51
|
Zhong X, Fu J, Song K, Xue N, Gong R, Sun D, Luo H, He W, Pan X, Shen B, Du J. The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction. SCIENCE CHINA-LIFE SCIENCES 2015; 59:409-16. [DOI: 10.1007/s11427-015-4958-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/01/2015] [Indexed: 11/30/2022]
|
52
|
Urban N, Wang L, Kwiek S, Rademann J, Kuebler WM, Schaefer M. Identification and Validation of Larixyl Acetate as a Potent TRPC6 Inhibitor. Mol Pharmacol 2015; 89:197-213. [PMID: 26500253 DOI: 10.1124/mol.115.100792] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/21/2015] [Indexed: 01/17/2023] Open
Abstract
Classical or canonical transient receptor potential 6 (TRPC6), a nonselective and Ca(2+)-permeable cation channel, mediates pathophysiological responses within pulmonary and renal diseases that are still poorly controlled by current medication. Thus, controlling TRPC6 activity may provide a promising and challenging pharmacological approach. Recently identified chemical entities have demonstrated that TRPC6 is pharmacologically targetable. However, isotype-selectivity with regard to its closest relative, TRPC3, is difficult to achieve. Reasoning that balsams, essential oils, or incense materials that are traditionally used for inhalation may contain biologic activities to block TRPC6 activity, we embarked on a natural compound strategy to identify new TRPC6-blocking chemical entities. Within several preparations of plant extracts, a strong TRPC6-inhibitory activity was found in conifer balsams. The biologic activity was associated with nonvolatile resins, but not with essential oils. Of various conifers, the larch balsam was unique in displaying a marked TRPC6-prevalent mode of action. By testing the main constituents of larch resin, we identified larixol and larixyl acetate as blockers of Ca(2+) entry and ionic currents through diacylglycerol- or receptor-activated recombinant TRPC6 channels, exhibiting approximately 12- and 5-fold selectivity compared with its closest relatives TRPC3 and TRPC7, respectively. No significant inhibition of more distantly related TRPV or TRPM channels was seen. The potent inhibition of recombinant TRPC6 by larixyl acetate (IC50 = 0.1-0.6 µM) was confirmed for native TRPC6-like [Ca(2+)]i signals in diacylglycerol-stimulated rat pulmonary artery smooth muscle cells. In isolated mouse lungs, larix-6-yl monoacetate (CAS 4608-49-5; larixyl acetate; 5 µM) prevented acute hypoxia-induced vasoconstriction. We conclude that larch-derived labdane-type diterpenes are TRPC6-selective inhibitors and may represent a starting point for pharmacological TRPC6 modulation within experimental therapies.
Collapse
Affiliation(s)
- Nicole Urban
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany (N.U., M.S.); Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany (S.K., J.R.); and The Keenan Research Centre of St. Michael's Hospital, Toronto, Canada (L.W., W.M.K.)
| | - Liming Wang
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany (N.U., M.S.); Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany (S.K., J.R.); and The Keenan Research Centre of St. Michael's Hospital, Toronto, Canada (L.W., W.M.K.)
| | - Sandra Kwiek
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany (N.U., M.S.); Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany (S.K., J.R.); and The Keenan Research Centre of St. Michael's Hospital, Toronto, Canada (L.W., W.M.K.)
| | - Jörg Rademann
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany (N.U., M.S.); Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany (S.K., J.R.); and The Keenan Research Centre of St. Michael's Hospital, Toronto, Canada (L.W., W.M.K.)
| | - Wolfgang M Kuebler
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany (N.U., M.S.); Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany (S.K., J.R.); and The Keenan Research Centre of St. Michael's Hospital, Toronto, Canada (L.W., W.M.K.)
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany (N.U., M.S.); Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany (S.K., J.R.); and The Keenan Research Centre of St. Michael's Hospital, Toronto, Canada (L.W., W.M.K.)
| |
Collapse
|
53
|
Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol 2015; 6:260-271. [PMID: 26296072 PMCID: PMC4556774 DOI: 10.1016/j.redox.2015.08.010] [Citation(s) in RCA: 954] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. Calcium and ROS act as signaling molecules inside the cell and their pathways can interact. The mutual interplay of calcium and ROS is required for the fine tuning of signaling. Failure in the interplay results in dysfunction and pathologies.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Katharina Bertram
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Germany
| | - Sona Hudecova
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Krizanova
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
54
|
Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 308:H157-82. [PMID: 25416190 PMCID: PMC4312948 DOI: 10.1152/ajpheart.00457.2014] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jia Xie
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jonathan Stock
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jianyang Du
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
55
|
Chung S, Kim YH, Joeng JH, Ahn DS. Transient receptor potential c4/5 like channel is involved in stretch-induced spontaneous uterine contraction of pregnant rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:503-8. [PMID: 25598665 PMCID: PMC4296040 DOI: 10.4196/kjpp.2014.18.6.503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/23/2022]
Abstract
Spontaneous myometrial contraction (SMC) in pregnant uterus is greatly related with gestational age and growing in frequency and amplitude toward the end of gestation to initiate labor. But, an accurate mechanism has not been elucidated. In human and rat uterus, all TRPCs except TRPC2 are expressed in pregnant myometrium and among them, TRPC4 are predominant throughout gestation, suggesting a possible role in regulation of SMC. Therefore, we investigated whether the TRP channel may be involved SMC evoked by mechanical stretch in pregnant myometrial strips of rat using isometric tension measurement and patch-clamp technique. In the present results, hypoosmotic cell swelling activated a potent outward rectifying current in G protein-dependent manner in rat pregnant myocyte. The current was significantly potentiated by 1µM lanthanides (a potent TRPC4/5 stimulator) and suppressed by 10µM 2-APB (TRPC4-7 inhibitor). In addition, in isometric tension experiment, SMC which was evoked by passive stretch was greatly potentiated by lanthanide (1µM) and suppressed by 2-APB (10µM), suggesting a possible involvement of TRPC4/5 channel in regulation of SMC in pregnant myometrium. These results provide a possible cellular mechanism for regulation of SMC during pregnancy and provide basic information for developing a new agent for treatment of premature labor.
Collapse
Affiliation(s)
- Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Young-Hwan Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ji-Hyun Joeng
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Duck-Sun Ahn
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
56
|
Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator? Cells 2014; 3:939-62. [PMID: 25268281 PMCID: PMC4276908 DOI: 10.3390/cells3040939] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/07/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model.
Collapse
|
57
|
Benoist D, Stones R, Benson AP, Fowler ED, Drinkhill MJ, Hardy MEL, Saint DA, Cazorla O, Bernus O, White E. Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotaline. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:162-72. [PMID: 25016242 PMCID: PMC4210667 DOI: 10.1016/j.pbiomolbio.2014.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 02/05/2023]
Abstract
We demonstrate the synergistic benefits of using multiple technologies to investigate complex multi-scale biological responses. The combination of reductionist and integrative methodologies can reveal novel insights into mechanisms of action by tracking changes of in vivo phenomena to alterations in protein activity (or vice versa). We have applied this approach to electrical and mechanical remodelling in right ventricular failure caused by monocrotaline-induced pulmonary artery hypertension in rats. We show arrhythmogenic T-wave alternans in the ECG of conscious heart failure animals. Optical mapping of isolated hearts revealed discordant action potential duration (APD) alternans. Potential causes of the arrhythmic substrate; structural remodelling and/or steep APD restitution and dispersion were observed, with specific remodelling of the Right Ventricular Outflow Tract. At the myocyte level, [Ca(2+)]i transient alternans were observed together with decreased activity, gene and protein expression of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA). Computer simulations of the electrical and structural remodelling suggest both contribute to a less stable substrate. Echocardiography was used to estimate increased wall stress in failure, in vivo. Stretch of intact and skinned single myocytes revealed no effect on the Frank-Starling mechanism in failing myocytes. In isolated hearts acute stretch-induced arrhythmias occurred in all preparations. Significant shortening of the early APD was seen in control but not failing hearts. These observations may be linked to changes in the gene expression of candidate mechanosensitive ion channels (MSCs) TREK-1 and TRPC1/6. Computer simulations incorporating MSCs and changes in ion channels with failure, based on altered gene expression, largely reproduced experimental observations.
