.6 ppm) and hardness after cooking (4.65-9.88 Kg) suggesting that there are considerable levels of genetic diversity. Across all accessions the concentration of potassium was negatively correlated with protein (r = -0.43, P < 0.05). Concentrations of protein was significantly greater in accessions VIII, XIII and XIX compared to other accessions analyzed. Iron concentrations were greatest (137 ppm) in XIX and lowest (79 ppm) in XXVII. Lines with less cooking time were line III, X, XXVI, XXX and XXXI. Bean line XIX contains high protein (24.9%) with high zinc (33.3 ppm) and highest iron (137.6 ppm), but it has high hardness after cooking (7.32 kg). Four clusters were computed by cluster analysis that explained quite a good variation in the traits. The great variability for these attributes suggests that these selected accessions may be useful as parents in hybridization programs to produce bean with value-added traits. This information was also potentially useful for pulse breeders working on the development of new varieties.
Collapse
Affiliation(s)
- Supradip Saha
- Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India.
| | | | | | | |
Collapse
|
80
|
Bertin N, Causse M, Brunel B, Tricon D, Génard M. Identification of growth processes involved in QTLs for tomato fruit size and composition. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:237-48. [PMID: 19033553 PMCID: PMC3071768 DOI: 10.1093/jxb/ern281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 05/19/2023]
Abstract
Many quantitative trait loci (QTLs) for quality traits have been located on the tomato genetic map, but introgression of favourable wild alleles into large fruited species is hampered by co-localizations of QTLs with antagonist effects. The aim of this study was to assess the growth processes controlled by the main QTLs for fruit size and composition. Four nearly isogenic lines (NILs) derived from an intraspecific cross between a tasty cherry tomato (Cervil) and a normal-tasting large fruit tomato (Levovil) were studied. The lines carried one (L2, L4, and L9) or five (Lx) introgressions from Cervil on chromosomes 1, 2, 4, and 9. QTLs for fruit size could be mainly associated with cell division processes in L2 and L9, whereas cell expansion was rather homogeneous among the genotypes, except Cervil for which the low expansion rate was attributed to low cell plasticity. The link between endoreduplication and fruit size remained unclear, as cell or fruit sizes were positively correlated with the cell DNA content, but not with the endoreduplication factor. QTLs for fruit composition reflected differences in water accumulation rather than in sugar accumulation, except in L9 for which the up-regulation of sucrose unloading and hexose transport and/or starch synthesis was suggested. This may explain the increased amount of carbon allocated to cell structures in L9, which could be related to a QTL for fruit texture. In Lx, these effects were attenuated, except on fruit size and cell division. Finally, the region on top of chromosome 9 may control size and composition attributes in tomato, by a combination of QTL effects on cell division, cell wall synthesis, and carbon import and metabolism.
Collapse
Affiliation(s)
- Nadia Bertin
- INRA, UR1115 Plantes et systèmes de culture horticoles, INRA, F-84000 Avignon, France.
| | | | | | | | | |
Collapse
|
81
|
Fernie AR, Schauer N. Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 2009; 25:39-48. [DOI: 10.1016/j.tig.2008.10.010] [Citation(s) in RCA: 378] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/26/2022]
|
82
|
Zanor MI, Rambla JL, Chaïb J, Steppa A, Medina A, Granell A, Fernie AR, Causse M. Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2139-54. [PMID: 19346240 PMCID: PMC2682503 DOI: 10.1093/jxb/erp086] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 05/18/2023]
Abstract
Numerous studies have revealed the extent of genetic and phenotypic variation between both species and cultivars of tomato. Using a series of tomato lines resulting from crosses between a cherry tomato and three independent large fruit cultivar (Levovil, VilB, and VilD), extensive profiling of both central primary metabolism and volatile organic components of the fruit was performed. In this study, it was possible to define a number of quantitative trait loci (QTLs) which determined the levels of primary metabolites and/or volatile organic components and to evaluate their co-location with previously defined organoleptic QTLs. Correlation analyses between either the primary metabolites or the volatile organic compounds and organoleptic properties revealed a number of interesting associations, including pharmaceutical aroma-guaiacol and sourness-alanine, across the data set. Considerable correlation within the levels of primary metabolites or volatile organic compounds, respectively, were also observed. However, there was relatively little association between the levels of primary metabolites and volatile organic compounds, implying that they are not tightly linked to one another. A notable exception to this was the strong association between the levels of sucrose and those of a number of volatile organic compounds. The combined data presented here are thus discussed both with respect to those obtained recently from wide interspecific crosses of tomato and within the framework of current understanding of the chemical basis of fruit taste.