Collapse
Affiliation(s)
- David Benoist
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK; L'Institut de Rythmologie et Modelisation Cardiaque, INSERM U1045, Université de Bordeaux, France
| | - Rachel Stones
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Alan P Benson
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Ewan D Fowler
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Mark J Drinkhill
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Matthew E L Hardy
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK; Faculty of Life Sciences, University of Manchester, UK
| | - David A Saint
- School of Medical Sciences, University of Adelaide, Australia
| | - Olivier Cazorla
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, France
| | - Olivier Bernus
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK; L'Institut de Rythmologie et Modelisation Cardiaque, INSERM U1045, Université de Bordeaux, France
| | - Ed White
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK.
| |
Collapse
|
58
|
Zhao L, Wang J, Wang L, Liang YT, Chen YQ, Lu WJ, Zhou WL. Remodeling of rat pulmonary artery induced by chronic smoking exposure. J Thorac Dis 2014; 6:818-28. [PMID: 24977008 DOI: 10.3978/j.issn.2072-1439.2014.03.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To evaluate the dominant role in rat pulmonary artery (PA) remodeling induced by chronic smoking exposure (CSE). METHODS Thirty-five male Sprague-Dawley (SD) rats were exposed to 36 cigarettes per day, 6 days per week, for 1, 3, or 5 months. Another 35 SD rats were sham-exposed during the same period. Hemodynamic measurement, evaluation of the right ventricular hypertrophy index (RVHI) plus right ventricle-to-weight ratio, and hematoxylin eosin staining was performed. Wall thickness, artery radius, luminal area, and total area were measured morphometrically. Western blotting assessed expression of PPAR-γ BMP4, BMPR2, and TRPC1/4/6 in the artery and lung. Store-operated calcium entry (SOCE) and [Ca(2+)]i were measured using Fura-2 as dye. RESULTS Mean right ventricular pressure increased after 3 months of smoking exposure and continued to increase through 5 months. Right ventricular systolic pressure (RVSP) increased after 3 months of exposure and then stabilized. RVHI increased after 5 months; right ventricle-to-weight ratio was elevated after 3 months and further increased after 5 months. Wall thickness-to-radius ratio does-dependently increased after 3 months through 5 months, in parallel with the decreased luminal area/total area ratio after 5 months. Other changes included the development of inflammatory responses, enlargement of the alveolar spaces, and reductions in the endothelial lining of PAs, proliferative smooth muscle cells, fibroblasts, and adventitia. Moreover, BMP4 and TRPC1/4/6 expression increased to varying degrees in the arteries and lungs of smoking-exposed animals, whereas BMPR expression and SOCE increased only in the arteries, and PPAR-γ was downregulated in both the arteries and lungs. CONCLUSIONS In SD rats, smoking exposure induces pulmonary vascular remodeling. The consequences of increased SOCE include increase in TRPC1/4/6, probably via augmented BMP4 expression, which also contribute to inflammatory responses in the lung. Moreover, interactions between BMP4 and PPAR-γ may play a role in preventing inflammation under normal physiological conditions.
Collapse
Affiliation(s)
- Lei Zhao
- 1 Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou 510182, China ; 2 Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China ; 3 School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian Wang
- 1 Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou 510182, China ; 2 Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China ; 3 School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu Wang
- 1 Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou 510182, China ; 2 Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China ; 3 School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Ting Liang
- 1 Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou 510182, China ; 2 Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China ; 3 School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Qin Chen
- 1 Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou 510182, China ; 2 Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China ; 3 School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen-Jun Lu
- 1 Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou 510182, China ; 2 Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China ; 3 School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen-Liang Zhou
- 1 Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou 510182, China ; 2 Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China ; 3 School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
59
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
60
|
Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 2014; 29:181-98. [PMID: 24929072 DOI: 10.1016/j.pupt.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent respiratory diseases characterized by airway inflammation, airway obstruction and airway hyperresponsiveness. Whilst current therapies, such as β-agonists and glucocorticoids, may be effective at reducing symptoms, they do not reduce disease progression. Thus, there is a need to identify new therapeutic targets. In this review, we summarize the potential of novel targets or tools, including anti-inflammatories, phosphodiesterase inhibitors, kinase inhibitors, transient receptor potential channels, vitamin D and protease inhibitors, for the treatment of asthma and COPD.
Collapse
|
61
|
Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 2014; 171:2593-607. [PMID: 24286227 PMCID: PMC4009002 DOI: 10.1111/bph.12538] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.
Collapse
Affiliation(s)
- M S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M Baxter
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - E Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
62
|
Abstract
Human canonical transient receptor potential channel 5 (TRPC5) has been cloned from the Xq23 region on chromosome X as a suspect in nonsyndromic mental retardation. TRPC5 is a Ca(2+)-permeable cation channel predominantly expressed in the CNS, including the hippocampus, cerebellum, amygdala, sensory neurons, and retina. It also shows more restricted expression in the periphery, notably in the kidney and cardiovascular system. Homotetrameric TRPC5 channels are primarily activated by receptors coupled to Gq and phospholipase C and/or Gi proteins, but TRPC5 channels may also gate in a store-dependent manner, which requires other partner proteins such TRPC1, STIM1, and Orai1. There is an impressive array of other activators of TRPC5 channels, such as nitric oxide, lysophospholipids, sphingosine-1-phosphate, reduced thioredoxin, protons, lanthanides, and calcium, and many can cause its direct activation. Moreover, TRPC5 shows constitutive activity, and it is responsive to membrane stretch and cold. Thus, TRPC5 channels have significant potential for synergistic activation and may serve as an important focal point in Ca(2+) signalling and electrogenesis. Moreover, TRPC5 functions in partnership with about 60 proteins, including TRPC1, TRPC4, calmodulin, IP3 receptors, NHERF, NCS-1, junctate, stathmin 2, Ca(2+)-binding protein 1, caveolin, and SESTD1, while its desensitisation is mediated by both protein kinases A and C. TRPC5 has a distinct voltage dependence shared only with its closest relative, TRPC4. Its unique N-shaped activation curve underlined by intracellular Mg(2+) block seems to be perfectly "shaped" to trigger action potential discharge, but not to grossly interfere with the action potential shape. The range of biological functions of TRPC5 channels is also impressive, from neurotransmission to control of axon guidance and vascular smooth muscle cell migration and contractility. Recent studies of Trpc5 gene knockouts begin to uncover its roles in fear, anxiety, seizures, and cold sensing.
Collapse
Affiliation(s)
- Alexander V Zholos
- Department of Biophysics, Educational and Scientific Centre "Institute of Biology", Taras Shevchenko Kiev National University, Kiev, 03022, Ukraine,
| |
Collapse
|
63
|
Abstract
Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. This channel is activated by heat (>52 °C), various ligands, and mechanical stresses. In most of the cells, a large portion of TRPV2 is located in the endoplasmic reticulum under unstimulated conditions. Upon stimulation of the cells with phosphatidylinositol 3-kinase-activating ligands, TRPV2 is translocated to the plasma membrane and functions as a cation channel. Mechanical stress may also induce translocation of TRPV2 to the plasma membrane. The expression of TRPV2 is high in some types of cells including neurons, neuroendocrine cells, immune cells involved in innate immunity, and certain types of cancer cells. TRPV2 may modulate various cellular functions in these cells.
Collapse
Affiliation(s)
- Itaru Kojima
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Gunma Prefecture, 371-8511, Japan,
| | | |
Collapse
|
64
|
Makino A, Firth AL, Yuan JXJ. Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling. Compr Physiol 2013; 1:1555-602. [PMID: 23733654 DOI: 10.1002/cphy.c100023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease.
Collapse
Affiliation(s)
- Ayako Makino
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
65
|
Sun H, Leng T, Zeng Z, Gao X, Inoue K, Xiong ZG. Role of TRPM7 channels in hyperglycemia-mediated injury of vascular endothelial cells. PLoS One 2013; 8:e79540. [PMID: 24223965 PMCID: PMC3815131 DOI: 10.1371/journal.pone.0079540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/22/2013] [Indexed: 12/29/2022] Open
Abstract
This study investigated the change of transient receptor potential melastatin 7 (TRPM7) expression by high glucose and its role in hyperglycemia induced injury of vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were incubated in the presence or absence of high concentrations of D-glucose (HG) for 72h. RT-PCR, Real-time PCR, Western blotting, Immunofluorescence staining and whole-cell patch-clamp recordings showed that TRPM7 mRNA, TRPM7 protein expression and TRPM7-like currents were increased in HUVECs following exposure to HG. In contrast to D-glucose, exposure of HUVECs to high concentrations of L-glucose had no effect. HG increased reactive oxygen species (ROS) generation, cytotoxicity and decreased endothelial nitric oxide synthase protein expression, which could be attenuated by knockdown of TRPM7 with TRPM7 siRNA. The protective effect of silencing TRPM7 against HG induced endothelial injury was abolished by U0126, an inhibitor of the extracellular signal-regulated kinase signaling pathway. These observations suggest that TRPM7 channels play an important role in hyperglycemia-induced injury of vascular endothelial cells.
Collapse
Affiliation(s)
- Huawei Sun
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Zhao Zeng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Xiuren Gao
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XG); (ZGX)
| | - Koichi Inoue
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (XG); (ZGX)
| |
Collapse
|
66
|
Grace MS, Dubuis E, Birrell MA, Belvisi MG. Pre-clinical studies in cough research: role of Transient Receptor Potential (TRP) channels. Pulm Pharmacol Ther 2013; 26:498-507. [PMID: 23474212 PMCID: PMC3763377 DOI: 10.1016/j.pupt.2013.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/08/2023]
Abstract
Cough is a protective reflex and defence mechanism in healthy individuals, which helps clear excessive secretions and foreign material from the lungs. Cough often presents as the first and most persistent symptom of many respiratory diseases and some non-respiratory disorders, but can also be idiopathic, and is a common respiratory complaint for which medical attention is sought. Chronic cough of various aetiologies is a regular presentation to specialist respiratory clinics, and is reported as a troublesome symptom by a significant proportion of the population. Despite this, the treatment options for cough are limited. The lack of effective anti-tussives likely stems from our incomplete understanding of how the tussive reflex is mediated. However, research over the last decade has begun to shed some light on the mechanisms which provoke cough, and may ultimately provide us with better anti-tussive therapies. This review will focus on the in vitro and in vivo models that are currently used to further our understanding of the sensory innervation of the respiratory tract, and how these nerves are involved in controlling the cough response. Central to this are the Transient Receptor Potential (TRP) ion channels, a family of polymodal receptors that can be activated by such diverse stimuli as chemicals, temperature, osmotic stress, and mechanical perturbation. These ion channels are thought to be molecular pain integrators and targets for novel analgesic agents for the treatment of various pain disorders but some are also being developed as anti-tussives.
Collapse
Affiliation(s)
- Megan S Grace
- Respiratory Pharmacology, Pharmacology & Toxicology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
67
|
Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol 2013; 48:157-63. [PMID: 23065130 PMCID: PMC3604064 DOI: 10.1165/rcmb.2012-0231oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/21/2012] [Indexed: 11/24/2022] Open
Abstract
The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca(2+)](i)) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100-300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca(2+) responses to bradykinin (10 μM) and S-(-)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca(2+)](i) regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β(2)-agonists, in airway diseases such as asthma.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Anesthesiology, Columbia University Medical Center, 650 West 168th Street, Black Building 7-713, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Contribution and regulation of TRPC channels in store-operated Ca2+ entry. CURRENT TOPICS IN MEMBRANES 2013; 71:149-79. [PMID: 23890115 DOI: 10.1016/b978-0-12-407870-3.00007-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Store-operated calcium entry (SOCE) is activated in response to depletion of the endoplasmic reticulum-Ca(2+) stores following stimulation of plasma membrane receptors that couple to PIP2 hydrolysis and IP3 generation. Search for the molecular components of SOCE channels led to the identification of mammalian transient receptor potential canonical (TRPC) family of calcium-permeable channels (TRPC1-TRPC7), which are all activated in response to stimuli that result in PIP2 hydrolysis. While several TRPCs, including TRPC1, TRPC3, and TRPC4, have been implicated in SOCE, the data are most consistent for TRPC1. Extensive studies in cell lines and knockout mouse models have established the contribution of TRPC1 to SOCE. Furthermore, there is a critical functional interaction between TRPC1 and the key components of SOCE, STIM1, and Orai1, which determines the activation of TRPC1. Orai1-mediated Ca(2+) entry is required for recruitment of TRPC1 and its insertion into surface membranes while STIM1 gates the channel. Notably, TRPC1 and Orai1 generate distinct patterns of Ca(2+) signals in cells that are decoded for the regulation of specific cellular functions. Thus, SOCE appears to be a complex process that depends on temporal and spatial coordination of several distinct steps mediated by proteins in different cellular compartments. Emerging data suggest that, in many cell types, the net Ca(2+) entry measured in response to store depletion is the result of the coordinated regulation of different calcium-permeable ion channels. Orai1 and STIM1 are central players in this process, and by mediating recruitment or activation of other Ca(2+) channels, Orai1-CRAC function can elicit rapid changes in global and local [Ca(2+)]i signals in cells. It is most likely that the type of channels and the [Ca(2+)]i signature that are generated by this process reflect the physiological function of the cell that is regulated by Ca(2+).
Collapse
|
69
|
Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol 2012. [PMID: 23065130 DOI: 10.1165/rcmb] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca(2+)](i)) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100-300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca(2+) responses to bradykinin (10 μM) and S-(-)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca(2+)](i) regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β(2)-agonists, in airway diseases such as asthma.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Anesthesiology, Columbia University Medical Center, 650 West 168th Street, Black Building 7-713, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Meurs H, Dekkers BGJ, Maarsingh H, Halayko AJ, Zaagsma J, Gosens R. Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target. Pulm Pharmacol Ther 2012; 26:145-55. [PMID: 22842340 DOI: 10.1016/j.pupt.2012.07.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Since ancient times, anticholinergics have been used as a bronchodilator therapy for obstructive lung diseases. Targets of these drugs are G-protein-coupled muscarinic M(1), M(2) and M(3) receptors in the airways, which have long been recognized to regulate vagally-induced airway smooth muscle contraction and mucus secretion. However, recent studies have revealed that acetylcholine also exerts pro-inflammatory, pro-proliferative and pro-fibrotic actions in the airways, which may involve muscarinic receptor stimulation on mesenchymal, epithelial and inflammatory cells. Moreover, acetylcholine in the airways may not only be derived from vagal nerves, but also from non-neuronal cells, including epithelial and inflammatory cells. Airway smooth muscle cells seem to play a major role in the effects of acetylcholine on airway function. It has become apparent that these cells are multipotent cells that may reversibly adopt (hyper)contractile, proliferative and synthetic phenotypes, which are all under control of muscarinic receptors and differentially involved in bronchoconstriction, airway remodeling and inflammation. Cholinergic contractile tone is increased by airway inflammation associated with asthma and COPD, resulting from exaggerated acetylcholine release as well as increased expression of contraction related proteins in airway smooth muscle. Moreover, muscarinic receptor stimulation promotes proliferation of airway smooth muscle cells as well as fibroblasts, and regulates cytokine, chemokine and extracellular matrix production by these cells, which may contribute to airway smooth muscle growth, airway fibrosis and inflammation. In line, animal models of chronic allergic asthma and COPD have recently demonstrated that tiotropium may potently inhibit airway inflammation and remodeling. These observations indicate that muscarinic receptors have a much larger role in the pathophysiology of obstructive airway diseases than previously thought, which may have important therapeutic implications.
Collapse
Affiliation(s)
- Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
71
|
Berwick ZC, Dick GM, Tune JD. Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol 2012; 52:848-56. [PMID: 21767548 PMCID: PMC3206994 DOI: 10.1016/j.yjmcc.2011.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/16/2011] [Accepted: 06/30/2011] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a collection of risk factors including obesity, dyslipidemia, insulin resistance/impaired glucose tolerance, and/or hypertension. The incidence of obesity has reached pandemic levels, as ~20-30% of adults in most developed countries can be classified as having MetS. This increased prevalence of MetS is critical as it is associated with a two-fold elevated risk for cardiovascular disease. Although the pathophysiology underlying this increase in disease has not been clearly defined, recent evidence indicates that alterations in the control of coronary blood flow could play an important role. The purpose of this review is to highlight current understanding of the effects of MetS on regulation of coronary blood flow and to outline the potential mechanisms involved. In particular, the role of neurohumoral modulation via sympathetic α-adrenoceptors and the renin-angiotensin-aldosterone system (RAAS) are explored. Alterations in the contribution of end-effector K(+), Ca(2+), and transient receptor potential (TRP) channels are also addressed. Finally, future perspectives and potential therapeutic targeting of the microcirculation in MetS are discussed. This article is part of a Special Issue entitled "Coronary Blood Flow".
Collapse
Affiliation(s)
- Zachary C. Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gregory M. Dick
- Department of Exercise Physiology Center for Cardiovascular and Respiratory Sciences West Virginia University School of Medicine
| | - Johnathan D. Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
72
|
Spirli C, Locatelli L, Fiorotto R, Morell CM, Fabris L, Pozzan T, Strazzabosco M. Altered store operated calcium entry increases cyclic 3',5'-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology 2012; 55:856-68. [PMID: 21987453 PMCID: PMC3272110 DOI: 10.1002/hep.24723] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED Mutations in polycystins (PC1 or PC2/TRPP2) cause progressive polycystic liver disease (PLD). In PC2-defective mice, cyclic 3',5'-adenosine monophosphate/ protein kinase A (cAMP/PKA)-dependent activation of extracellular signal-regulated kinase/ mammalian target of rapamycin (ERK-mTOR) signaling stimulates cyst growth. We investigated the mechanisms connecting PC2 dysfunction to altered Ca(2+) and cAMP production and inappropriate ERK signaling in PC2-defective cholangiocytes. Cystic cholangiocytes were isolated from PC2 conditional-KO (knockout) mice (Pkd2(flox/-) :pCxCreER™; hence, called Pkd2KO) and compared to cholangiocytes from wild-type mice (WT). Our results showed that, compared to WT cells, in PC2-defective cholangiocytes (Pkd2KO), cytoplasmic and ER-Ca(2+) (measured with Fura-2 and Mag-Fluo4) levels are decreased and store-operated Ca(2+) entry (SOCE) is inhibited, whereas the expression of Ca(2+) -sensor stromal interaction molecule 1 (STIM1) and store-operated Ca(2+) channels (e.g., the Orai1 channel) are unchanged. In Pkd2KO cells, ER-Ca(2+) depletion increases cAMP and PKA-dependent ERK1/2 activation and both are inhibited by STIM1 inhibitors or by silencing of adenylyl cyclase type 6 (AC6). CONCLUSION These data suggest that PC2 plays a key role in SOCE activation and inhibits the STIM-dependent activation of AC6 by ER Ca(2+) depletion. In PC2-defective cells, the interaction of STIM-1 with Orai channels is uncoupled, whereas coupling to AC6 is maximized. The resulting overproduction of cAMP, in turn, potently activates the PKA/ERK pathway. PLD, because of PC2 deficiency, represents the first example of human disease linked to the inappropriate activation of store-operated cAMP production.