Collapse
Affiliation(s)
- Maria Inés Zanor
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - José-Luis Rambla
- Universidad Politecnica Valencia, CSIC, Instituto de Biología Molecular y Celular Plantas (IBMCP), Avda de los Naranjos s/n, Valencia 46022, Spain
| | - Jamila Chaïb
- INRA, UR1052, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine Saint-Maurice, BP94, F-84143 Montfavet Cedex, France
| | - Agnes Steppa
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Aurora Medina
- Universidad Politecnica Valencia, CSIC, Instituto de Biología Molecular y Celular Plantas (IBMCP), Avda de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Granell
- Universidad Politecnica Valencia, CSIC, Instituto de Biología Molecular y Celular Plantas (IBMCP), Avda de los Naranjos s/n, Valencia 46022, Spain
| | - Alisdair R. Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- To whom correspondence should be addressed. E-mail:
| | - Mathilde Causse
- INRA, UR1052, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine Saint-Maurice, BP94, F-84143 Montfavet Cedex, France
| |
Collapse
|
83
|
Abstract
The basic principle of Marker-Assisted Selection (MAS) is to exploit Linkage Disequilibrium (LD) between markers and QTLs. With strong enough LD, MAS should in theory be easier, faster, cheaper, or more efficient than classical (phenotypic) selection. I briefly review the major MAS methods, describing some 'success stories' where MAS was applied successfully in the context of plant breeding, and detailing other cases where efficiency was not as high as expected. I discuss the possible causes explaining the difference between theoretical expectations and practical observations. Finally, I review the principal challenges and issues that must be tackled to make marker-assisted selection in plants more effective in the future, namely: managing and controlling QTL stability to apply MAS to complex traits, and integrating MAS in traditional breeding practices to make it more economically attractive and applicable in developing countries.
Collapse
Affiliation(s)
- Frédéric Hospital
- INRA, UMR1236 Génétique et Diversité Animales, 78352, Jouy-en-Josas, France.
| |
Collapse
|
84
|
Hospital F. Challenges for effective marker-assisted selection in plants. Genetica 2008; 136:303-10. [PMID: 18695989 DOI: 10.1007/s10709-008-9307-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 07/19/2008] [Indexed: 11/24/2022]
Abstract
The basic principle of Marker-Assisted Selection (MAS) is to exploit Linkage Disequilibrium (LD) between markers and QTLs. With strong enough LD, MAS should in theory be easier, faster, cheaper, or more efficient than classical (phenotypic) selection. I briefly review the major MAS methods, describing some 'success stories' where MAS was applied successfully in the context of plant breeding, and detailing other cases where efficiency was not as high as expected. I discuss the possible causes explaining the difference between theoretical expectations and practical observations. Finally, I review the principal challenges and issues that must be tackled to make marker-assisted selection in plants more effective in the future, namely: managing and controlling QTL stability to apply MAS to complex traits, and integrating MAS in traditional breeding practices to make it more economically attractive and applicable in developing countries.