Collapse
Affiliation(s)
- Carlo Spirli
- Dept. of Internal Medicine; Liver Center and Digestive Diseases Section; Yale University; New Haven; USA
- CeLiveR; Ospedali Riuniti di Bergamo; Bergamo, Italy
| | - Luigi Locatelli
- Dept. of Internal Medicine; Liver Center and Digestive Diseases Section; Yale University; New Haven; USA
- CeLiveR; Ospedali Riuniti di Bergamo; Bergamo, Italy
- Dept. of Clinical Medicine and Prevention University of Milan-Bicocca, Monza, Italy
| | - Romina Fiorotto
- Dept. of Internal Medicine; Liver Center and Digestive Diseases Section; Yale University; New Haven; USA
- CeLiveR; Ospedali Riuniti di Bergamo; Bergamo, Italy
| | - Carola M. Morell
- Dept. of Internal Medicine; Liver Center and Digestive Diseases Section; Yale University; New Haven; USA
- Dept. of Clinical Medicine and Prevention University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- CeLiveR; Ospedali Riuniti di Bergamo; Bergamo, Italy
- Department of Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Tullio Pozzan
- Consiglio Nazionale delle Ricerche, Neuroscience Institute, Dept. of Biomedical Sciences, University of Padova and Venetian Institute of Molecular Medicine, Padova, Italy
| | - Mario Strazzabosco
- Dept. of Internal Medicine; Liver Center and Digestive Diseases Section; Yale University; New Haven; USA
- CeLiveR; Ospedali Riuniti di Bergamo; Bergamo, Italy
- Dept. of Clinical Medicine and Prevention University of Milan-Bicocca, Monza, Italy
| |
Collapse
|
73
|
Novel pharmacological TRPC inhibitors block hypoxia-induced vasoconstriction. Cell Calcium 2012; 51:194-206. [PMID: 22280812 DOI: 10.1016/j.ceca.2012.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/28/2011] [Accepted: 01/01/2012] [Indexed: 11/20/2022]
Abstract
The Ca(2+)-permeable, nonselective cation channel TRPC6 is gated via phospholipase C-activating receptors and has recently been implicated in hypoxia-induced pulmonary vasoconstriction (HPV), idiopathic pulmonary hypertension and focal segmental glomerulosclerosis (FSGS). Therefore, TRPC6 is a promising target for pharmacological interference. To identify and develop TRPC6-blocking compounds, we screened the Chembionet library, a collection of 16,671 chemically diverse drug-like compounds, for biological activity to prevent the 1-oleoyl-2-acetyl-sn-glycerol-triggered Ca(2+) influx in a stably transfected HEK(TRPC6-YFP) cell line. Hits were validated and characterised by fluorometric and electrophysiological methods. Six compounds displayed inhibitory potency at low micromolar concentrations, lack of cytotoxicity and blocked the receptor-dependent mode of TRPC6 activation. The specificity was tested towards closely (TRPC3 and TRPC7) and more distantly related TRP channels. One of the compounds, 8009-5364, displayed a 2.5-fold TRPC6-selectivity compared to TRPC3, and almost no inhibition of TRPC7 or the other TRP channels tested. Block of native TRPC3/6-like responses was confirmed in dissociated pulmonary artery smooth muscle cells. Two non-polar blockers effectively suppressed the HPV responses in the perfused mouse lung model. We conclude that pharmacological targeting of TRPC6 is feasible and provide a promising concept to treat pulmonary diseases that are characterised by excessive hypoxic vasoconstriction.
Collapse
|
74
|
Morgado M, Cairrão E, Santos-Silva AJ, Verde I. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 2012; 69:247-66. [PMID: 21947498 PMCID: PMC11115151 DOI: 10.1007/s00018-011-0815-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (vasoconstriction) and release of force (vasodilation). The initiation of force is associated with increases in intracellular calcium concentrations, activation of myosin light-chain kinase, increases in the phosphorylation of the regulatory myosin light chains, and actin-myosin crossbridge cycling. There are, however, several signaling pathways modulating Ca(2+) mobilization and Ca(2+) sensitivity of the contractile machinery that secondarily regulate the contractile response of vascular smooth muscle to receptor agonists. Among these regulatory mechanisms involved in the physiological regulation of vascular tone are the cyclic nucleotides (cAMP and cGMP), which are considered the main messengers that mediate vasodilation under physiological conditions. At least four distinct mechanisms are currently thought to be involved in the vasodilator effect of cyclic nucleotides and their dependent protein kinases: (1) the decrease in cytosolic calcium concentration ([Ca(2+)]c), (2) the hyperpolarization of the smooth muscle cell membrane potential, (3) the reduction in the sensitivity of the contractile machinery by decreasing the [Ca(2+)]c sensitivity of myosin light-chain phosphorylation, and (4) the reduction in the sensitivity of the contractile machinery by uncoupling contraction from myosin light-chain phosphorylation. This review focuses on each of these mechanisms involved in cyclic nucleotide-dependent relaxation of vascular smooth muscle under physiological conditions.
Collapse
Affiliation(s)
- Manuel Morgado
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Elisa Cairrão
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - António José Santos-Silva
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ignacio Verde
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
75
|
Abstract
A rise in cytoplasmic [Ca2+] due to store-operated Ca2+ entry (SOCE) triggers a plethora of responses, both acute and long term. This leads to the important question of how this initial signal is decoded to regulate specific cellular functions. It is now clearly established that local [Ca2+] at the site of SOCE can vary significantly from the global [Ca2+] in the cytosol. Such Ca2+ microdomains are generated by the assembly of key Ca2+ signaling proteins within the domains. For example, GPCR, IP 3 receptors, TRPC3 channels, the plasma membrane Ca2+ pump and the endoplasmic reticulum (ER) Ca2+ pump have all been found to be assembled in a complex and all of them contribute to the Ca2+ signal. Recent studies have revealed that two other critical components of SOCE, STIM1 and Orai1, are also recruited to these regions. Thus, the entire machinery for activation and regulation of SOCE is compartmentalized in specific cellular domains which facilitates the specificity and rate of protein-protein interactions that are required for activation of the channels. In the case of TRPC1-SOC channels, it appears that specific lipid domains, lipid raft domains (LRDs), in the plasma membrane, as well as cholesterol-binding scaffolding proteins such as caveolin-1 (Cav-1), are involved in assembly of the TRPC channel complexes. Thus, plasma membrane proteins and lipid domains as well as ER proteins contribute to the SOCE-Ca2+ signaling microdomain and modulation of the Ca2+ signals per se. Of further interest is that modulation of Ca2+ signals, i.e. amplitude and/or frequency, can result in regulation of specific cellular functions. The emerging data reveal a dynamic Ca2+ signaling complex composed of TRPC1/Orai1/STIM1 that is physiologically consistent with the dynamic nature of the Ca2+ signal that is generated. This review will focus on the recent studies which demonstrate critical aspects of the TRPC1 channelosome that are involved in the regulation of TRPC1 function and TRPC1-SOC-generated Ca2+ signals.
Collapse
Affiliation(s)
- Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
76
|
El Hindi S, Reiser J. TRPC channel modulation in podocytes-inching toward novel treatments for glomerular disease. Pediatr Nephrol 2011; 26:1057-64. [PMID: 21161284 PMCID: PMC3098353 DOI: 10.1007/s00467-010-1718-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 11/08/2022]
Abstract
Glomerular kidney disease is a major healthcare burden and considered to represent a sum of disorders that evade a refined and effective treatment. Excellent biological and genetic studies have defined pathways that go awry in podocytes, which are the regulatory cells of the glomerular filter. The question now is how to define targets for novel improved therapies. In this review, we summarize critical points around targeting the TRPC6 channel in podocytes.
Collapse
Affiliation(s)
- Shafic El Hindi
- Department of Medicine, Division of Nephrology and Hypertension, Leonard Miller School of Medicine, University of Miami, Miami, FL USA
| | - Jochen Reiser
- Department of Medicine, Division of Nephrology and Hypertension, Leonard Miller School of Medicine, University of Miami, Miami, FL USA
- Department of Medicine, Miller School of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Bldg, 6th Fl (R-762), Miami, FL 33136 USA
| |
Collapse
|
77
|
Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing. Hum Genet 2011; 126:819-31. [PMID: 19701773 DOI: 10.1007/s00439-009-0735-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/13/2009] [Indexed: 01/10/2023]
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) is the most common inherited form of gastrointestinal obstruction in infancy with a striking male preponderance. Infants present with vomiting due to gastric outlet obstruction caused by hypertrophy of the smooth muscle of the pylorus. Two loci specific to extended pedigrees displaying autosomal dominant inheritance have been identified. A genome scan identified loci on chromosomes 11q14-q22 and Xq23-q24 which are predicted to be responsible for a subset of smaller families with IHPS demonstrating non-Mendelian inheritance. The two linked chromosomal regions both harbour functional candidate genes which are members of the canonical transient receptor potential (TRPC) family of ion channels. Both TRPC5 (Xq23-q24) and TRPC6 (11q14-q22) have a potential role in smooth muscle control and hypertrophy. Here, we report suggestive evidence for a third locus on chromosome 3q12-q25 (Zmax = 2.7, p < 0.004), a region which harbours a third TRPC gene, TRPC1. Fine mapping of all three genes using a tagSNP approach and re-sequencing identified a SNP in the promoter region of TRPC6 and a missense variant in exon 4 of TRPC6 which may be putative causal variants.
Collapse
|
78
|
Fuchs B, Rupp M, Ghofrani HA, Schermuly RT, Seeger W, Grimminger F, Gudermann T, Dietrich A, Weissmann N. Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6. Respir Res 2011; 12:20. [PMID: 21294865 PMCID: PMC3042943 DOI: 10.1186/1465-9921-12-20] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/04/2011] [Indexed: 11/25/2022] Open
Abstract
Background Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung that matches blood perfusion to alveolar ventilation to optimize gas exchange. Recently we have demonstrated that acute but not sustained HPV is critically dependent on the classical transient receptor potential 6 (TRPC6) channel. However, the mechanism of TRPC6 activation during acute HPV remains elusive. We hypothesize that a diacylglycerol (DAG)-dependent activation of TRPC6 regulates acute HPV. Methods We investigated the effect of the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) on normoxic vascular tone in isolated perfused and ventilated mouse lungs from TRPC6-deficient and wild-type mice. Moreover, the effects of OAG, the DAG kinase inhibitor R59949 and the phospholipase C inhibitor U73122 on the strength of HPV were investigated compared to those on non-hypoxia-induced vasoconstriction elicited by the thromboxane mimeticum U46619. Results OAG increased normoxic vascular tone in lungs from wild-type mice, but not in lungs from TRPC6-deficient mice. Under conditions of repetitive hypoxic ventilation, OAG as well as R59949 dose-dependently attenuated the strength of acute HPV whereas U46619-induced vasoconstrictions were not reduced. Like OAG, R59949 mimicked HPV, since it induced a dose-dependent vasoconstriction during normoxic ventilation. In contrast, U73122, a blocker of DAG synthesis, inhibited acute HPV whereas U73343, the inactive form of U73122, had no effect on HPV. Conclusion These findings support the conclusion that the TRPC6-dependency of acute HPV is induced via DAG.
Collapse
Affiliation(s)
- Beate Fuchs
- Excellence Cluster Cardio-Pulmonary System, University of Giessen Lung Center, Department of Internal Medicine II, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Cheng KT, Ong HL, Liu X, Ambudkar IS. Contribution of TRPC1 and Orai1 to Ca(2+) entry activated by store depletion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:435-49. [PMID: 21290310 DOI: 10.1007/978-94-007-0265-3_24] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is activated in response to depletion of the ER-Ca(2+) stores by the ER Ca(2+) sensor protein, STIM1 which oligomerizes and moves to ER/PM junctional domains where it interacts with and activates channels involved in SOCE. Two types of channel activities have been described. I(CRAC), via Ca(2+) release-activated Ca(2+) (CRAC) channel, which displays high Ca(2+) selectivity and accounts for the SOCE and cell function in T lymphocytes, mast cells, platelets, and some types of smooth muscle and endothelial cells. Orai1 has been established as the pore-forming component of CRAC channels and interaction of Orai1 with STIM1 is sufficient for generation of the CRAC channel. Store depletion also leads to activation of relatively non-selective cation currents (referred to as I(SOC)) that contribute to SOCE in several other cell types. TRPC channels, including TRPC1, TRPC3, and TRPC4, have been proposed as possible candidate channels for this Ca(2+) influx. TRPC1 is the best characterized channel in this regard and reported to contribute to endogenous SOCE in many cells types. TRPC1-mediated Ca(2+) entry and cation current in cells stimulated with agonist or thapsigargin are inhibited by low [Gd(3+)] and 10-20 μM 2APB (conditions that block SOCE). Importantly, STIM1 also associates with and gates TRPC1 via electrostatic interaction between STIM1 ((684)KK(685)) and TRPC1 ((639)DD(640)). Further, store depletion induces dynamic recruitment of a TRPC1/STIM1/Orai1 complex and knockdown of Orai1 completely abrogates TRPC1 function. Despite these findings, there has been much debate regarding the activation of TRPC1 by store depletion as well as the role of Orai1 and STIM1 in SOC channel function. This chapter summarizes recent studies and concepts regarding the contributions of Orai1 and TRPC1 to SOCE. Major unresolved questions regarding functional interaction between Orai1 and TRPC1 as well as possible mechanisms involved in the regulation of TRPC channels by store depletion will be discussed.
Collapse
Affiliation(s)
- Kwong Tai Cheng
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
80
|
TRP channels in the cardiopulmonary vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:781-810. [PMID: 21290327 DOI: 10.1007/978-94-007-0265-3_41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential (TRP) channels are expressed in almost every human tissue, including the heart and the vasculature. They play unique roles not only in physiological functions but, if over-expressed, also in pathophysiological disease states. Cardiovascular diseases are the leading cause of death in the industrialized countries. Therefore, TRP channels are attractive drug targets for more effective pharmacological treatments of these diseases. This review focuses on three major cell types of the cardiovascular system: cardiomyocytes as well as smooth muscle cells and endothelial cells from the systemic and pulmonary circulation. TRP channels initiate multiple signals in all three cell types (e.g. contraction, migration) and are involved in gene transcription leading to cell proliferation or cell death. Identification of their genes has significantly improved our knowledge of multiple signal transduction pathways in these cells. Some TRP channels are important cellular sensors and are mostly permeable to Ca(2+), while most other TRP channels are receptor activated and allow for the entry of Na(+), Ca(2+) and Mg(2+). Physiological functions of TRPA, TRPC, TRPM, TRPP and TRPV channels in the cardiovascular system, dissected by down-regulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models, are reviewed. The involvement of TRPs as homomeric or heteromeric channels in pathophysiological processes in the cardiovascular system like heart failure, cardiac hypertrophy, hypertension as well as edema formation by increased endothelial permeability will be discussed.
Collapse
|
81
|
Expression and physiological roles of TRP channels in smooth muscle cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:687-706. [PMID: 21290322 DOI: 10.1007/978-94-007-0265-3_36] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Smooth muscles are widely distributed in mammal body through various systems such as circulatory, respiratory, gastro-intestinal and urogenital systems. The smooth muscle cell (SMC) is not only a contractile cell but is able to perform other important functions such as migration, proliferation, production of cytokines, chemokines, extracellular matrix proteins, growth factors and cell surface adhesion molecules. Thus, SMC appears today as a fascinating cell with remarkable plasticity that contributes to its roles in physiology and disease. Most of the SMC functions are dependent on a key event: the increase in intracellular calcium concentration ([Ca(2+)](i)). Calcium entry from the extracellular space is a major step in the elevation of [Ca(2+)](i) in SMC and involves a variety of plasmalemmal calcium channels, among them is the superfamily of transient receptor potential (TRP) proteins. TRPC (canonical), TRPM (melastatin), TRPV (vanilloid) and TRPP (polycystin), are widely expressed in both visceral (airways, gastrointestinal tract, uterus) and vascular (systemic and pulmonary circulation) smooth muscles. Mainly, TRPC, TRPV and TRPM are implicated in a variety of physiological and pathophysiological processes such as: SMC contraction, relaxation, growth, migration and proliferation; control of blood pressure, arterial myogenic tone, pulmonary hypertension, intestinal motility, gastric acidity, uterine activity during parturition and labor. Thus it is becoming evident that TRP are major element of SMC calcium homeostasis and, thus, appear as novel drug targets for a better management of diseases originating from SMC dysfunction.