Collapse
Affiliation(s)
- Frédéric Hospital
- INRA, UMR1236 Génétique et Diversité Animales, 78352, Jouy-en-Josas, France.
| |
Collapse
|
85
|
Kier LD, Petrick JS. Safety assessment considerations for food and feed derived from plants with genetic modifications that modulate endogenous gene expression and pathways. Food Chem Toxicol 2008; 46:2591-605. [PMID: 18602733 DOI: 10.1016/j.fct.2008.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 04/14/2008] [Accepted: 05/26/2008] [Indexed: 12/26/2022]
Abstract
The current globally recognized comparative food and feed safety assessment paradigm for biotechnology-derived crops is a robust and comprehensive approach for evaluating the safety of both the inserted gene product and the resulting crop. Incorporating many basic concepts from food safety, toxicology, nutrition, molecular biology, and plant breeding, this approach has been used effectively by scientists and regulatory agencies for 10-15 years. Current and future challenges in agriculture include the need for improved yields, tolerance to biotic and abiotic stresses, and improved nutrition. The next generation of biotechnology-derived crops may utilize regulatory proteins, such as transcription factors that modulate gene expression and/or endogenous plant pathways. In this review, we discuss the applicability of the current safety assessment paradigm to biotechnology-derived crops developed using modifications involving regulatory proteins. The growing literature describing the molecular biology underlying plant domestication and conventional breeding demonstrates the naturally occurring genetic variation found in plants, including significant variation in the classes, expression, and activity of regulatory proteins. Specific examples of plant modifications involving insertion or altered expression of regulatory proteins are discussed as illustrative case studies supporting the conclusion that the current comparative safety assessment process is appropriate for these types of biotechnology-developed crops.
Collapse
Affiliation(s)
- Larry D Kier
- Monsanto Company, 800 North Lindbergh Blvd., Mail Code O3F, St. Louis, MO 63167, USA
| | | |
Collapse
|
86
|
Fénart S, Arnaud JF, De Cauwer I, Cuguen J. Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the Beta vulgaris complex species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:1063-77. [PMID: 18335202 DOI: 10.1007/s00122-008-0735-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 02/18/2008] [Indexed: 05/12/2023]
Abstract
Hybridization between cultivated species and their wild relatives is now widely considered to be common. In the Beta vulgaris complex, the sugar beet seed multiplication areas have been the scene of inadvertent pollination of sugar beet seed bearers by wild ruderal pollen donors, generating a weedy form of beet which infests sugar beet fields in European countries. Up to now, investigations of evolutionary dynamics of genetic diversity within the B. vulgaris complex were addressed using few genetical markers and few accessions. In this study, we tackled this issue using a panel of complementary markers: five nuclear microsatellite loci, four mitochondrial minisatellite loci and one chloroplastic PCR-RFLP marker. We sampled 1,640 individuals that illustrate the actual distribution of inland ruderal beets of South Western France, weed beets and wild sea beets of northern France as well as the diversity of 35 contemporary European diploid cultivars. Nuclear genetic diversity in weed beets appeared to be as high as those of ruderal beets and sea beets, whereas the narrowness of cultivar accessions was confirmed. This genetic bottleneck in cultivars is even more important in the cytoplasmic genome as only one haplotype was found among all sugar beet cultivars. The large majority of weed beet populations also presented this unique cytoplasmic haplotype, as expected owing to their maternal cultivated origin. Nonetheless, various cytoplasmic haplotypes were found within three populations of weed beets, implying wild-to-weed seed flows. Finally, our findings gave new insights into the genetical relationships between the components of the B. vulgaris complex: (1) we found a very strong genetic divergence between wild sea beet and other relatives, which was unexpected given the recent evolutionary history and the full cross-compatibility of all taxa and (2) we definitely confirmed that the classification into cultivated, wild, ruderal and weed forms according to their geographical location, phenotype or their domesticated status is clearly in accordance with genetic clustering despite the very recent domestication process of sugar beet.
Collapse
Affiliation(s)
- Stéphane Fénart
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille, Lille 1, Bâtiment SN2, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
87
|
Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, Pleban T, Zamir D, Fernie AR. Mode of inheritance of primary metabolic traits in tomato. THE PLANT CELL 2008; 20:509-23. [PMID: 18364465 PMCID: PMC2329927 DOI: 10.1105/tpc.107.056523] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/24/2008] [Accepted: 03/10/2008] [Indexed: 05/18/2023]
Abstract
To evaluate components of fruit metabolic composition, we have previously metabolically phenotyped tomato (Solanum lycopersicum) introgression lines containing segmental substitutions of wild species chromosome in the genetic background of a cultivated variety. Here, we studied the hereditability of the fruit metabolome by analyzing an additional year's harvest and evaluating the metabolite profiles of lines heterozygous for the introgression (ILHs), allowing the evaluation of putative quantitative trait locus (QTL) mode of inheritance. These studies revealed that most of the metabolic QTL (174 of 332) were dominantly inherited, with relatively high proportions of additively (61 of 332) or recessively (80 of 332) inherited QTL and a negligible number displaying the characteristics of overdominant inheritance. Comparison of the mode of inheritance of QTL revealed that several metabolite pairs displayed a similar mode of inheritance of QTL at the same chromosomal loci. Evaluation of the association between morphological and metabolic traits in the ILHs revealed that this correlation was far less prominent, due to a reduced variance in the harvest index within this population. These data are discussed in the context of genomics-assisted breeding for crop improvement, with particular focus on the exploitation of wide biodiversity.
Collapse
Affiliation(s)
- Nicolas Schauer
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bermúdez L, Urias U, Milstein D, Kamenetzky L, Asis R, Fernie AR, Van Sluys MA, Carrari F, Rossi M. A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2875-90. [PMID: 18552354 PMCID: PMC2486480 DOI: 10.1093/jxb/ern146] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/03/2008] [Accepted: 04/29/2008] [Indexed: 05/18/2023]
Abstract
In tomato, numerous wild-related species have been demonstrated to be untapped sources of valuable genetic variability, including pathogen-resistance genes, nutritional, and industrial quality traits. From a collection of S. pennellii introgressed lines, 889 fruit metabolic loci (QML) and 326 yield-associated loci (YAL), distributed across the tomato genome, had been identified previously. By using a combination of molecular marker sequence analysis, PCR amplification and sequencing, analysis of allelic variation, and evaluation of co-response between gene expression and metabolite composition traits, the present report, provides a comprehensive list of candidate genes co-localizing with a subset of 106 QML and 20 YAL associated either with important agronomic or nutritional characteristics. This combined strategy allowed the identification and analysis of 127 candidate genes located in 16 regions of the tomato genome. Eighty-five genes were cloned and partially sequenced, totalling 45,816 and 45,787 bases from S. lycopersicum and S. pennellii, respectively. Allelic variation at the amino acid level was confirmed for 37 of these candidates. Furthermore, out of the 127 gene-metabolite co-locations, some 56 were recovered following correlation of parallel transcript and metabolite profiling. Results obtained here represent the initial steps in the integration of genetic, genomic, and expressional patterns of genes co-localizing with chemical compositional traits of the tomato fruit.
Collapse
Affiliation(s)
- L. Bermúdez
- GaTE Lab, Departamento de Botânica-IB-USP, Brasil. Rua do Matão, 277, 05508-900, São Paulo, SP, Brazil
| | - U. Urias
- GaTE Lab, Departamento de Botânica-IB-USP, Brasil. Rua do Matão, 277, 05508-900, São Paulo, SP, Brazil
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agrícola (IB-INTA), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
| | - D. Milstein
- GaTE Lab, Departamento de Botânica-IB-USP, Brasil. Rua do Matão, 277, 05508-900, São Paulo, SP, Brazil
| | - L. Kamenetzky
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agrícola (IB-INTA), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
| | - R. Asis
- Facultad de Ciencias Químicas Universidad Nacional de Córdoba, CC 5000, Haya de la Torre y Medina Allende, Córdoba, Argentina
| | - A. R. Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam-Golm, D-14 476, Germany
| | - M. A. Van Sluys
- GaTE Lab, Departamento de Botânica-IB-USP, Brasil. Rua do Matão, 277, 05508-900, São Paulo, SP, Brazil
| | - F. Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agrícola (IB-INTA), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
- To whom correspondence should be addressed. E-mail: . Correspondence may also be addressed to F. Carrari.