Collapse
|
82
|
Zheng T, Li W, Altura BT, Shah NC, Altura BM. Sphingolipids regulate [Mg2+]o uptake and [Mg2+]i content in vascular smooth muscle cells: potential mechanisms and importance to membrane transport of Mg2+. Am J Physiol Heart Circ Physiol 2010; 300:H486-92. [PMID: 21112948 DOI: 10.1152/ajpheart.00976.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sphingolipids have a variety of important signaling roles in mammalian cells. We tested the hypothesis that certain sphingolipids and neutral sphingomyelinase (N-SMase) can regulate intracellular free magnesium ions ([Mg2+]i) in vascular smooth muscle (VSM) cells. Herein, we show that several sphingolipids, including C2-ceramide, C8-ceramide, C16-ceramide, and sphingosine, as well as N-SMase, have potent and direct effects on content and mobilization of [Mg2+]i in primary cultured rat aortic smooth muscle cells. All of these sphingolipid molecules increase, rapidly, [Mg2+]i in these vascular cells in a concentration-dependent manner. The increments of [Mg2+]i, induced by these agents, are derived from influx of extracellular Mg2+ and are extracellular Ca2+ concentration-dependent. Phospholipase C and Ca2+/calmodulin/Ca2+-ATPase activity appear to be important in the sphingolipid-induced rises of [Mg2+]i. Activation of certain PKC isozymes may also be required for sphingolipid-induced rises in [Mg2+]i. These novel results suggest that sphingolipids may be homeostatic regulators of extracellular Mg2+ concentration influx (and transport) and [Mg2+]i content in vascular muscle cells.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Physiology and Pharmacology, Center For Cardiovascular and Muscle Research, The School of Graduate Studies Program in Molecular and Cellular Science, State University of New York, Box 31, SUNY Health Science Center at Brooklyn, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
83
|
Evidence for a supportive role of classical transient receptor potential 6 (TRPC6) in the exploration behavior of mice. Physiol Behav 2010; 102:245-50. [PMID: 21059368 DOI: 10.1016/j.physbeh.2010.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 10/11/2010] [Accepted: 11/01/2010] [Indexed: 11/21/2022]
Abstract
Non-selective classical transient receptor potential (TRPC) cation channels share important roles in processes of neuronal development and function. To test the influence of TRPC6 activity on behavior, we developed a TRPC6-deficient (TRPC6(-/-)) mouse model in a BALB/c genetic background. Both, TRPC6(-/-) and wild-type (WT) mice were analyzed first for their general health and reflex status (modified SHIRPA protocol) and then in three different behavioral tests (marble-burying test, square open field and elevated star maze). No abnormalities were detected in the SHIRPA protocol. Most interestingly, TRPC6(-/-) mice showed no significant differences in anxiety in a marble-burying test, but demonstrated reduced exploration in the square open field and the elevated star maze. Therefore, TRPC6 channel activity may play a yet unknown role for exploration behavior.
Collapse
|
84
|
Salomonsson M, Braunstein TH, Holstein-Rathlou NH, Jensen LJ. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline: possible role of TRPC channels. Acta Physiol (Oxf) 2010; 200:265-78. [PMID: 20426773 DOI: 10.1111/j.1748-1716.2010.02141.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM In rat afferent arterioles we investigated the role of Na(+) entry in noradrenaline (NA)-induced depolarization and voltage-dependent Ca(2+) entry together with the importance of the transient receptor potential channel (TRPC) subfamily for non-voltage-dependent Ca(2+) entry. METHODS R (340/380) Fura-2 fluorescence was used as an index for intracellular free Ca(2+) concentration ([Ca(2+)](i)). Immunofluorescence detected the expression of TRPC channels. RESULTS TRPC 1, 3 and 6 were expressed in afferent arteriolar vascular smooth muscle cells. Under extracellular Na(+)-free (0 Na) conditions, the plateau response to NA was 115% of the baseline R(340/380) (control response 123%). However, as the R(340/380) baseline increased (7%) after 0 Na the plateau reached the same level as during control conditions. Similar responses were obtained after blockade of the Na(+)/Ca(2+) exchanger. The L-type blocker nifedipine reduced the plateau response to NA both under control (from 134% to 116% of baseline) and 0 Na conditions (from 112% to 103% of baseline). In the presence of nifedipine, the putative TRPC channel blockers SKF 96365 (30 μm) and Gd(3+) (100 μm) further reduced the plateau Ca(2+) responses to NA (from 117% to 102% and from 117% to 110% respectively). CONCLUSION We found that Na(+) is not crucial for the NA-induced depolarization that mediates Ca(2+) entry via L-type channels. In addition, the results are consistent with the idea that TRPC1/3/6 Ca(2+) -permeable cation channels expressed in afferent arteriolar smooth muscle cells mediate Ca(2+) entry during NA stimulation.
Collapse
Affiliation(s)
- M Salomonsson
- Division of Renal and Vascular Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
85
|
Ducret T, El Arrouchi J, Courtois A, Quignard JF, Marthan R, Savineau JP. Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Cell Calcium 2010; 48:251-9. [DOI: 10.1016/j.ceca.2010.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 09/10/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
|
86
|
Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2010; 2:a003962. [PMID: 20861159 DOI: 10.1101/cshperspect.a003962] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 28 mammalian members of the super-family of transient receptor potential (TRP) channels are cation channels, mostly permeable to both monovalent and divalent cations, and can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are widely expressed in a large number of different tissues and cell types, and their biological roles appear to be equally diverse. In general, considered as polymodal cell sensors, they play a much more diverse role than anticipated. Functionally, TRP channels, when activated, cause cell depolarization, which may trigger a plethora of voltage-dependent ion channels. Upon stimulation, Ca2+ permeable TRP channels generate changes in the intracellular Ca2+ concentration, [Ca2+]i, by Ca2+ entry via the plasma membrane. However, more and more evidence is arising that TRP channels are also located in intracellular organelles and serve as intracellular Ca2+ release channels. This review focuses on three major tasks of TRP channels: (1) the function of TRP channels as Ca2+ entry channels; (2) the electrogenic actions of TRPs; and (3) TRPs as Ca2+ release channels in intracellular organelles.
Collapse
Affiliation(s)
- Maarten Gees
- KU Leuven, Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, bus 802, Leuven, Belgium
| | | | | |
Collapse
|
87
|
Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londoño JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 2010; 120:3267-79. [PMID: 20679729 DOI: 10.1172/jci41348] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 06/23/2010] [Indexed: 11/17/2022] Open
Abstract
Hypertension is an underlying risk factor for cardiovascular disease. Despite this, its pathogenesis remains unknown in most cases. Recently, the transient receptor potential (TRP) channel family was associated with the development of several cardiovascular diseases linked to hypertension. The melastatin TRP channels TRPM4 and TRPM5 have distinct properties within the TRP channel family: they form nonselective cation channels activated by intracellular calcium ions. Here we report the identification of TRPM4 proteins in endothelial cells, heart, kidney, and chromaffin cells from the adrenal gland, suggesting that they have a role in the cardiovascular system. Consistent with this hypothesis, Trpm4 gene deletion in mice altered long-term regulation of blood pressure toward hypertensive levels. No changes in locomotor activity, renin-angiotensin system function, electrolyte and fluid balance, vascular contractility, and cardiac contractility under basal conditions were observed. By contrast, inhibition of ganglionic transmission with either hexamethonium or prazosin abolished the difference in blood pressure between Trpm4-/- and wild-type mice. Strikingly, plasma epinephrine concentration as well as urinary excretion of catecholamine metabolites were substantially elevated in Trpm4-/- mice. In freshly isolated chromaffin cells, lack of TRPM4 was shown to cause markedly more acetylcholine-induced exocytotic release events, while neither cytosolic calcium concentration, size, nor density of vesicles were different. We therefore conclude that TRPM4 proteins limit catecholamine release from chromaffin cells and that this contributes to increased sympathetic tone and hypertension.
Collapse
Affiliation(s)
- Ilka Mathar
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Zulian A, Baryshnikov SG, Linde CI, Hamlyn JM, Ferrari P, Golovina VA. Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats. Am J Physiol Heart Circ Physiol 2010; 299:H624-33. [PMID: 20622104 DOI: 10.1152/ajpheart.00356.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Milan hypertensive strain (MHS) of rats is a model for hypertension in humans. Inherited defects in renal function have been well studied in MHS rats, but the mechanisms that underlie the elevated vascular resistance are unclear. Altered Ca(2+) signaling plays a key role in the vascular dysfunction associated with arterial hypertension. Here we compared Ca(2+) signaling in mesenteric artery smooth muscle cells from MHS rats and its normotensive counterpart (MNS). Systolic blood pressure was higher in MHS than in MNS rats (144 +/- 2 vs. 113 +/- 1 mmHg, P < 0.05). Resting cytosolic free Ca(2+) concentration (measured with fura-2) and ATP-induced Ca(2+) transients were augmented in freshly dissociated arterial myocytes from MHS rats. Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (a measure of receptor-operated channel activity) was much greater in MHS than MNS arterial myocytes. This correlated with a threefold upregulation of transient receptor potential canonical 6 (TRPC6) protein. TRPC3, the other component of receptor-operated channels, was marginally, but not significantly, upregulated. The expression of TRPC1/5, components of store-operated channels, was not altered in MHS mesenteric artery smooth muscle. Immunoblots also revealed that the Na(+)/Ca(2+) exchanger-1 (NCX1) was greatly upregulated in MHS mesenteric artery (by approximately 13-fold), whereas the expression of plasma membrane Ca(2+)-ATPase was not altered. Ca(2+) entry via the reverse mode of NCX1 evoked by the removal of extracellular Na(+) induced a rapid increase in cytosolic free Ca(2+) concentration that was significantly larger in MHS arterial myocytes. The expression of alpha(1)/alpha(2) Na(+) pumps in MHS mesenteric arteries was not changed. Immunocytochemical observations showed that NCX1 and TRPC6 are clustered in plasma membrane microdomains adjacent to the underlying sarcoplasmic reticulum. In summary, MHS arteries exhibit upregulated TRPC6 and NCX1 and augmented Ca(2+) signaling. We suggest that the increased Ca(2+) signaling contributes to the enhanced vasoconstriction and elevated blood pressure in MHS rats.
Collapse
Affiliation(s)
- Alessandra Zulian
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
89
|
Gonzalez-Cobos JC, Trebak M. TRPC channels in smooth muscle cells. Front Biosci (Landmark Ed) 2010; 15:1023-39. [PMID: 20515740 DOI: 10.2741/3660] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins constitute a family of seven (TRPC1-7) nonselective cation channels within the wider TRP superfamily. TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6 channels are expressed in vascular smooth muscle cells from human vessels of all calibers and in smooth muscle from organs such as the uterus and the gastrointestinal tract. TRPC channels have recently emerged as important players in the control of smooth muscle function. This review will focus on the retrospective analysis of studies proposing contributions of TRPC channels to native calcium entry pathways in smooth muscle and to physiological and pathophysiological responses with emphasis on the vascular system.
Collapse
|
90
|
Abstract
Many ion channels and transporters are involved in the filtration, secretion, and resorption of electrolytes by the kidney. In recent years, the superfamily of transient receptor potential (TRP) ion channels have received deserved attention because mutated TRP channels are linked to human kidney diseases. This review focuses on two TRP members--TRPC6 and TRPM6--and their functions in the kidney. Gain-of-function mutations in TRPC6 are the cause for progressive kidney failure with urinary protein loss such as FSGS. Thus, TRPC6 is an essential signaling component in a functional slit diaphragm formed by podocytes around the glomerular capillaries. Loss-of-function mutations in TRPM6 are a molecular cause of hypomagnesemia with secondary hypocalcemia, suggesting that TRPM6 is critically involved in transcellular Mg2+ transport in the kidney. Here, we highlight how recent studies analyzing function and expression of these channels in the kidney improve our mechanistic understanding of TRP channel function in general and pave the way to new, promising therapeutic strategies to target kidney diseases such as FSGS and hypomagnesemia with secondary hypocalcemia.
Collapse
Affiliation(s)
- Alexander Dietrich
- Institute of Pharmacology and Toxicology, School of Medicine, University of Marburg, Marburg, Germany
| | | | | |
Collapse
|
91
|
Gao F, Wang DH. Impairment in function and expression of transient receptor potential vanilloid type 4 in Dahl salt-sensitive rats: significance and mechanism. Hypertension 2010; 55:1018-25. [PMID: 20194297 PMCID: PMC2862636 DOI: 10.1161/hypertensionaha.109.147710] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To examine the role of transient receptor potential vanilloid type 4 (TRPV4) channels in the development of salt-sensitive hypertension, male Dahl salt-sensitive (DS) and -resistant (DR) rats were fed a low-salt (LS) or high-salt (HS) diet for 3 weeks. DS-HS but not DR-HS rats developed hypertension. 4alpha-Phorbol-12,13-didecanoate (a selective TRPV4 activator; 2.5 mg/kg IV) decreased mean arterial pressure in all of the groups with the greatest effects in DR-HS and the least in DS-HS rats (P<0.05). Depressor effects of 4alpha-phorbol-12,13-didecanoate but not dihydrocapsaicin (a selective TRPV1 agonist; 30 microg/kg IV) were abolished by ruthenium red (a TRPV4 antagonist; 3 mg/kg IV) in all of the groups. Blockade of TRPV4 with ruthenium red increased mean arterial pressure in DR-HS rats only (P<0.05). TRPV4 protein contents were decreased in the renal cortex, medulla, and dorsal root ganglia in DS-HS compared with DS-LS rats but increased in dorsal root ganglia and mesenteric arteries in DR-HS compared with DR-LS rats (P<0.05). Mean arterial pressure responses to blockade of small- and large-/intermediate-conductance Ca(2+)-activated K(+) channels (Maxikappa channels) with apamin and charybdotoxin, respectively, were examined. Apamin (100 microg/kg) plus charybdotoxin (100 microg/kg) abolished 4alpha-phorbol-12,13-didecanoate-induced hypotension in DR-LS, DR-HS, and DS-LS rats only. Thus, HS-induced enhancement of TRPV4 function and expression in sensory neurons and resistant vessels in DR rats may prevent salt-induced hypertension possibly via activation of Maxikappa channels given that blockade of TRPV4 elevates mean arterial pressure. In contrast, HS-induced suppression of TRPV4 function and expression in sensory neurons and kidneys in DS rats may contribute to increased salt sensitivity.
Collapse
Affiliation(s)
- Feng Gao
- Department of Medicine, Michigan State University, Michigan
| | - Donna H. Wang
- Department of Medicine, Michigan State University, Michigan
- Neuroscience Program, Michigan State University, Michigan
- Cell and Molecular Biology Program, Michigan State University, Michigan
| |
Collapse
|
92
|
Ding X, He Z, Shi Y, Wang Q, Wang Y. Targeting TRPC6 channels in oesophageal carcinoma growth. Expert Opin Ther Targets 2010; 14:513-27. [DOI: 10.1517/14728221003733602] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
93
|
Transient receptor potential channelopathies. Pflugers Arch 2010; 460:437-50. [PMID: 20127491 DOI: 10.1007/s00424-010-0788-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/12/2010] [Indexed: 12/31/2022]
Abstract
In the past years, several hereditary diseases caused by defects in transient receptor potential channels (TRP) genes have been described. This review summarizes our current knowledge about TRP channelopathies and their possible pathomechanisms. Based on available genetic indications, we will also describe several putative pathological conditions in which (mal)function of TRP channels could be anticipated.
Collapse
|
94
|
Townsend EA, Thompson MA, Pabelick CM, Prakash YS. Rapid effects of estrogen on intracellular Ca2+ regulation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2010; 298:L521-30. [PMID: 20097735 DOI: 10.1152/ajplung.00287.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The severity of asthma, a disease characterized by airway hyperresponsiveness and inflammation, is enhanced in some women during the menstrual cycle and during pregnancy but relieved in others. These clinical findings suggest that sex steroids modulate airway tone. Based on well-known relaxant effects of estrogens on vascular smooth muscle, we hypothesized that estrogens relax airway smooth muscle (ASM), thus facilitating bronchodilation. In ASM tissues from female patients, Western and immunocytochemical analyses confirmed the presence of both estrogen receptor (ER) isoforms, ERalpha and ERbeta. In fura 2-loaded, dissociated ASM cells maintained in culture, acute exposure to physiological concentrations of 17beta-estradiol (E(2); 100 pM to 10 nM) decreased the intracellular Ca(2+) ([Ca(2+)](i)) response to 1 muM histamine, an effect reversed by the ER antagonist ICI-182,780. The ERalpha-selective agonist (R,R)-THC had a greater reducing effect on [Ca(2+)](i) responses to histamine and 1 muM ACh compared with the ERbeta-selective agonist (DPN). The effects of E(2) on [Ca(2+)](i) were mediated, at least in part, via decreased Ca(2+) influx through l-type channels and store-operated Ca(2+) entry but not via Ca(2+)-activated K(+) channels, receptor-operated entry, or sarcoplasmic reticulum reuptake. Overall, these data support our hypothesis that estrogens relax ASM and suggest a potentially novel therapeutic target in airway hyperresponsiveness.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
95
|
Fuchs B, Dietrich A, Gudermann T, Kalwa H, Grimminger F, Weissmann N. The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:187-200. [PMID: 20204731 DOI: 10.1007/978-1-60761-500-2_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung matching blood perfusion to ventilation during local alveolar hypoxia. HPV thus optimizes pulmonary gas exchange. In contrast chronic and generalized hypoxia leads to pulmonary vascular remodeling with subsequent pulmonary hypertension and right heart hypertrophy. Among other non-selective cation channels, the family of classical transient receptor potential channels (TRPC) has been shown to be expressed in pulmonary arterial smooth muscle cells. Among this family, TRPC6 is essential for the regulation of acute HPV in mice. Against this background, in this chapter we give an overview about the TRPC family and their role in HPV.