| | - M. Rossi
- GaTE Lab, Departamento de Botânica-IB-USP, Brasil. Rua do Matão, 277, 05508-900, São Paulo, SP, Brazil
- To whom correspondence should be addressed. E-mail: . Correspondence may also be addressed to F. Carrari.
| |
Collapse
|
89
|
Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 2007; 279:1-10. [DOI: 10.1007/s00438-007-0289-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
90
|
Lytovchenko A, Sonnewald U, Fernie AR. The complex network of non-cellulosic carbohydrate metabolism. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:227-35. [PMID: 17434793 DOI: 10.1016/j.pbi.2007.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/02/2007] [Indexed: 05/04/2023]
Abstract
Partitioning of carbon dominates intracellular fluxes in both photosynthetic and heterotrophic plant tissues, and has vast influence on both plant growth and development. Recently, much progress has been made in elucidating the structures of the biosynthetic and degradative pathways that link the major and minor pools of soluble carbohydrates to cellular polymers such as starch, heteroglycans and fructans. In most cases, the regulatory properties of these pathways have been elucidated and the enzymes involved have been investigated using reverse genetics approaches. Although many of the results from these approaches were merely confirmatory, several of them were highly unexpected. The challenge ahead is to achieve better understanding of metabolic regulation at the network level in order to develop more rational strategies for metabolic engineering.
Collapse
Affiliation(s)
- Anna Lytovchenko
- Abteilung Willmitzer, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
91
|
Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. PLANT PHYSIOLOGY 2006; 142:1380-96. [PMID: 17071647 PMCID: PMC1676044 DOI: 10.1104/pp.106.088534] [Citation(s) in RCA: 301] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
Tomato (Solanum lycopersicum) is a well-studied model of fleshy fruit development and ripening. Tomato fruit development is well understood from a hormonal-regulatory perspective, and developmental changes in pigment and cell wall metabolism are also well characterized. However, more general aspects of metabolic change during fruit development have not been studied despite the importance of metabolism in the context of final composition of the ripe fruit. In this study, we quantified the abundance of a broad range of metabolites by gas chromatography-mass spectrometry, analyzed a number of the principal metabolic fluxes, and in parallel analyzed transcriptomic changes during tomato fruit development. Metabolic profiling revealed pronounced shifts in the abundance of metabolites of both primary and secondary metabolism during development. The metabolite changes were reflected in the flux analysis that revealed a general decrease in metabolic activity during ripening. However, there were several distinct patterns of metabolite profile, and statistical analysis demonstrated that metabolites in the same (or closely related) pathways changed in abundance in a coordinated manner, indicating a tight regulation of metabolic activity. The metabolite data alone allowed investigations of likely routes through the metabolic network, and, as an example, we analyze the operational feasibility of different pathways of ascorbate synthesis. When combined with the transcriptomic data, several aspects of the regulation of metabolism during fruit ripening were revealed. First, it was apparent that transcript abundance was less strictly coordinated by functional group than metabolite abundance, suggesting that posttranslational mechanisms dominate metabolic regulation. Nevertheless, there were some correlations between specific transcripts and metabolites, and several novel associations were identified that could provide potential targets for manipulation of fruit compositional traits. Finally, there was a strong relationship between ripening-associated transcripts and specific metabolite groups, such as TCA-cycle organic acids and sugar phosphates, underlining the importance of the respective metabolic pathways during fruit development.
Collapse
Affiliation(s)
- Fernando Carrari
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm-Postdam, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Davey MW, Kenis K, Keulemans J. Genetic control of fruit vitamin C contents. PLANT PHYSIOLOGY 2006; 142:343-51. [PMID: 16844833 PMCID: PMC1557592 DOI: 10.1104/pp.106.083279] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An F(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.
Collapse
Affiliation(s)
- Mark W Davey
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Faculty of Applied Biosciences and Bioengineering, Catholic University of Leuven, B-3001 Heverlee, Belgium.
| | | | | |
Collapse
|