Collapse
Affiliation(s)
- B Fuchs
- University of Giessen Lung Center (UGLC), Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
96
|
Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore. J Cardiovasc Pharmacol 2009; 54:116-22. [PMID: 19597371 DOI: 10.1097/fjc.0b013e3181aa233f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stretch-activated or mechanosensitive channels transduce mechanical forces into ion fluxes across the cell membrane. These channels have been implicated in several aspects of cardiovascular physiology including regulation of blood pressure, vasoreactivity, and cardiac arrhythmias, as well as the adverse remodeling associated with cardiac hypertrophy and heart failure. This review discusses mechanosensitive channels in skeletal muscle and the cardiovascular system and their role in disease pathogenesis. We describe the regulation of gating of mechanosensitive channels including direct mechanisms and indirect activation by signaling pathways, as well as the influence on activation of these channels by the underlying cytoskeleton and scaffolding proteins. We then focus on the role of transient receptor potential channels, several of which have been implicated as mechanosensitive channels, in the pathogenesis of adverse cardiac remodeling and as potential therapeutic targets in the treatment of heart failure.
Collapse
|
97
|
Pulina MV, Zulian A, Berra-Romani R, Beskina O, Mazzocco-Spezzia A, Baryshnikov SG, Papparella I, Hamlyn JM, Blaustein MP, Golovina VA. Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats. Am J Physiol Heart Circ Physiol 2009; 298:H263-74. [PMID: 19897708 DOI: 10.1152/ajpheart.00784.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prolonged ouabain administration (25 microg kg(-1) day(-1) for 5 wk) induces "ouabain hypertension" (OH) in rats, but the molecular mechanisms by which ouabain elevates blood pressure are unknown. Here, we compared Ca(2+) signaling in mesenteric artery smooth muscle cells (ASMCs) from normotensive (NT) and OH rats. Resting cytosolic free Ca(2+) concentration ([Ca(2+)](cyt); measured with fura-2) and phenylephrine-induced Ca(2+) transients were augmented in freshly dissociated OH ASMCs. Immunoblots revealed that the expression of the ouabain-sensitive alpha(2)-subunit of Na(+) pumps, but not the predominant, ouabain-resistant alpha(1)-subunit, was increased (2.5-fold vs. NT ASMCs) as was Na(+)/Ca(2+) exchanger-1 (NCX1; 6-fold vs. NT) in OH arteries. Ca(2+) entry, activated by sarcoplasmic reticulum (SR) Ca(2+) store depletion with cyclopiazonic acid (SR Ca(2+)-ATPase inhibitor) or caffeine, was augmented in OH ASMCs. This reflected an augmented expression of 2.5-fold in OH ASMCs of C-type transient receptor potential TRPC1, an essential component of store-operated channels (SOCs); two other components of some SOCs were not expressed (TRPC4) or were not upregulated (TRPC5). Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol [a measure of receptor-operated channel (ROC) activity] was much greater in OH than NT ASMCs. This correlated with a sixfold upregulation of TRPC6 protein, a ROC family member. Importantly, in primary cultured mesenteric ASMCs from normal rats, 72-h treatment with 100 nM ouabain significantly augmented NCX1 and TRPC6 protein expression and increased resting [Ca(2+)](cyt) and ROC activity. SOC activity was also increased. Silencer RNA knockdown of NCX1 markedly downregulated TRPC6 and eliminated the ouabain-induced augmentation; silencer RNA knockdown of TRPC6 did not affect NCX1 expression but greatly attenuated its upregulation by ouabain. Clearly, NCX1 and TRPC6 expression are interrelated. Thus, prolonged ouabain treatment upregulates the Na(+) pump alpha(2)-subunit-NCX1-TRPC6 (ROC) Ca(2+) signaling pathway in arterial myocytes in vitro as well as in vivo. This may explain the augmented myogenic responses and enhanced phenylephrine-induced vasoconstriction in OH arteries (83) as well as the high blood pressure in OH rats.
Collapse
Affiliation(s)
- Maria V Pulina
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Trebak M. The puzzling role of TRPC3 channels in motor coordination. Pflugers Arch 2009; 459:369-75. [PMID: 19823866 DOI: 10.1007/s00424-009-0740-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 09/16/2009] [Accepted: 09/20/2009] [Indexed: 11/25/2022]
Abstract
Transient receptor potential canonical 3 (TRPC3) proteins are nonselective cation channels activated downstream of phospholipase-C-coupled receptors. TRPC3 channels have emerged as major players in the function of the central nervous system. They have been described as important contributors to brain-derived neurotrophic factor mediated survival and growth-cone guidance of cerebellar granule neurons. TRPC3 were also identified as postsynaptic cation channels essential for metabotropic glutamate receptor1-dependent synaptic transmission in cerebellar Purkinje neurons. A recent report described motor coordination defects in TRPC3 knockout mice while a subsequent study reported a similar phenotype in so-called moonwalker mice, harboring a TRPC3 gain-of-function mutation. How can opposing aspects of TRPC3 channel activation lead to the same phenotype? Here we discuss the salient features of TRPC3 knockout mice and moonwalker mice and attempt to reconcile the apparently conflicting findings from these two animal models.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Ave, MC8, Albany, NY 12208, USA.
| |
Collapse
|
99
|
Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA. Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am J Physiol Cell Physiol 2009; 297:C1103-12. [PMID: 19675303 DOI: 10.1152/ajpcell.00283.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) entry through store-operated channels (SOCs) in the plasma membrane plays an important role in regulation of vascular smooth muscle contraction, tone, and cell proliferation. The C-type transient receptor potential (TRPC) channels have been proposed as major candidates for SOCs in vascular smooth muscle. Recently, two families of transmembrane proteins, Orai [also known as Ca(2+) release-activated Ca(2+) channel modulator (CRACM)] and stromal interacting molecule 1 (STIM1), were shown to be essential for the activation of SOCs mainly in nonexcitable cells. Here, using small interfering RNA, we show that Orai1 plays an essential role in activating store-operated Ca(2+) entry (SOCE) in primary cultured proliferating human aortic smooth muscle cells (hASMCs), whereas Orai2 and Orai3 do not contribute to SOCE. Knockdown of Orai1 protein expression significantly attenuated SOCE. Moreover, inhibition of Orai1 downregulated expression of Na(+)/Ca(2+) exchanger type 1 (NCX1) and plasma membrane Ca(2+) pump isoform 1 (PMCA1). The rate of cytosolic free Ca(2+) concentration decay after Ca(2+) transients in Ca(2+)-free medium was also greatly decreased under these conditions. This reduction of Ca(2+) extrusion, presumably via NCX1 and PMCA1, may be a compensation for the reduced SOCE. Immunocytochemical observations indicate that Orai1 and NCX1 are clustered in plasma membrane microdomains. Cell proliferation was attenuated in hASMCs with disrupted Orai1 expression and reduced SOCE. Thus Orai1 appears to be a critical component of SOCE in proliferating vascular smooth muscle cells, and may therefore be a key player during vascular growth and remodeling.
Collapse
Affiliation(s)
- Sergey G Baryshnikov
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
100
|
Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY, Thistlethwaite PA, Channick RN, Robbins IM, Loyd JE, Ghofrani HA, Grimminger F, Schermuly RT, Cahalan MD, Rubin LJ, Yuan JXJ. A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 2009; 119:2313-22. [PMID: 19380626 DOI: 10.1161/circulationaha.108.782458] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role in the development of idiopathic pulmonary arterial hypertension (IPAH), whereas a rise in cytosolic Ca2+ concentration triggers PASMC contraction and stimulates PASMC proliferation. Recently, we demonstrated that upregulation of the TRPC6 channel contributes to proliferation of PASMCs isolated from IPAH patients. This study sought to identify single-nucleotide polymorphisms (SNPs) in the TRPC6 gene promoter that are associated with IPAH and have functional significance in regulating TRPC6 activity in PASMCs. METHODS AND RESULTS Genomic DNA was isolated from blood samples of 237 normal subjects and 268 IPAH patients. Three biallelic SNPs, -361 (A/T), -254(C/G), and -218 (C/T), were identified in the 2000-bp sequence upstream of the transcriptional start site of TRPC6. Although the allele frequencies of the -361 and -218 SNPs were not different between the groups, the allele frequency of the -254(C-->G) SNP in IPAH patients (12%) was significantly higher than in normal subjects (6%; P<0.01). Genotype data showed that the percentage of -254G/G homozygotes in IPAH patients was 2.85 times that of normal subjects. Moreover, the -254(C-->G) SNP creates a binding sequence for nuclear factor-kappaB. Functional analyses revealed that the -254(C-->G) SNP enhanced nuclear factor-kappaB-mediated promoter activity and stimulated TRPC6 expression in PASMCs. Inhibition of nuclear factor-kappaB activity attenuated TRPC6 expression and decreased agonist-activated Ca2+ influx in PASMCs of IPAH patients harboring the -254G allele. CONCLUSIONS These results suggest that the -254(C-->G) SNP may predispose individuals to an increased risk of IPAH by linking abnormal TRPC6 transcription to nuclear factor-kappaB, an inflammatory transcription factor.
Collapse
Affiliation(s)
- Ying Yu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0725, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|